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Abstract

I take steps toward the construction of a CFT dual to Vasiliev’s higher spin gravity

in three dimensional de Sitter space. There are two main claims. The first is that

higher spin de Sitter symmetries are related to extended Virasoro symmetries, as in

AdS; this is verified explicitly for the case of W3 asymptotic symmetry. The associated

chiral algebra has imaginary central charge. The second (conjectural) claim, inspired

by work of Gaberdiel and Gopakumar in AdS3/CFT2, is that an appropriate CFT can

be identified as an exotic non-unitary WZW coset model at complex level.
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1 Introduction

The study of quantum gravity is in a remarkable state. It was not that long ago that there

were no known self-consistent theories of quantum gravity, but happily this is no longer the

case. In flat spacetime, superstring theory gives perturbatively consistent quantum gravity

theories with many vacua, while in asymptotically anti-de Sitter spacetime, the AdS/CFT

conjecture [1–3] gives, in principle, a large class of non-perturbatively consistent theories of

quantum gravity.

One of the most striking features of AdS/CFT is that the only essential assumption it

makes about the gravitational background is that the geometry is asymptotically AdS; the

geometry can fluctuate in generic ways in the interior of the space, and in principle the bulk

could even have a non-geometric description. This is a mild assumption for many questions

of interest. In particular, AdS asymptotics allow black hole solutions, and their associated

singularities, and a large amount of work has gone into studying their properties in light

of AdS/CFT. However, other situations of physical interest are excluded by the assumption

of AdS asymptotics. For example, cosmological solutions are generally not compatible with

AdS asymptotics, and one would like in particular to have a theory of quantum gravity

capable of describing Big Bang singularities.

Partly for this reason, an analogous gauge theory/gravity duality for de Sitter space has

been proposed [4–6]. Unfortunately, it has been difficult to study this idea because of the

absence of explicit candidate dualities. In AdS/CFT, most of the explicitly known duals were

constructed with the aid of supersymmetry. The global symmetries of the theories on each

side of the duality must be the same, so with a suitably large amount of symmetry one can

often guess the candidate theories on each side of the correspondence and then check that

the duality makes sense (indeed, if one were to guess the CFT dual to maximally supersym-

metric supergravity in AdS5, the only candidate is maximally supersymmetric Yang-Mills

theory.) De Sitter space, however, does not arise as a supersymmetric solution of any known

gravitational theory.

Therefore it is natural to consider alternatives to supersymmetry as guides in the search

for candidate dS/CFT duals. The most powerful such symmetries are higher-spin symmetries

(for a recent review on how to avoid no-go theorems for extended spacetime symmetries,

see [7].) Field theory duals of these higher-spin theories have already been proposed in the

context of AdS/CFT. One such duality is the conjecture of Klebanov and Polyakov [8], that

Vasiliev’s higher spin theory in AdS4 [9] is dual to the large-N limit of the O(N) vector model

in three dimensions (important related work includes [10–12].) In a further development,
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Gaberdiel and Gopakumar [13] have proposed a duality in AdS3/CFT2, relating Vasiliev’s

theory in three dimensions [14] to a WZW coset CFT.

Recently, in a fascinating paper, Anninos, Hartman, and Strominger [15] have proposed

an explicit example of a three-dimensional CFT that is putatively dual to a gravitational

theory in four-dimensional de Sitter space. Specifically, they argued that for Vasiliev’s theory

in dS4, the dual theory is in fact a Euclidean Sp(N) vector model. The correlation functions

of the CFT are related to those of the O(N) vector model by mapping N to −N ; in particular

this reverses the sign of the central charge. The CFT is not unitary, but this is not a serious

obstacle; it describes the physics of the boundary in the infinite future (or past) and therefore

does not inherit a notion of time evolution from the bulk theory (unlike AdS/CFT.) This

conjecture opens a new line of attack on the problem of de Sitter quantum gravity.

