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Abstract

We study models where the superpartners of the ordinary particles have con-

tinuous spectra rather than being discrete states, which can occur when the

supersymmetric standard model is coupled to an approximately conformal sec-

tor. We show that when superpartners that are well into the continuum are

produced at a collider they tend to have long decay chains that step their way

down through the continuum, emitting many fairly soft standard model particles

along the way, with a roughly spherical energy distribution in the center of mass

frame.
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1 Introduction

In this paper we take the first steps in studying the collider phenomenology of super-

symmetric models that have some approximate conformal symmetry, which is reflected

in the fact that the superpartners of the standard model (SM) particles have a con-

tinuous spectrum [1] rather than being discrete states. The superpartners can have

continuous spectra when the supersymmetric standard model is coupled to a confor-

mal field theory (CFT) sector [1] which gives rise to so-called “unparticle” behavior.1

A mass gap is generated for the superpartners of (and also the excitations of) the SM

particles if the conformal symmetry is softly broken in the infrared (IR). This scenario

is most easily modeled in a five-dimensional (5D) anti-de Sitter (AdS) space using the

AdS/CFT correspondence [6, 7]. The 5D AdS space is cut off by an ultraviolet (UV)

brane where supersymmetry (SUSY) is broken. In the absence of an IR brane, the SM

fields propagating in the bulk will have continuous spectra. Such a theory would have

been ruled out if the spectra continue down to zero mass. However, a mass gap for

nonzero-modes can be generated by introducing a soft wall in the IR, which can be

parameterized by a position dependent bulk mass term or a dilaton field with an ap-

propriate profile. The boundary conditions on the UV brane remove half of the fermion

zero-modes so that the SM chiral fermions can be obtained. In the supersymmetric

limit, the 4D theory consists of SM particles and their superpartners as the zero-modes,

plus a continuum of Kaluza-Klein (KK) excitations starting from some gap for each

field. After SUSY breaking is introduced on the UV brane, the zero modes of the su-

perpartners are lifted while the mass gaps of the continuum excitations are not affected

since they are determined in the IR. Depending on the parameters, for large enough

SUSY breaking the zero mode of the superpartner can merge into the continuum and

only a continuous spectrum for the superpartner is left.

As one can imagine, the collider phenomenology could be quite complicated with

continuous spectra. Calculations of production cross-sections have already been dis-

1Unparticles are fields with a continuous spectrum [2, 3], possibly with a with a mass gap [4, 5],

whose two point functions exhibit a nontrivial scaling behavior.
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cussed in [5], so here we will focus on decay processes. Imagine that some highly excited

mode in the gluino continuum is produced at the Large Hadron Collider (LHC), it can

decay to a squark with an arbitrary mass in the continuum between the squark gap

and the initial gluino mass (neglecting the mass of the emitted quark). The squark can

then decay back to a gluino as long as the squark mass is above the gluino gap. An

obvious question is: does a continuum decay prefer to occur for small mass differences

or large mass differences? If the gluino prefers to decay to a squark with an invariant

mass close to its own, then the jet emitted in the decay will carry a relatively small

amount of energy, and there will be many steps of decays before it reaches the bottom

of the spectrum. The events will contain a high multiplicity of soft visible particles,

which can be quite challenging at hadron colliders. On the other hand, if the gluino

prefers to decay to the squark near the bottom of the spectrum, then we expect only a

few decay steps and hard jets from the decays. The signal events in this case are more

like traditional SUSY models. Since the theory becomes conformal at high energies, we

expect that in the high invariant mass limit we will be closer to the first picture [8–11].

Here we would like to make some more quantitative statements.

Explicit calculations for continuum superpartner events, however, are not straight-

forward. Because the initial and/or final states are not particles, the usual Feynman

rules for particles are not directly applicable. One way to avoid this problem is to

introduce a regularizing IR brane which makes the extra dimension compact, then the

continuum becomes discrete KK modes [12] and we can perform calculations just as

in the particle case. The continuum limit is obtained by taking the position of the IR

brane to infinity. The physical results should not depend on this position, as long as

it is much larger than the length scale of the inverse mass gap so that the KK modes

are dense enough to approximate a continuum. Even in this case, one may worry

about whether the usual narrow-width approximation of splitting a decay chain into

steps with independent decays is a good one, as there are an infinite number of KK

modes which can make virtual (“off-shell”) contributions, reflecting the fact that the

continuum state do not have a mass shell to be on. We will discuss the validity of this
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approach and compare full calculations with the narrow-width approximation.

This paper is organized as follows. We first review the 5D construction of con-

tinuum superpartners, then plough into the details of the decay chains, showing that

the narrow-width approximation is generally valid in perturbative theories. We then

discuss the phenomenology and the parametric dependence of the observable quantities

and give conclusions. A detailed check of the IR regulator is included in the Appendix.

2 A Review of Continuum Superpartners

Let us recall the setup used in Ref. [1], which will be the starting point of our col-

lider studies. We consider a 4D SUSY theory with approximate conformal symmetry.

Through the AdS/CFT correspondence [6] this can be modeled by a 5D AdS space.

We take the metric of the AdS5 space to be

ds2 =

(

R

z

)2
(

ηµνdx
µdxν − dz2

)

. (1)

The space is cutoff at z = zUV = ǫ by a UV brane where SUSY is broken. As is well

known, such a theory can be described in the language of 4D N = 2 superfields, which

implies that for each matter field its 5D N = 1 hypermultiplet Ψ can be decomposed

into two 4D N = 1 chiral superfields Φ = {φ, χ, F} and Φc = {φc, ψ, Fc}, with the

fermionic Weyl components forming a Dirac fermion [13]. In the case of gauge fields,

a 5D N = 1 vector superfield can be decomposed into an N = 1 4D vector superfield

V = {Aµ, λ1, D} and a 4D N = 1 chiral superfield σ = {(Σ + iA5)/
√
2, λ2, Fσ}.

