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Abstract

The integrals defining the two-loop β-function for the general renormalizable
N = 1 supersymmetric Yang–Mills theory, regularized by higher covariant deriva-
tives, are investigated. It is shown that they are given by integrals of double total
derivatives. These integrals are not equal to zero due to appearing of δ-functions.
These δ-functions allow to reduce the two-loop integrals to one-loop integrals, which
can be easily calculated. The result agrees with the exact NSVZ β-function and cal-
culations made by different methods.

1 Introduction.

Quantum correction in supersymmetric theories were studied for a long time. For
example, the β-function for N = 1 supersymmetric Yang–Mills theories was calculated
in one- [1], two- [2], three- [3, 4], and four-loop [5] approximations. All these calcula-
tion were made with the dimensional reduction [6] in the MS-scheme [7], because the
dimensional regularization [8] breaks the supersymmetry. However, it is well known [9]
that the dimensional reduction is inconsistent. Although ways allowing to overcome the
corresponding problems are discussed in the literature [10], removing of inconsistencies
leads to the loss of the supersymmetry in higher orders [11, 12]. In particular [11, 13],
it was shown that obtaining a three-loop β-function by different methods (from different
vertexes) leads to different results for the N = 2 supersymmetric Yang–Mills theory. As
a consequence, the dimensional reduction scheme breaks the supersymmetry in higher
loops. (In [11] it was argued that this also takes place for the N = 1 and N = 4 super-
symmetric Yang–Mills theories in the three-loop approximation, but recent calculation
[13] showed that in the three-loop approximation this is true only for the N = 2 theory.
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For the N = 4 supersymmetric Yang–Mills theory the dimensional reduction does not
also break the supersymmetry in the four-loop approximation [14].)

Other regularizations are also applied to calculations of quantum corrections. For
example, in Ref. [15] the two-loop β-function of N = 1 supersymmetric electrodynam-
ics (and also the β-functions of the scalar and spinor electrodynamics) was calculated
using a method based on the operator product expansion. The two-loop β-function for
N = 1 supersymmetric Yang–Mills theory was calculated in Ref. [16] with the differential
renormalization [17]. Some calculations were made with the higher covariant derivative
regularization, proposed in [18], and generalized to the supersymmetric case in [19] (an-
other variant was proposed in [20]). The higher covariant derivative regularization is an
invariant regularization and does not break the supersymmetry [19, 20, 21]. However, it
was not frequently applied to concrete calculations, because it is very difficult to calculate
the corresponding loop integrals analytically. For example, the one-loop β-function of the
(non-supersymmetric) Yang-Mills theory was first calculated only in [22]. Taking into ac-
count correction made in subsequent papers [23] the result coincided with the well-known
one, obtained with the dimensional regularization [24]. It is possible to prove that in
the one-loop approximation the results obtained with the higher derivative regularization
always agree with the results obtained with the dimensional regularization [25]. Some
calculations in the one-loop and two-loop approximations were made for various theories
[26, 27] with a variant of the higher covariant derivative regularization proposed in [28].
The structure of the corresponding integrals was discussed in Ref. [27].

Calculations of quantum corrections in supersymmetric theories with the higher deriva-
tive regularization show that the β-function is given by integrals of total derivatives. This
was first noted in [29], where all integrals defining the three-loop β-function of N = 1
supersymmetric electrodynamics were calculated using integration by parts. This feature
was also found in Ref. [30], where the factorization of integrands into total derivatives is
explained using a special technique, based on the covariant Feynman rules in the back-
ground field method [31, 32]. A proof of the factorization for N = 1 SQED by a different
method [33, 34] is made in [35]. This factorization allows natural explaining the origin
of the exact NSVZ β-function [36], because one of the loop integrals can be calculated
explicitly. As a consequence, say, in N = 1 SQED integrals defining the β-function in
the n-th loop are reduced to integrals defining the anomalous dimension in the (n− 1)-th
loop [37]. It is important to note that with the higher derivative regularization in order
to obtain the NSVZ β-function one should not make a special redefinition of the coupling
constant [35], which is needed if the calculations are made with the dimensional reduction
[4, 38].