The purpose of this brief note is to suggest an analogous duality for dS3/CFT2, by

analyzing the symmetries of higher spin gravity in dS3 and generalizing the WZW coset

construction of Gaberdiel and Gopakumar. In Section 2 we study the asymptotic symmetries

of higher spin theories in de Sitter space. One’s natural expectation is that a spin-N higher-

spin gravity (that is, containing one field each of spin s = 2, 3, 4, . . .N) in dS3 with a natural

set of boundary conditions has as its asymptotic symmetry group one complexified copy of

WN , and central charge

c =
3iℓ

2G
(1.1)

where ℓ is the de Sitter radius and G is Newton’s constant. Notice that the central charge is

(crucially) imaginary1. We will verify this explicitly for the case of W3; the structure of the

derivation makes it clear that the form of the answer is the same for any N . The analysis

presented here essentially follows earlier work [17–20] with various factors and signs inserted

strategically. In Section 3 we will review the essential features of the work of Gaberdiel and

Gopakumar [13], and in Section 4 we present a conjecture for dS3 and subject it to some

very modest consistency checks. The candidate bulk theory is Vasiliev’s theory in three

dimensions. On the field theory side, the relevant CFT is the WZW coset

sl(N)k ⊕ sl(N)1
sl(N)k+1

where the level parameter k is complex,

k = −N +
i

γ

1One way to motivate that the central charge should be imaginary is to recall that one can often map

quantities from anti-de Sitter to de Sitter by making the identification ℓAdS → iℓdS. See, for example, [6].

Also it was pointed out in [16] that an imaginary central charge may be natural for a CFT dual to dS3,

based on the likely Hermiticity properties of the CFT.
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and one must take the dual limit N, γ → ∞. Many issues remain to be investigated. We

will conclude by describing some of them.

2 Asymptotic Symmetries of Higher Spins in dS3

In any physical system, perhaps the most basic question one can ask is what its symmetries

are and what charges characterize its states. In gauge theories such as Yang-Mills theory and

gravity, this can be a subtle issue because one must distinguish between symmetries which

are true gauge symmetries (and map a physical state to itself) and those which are global

symmetries (which map a physical state to a different physical state.) The technique that

one uses to disambiguate between gauge and global symmetries is to compute the asymptotic

symmetry group (ASG). In this section we describe the ASG for a theory in 3 dimensional

de Sitter space containing gravity and a spin-3 field.

To set the stage, let us recall the situation for general relativity. For a given gravitational

solution, the global symmetries are the gauge transformations which leave the metric invari-

ant, or in other words they are generated by vector fields which satisfy Killing’s equation

∇µξν +∇νξµ = 0. If one tries to compute the conserved currents associated with these sym-

metries using Noether’s procedure, one finds that the currents simply vanish on shell – this

is the well-known result that general relativity does not have a local stress tensor. However,

in applying Noether’s procedure, the variation of the action gives rise to a boundary term,

and this boundary term can indeed be associated to a conserved charge [21].

Therefore, to define the charges of a gravitational system, we should impose boundary

conditions on the metric and fields so that these boundary charges are well-defined (in par-

ticular, they must not diverge.) The gauge transformations that are consistent with these

boundary conditions fall into two classes. Either they give nonzero boundary charges, in

which case we think of them as asymptotic global symmetries, or they fall off too rapidly

and give vanishing boundary charges, in which case we think of them as true gauge trans-

formations. In general, the asymptotic global symmetries of a given background do not have

to be equal to the Killing vectors. For example, the classic computation of Brown and Hen-

neaux [22] showed that in AdS3, the ASG is enlarged from the SL(2, R)× SL(2, R) global

symmetries of AdS3 to be the tensor product of two copies of the Virasoro algebra. It is

worth remembering that the specific asymptotics one uses are explicitly a choice; the bulk

theory on its own does not determine the boundary conditions. In practice, the challenge is

to find boundary conditions which eliminate physically uninteresting solutions but are still

general enough to contain a broad class of interesting solutions.
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We will now compute the ASG and its associated central charge for the SL(3, C) Chern-

Simons theory that describes spin-3 higher spin gravity in de Sitter space. The discussion

closely follows [17–20]; my only original contributions are to insert factors of i and −1

in appropriate places, shuffle indices, and to clarify the boundary conditions somewhat in

Section 2.3. The explicit analysis presented here is special to the case of spin-3 gravity, but

we will argue in Section 2.5 that the results extend to general higher spins, in particular the

form of the central charge.