As in the usual case of extra-dimensional theories, one can decompose the matter

fields as:

χ(p, z) = χ4(p)

(

z

zUV

)2

fL(p, z), φ(p, z) = φ4(p)

(

z

zUV

)3/2

fL(p, z), (2)

ψ(p, z) = ψ4(p)

(

z

zUV

)2

fR(p, z), φc(p, z) = φc4(p)

(

z

zUV

)3/2

fR(p, z), (3)

where the relationships between scalar and fermion profiles are provided by SUSY.
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With a fermion bulk mass m(z) = c + µfz, the bulk equations of motion give

∂2

∂z2
fR +

(

p2 − µ2
f − 2

µfc

z
− c(c− 1)

z2

)

fR = 0, (4)

∂2

∂z2
fL +

(

p2 − µ2
f − 2

µfc

z
− c(c+ 1)

z2

)

fL = 0. (5)

The solutions for fL(p, z) and fR(p, z) can then be expressed as linear combinations of

the first order and second order Whittaker functions:

fL(p, z) = aM(κ,
1

2
+ c, 2

√

µ2
f − p2z) + bW (κ,

1

2
+ c, 2

√

µ2
f − p2z) , (6)

fR(p, z) = −a
2(1 + 2c)

√

µ2
f − p2

p
M(κ,−1

2
+ c, 2

√

µ2
f − p2z)

− b
p

(µf +
√

µ2
f − p2)

W (κ,−1

2
+ c, 2

√

µ2
f − p2z) , (7)

κ ≡ − c µf
√

µ2
f − p2

, (8)

where a and b are coefficients which may depend on four-momenta p and that are

determined by boundary and normalization conditions. We will take all SM fields as

left-handed, so we demand that the right-handed chiral superfield Φc(p, z) satisfies the

Dirichlet boundary condition at z = zUV , i.e., Φc(p, zUV ) = 0. The left-handed chiral

superfield Φ, through the equations of motion, satisfies modified Neumann boundary

conditions. As a result, only the left-handed chiral superfield has a normalizable zero-

mode. As shown in Ref. [1], the zero mode profile for the left-handed field is given

by

f 0
L(p, z) = N (µf , 0)z

−ce−µf z, (9)

where the normalization factor N (µf , 0) is obtained from
∫∞

0
f(0, z)f(0, z)∗dz = 1,

N (µf , 0) = (2−1+2cµ−1+2c
f Γ(1− 2c))−1/2 . (10)

In Fig. 1, we show the zero mode profiles for two values of c. As can be seen, when c is

positive, the zero mode is localized near the UV brane, while for c < 0, the zero mode

is repelled away from the UV brane.
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Figure 1: Normalized zero mode profiles. In the left panel we take c = −0.45, µf =

0.4 TeV while in the right panel, we take c = 0.45, and µf = 0.4 TeV.

Similarly for gauge fields [1] we write:

λ1(p, z) = χ4(p)e
uz

(

z

zUV

)2

hL, Aµ(p, z) = Aµ4(p)e
uz

(

z

zUV

)1/2

hL, (11)

λ2(p, z) = ψ4(p)e
uz

(

z

zUV

)2

hR, Σ = φ4(p)e
uz

(

z

zUV

)3/2

hR , (12)

where hL,R represents fL,R evaluated at c = 1/2 and µg is related to the dilaton vacuum

expectation value [7], 〈Φ〉 = e−2µgz/g5.

After including SUSY breaking on the UV brane, the zero mode of the superpartner

will be lifted, and the SUSY breaking mass that it acquires depends on the overlap of

its wave function with the UV brane. For c close to +1/2, the zero mode of the super-

partner will acquire a SUSY breaking mass near the full strength (i.e., comparable to

the SUSY breaking on the UV brane). On the other hand, if c < 0, the SUSY-breaking

mass of the zero mode superpartner is suppressed relative to the SUSY breaking on

the UV brane. Because c = 1/2 for the gauge field, we will take all SM fields to have

c close to 1/2 in this paper in order to have similar SUSY-breaking masses.

The spectrum of nonzero-modes is continuous without an IR cutoff. As mentioned

in the Introduction, it is convenient to introduce a regulating IR brane at a large

distance z = zIR = L so that we can deal with discrete normalizable KK states [12].

The continuum limit is obtained by taking L → +∞. The coefficients a and b of the

wave functions in Eq. (6-7) can be obtained by imposing the boundary condition on
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the IR brane and the normalization condition,

f̃L(p, z) = NL(µf , p)

(

M(κ,
1

2
+ c, 2

√

µ2
f − p2z)

+ b ·W (κ,
1

2
+ c, 2

√

µ2
f − p2z)

)

, (13)

f̃R(p, z) = NR(µf , p)





2(1 + 2c)
√

µ2
f − p2

µf −
√

µ2
f − p2

·M(κ,−1

2
+ c, 2

√

µ2
f − p2z) (14)

+ b ·W (κ,−1

2
+ c, 2

√

µ2
f − p2z)

)

. (15)

Imposing the boundary condition fR(p, zUV ) = 0 we determine that,

b = −
M(κ,−1

2
+ c, 2

√

µ2
f − p2zUV )

W (κ,−1
2
+ c, 2

√

µ2
f − p2zUV )

·
2(1 + 2c)

√

µ2
f − p2

µf −
√

µ2
f − p2

, (16)

and κ ≡ −cµf/
√

µ2
f − p2.

We are especially interested in the behavior of the superpartners in the conformal

limit at high energies. In the limit of p≫ µf , the normalization factor can be expressed

as

NL = −NR =

(

23+4cπ sec2(cπ)

Γ(−1
2
− c)2

· zIR
)−1/2

. (17)

The gluino profiles can be found similarly by making the replacements c → 1/2 and

µf → µg in Eqs. (13–16).