For the general renormalizable N = 1 supersymmetric Yang–Mills theory, regularized
by the higher covariant derivatives, the two-loop β-function have been calculated in [39].
Similar results were obtained with two different versions of the higher derivative regu-
larization in [40, 41]. In these papers it was also verified that all integrals defining the
β-function are integrals of total derivatives, and this feature does not depend on a partic-
ular choice of the regularizing term. However, in Ref. [30] it was argued that the integrals
defining the β-function are integrals of double total derivatives. For N = 1 SQED, reg-
ularized by higher derivatives, this was also proved by a different method in [35]. In the
present paper we demonstrate that for a general renormalizable N = 1 supersymmetric
Yang–Mills theory, regularized by the higher covariant derivatives, two-loop integrals for
the β-function can be also written as integrals of double total derivatives.
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The paper is organized as follows:
In Sec. 2 we introduce the notation and recall basic information about the higher co-

variant derivative regularization. The integrals defining the β-function for the considered
theory are rewritten as integrals of double total derivatives in Sec. 3. The result is briefly
discussed in the Conclusion.

2 N = 1 supersymmetric Yang–Mills theory and the

higher covariant derivative regularization

In this paper we consider a general renormalizable N = 1 supersymmetric Yang–Mills
theory. In the massless case it is described by the action [42, 43]1

S =
1

2e2
Re tr

∫

d4x d2θWaC
abWb +

1

4

∫

d4x d4θ (φ∗)i(e2V )i
jφj +

+

(

1

6

∫

d4x d2θ λijkφiφjφk + h.c.

)

, (1)

where φi are chiral matter superfields in a representation R, which is in general reducible.
V is a real scalar gauge superfield. The superfield Wa is a supersymmetric gauge field
stress tensor, which is defined by

Wa =
1

8
D̄2(e−2VDae

2V ). (2)

In our notation Da and D̄a are the right and left supersymmetric covariant derivatives
respectively, V = eV ATA, and the generators of the fundamental representation are nor-
malized by the condition

tr(tAtB) =
1

2
δAB. (3)

Because action (1) should be invariant under the gauge transformations, the coefficient
λijk satisfies the condition

(TA)m
iλmjk + (TA)m

jλimk + (TA)m
kλijm = 0. (4)

It is convenient to calculate quantum corrections using the background field method
[42]. We make the substitution

e2V → e2V
′

≡ eΩ
+

e2V eΩ (5)

in action (1), where Ω is a background superfield. Then the theory is invariant under the
background gauge transformations

φ → eiΛφ; V → eiKV e−iK ; eΩ → eiKeΩe−iΛ; eΩ
+

→ eiΛ
+

eΩ
+

e−iK , (6)

1In our notation ηµν = diag(1,−1,−1,−1); θa ≡ θbC
ba; θa and θ̄a denote the right and left components

of θ, respectively.
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where K is an arbitrary real superfield, and Λ is a background-chiral superfield. This
invariance allows to set Ω = Ω+ = V. We choose a regularization and a gauge fixing so
that invariance (6) is unbroken. A gauge is fixed by adding

Sgf = −

1

32e2
tr

∫

d4x d4θ
(

VD
2
D̄

2
V + V D̄

2
D

2V
)

(7)

to the action. The actions for the corresponding Faddeev–Popov and Nielsen–Kallosh
ghosts are

SFP =
1

2e2
tr

∫

d4x d4θ (eΩc̃e−Ω + e−Ω
+

c̃+eΩ
+

)
(

VAd(e
Ωce−Ω + e−Ω

+

c+eΩ
+

)

+VAdcthVAd(e
Ωce−Ω

− e−Ω
+

c+eΩ
+

)
)

;

SNK =
1

2e2
tr

∫

d4x d4θ b+eΩ
+

eΩb e−Ωe−Ω
+

, (8)

where

f(VAd)c = f(0)c+
1

1!
f ′(0)[V, c] +

1

2!
f ′′(0)[V, [V, c]] + . . . (9)