2.1 Chern-Simons Formulation of dS3 Gravity

For our purposes it is very convenient to use the Chern-Simons formulation of gravity in three

dimensions [23]. For de Sitter space, this consists of combining the vielbeins and connection

1-forms into vector fields as

A =

(

ω a
µ +

i

ℓ
e a
µ

)

Tadx
µ, (2.1)

Ã =

(

ω a
µ − i

ℓ
e a
µ

)

Tadx
µ. (2.2)

The Ta are real and satisfy the SL(2) algebra, [Ta, Tb] = ǫabcT
c. The indices are raised

and lowered with the orthonormal frame metric ηab = diag(−1,+1,+1) and the connection

1-forms with one frame index ωa are related to the usual spin connection by ωa =
1
2
ǫabcω

bc.

The relevant action is

S =
κ

4π

∫

Tr

(

A ∧ dA+
2

3
A ∧ A ∧A− Ã ∧ dÃ− 2

3
Ã ∧ Ã ∧ Ã

)

. (2.3)

To relate this action to the Einstein-Hilbert action, we must identify

κ =
iℓ

4G
(2.4)

and one can show that the equations of motion F = F̃ = 0 are equivalent to Einstein’s

equations in empty de Sitter space. Because the vector fields in (2.2) are complex, the

gauge symmetry is SL(2, C), with only one copy as the two vectors are related by complex

conjugation A = Ã∗. Most of the time it suffices to perform the analysis just for A. The

gauge fields and the gauge group are both complex, and so the Chern-Simons action of A

is also explicitly complex. One might ordinarily worry that this complex action would give

rise to ghost states in the bulk. However, this is not the case; the full action including both

A and its complex conjugate Ã is explicitly real2.

2The structure of the CS action in de Sitter might be related to the proposal of Maldacena [6] that
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The gauge transformations of A are

A → A + dξ + [A, ξ]. (2.5)

In solving the CS equations, one needs to impose boundary conditions so that the variation

of the action is well-defined. In the following, we make the choice

Az̄|bdry = 0 (2.6)

Let us translate the de Sitter geometry into the CS language. The dS metric may be

written in the flat slicing as

ds2

ℓ2
= −dt2 + e2tdzdz̄ (2.7)

where −∞ < t < ∞ and the boundary of the space is in the infinite future at t = +∞.

Now, we make the gauge choice:

At = iT0. (2.8)

Then for the de Sitter metric, the CS gauge fields are

A = iT0dt+ et(T2 + iT1)dz, (2.9)

Ã = −iT0dt+ et(T2 − iT1)dz̄. (2.10)

2.2 Spin-3 Chern-Simons

From the Chern-Simons point of view, it is simple to construct extended gravity theories by

enlarging the gauge group from SL(2, C) to a different Lie group containing SL(2, C) as a

subgroup. The simplest choice is to take the gauge group to be SL(N,C), in which case

the theory contains a tower of spins, s = 2, 3, . . . N . For simplicity and clarity, we will take

N = 3 but one can also study the case of general N .

The SL(3) algebra adds five generators Tab (symmetric and traceless in a, b) to the three

Ta of SL(2). Explicitly, the algebra is

[Ta, Tb] = ǫabcT
c (2.11)

[Ta, Tbc] = ǫda(bTc)d (2.12)

[Tab, Tcd] = σ
(

ηa(cǫd)be + ηb(cǫd)ae
)

T e. (2.13)

in dS/CFT the CFT partition function computes the wavefunction of the universe in de Sitter. Physical

quantities in dS are then computed by squaring the wavefunction and integrating over final states. In the