The KK spectrum is determined by the boundary condition at the IR brane,

fR(p, zIR) = 0, which leads to:

M(− µg

2
√

µ2
g−p2

, 0, 2
√

µ2
g − p2 zUV )

W (− µg

2
√

µ2
g−p2

, 0, 2
√

µ2
g − p2 zUV )

=
M(− µg

2
√

µ2
g−p2

, 0, 2
√

µ2
g − p2 zIR)

W (− µg

2
√

µ2
g−p2

, 0, 2
√

µ2
g − p2 zIR)

. (18)

In the limits of interest, µf , µg ≪ p ≪ 1/zUV , the left-hand-side of Eq.(18) tends to

zero, which implies that the numerator of the right-hand-side of Eq.(18) satisfies:

M(− µg

2
√

µ2
g − p2

, 0, 2
√

µ2
g − p2 zIR) ∝ cos(

1

4
π −

√

p2 − µ2
gzIR) = 0. (19)
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Figure 2: Spectra for the gluino (blue dots) and the squark (red dots). The plot shows

mass versus KK mode number. The parameters are chosen to be zUV = 10−3 TeV−1,

zIR = 80 TeV−1, c = 0.5, µg = 0.4 TeV and µf = 0.5 TeV for the left panel, and

zUV = 10−3 TeV−1, zIR = 100 TeV−1, c = 0.5, µg = 0.3 TeV and µf = 0.4 TeV for the

right panel.

Solving Eq. (19), we obtain an approximate expression for the KK masses,

m2
n ≈ µ2

g + (
1

4
+ n)2π2/z2IR with n = 0, 1, 2, · · · . (20)

Some sample spectra are shown in Fig. 2, where we have taken zUV = R = 10−3 TeV−1

and c = 1/2. With mass gaps on the order of half a TeV, a 20 GeV mode spacing is

quite a good approximation to a continuum.

3 ContinuumDecay Chains and Narrow-Width Ap-

proximations

Now we would like to study the decay of a continuum superpartner. The question

is: what are the characteristic features of the decay process? Does it prefer to decay

through multiple steps and emit soft particles during the decays, or to decay directly

down to the bottom of the spectrum together with a hard particle? What is the typical

energy of the visible particles produced in the decay chain relative to the energy and

other parameters of the superpartner? As mentioned earlier, in order to use the calcu-

lation techniques developed for particles, it is convenient to include a regularizing IR
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Figure 3: Feynman diagram for sequential KK gluino decay.

brane to discretize the continuum into KK modes [12], so that we can deal with ordi-

nary particles in the initial and final states. To study the validity of the narrow-width

approximation of the decay chain, which splits the process into a sequence of indepen-

dent decays at each step, we compare the result from a calculation of a sequence of real

two 2-body decays with that of the 3-body decay which includes all the contributions

from the virtual intermediate continuum superpartner. We assume that we start with

an initial state with an invariant mass much higher than the mass gaps and the SUSY

breaking mass. To simplify the calculations, we will ignore the SUSY-breaking and the

masses of the SM particles. We find that, in the case that the calculations are reliable

(i.e., independent of zIR = L as long as L ≫ p−1, µ−1
f , µ−1

g ), the virtual contributions

are indeed smaller than the real contributions so that the narrow-width approximation

is reliable.

3.1 The 2-body gluino decay calculation

Once we include a regulating IR brane to make the spectra discrete, the calculation of a

2-body decay should be straightforward. We consider an initial state of a gluino of KK

level m, decaying in its rest frame to a quark and a KK squark of level n, g̃m → u0Lũ
∗,n
L .

Since we ignore the quark mass, the decay can occur to any KK squark lighter than

the initial gluino. The energy of the emitted quark depends on which level of the KK

squark the gluino decays to. To calculate the decay rate, we need the coupling between

the gluino, squark, and the quark. The effective interaction of the KK gluino, KK
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squark and the quark in momentum space is given by:

Seff = c(pm, qn)

∫

d4pn
(2π)4

d4qm
(2π)4

u0L(pm − qn) ũ
m,∗
L (qn) g̃

n(pm) , (21)

where c(pm, qn) is the vertex coefficient which can be computed by integration of the

gluino, squark and quark 5D profiles over the fifth dimension. The expression is:

c(pm, qn) = Ng̃(µg, pm) Nũ(µf , qn)
∗ Nu(µf , 0) g5

∫ zIR

zUV

dz
(zUV

z

)5
(

z

zUV

)2

e−µf zz−c

(

z

zUV

)3/2

fL(qn, z)
∗ euz

(

z

zUV

)2

hL(pm, z) , (22)

where g5 is the 5D gauge coupling, which only enters the calculation as an overall

factor. The 4D gauge coupling g4 is related to the 5D gauge coupling g5 by integrating

over the zero mode profiles in the kinetic term for the gauge fields coupled with the

dilaton. In that case one finds [7] that,

g24 =
g25
zUV

1

log(1/(2zUV µg))− γE)
, (23)

where γE is Euler’s constant. Since we are interested in the gluino decay into a quark

and a squark, we consider the QCD gauge coupling which equals αs(mZ) = 0.1184 at

the Z-mass. If we take zUV = 10−3 TeV−1 and the nominal value for the gluino mass

gap of µg = 0.1 TeV,2 the 5D strong gauge coupling assumes the dimensionful value

g5 = 0.108 TeV−1/2.