In order to introduce the regularization it is necessary to add terms with the higher
covariant derivatives to the action. There are different possibilities for choosing such
terms. For example, in [39] the following terms were added:

SΛ =
1

2e2
trRe

∫

d4x d4θ V
(D2

µ)
n+1

Λ2n
V +

1

8

∫

d4x d4θ

(

(φ∗)i
[

eΩ
+

e2V
(D2

α)
m

Λ2m
eΩ

]

i
jφj +

+(φ∗)i
[

eΩ
+ (D2

α)
m

Λ2m
e2V eΩ

]

i
jφj

)

, (10)

where Dα is the background covariant derivative and we assume that m < n. Below
we call this choice ”variant 1”. It is important that the higher covariant derivative term
is also introduced for the matter superfields, because the considered theory contains a
nontrivial superpotential.

A simpler variant of the regularization is obtained if terms with the higher covariant
derivatives are chosen in the form (”variant 2”)[40]

SΛ =
1

2e2
trRe

∫

d4x d4θ V
(D2

µ)
n+1

Λ2n
V +

1

4

∫

d4x d4θ (φ∗)i
[

eΩ
+ (D2

α)
m

Λ2m
eΩ

]

i
jφj. (11)

where m and n are arbitrary positive integers.
In both cases the regularized theory is evidently invariant under the background gauge

transformations. However, the higher derivative terms considered here break BRST-
invariance of the action, and it is necessary to use a special subtraction scheme, which
restore the Slavnov–Taylor identities in each order of the perturbation theory [44]. For
the supersymmetric case such a scheme was constructed in Ref. [45].
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After adding SΛ divergences remain only in the one-loop approximation [46]. In order
to regularize them, it is necessary to introduce into the generating functional the Pauli–
Villars determinants

∏

I

(

∫

Dφ∗

IDφIe
iSI

)

−cI ∏

i

(

∫

Dc+i DciDc̃+i Dc̃iDb+i Dbie
iSi

)

−ci
, (12)

where SI and Si are the actions for the Pauli–Villars fields corresponding to φ and ghosts,
respectively. For variant 1 (if SΛ is given by Eq. (10)), the Pauli–Villars action can be
chosen as [25]

SI =
1

8

∫

d4x d4θ

(

(φ∗

I)
i
[

eΩ
+

e2V
(

1 +
(D2

α)
m

Λ2m

)

eΩ
]

i
j(φI)j + (φ∗

I)
i
[

eΩ
+
(

1 +
(D2

α)
m

Λ2m

)

×

×e2V eΩ
]

i
j(φI)j

)

+
(1

4

∫

d4x d2θM ij
I (φI)i(φI)j + h.c.

)

. (13)

For variant 2 the Pauli–Villars action is

SI =
1

4

∫

d4x d4θ (φ∗

I)
i
[

eΩ
+
(

1+
(D2

α)
m

Λ2m

)

eΩ
]

i
j(φI)j +

(1

4

∫

d4x d2θM ij
I (φI)i(φI)j +h.c.

)

.

(14)
The mass terms for the ghost Pauli–Villars fields are

1

2e2
tr

∫

d4x d2θ
(

mbb
2 + 2mcc̃c

)

+ h.c. (15)

The masses of all Pauli–Villars fields are proportional to the parameter Λ:

M ij
I = aijI Λ; mi = aiΛ, (16)

where a-s are numerical constants. As a consequence, Λ is the only dimensionful parameter
of the regularized theory. We assume that the mass term does not break the gauge
invariance. Also we will choose the masses so that

M ij
I (M∗

I )jk = M2
I δ

i
k. (17)

The coefficients cI and ci satisfy the conditions

∑

I

cI = 1;
∑

I

cIM
2
I = 0;

∑

i

ci = 1;
∑

i

cim
2
i = 0. (18)

The generating functional for connected Green functions and the effective action are
defined by the standard way.
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3 Two-loop β-function