CS language, the bulk action is naturally squared, suggesting that one should think of the CFT partition

function as the dual of just the CS theory of A. Squaring the wavefunction then amounts to integrating over

both A and Ã.
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The form of the algebra is determined by the Jacobi identity and the symmetry properties

of the indices up to a normalization σ. For dS theories, σ is not so important, because the

gauge group is complexified, but we will keep track of it anyway to ease comparison with

the literature. Then one considers a CS theory with gauge field given by

A =

(

ω a
µ +

i

ℓ
e a
µ

)

Tadx
µ +

(

ω ab
µ +

i

ℓ
e ab
µ

)

Tabdx
µ. (2.14)

The new fields e ab
µ can be contracted into two vielbeins to give a 3-index object, so it is clear

that they correspond to a spin-3 field. It can be shown that they obey linearized equations

equivalent to the free higher spin equations of Fronsdal [24].

Obviously any ordinary gravity solution can be embedded in the higher spin theory by

setting all the higher spin fields to zero. In what follows, it is convenient to assemble the Lie

algebra generators as

L0 = iT0 (2.15)

L±1 = T2 ± iT1 (2.16)

W±2 = T22 − T11 ± 2iT12 (2.17)

W±1 = ±T01 − iT02 (2.18)

W0 = −T00 (2.19)

which obey the standard algebra

[Lm, Ln] = (m− n)Lm+n (2.20)

[Lm,Wp] = (2m− p)Wm+p (2.21)

[Wp,Wq] =
σ

3
(p− q)(2p2 + 2q2 − pq − 8)Lp+q. (2.22)

Note that the L and W operators are not naturally real, in contrast with the case in AdS; in

particular (L0)
∗ = −L0. This fact may be related to the nonstandard Hermiticity conjectured

in [16].

2.3 Asymptotic Conditions

In asymptotically de Sitter space, the analogues of the Brown-Henneaux boundary conditions

[22] for the metric at future infinity are

gzz̄ =
1

2
e2t +O(1) (2.23)

gtt = −1 +O(e−2t) (2.24)

gzz = O(1) (2.25)

gzt = O(e−2t). (2.26)
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With these boundary conditions, the asymptotic symmetry algebra is the Virasoro algebra [4]

(note that a small typo in [4] is corrected in [25].) We would like to translate these boundary

conditions to the Chern-Simons formalism and generalize them to higher spins.

For the spin-2 part of the gauge field, the asymptotics are most efficiently summarized

as

A
(s=2)
t = L0 +O(e−2t) (2.27)

A(s=2)
z = etL1 +O(e−t) (2.28)

A
(s=2)
z̄ = O(e−2t) (2.29)

(dA+ A ∧ A) |s=2 = O(e−2t) (2.30)

with similar expressions for Ã. It can be shown that these conditions are equivalent to

(2.23-2.26).

For the spin-3 components of A, the correct conditions appear to be

A
(s=3)
t = O(e−3t) (2.31)

A(s=3)
z = O(e−2t) (2.32)

A
(s=3)
z̄ = O(e−3t) (2.33)

(dA+ A ∧A) |s=3 = O(e−3t). (2.34)

Note that we only require the CS equations of motion to be satisfied asymptotically; this

means that the asymptotic conditions are compatible with the addition of matter fields,

provided that the matter density becomes sufficiently dilute at future infinity.

The generic A satisfying the asymptotic conditions (2.27-2.34) can be written as

A = etL1dz + L0dt+
2π

κ
e−tL(z)L−1dz +

π

2κσ
e−2tW(z)W−2dz (2.35)

up to spin-2 components which enter at order O(e−2t) and spin-3 components which enter

at order O(e−3t). These additional terms fall off at future infinity too rapidly to give rise to

nontrivial charges, and we will ignore them. The normalizations of L and W are the same

as in [17] and are chosen so that the generators of the ASG are canonically normalized.

Finally, although we will not consider further higher spins explicitly in this paper, the

natural asymptotics for the spin-n components are

A
(s=n)
t = O(e−nt) (2.36)

A(s=n)
z = O(e−(n−1)t) (2.37)

A
(s=n)
z̄ = O(e−nt) (2.38)

(dA+ A ∧ A) |s=n = O(e−nt). (2.39)
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It is not hard to see that the SL(N,C) Chern-Simons theory with these asymptotics has

N − 1 holomorphic functions’ worth of asymptotic solutions, which makes it natural that

the general asymptotic symmetry should be WN .