An immediate observation from Eq. (22) is that a finite coupling in the limit zIR →
+∞ is obtained only for µf > µg. For µf < µg, the integral is dominated by the large

z region and it blows up as we take zIR → +∞. In this case we cannot perform a

sensible calculation. One can see that the exponentially growing factor comes from

the dilaton profile for the KK gluino, which is a result of that the zero mode gauge

field has to be a constant along the fifth dimension due to gauge invariance. A similar

situation happens in the Randall-Sundrum 2 (RS2) scenario [14]. If one calculates

the self interactions among KK gravitons in RS2 with a regulating IR brane, one also

2The dependence on the gluino mass gap µg is only logarithmic, reflecting the gauge coupling’s

running.
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finds that the coupling blows up as one takes the IR brane to infinity. In the 4D

CFT picture, these KK gravitons correspond to the conformal bound states. The large

coupling just means that these bound states are strongly coupled. These divergent

couplings can never make any physical process involving UV zero-modes infinite. As

is well known, the KK picture sometimes can give misleading results when locality

in the extra dimension is involved. The point is that any process starting with zero-

modes localized on the UV brane will mostly be sensitive to the physics near the UV

brane due to the locality in the extra dimension. The “nonlocal” process of producing

KK gravitons in the deep IR region must be suppressed due to interference of various

diagrams even though each of them can have a large coupling. In our theory, all zero-

modes are localized near the UV brane (for c ∼ 1/2), so all physical processes originated

from the zero-modes should also only be sensitive to the physics near the UV brane.

The divergent coupling in the µf < µg case just means that the näıve calculations

done in the KK picture are not valid. On the other hand, for µf > µg the integral is

dominated by the region near the UV brane, and the calculations are trustworthy. For

the same reason, the coupling between a KK gluino, a KK squark, and a KK quark is

also dominated by the IR region and diverges when the IR brane is moved to infinity.

However, since the wave functions of the KK quarks are suppressed in the UV region,

the decay to a KK squark plus a KK quark should also be suppressed if the initial KK

gluino was produced in the UV region in the first place. To avoid such complications,

we will restrict our study to the µf > µg case and consider decays to the quark zero

mode only in this paper.

After obtaining the coupling, it is straightforward to calculate the decay rate to

each KK squark. To compare with the continuum limit, we express the result in terms

of the differential decay rate as a function of the energy of the outgoing quark:

dΓg̃m→u0
Lũ

n,∗
L

dEu0
L

≈
∑

n∈ µf<En<Em

∆Γg̃m→u0
Lũ

n,∗
L

∆Eu0
L

≈
∑

n∈ µf<En<Em

c(pm, qn)c
†(pm, qn)

∆Eu0
L

E2
u0
L

4πpm

Tr[tata]

8
(24)

where ta are the SU(3) generators in the fundamental representation and pm ≡
√

p2m.
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Figure 4: Gluino differential decay rate with respect to the first quark energy. The

initial KK gluino mass is pg̃ = 1.15 TeV and we use g5 = 0.108 TeV−1/2. We choose

zUV = 10−3 TeV−1, zIR = 100 TeV−1, c = 0.5, µg = 0.3 TeV and µf = 0.4 TeV.

From conservation of energy-momentum we have,

Eu0
L
=

1

2
pm

(

1− q2n
p2m

)

, (25)

which implies

∆Eu0
L
=

1

2
pm

(

1− q2n−1

p2m

)

− 1

2
pm

(

1− q2n
p2m

)

. (26)

A typical differential decay rate as a function of the outgoing quark energy is shown

in Fig. 4. We have normalized the decay rate by a factor p · zIR as we do with all

differential decay rate figures hereafter, in order to cancel the unphysical IR dependence

∆mn = π/zIR in the continuum limit.3 At small quark energies, the decay rate is

suppressed by phase space, while at large quark energies, the decay rate is suppressed

by the couplings due to the small overlap between the gluino and squark wave functions

of large KK level differences. Overall we see that the suppression due to the coupling

3It is easy to see that the coupling is proportional to L from the normalizations of the gluino

and squark wave functions. The differential decay rate of a single KK gluino is proportional to

(1/L)2 × L = 1/L as the density of the final KK squarks is proportional to L. This is related to the

fact that the overlap of a single KK gluino wave function with the UV region where the zero modes

are located is also proportional to 1/L. In reality the initial KK gluino will be produced with some

energy range and the number of KK gluinos in that energy range is again proportional to L, which

cancels the unphysical 1/L dependence in the differential decay rate of a single KK mode.
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is stronger and the outgoing quark has a relatively soft spectrum. The suppression

of high energy emissions is exactly the behavior that is expected in a CFT [8–11].

Starting with very high KK modes this leads to approximately spherical events [11].

A more detailed discussion of the quark spectrum and its parameter dependence will

be presented in the next section after the narrow-width approximation is justified.

3.2 The 5D mixed position-momentum propagator

From the previous subsection we see that the result of the 2-body calculation shows

that the gluino prefers to decay to the squark with a mass not far below the gluino mass.

This means that the resulting squark is likely to decay again back to the gluino and

the whole process will involve a long decay chain. An important question is whether

the sequence of decays can be treated independently and correlations implied by the

full intermediate propagator can be safely neglected. This question is less trivial for

the continuum case than the usual particle case because there are an infinite number, a

continuum, of intermediate states which can give contributions at each step. To study

this problem, we consider the 3-body gluino decay process g̃m → u0Lu
0∗
L g̃

n where the

continuum squark is in the intermediate state. We will calculate the contribution from

the virtual (“off-shell”) intermediate squark while using real KK modes for the initial

and final states.

In the KK picture with a regulating IR brane, the intermediate squark propagator

is simply a sum of the particle propagators of all KK levels [12]. The propagator of an

individual scalar particle is

lim
ǫ→0+

i

q2 −m2
n + iǫ

= πδ(q2 −m2
n) + iP 1

q2 −m2
n

(27)

where P denotes the Cauchy principal value. The delta function (the real part) rep-

resents the phase space for a real intermediate particle (the “on-shell” contribution),

while the second term (the imaginary part) represents the contribution of a virtual

intermediate state (the “off-shell” contribution). However, the KK picture is not the

most convenient one to perform calculations with virtual intermediate states as it in-

volves an infinite sum of singular functions. We know that in the continuum limit,
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the infinite sum of KK propagators simply becomes the unparticle propagator [12],

and the series of poles on the positive real axis of p2 merge into a branch cut of the

unparticle propagator. Therefore, we will employ the full unparticle propagator for

the intermediate state in our calculation. In this subsection we derive the unparticle

propagator in mixed position-momentum space [15].