Let us write terms in the effective action corresponding to the renormalized two-point
Green function of the gauge superfield in the form

Γ
(2)
V = −

1

8π
tr

∫

d4p

(2π)4
d4θV(−p) ∂2Π1/2V(p) d−1(α, λ, µ/p), (19)

where α is a renormalized coupling constant. In this paper we investigate the expression

d

d lnΛ

(

d−1(α0, λ0,Λ/p)− α−1
0

)
∣

∣

∣

p=0
= −

dα−1
0

d lnΛ
=

β(α0, λ0)

α2
0

(20)

in the two-loop approximation. After the calculation of the supergraphs the two-loop
β-function can be presented in the form:

β2(α, λ) = α2C2(IFP + INK) + α2T (R)I0 + α3C2
2I1 +

α3

r
C(R)i

jC(R)j
iI2 +

+α3T (R)C2I3 + α2C(R)i
j
λ∗

jklλ
ikl

4πr
I4, (21)

where the following notation is used:

tr (TATB) ≡ T (R) δAB; (TA)i
k(TA)k

j
≡ C(R)i

j;

fACDfBCD
≡ C2δ

AB; r ≡ δAA. (22)

Here

I = I(0)−
∑

I

cII(MI) for I0, I2, I3;

I = I(0)−
∑

i

ciI(mi) for INK, IFP, (23)

and the integrals I0(M), I1, I2(M), I3(M) and I4 can be found in Ref. [39] for variant
1 and in Ref. [40] for variant 2. In Refs. [39, 40] these integrals are written as integrals
of total derivatives. However, they are actually the integrals of double total derivatives.
Note that in this paper the notation is different from Ref. [35], where

∫

d4q

(2π)4
∂

∂qµ
≡

∫

S∞

dSµ

(2π)4
(24)

corresponds to Tr[xµ, . . .]. Here we use the ordinary notation

∫

d4q

(2π)4
∂

∂qµ
≡

∫

∂

dSµ

(2π)4
=

∫

S∞

dSµ

(2π)4
− integrals of δ-singularities, (25)

and ∂ denotes a boundary of a region where the integrand is regular.
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The result for the integrals defining the β-function for the variant 1 can be written as
follows (a two-loop contribution of the Faddeev–Popov ghosts is 0, exactly as in [31]):

INK(m) =
1

2
IFP(m) = π

∫

d4q

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{

1

q2
ln
(

q2 +m2
)

}

; (26)

I0(M) = −π

∫

d4q

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{

1

q2
ln
(

q2(1 + q2m/Λ2m)2 +M2
)

}

; (27)

I1 = −12π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂kµ

∂

∂kµ

{

1

k2(1 + k2n/Λ2n)q2(1 + q2n/Λ2n)(q + k)2

×

1

(1 + (q + k)2n/Λ2n)

}

; (28)

I2(M) = 2π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{

(2 + (q + k)2m/Λ2m + q2m/Λ2m)2

k2(1 + k2n/Λ2n)

×

(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)
(

q2(1 + q2m/Λ2m)2 +M2
)(

(q + k)2(1 + (q + k)2m/Λ2m)2 +M2
)

}

; (29)

I3(M) = 2π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂kµ

{

(2 + k2m/Λ2m + q2m/Λ2m)2

(k + q)2(1 + (q + k)2n/Λ2n)

×

(1 + k2m/Λ2m)(1 + q2m/Λ2m)
(

k2(1 + k2m/Λ2m)2 +M2
)(

q2(1 + q2m/Λ2m)2 +M2
)

}

; (30)

I4 = −8π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{

1

k2(1 + k2m/Λ2m)q2(1 + q2m/Λ2m)(q + k)2

×

1

(1 + (q + k)2m/Λ2m)

}

. (31)

These integrals are not equal to 0 because

∫

d4q

(2π)4
∂

∂qµ
∂

∂qµ

(f(q2)

q2

)