2.4 Asymptotic Symmetry Algebra

For the Chern-Simons formulation of gravity, the analogues of the Killing vectors are the

gauge transformations ξ which leave the gauge field invariant, dξ + [A, ξ] = 0. However, for

the purpose of computing the asymptotic symmetries, we should only require that ξ is such

that gauge transformations preserve the form (2.35), or in other words, given the asymptotic

conditions (2.27-2.34), we require

(dξ + [A, ξ]) |s=2 =
2π

κ
e−tL−1 δL(z)dz +O(e−2t) (2.40)

(dξ + [A, ξ]) |s=3 =
π

2κσ
e−2tW−2δW(z)dz +O(e−3t). (2.41)

The gauge transformations which do this may be written as

ξ =

1
∑

m=−1

ǫm(z)Lme
mt +

2
∑

p=−2

χp(z)Wpe
pt (2.42)

provided that the functions ǫm and χp satisfy the relations (to reduce index clutter it is

convenient to define ǫ1 ≡ ǫ, χ2 ≡ χ)

ǫ0 = −ǫ′ (2.43)

ǫ−1 =
2π

κ
Lǫ+ 1

2
ǫ′′ +

4π

κ
Wχ (2.44)

χ1 = −χ′ (2.45)

χ0 =
4π

κ
Lχ+

1

2
χ′′ (2.46)

χ−1 = −10π

3κ
Lχ′ − 4π

3κ
L′χ− 1

6
χ′′′ (2.47)

χ−2 =
π

2κσ
Wǫ+

(

2π

κ

)2

L2χ+
2π

κ

(

2

3
Lχ′′ +

7

12
L′χ′ +

1

6
L′′χ

)

+
1

24
χ′′′′. (2.48)

Of course, there can be additional terms in (2.42) proportional to the Lm of order O(e−2t)

and terms proportional to the Wp of order O(e−3t), but they give rise to trivial charges.
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When all of the above conditions are satisfied the functions L and W vary as

δǫL = 2Lǫ′ + L′ǫ+
1

2
ǫ′′′ (2.49)

δχL = 3Wχ′ + 2W ′χ (2.50)

δǫW = 3Wǫ′ +W ′ǫ (2.51)

δχW = σ

(

2

3
L′′′χ+ 3L′′χ′ + 5L′χ′′ +

10

3
Lχ′′′

)

+
64πσ

3κ

(

L2χ′ + LL′χ
)

+
κσ

12π
χ′′′′′. (2.52)

These are the defining equations of the W3 algebra, with central charge c = 6κ.

The charges associated with these symmetry transformations are of the form

Q(ξ) = − κ

2π

∮

dzTr (ξAz) |t→∞. (2.53)

They generate the symmetries through

δξF = {Q(ξ), F} (2.54)

where the braces { , } represent Poisson brackets. By representing the symmetry transfor-

mations in (2.49)-(2.52) as Poisson brackets and Laurent expanding the result, one obtains

the W3 algebra in terms of the more familiar mode expansion.

There are three comments in order about the charges defined in (2.53). The first is

that they are not really “conserved” charges in the usual sense, as they are only properly

defined on the boundary at future infinity, but rather they are characteristic data labelling

the final state of the universe. The Q(ξ) are only conserved in the sense that they vary

exponentially slowly for large but finite t. The second, related comment is that one can

construct the charges (2.53) by following a Noether-type argument, but in doing so one

obtains an additional term of the form
∫

Tr(ξA ∧ A). The boundary conditions (2.27-2.34)

guarantee that these extra contributions vanish when the integrals are evaluated at future

infinity. The third comment is that to define the integral
∫

dz properly, one must choose an

integration contour on the future boundary. In AdS3 there is a more-or-less natural contour

along the boundary at fixed time, but in dS3 any closed contour suffices. One might worry

that the ability to pick any contour gives a degeneracy of charges, but this is not the case

– for a given contour, the various choices of ǫ and χ pick off different combinations of the