The left-handed scalar propagator satisfies the equation of motion for the left-

handed profile, with a delta-function source,
(

−∂2z +
3

z
∂z + (c2 + c− 15

4
)
1

z2
+

2cµf

z
+ µ2

f − p2
)

iP (p, z, z′) =

(

z

zUV

)3

δ(z − z′),(28)

and the UV boundary condition for the propagator is
(

∂z +
1

z
(−3

2
+ c+ µfz)

)

P (p, z, z′)

∣

∣

∣

∣

z=zUV

= 0. (29)

To connect to the continuum limit, with outgoing boundary conditions, we demand

that the propagator is exponentially damped [15] at large Euclidean momenta:

P (ip, zIR, z
′)|p→+∞,z′<zIR → e−p zIR. (30)

In order to solve Eq. (28–29) for P (p, z, z′), we look for solutions in the regions z > z′,

P>(p, z, z
′), and z < z′, P<(p, z, z

′), and use matching boundary conditions at z = z′,

P<(p, z, z
′)− P>(p, z, z

′)|z=z′ = 0, (31)

∂zP<(p, z, z
′)− ∂zP>(p, z, z

′)|z=z′ = −i
(

z

zUV

)3

. (32)

We can write the general solution to Eq. (28) in terms of two independent solutions to

the homogeneous equation [15], K(p, z) and S(p, z):

K(p, z) =

(

z

zUV

)3/2 W (κ, 1
2
+ c, 2

√

µ2
f − p2z)

W (κ, 1
2
+ c, 2

√

µ2
f − p2zUV )

, (33)

S(p, z) =

(

z

zUV

)3/2
1

2
√

µ2
f − p2

Γ(1 + c− κ)

Γ(2 + 2c)

(

M(κ,
1

2
+ c, 2

√

µ2
f − p2z) W (κ,

1

2
+ c, 2

√

µ2
f − p2zUV )

−W (κ,
1

2
+ c, 2

√

µ2
f − p2z) M(κ,

1

2
+ c, 2

√

µ2
f − p2zUV )

)

, (34)

13



which satisfy the following boundary conditions:

K(p, zUV ) = 1, K(ip, z)|p→+∞ → e−pz, S(p, zUV ) = 0, S ′(p, zUV ) = 1. (35)

In the region z < z′(z > z′), the general solution can be written as

P<(>)(p, z, z
′) = a<(>) K(p, z) + b<(>) S(p, z). (36)

The boundary condition at the UV brane, Eq. (29), fixes the ratio of a</b< to be

proportional to the kinetic function ΣFc(p) already encountered in Ref. [1]:

a<
b<

=
ΣFc(p)

zUV

=
(µf +

√

µ2
f − p2)

p2

W

(

− cµf√
−p2+µ2

f

, 1
2
+ c, 2

√

−p2 + µ2
f zUV

)

W

(

− cµf√
−p2+µ2

f

, 1
2
− c, 2

√

−p2 + µ2
f zUV

) , (37)

ΣFc(p) = zUV ·
(

R

zUV

)3
1

p

fL
fR

. (38)

The kinetic function ΣFc(p) not only fixes the spectral density, but it is also essential in

determining the phase space. Using the required IR behavior of P (p, z, z′), we conclude

that P>(p, z, z
′) can only be proportional to K(p, z), (i.e., b> = 0). At this stage we

use the matching conditions at z = z′, so that in the range z < z′, the left-handed

squark propagator can be expressed as [15]:

i P (p, z, z′) =
ΣFc(p)

zUV

K(p, z)K(p, z′)− S(p, z)K(p, z′) . (39)

For the case z > z′ we just interchange z ↔ z′ in Eq. (39).

Obviously for p2 > µ2
f ,
√

µ2
f − p2 becomes imaginary, so the propagator has a

branch cut on the real axis for p2 > µ2
f , and the discontinuity is just twice the real

part. This discontinuity corresponds to a real intermediate unparticle (the “on-shell”

contribution). From the analogy of the particle propagator (27) we interpret the imag-

inary part of the unparticle propagator as the virtual (“off-shell”) contribution to the

3-body decay process, while the real part (the discontinuity) corresponds to the phase

space of the unparticle. In fact, one can use this phase space to calculate directly

the real 2-body differential decay rate considered in the previous subsection, instead

14



of summing over KK modes in a discretized theory. In the Appendix we show the

equivalence of the two pictures in the limit that the IR regulator is removed, L→ ∞.

The numerical results for the 2-body differential decay rates using the two approaches

also agree well for large L.

3.3 The 3-body gluino decay

With the unparticle propagator derived in the previous subsection, we can compute

the virtual contribution to the 3-body decay process, g̃m → u0Lu
0∗
L g̃

n. We take both the

initial and final gluinos to be KK states in an IR regularized theory, but use the unpar-

ticle propagator for the intermediate state with only the imaginary part corresponding

to the virtual contribution. It is straightforward to find the amplitude squared for the

virtual 3-body process by integrating the imaginary part of the propagator P (q, z, z′)

derived in Eq.(39) over the positions of the two vertices in the extra dimension,

∣

∣M(g̃m → u0Lu
0∗
L g̃

n)
∣

∣

2
= 4g45 |v(pg̃m, q, pg̃n)|2 (pg̃m.pu0∗

L
) (pu0

L
.pg̃n) . (40)

We have labeled the 4-momenta of the initial, final, and intermediate states as follows:

pg̃m for the initial gluino g̃m, pg̃n for the outgoing gluino g̃n, pu0
L
for the quark, pu0∗