= lim
ε→0

∫

Sε

dSµ

(2π)4
(−2)qµf(q2)

q4
=

1

4π2
f(0) (32)

for a nonsingular function f(q2) which rapidly decreases at the infinity. As a consequence,

INK = −

1

4π

d

d lnΛ

(

∑

i

ci lnm
2
i

)

= −

1

2π
;

I0 =
1

4π

d

d lnΛ

(

∑

I

cI lnM
2
I

)

=
1

2π
;

I1 = −6

∫

d4q

(2π)4
d

d lnΛ

[

1

q4(1 + q2n/Λ2n)2

]

= −

3

4π2
;
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I2 =

∫

d4k

(2π)4
d

d lnΛ

[

(2 + k2m/Λ2m)2

k4(1 + k2n/Λ2n)(1 + k2m/Λ2m)

]

=
1

2π2
;

I3 =

∫

d4q

(2π)4
d

d lnΛ

[

2

q4
−

∑

I

cI
2(1 + q2m/Λ2m)4

(q2(1 + q2m/Λ2m)2 +M2
I )

2

]

=
1

4π2
;

I4 = −4

∫

d4k

(2π)4
d

d lnΛ

[

1

k4(1 + k2m/Λ2m)2

]

= −

1

2π2
. (33)

(The Pauli–Villars fields nontrivially contribute only to integrals INK, IFP, I0 and I3,
where they cancel the one-loop (sub)divergence.)

For variant 2 the integrals IFP, INK, I0, I1, and I4 are the same. However, the integrals
I2 and I3 are different:

I2(M) = 8π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂qµ

{

1

k2(1 + k2n/Λ2n)

×

(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)
(

q2(1 + q2m/Λ2m)2 +M2
)(

(q + k)2(1 + (q + k)2m/Λ2m)2 +M2
)

}

; (34)

I3(M) = 8π2

∫

d4q

(2π)4
d4k

(2π)4
d

d lnΛ

∂

∂qµ
∂

∂kµ

{

1

(k + q)2(1 + (q + k)2n/Λ2n)

×

(1 + k2m/Λ2m)(1 + q2m/Λ2m)
(

k2(1 + k2m/Λ2m)2 +M2
)(

q2(1 + q2m/Λ2m)2 +M2
)

}

. (35)

As a consequence,

I2 =

∫

d4k

(2π)4
d

d ln Λ

[

4

k4(1 + k2n/Λ2n)(1 + k2m/Λ2m)

]

=
1

2π2
; (36)

I3 =

∫

d4q

(2π)4
d

d ln Λ

[

2

q4(1 + q2m/Λ2m)2
−

∑

I

cI
2(1 + q2m/Λ2m)2

(q2(1 + q2m/Λ2m)2 +M2
I )

2

]

=
1

4π2
.

Therefore, for both variants of the regularization the two-loop β-function is given by

β(α, λ) = −

α2

2π

(

3C2 − T (R)
)

+
α3

(2π)2

(

− 3C2
2 + T (R)C2 +

2

r
C(R)i

jC(R)j
i
)

−

−

α2C(R)i
jλ∗

jklλ
ikl

8π3r
+ . . . (37)

and agrees with the exact NSVZ β-function [36, 37]

β(α, λ) = −

α2
[

3C2 − T (R) + C(R)i
jγj

i(α, λ)/r
]

2π(1− C2α/2π)
. (38)

Up to notation, this result is in agreement with the results of calculations made with the
dimensional reduction in [2].
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4 Conclusion

With the higher covariant derivative regularization all integrals defining the two-loop
β-function of the general renormalizable N = 1 supersymmetric Yang–Mills theory are
integrals of total derivatives. In this paper using two different versions of the higher covari-
ant derivative regularization we show that they are not only integrals of total derivatives,
but also integrals of double total derivatives. Due to the identity

∂

∂qµ
∂

∂qµ

1

q2
= −4π2δ4(q) (39)

these integrals do not vanish. Calculating them one obtain the exact NSVZ β-function.
Possibly, this situation also takes place in all orders of the perturbation theory.
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