Laurent coefficients of L and W. So the charges are really just these Laurent coefficients

and the charges defined through different contours must be equivalent.
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In de Sitter space, the Chern-Simons level κ is imaginary (2.4) and so is the central

charge which one associates with the asymptotic symmetry algebra:

c =
3iℓ

2G
(2.55)

The normalization of the central charge is fixed by the form of the Virasoro algebra, up to

an overall sign ambiguity (perhaps the simplest way to think about the sign ambiguity is

to make a field redefinition interchanging A and Ã, while appropriately exchanging z and

z̄.) In particular, we might have tried to obtain a real central charge by rescaling all the

boundary charges by −i, but this spoils the Virasoro algebra.

2.5 Tower of Higher Spins

The calculation in Section 2.4 proceeded exactly along the same lines as in [17,18] and should

generalize to all N . Indeed, once we have written the asymptotic form of the gauge field

A (2.35) and the gauge parameter ξ (2.42) the rest of the calculation proceeds in de Sitter

exactly as in anti-de Sitter. In particular the central charge of the ASG is related to the

Chern-Simons level by the same relation, c = 6κ, for any N .

The true case of interest is not really a bulk SL(N,C) Chern-Simons theory, but Vasiliev’s

theory, which is based on the higher spin algebra hs(µ). The hs(µ) algebra is infinite di-

mensional from the beginning (unless µ is an integer n, in which case the algebra truncates

to sl(n).) The asymptotic symmetry analysis for this case in AdS was done in [19,20]. This

is an algebraically intensive calculation, and in this paper I will not attempt to explicitly

generalize it to de Sitter. However, the structure of the calculation presented here suggests

that one can follow the derivations of [19, 20] with the following identifications. The gener-

ators of the higher spin algebra hs(µ) obey the same algebra as they do in AdS (although

they may satisfy different properties under complex conjugation.) Moreover, with the AdS

metric written as

ds2

ℓ2
= dρ2 + e2ρ

(

−dτ 2 + dθ2
)

(2.56)

one identifies the light-cone coordinates τ + θ, τ − θ with z, z̄ and ρ with the de Sitter time

t. Finally, one maps ℓAdS to iℓdS; this makes the CS level imaginary. Then the rest of

the computation of the ASG in de Sitter space appears to be algebraically identical to the

computation in AdS.
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3 Review of WN Symmetry in AdS3/CFT2

When the bulk gravity theory resides in AdS3, one can consider the duality proposal of

Gaberdiel and Gopakumar [13]. The de Sitter case will be a variant of their proposal, so let

us recall some of the salient features in AdS.

The CFTs of interest are WZW coset models (for a general review, see [26].) The reason

for considering WZW models is that the extended Virasoro symmetries can be realized in

a natural way. Before considering the coset construction, let us recall some facts about

ordinary WZW models. One assumes that the theory contains a dimension one operator Ja

corresponding to a symmetry current, with OPE

Ja(z)J b(w) ≃ kδab

(z − w)2
+

ifab
cJ

c(w)

z − w
(3.1)

where the fab
c are the structure constants corresponding to some Lie algebra g. In WZW

models the current Ja is the fundamental object and the rest of the structure of the theory is

constructed from its fusions. The natural energy-momentum tensor is the Sugawara operator

T (z) =
1

2(k + h∨)
(JaJa)(z) (3.2)

which has the correct OPE for an energy-momentum tensor with central charge

c = dim(g)
k

k + h∨
(3.3)

Here h∨ is the dual Coxeter number of the Lie algebra; for su(N), h∨ = N .

The Sugawara energy-momentum tensor exists for any current algebra, and one can think

of it as corresponding to a generalization of the quadratic Casimir of the underlying Lie

algebra. Generic Lie algebras have additional Casimirs, however, and so it is natural to ask

what role they play in the current algebra. This question was first addressed in [27, 28]; for

a review and further references, see [29]. Specifically, one can construct operators from the

normal-ordered product of several Ja, with Lie algebra indices contracted into the Casimirs:

dab...c(J
aJ b · · ·Jc)(z) (3.4)

and compute the corresponding OPEs.