L
for

the anti-quark, and q for the intermediate squark. The factor v(pm, q, pn) is given by

the integration in the extra dimension of the respective profiles and the propagator:

v(png̃ , q, p
m
g̃ ) = N 2

u (µf , 0)Ng̃(µg, p
m
g̃ )Ng̃(µg, p

n
g̃ )

×
∫ zIR

zUV

dz

∫ zIR

zUV

dz′ e(µg−µf )zz1/2−chL(p
m
g̃ , z)z

−1
UV P̃ (q, z, z

′)

e(µg−µf )z
′

z′1/2−chL(p
n
g̃ , z

′) , (41)

here we use a rescaled scalar propagator, P̃ (q, z, z′) =
(

z
zUV

)−3/2 (
z′

zUV

)−3/2

P (q, z, z′),

and we can write the differential decay rate as:

dΓ3

dEu
= g45 v(p

m
g̃ , q, p

n
g̃ )v(p

m
g̃ , q, k

n
g̃ )

†
E2

u(2Eup
m
g̃ − (pmg̃ )

2 + (png̃ )
2)2

32pmg̃ (2Eu − pmg̃ )π
3

1

8
Tr[tatbtbta] (42)

where Eu0
L
is the energy of the (first) outgoing quark in the initial gluino rest frame

and 1
8
Tr[tatbtbta] = 1

8
CAC

2
F = 2/3 for SU(3). The range of Eu0

L
is determined by the
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Figure 5: Gluino decay rate with respect to the first quark energy. The yellow dash

line represents the virtual contribution from three body decay which is rescaled by a

factor of 3.24 × 102 , while the blue line represents two body decay result. In both

plots, the initial KK gluino mass is pg̃ = 1.15 TeV and we use g5 = 0.108 TeV−1/2. In

the left one, we choose zUV = 10−3 TeV−1, zIR = 80 TeV−1, c = 0.5, µg = 0.4 TeV

and µf = 0.5 TeV; In the right one, we choose zUV = 10−3 TeV−1, zIR = 100 TeV−1,

c = 0.5, µg = 0.3 TeV and µf = 0.4 TeV.

masses of the initial and final gluinos:

Eu0
L min = 0 , (43)

Eu0
L max =

1

2
pmg̃

(

1− (png̃ )
2

(pmg̃ )
2

)

. (44)

The contribution to the differential decay rate as a function of the outgoing quark

energy from the virtual 3-body process can be compared with the real 2-body contri-

bution by summing over all final KK gluinos and outgoing anti-quark energies which

are kinematically allowed. The result is shown in Fig. 5. The virtual 3-body process

is the cut of a two-loop diagram while the real 2-body process is the cut of a one-loop

diagram, so we expect that the 3-body decay rate should be suppressed with respect to

the 2-body decay rate by a 4D loop factor as long as the theory remains perturbative.

The shapes of the two contributions are also similar, but with the 3-body contribution

being slightly harder. Thus we can conclude that in this case, it is reasonable to use

the narrow-width approximation to calculate the energy distributions of the visible
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Figure 6: 2-body gluino differential decay rate as a function of the outgoing quark

energy Eu0
L
in TeV. We have taken in this example zUV = 10−3 TeV−1, zIR = 80 TeV−1,

c = 1/2 and g5 = 0.108 TeV−1/2. In the figure on the left, we fixed the initial gluino

KK-mass at pg̃ = 1.26 TeV and its mass-gap to µg = 0.3 TeV, and vary the squark

mass gap by µf = 0.40 , 0.43 , 0.46 , 0.50 , 0.56 TeV. As can be seen from the figure, the

peak position decreases in magnitude and shifts towards larger values of Eu0
L
. In the

figure on the right, we fixed µg = 0.4 TeV and µf = 0.5 TeV, and vary the initial gluino

KK-mass by pg̃ = 0.83 , 0.97 , 1.15 , 1.29 , 1.52 TeV. In this case the peak increases in

magnitude with increasing p and its position remains roughly constant as a function

of Eu0
L
.

particles coming from the continuum decays by treating each decay step going to real

states that subsequently decay independent of the details of the previous decay.

4 Phenomenology of the Continuum Superpartner

Decays

The comparison of the differential decay rate calculations for a real 2-body process

and a virtual 3-body process in the previous section, shows that it is reasonable to

calculate the energy distributions of the visible particles coming from the continuum

superpartner decays using the narrow-width approximation. This greatly simplifies the

phenomenological study of continuum superpartners. As mentioned earlier, the contin-
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Figure 7: Same as Fig. 6 for different sets of energies and mass gaps. In the plot

on the left, we fixed pg̃ = 2.4 TeV, and µg = 0.2 TeV. We vary the squark mass

gap by µf = 0.36 , 0.40 , 0.43 , 0.46 , 0.5 TeV. As can be seen, the peak decreases in

magnitude and slightly moves towards larger values of Eu0
L
. In the figure on the right,

we fixed µg = 0.2 TeV and µf = 0.3 TeV, and vary the initial gluino KK-mass by

pg̃ = 1.24 , 1.62 , 2.01 , 2.21 , 2.4 TeV. In this case, the peak magnitude increases and

its position remains roughly constant with respect to Eu0
L
.

uum states tend to decay to other continuum states that are nearby in invariant mass,

and so the ordinary particles tend to be emitted with soft energies. This is the behavior

that is expected in a CFT [8–11]. Thus if the decay chain starts fairly high up in the

continuum, then there is usually a long decay chaining with an approximately spherical

distribution of energy [11]. In this section, we examine how the energy distributions of

the visible particles depend on the parameters of the theory and the process.

As the energy of the emitted quark Eu0
L
increases (or what is the same, the squark

mass qn decreases), the phase space of the final particles increases while the vertex

c(pn, qm) decreases. It is the competition between these two factors that makes the

differential decay rate have its maximum at an quark energy around Eu0
L,max ∼ (µf−µg)

as can be seen in Figs. 6 and 7. As a consequence, for a high-energy initial state

(pg̃ ≫ µf , µg), we expect order pg̃/(µf − µg) particles coming out a decay chain. For

fixed g4, c, zIR, and zUV , there are only three parameters: the initial gluino energy

pg̃ and the two mass gaps µf , µg. Since there should be little dependence on zIR and

zUV , as long as they are far away from the energy scale interested, physical quantities
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Figure 8:
E

u0
L
,max

µf−µg
vs.

µf−µg

pg̃
and (pg̃zIR)

dΓ
dE

u0
L

|max vs.
µf−µg

pg̃
evaluated at the peak

positions. We use zUV = 10−3 TeV−1, zIR = 80 TeV−1, c = 0.5 and g5 = 0.108 TeV−1/2

and fix pg̃ = 2.40 TeV, µg = 0.2 TeV, while the squark mass gap is varied from

µf = 0.3 TeV to µf = 0.75 TeV. The plots display the fitted functions.

can be expressed as functions of the two dimensionless ratios of pg̃, µf , and µg up

to an overall normalization. In Fig. 8 we show the dependence of the peak position

and magnitude of the differential decay rate on the initial energy pg̃ and the mass gap

difference µf − µg. From these figures we can determine an approximate behavior for

the peak position, Eu0
L,max in the differential decay rate as a function of µf − µg and

pg̃. We find that it can be parameterized by an exponential decaying function with an

overall normalization A and a numerical exponent B:

Eu0
L,max = A(µf − µg) e

−B
(µf−µg)

pg̃ . (45)

The numerical values ofA andB are obtained by fitting numerical data points, as shown
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in Fig. 8, where we find that A ≈ 1 and B ≈ 3/2. Using the plane wave approximation

for the wave functions of the incoming gluino and outgoing squark, the coupling squared

is proportional to |c(pm, qn)|2 ∝ 1
z2IR (µf−µg)2

. Then one can substitute Eq.(45) into

Eq.(24), using ∆Eu0
L

≈ π/zIR, to obtain an approximate analytical expression for

(dΓ/dEu0
L
)|E

u0
L
,max

as a function of µf and µg:

(

pg̃zIR
dΓ

dEu0
L

)

∣

∣

∣

∣

E
u0
L
,max

= C · g24
e
−2B

(µf−µg)

pg̃

4π2

(log(1/(2µgzUV ))− γ)

(log(1/(2µfzUV ))− γ)

(46)

the overall normalization C compensates for the inaccuracy of the plane wave approx-

imation, and we have written everything in terms of 4D quantities. The dependence

on zUV is only logarithmic and therefore mild. To give an idea of the validity of the

approximation, we plot against numerical data in the second plot of Fig. 8. We see

that (45) and (46) provide reasonably good estimates for the functional dependence.

5 Conclusions

Supersymmetry is one of the best motivated scenarios for new physics beyond the

standard model at the TeV scale. For the past two decades it has been intensively

searched for. Currently, the experiments at the LHC have placed very strong limits on

the masses of the squarks and gluino to be above ∼ 1 TeV in the standard scenario [16–

18]. This means that either the superpartner spectrum is unnaturally heavy or the

superpartners decay in unusual ways which escape the standard SUSY searches. As we

showed in this paper, if the superpartners have continuous spectra, they tend to have

long decay chains and produce many soft SM particles. This is a challenging scenario

at the LHC because the soft particles may not pass the experimental cuts, and the

signals could be buried in the QCD backgrounds. It may require a more specialized

study to search for this kind of signal.

Näıvely the phenomenological studies of continuum superpartners at colliders may

appear to be formidable as the usual calculation techniques have only been developed
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for particles. Here we have seen that these methods can still be used in continuum

calculations. In particular, we showed that the narrow-width approximation is still

generally valid in the perturbative decay processes that we are interested in. This

greatly simplifies the calculations because processes with long sequences of decays can

be divided into individual steps involving real states and each step can be calculated

independently. The easiest way to perform the calculations is to introduce a regular-

izing IR brane in the 5D picture which transforms the continuum into discrete KK

modes, then one can carry out the calculations as in the usual particle case. As long

as the KK modes have reasonably fine spacings, the results are basically independent

of the position of the IR brane. In this way, continuum superpartners can also be

implemented in the usual collider simulation tools in order for more detailed studies to

develop new strategies to search for such kinds of exotic collider signals.
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A Equivalence of the Continuum and KK Limit

It is interesting to compare our expression for the propagator. Eq. (39), with the more

familiar KK-representation of the 5D propagator which can be expressed as sum over

the different KK-level propagators:

PKK(q, z, z
′) =

∑

n

f̃L(mn, z) f̃
†
L(mn, z

′)

q2 −m2
n − i ǫ

, (47)

where f̃L(mn, z) is the normalized left-handed squark wavefunction. This propagator

corresponds to a real particle when q2 = m2
n (aka going ”on-shell”) for each particular
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KK-mode n. For momenta q close to mn, we can use the approximation,

i

q2 −m2
n + iǫ

= πδ(q2 −m2
n) + iP(

1

q2 −m2
n

), (48)

where P denotes the Cauchy principal value. As the mass difference between adjacent

KK-levels n and m = n−1 tends to zero (the continuum limit), ∆mn = mn−mm → 0,

the sum over KK-levels in Eq. (47) becomes an integral in the complex plane over

“tightly squeezed” resonances which form a branch cut in the limit zIR → ∞. Thus, we

can identify the real (“on-shell”) contribution of the continuum propagator, Eq. (39),

by matching the continuum limit of Eq. (47) with Eq. (39). For that purpose, we

consider Eq. (47) in the limit µf ≪ q ≪ 1/zUV . Let us take z = z′ = zUV and using

Eq. (13) and Eq. (17), in the case c = 1/2 for simplicity, we find that:

∣

∣

∣
f̃L(mn, zUV )

∣

∣

∣

2

→
∣

∣

∣

∣

NL

(

−M(0, 0, 2imnzUV )

W (0, 0, 2imnzUV )
W (0, 1, 2imnzUV )

)∣

∣

∣

∣

2

→ π

zIR

1
√

m2
nzUV

(

(

log
(

mn

2

)

+ log(zUV ) + γE
)2

+ π2

4

) . (49)

By identifying ∆mn = π/zIR and using Eq. (48), we find that:

Im[PKK(q, zUV , zUV )] →
∑

n

∣

∣

∣
f̃L(mn, zUV )

∣

∣

∣

2

πδ(q2 −m2
n)

→ π/2

q2zUV

(

(

log
(

q
2

)

+ log(zUV ) + γE
)2

+ π2

4

) = Im[
ΣFc

zUV

]. (50)

One can also see the equivalence between the KK picture in the limit zIR → +∞ and

the continuum picture by comparing the differential decay rate for large zIR in the KK

picture versus the continuum case where one still keeps the particle behavior for the

initial gluino state, but replaces the final state squark phase space, by an unparticle

phase space [2].

For that purpose, let us calculate the continuum squark phase space for c 6= 1/2 and

c = 1/2. In order to get the phase space of the squark final state, we calculate first the

spectral function ρ(p2) = 2 · Im(i∆(p2)), where ∆(p2) is the squark correlator whose

expression was calculated in Ref. [1]. As was done in previous calculations, we are

interested in the case when the momenta involved are much bigger than the squark’s
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mass gap, p≫ µf . Using the expressions of the correlator in the limit when pzUV ≪ 1

we then find that for −1/2 < c < 1/2,

ρ(p2) =
2B(p2)

A(p2)2 +B(p2)2
, (51)

where

A(p2) =
p2ǫ1−2c

1− 2c
−

2−1+2cp2(p2 − µ2
f)

−1/2+c cos(π(−1
2
+ c))Γ(1− 2c)Γ(c)

Γ(2c)Γ(1− c)
,

B(p2) = −
2−1+2cp2(p2 − µ2

f)
−1/2+c sin(π(−1

2
+ c))Γ(1− 2c)Γ(c)

Γ(2c)Γ(1− c)
, (52)

and that for c = 1/2,

ρ(p2) =
2 · π

2

(γE + log( ǫ
2

√

p2 − µ2
f))

2p2 + π2

4
p2
. (53)

The continuum squark phase space is then given by,

dΦẽ = θ(p0)θ(p2 − µ2
f)ρ(p

2), (54)

where θ(p) is the Heaviside step function. On the other hand, the phase space for the

outgoing quark is just the usual particle one,

dΦe = 2πθ(p0)δ(p2). (55)

With all this information, we are ready to calculate the 2-body phase space integral. 4

Let us name the momentum of the incoming gluino as pg̃, and of the outgoing quark

and squark momenta as pu and pũ. Then the 2-body phase space integral is given by

Π2 =

∫

(2π)4δ(4)(pg̃ − pũ − pu)2πδ(p
2
u)θ(p

0
u)ρ(p

2
ũ)θ(p

0
ũ)θ(p

2
ũ − µ2

f)
d4pu
(2π)4

d4pũ
(2π)4

. (56)

We can perform the integral over the part of the quark phase space using that,

∫

2πδ(p2u)θ(p
0
u)
d4pu
(2π)4

=

∫

d3pu
(2π)32Eu

∣

∣

∣

∣

p0u>0

. (57)

4Even though the vertex depends on the momenta of the particles, it only ends up depending on

the quark energy Eu and the initial gluino energy p0
g̃
.
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Figure 9: We use zUV = 10−3 TeV−1, zIR = 80 TeV−1, c = 0.5 and g5 = 0.108TeV−1/2

and fix pg̃ = 2.40 TeV, µg = 0.2 TeV, and µf = 0.3 TeV. The plots compare the

continuum method (red dashed curve) with the KK mode method (blue curve), they

are almost identical.

Using the 4-dimensional delta function to perform the integrals over d4pũ and in the

center of mass frame (CM) of the gluino, we can trivially perform the angular integra-

tion, d3pu = E2
udEudΩ, so that we obtain,

Π2 =
1

2π2

E2
u

2Eu
ρ((p0g̃)

2 − 2p0g̃Eu)θ((p
0
g̃)

2 − 2p0g̃Eu − µ2
f)dEu. (58)

Once we have the expression for the phase space integral, we can write the differential

decay rate as,

dΓ =
|M|2
2p0g̃

Π2. (59)

Averaging over the initial and summing over the final spin and color, we find that

|M|2 = 2|c̃(p0g̃, Eu, c)|2p0g̃Eutr[t
ata]/8 , (60)

where

c̃(p0g̃, Eu, c) =
1

z
1/2
UV

· c(p
0
g̃, Eu, c)

f̃(q, zUV )
, (61)

is the 4D effective vertex obtained from integrating over the profiles in 5D, divided by

the normalized squark profile evaluated at the UV brane, and multiplied by 1

z
1/2
UV

to be

dimensionless, with c(p0g̃, Eu, c) shown in Eq. (22). Thus we arrive at the formula,

dΓ2

dEu
=

E2
u

4π2
|c̃(p0g̃, Eu, c)|2ρ((p0g̃)2 − 2p0g̃Eu)θ((p

0
g̃)

2 − 2p0g̃Eu − µ2
f). (62)

24



In Fig 9 we plot the KK differential decay rate, Eq. (24), and the continuum decay

rate, Eq. (62), as a function of the final quark energy Eu. They are in excellent

agreement for large enough zIR.
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