The operators consisting of a product of n Ja’s are spin-n (the dab...c are always totally

symmetric) and so one might hope that their OPEs are those of the extended Virasoro

symmetries, but this is generically not the case. For example, in the case of the su(3)

current algebra, there is a natural spin-3 operator arising from the cubic Casimir

W ∼ dabc(J
aJ bJc)(z) (3.5)
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and one might hope that the current algebra has W3 symmetry (originally presented in [30].)

However, the WW OPE is polluted by additional primary fields of dimension 4 (constructed

from the normal-ordered product of four Ja’s) and therefore there are no extended symme-

tries.

Fortunately, there is a relatively simple method for constructing CFTs with WN symme-

try – instead of considering simple WZW models, one can consider a coset WZW model [31].

The particular model of interest is a diagonal coset, defined as follows. Given a Lie algebra

g, one takes two copies of its current algebra, Ja
(1) and Ja

(2). The diagonal coset is the current

algebra of the sum of these currents,

Ja
diag = Ja

(1) + Ja
(2) (3.6)

and is usually denoted as

gk1 ⊕ gk2
gk1+k2

(3.7)

as the level of the diagonal current algebra is k1 + k2. When g = su(N), the central charge

corresponding to the associated Sugawara operator is

c = (N2 − 1)

(

k1
k1 +N

+
k2

k2 +N
− k1 + k2

k1 + k2 +N

)

. (3.8)

For most choices of k1 and k2, the WW OPE contains the unwanted (J)4 operators, but it

was shown by [28] that in the su(3) case, when one of the levels equals is equal to 1, the

quartic operators decouple due to a series of intricate cancellations. The decoupling shows

that the coset su(3)k⊕su(3)1
su(3)k+1

realizes W3 symmetry. The cancellations persist for cosets of the

form

su(N)k ⊕ su(N)1
su(N)k+1

(3.9)

which correspondingly exhibit WN symmetry.

The authors of [13] suggested that the CFT dual to the Vasiliev theory in AdS3 [14] is a

minimal model associated with such an su(N)k⊕su(N)1
su(N)k+1

coset. In three dimensions, the relevant

version of the Vasiliev higher spin theory contains one complex scalar field of mass M2 and

an infinite tower of massless higher spins (with one for each integer spin s ≥ 2.) Because

the tower of spins is infinite, one must take the limit of large N . However, to obtain a large

central charge (and a large de Sitter radius) it is also necessary to take the limit of large k.

Therefore one defines the ’t Hooft-like limit k,N → ∞ with the ratio λ fixed:

λ =
N

k +N
. (3.10)

12



In this limit, the central charge is

c =
3ℓ

2G
= N(1− λ2). (3.11)

The minimal CFT contains operators of dimension

∆± = 1± λ (3.12)

which are dual to scalars of mass

M2ℓ2 = −(1− λ2) (3.13)

so that −1 ≤ M2ℓ2 ≤ 0. Although the masses-squared are negative, they are above the

Breitenlohner-Freedman bound. Note also that at finite N , there are a variety of extra

states with dimensions h ≪ N ; it was argued in [32] that they decouple in the large N limit.

4 A de Sitter Conjecture

In this section we will try to find a gauge/gravity duality between a higher-spin theory in

dS3 and some appropriate CFT. It seems natural to try to construct such a theory by an

appropriate modification of the WZW coset of [13]. The duality proposed here is a lower

dimensional counterpart of [15] and the spirit of the reasoning is similar.

Our candidate higher spin theory in the bulk is Vasiliev theory in three dimensions [14],

which can be defined in de Sitter space just as well as in anti-de Sitter space. As in AdS,

the theory contains an infinite tower of higher spin states s = 2, 3, . . . (one field for each

integer spin greater than 1.) In addition, there are scalar fields. For our purposes, we take

the version containing two real scalar fields of equal mass (which one can think of as a single

complex scalar), as in [33]. The theory is defined through a set of equations of motion; it

does not have a known full Lagrangian description, although one can expand the equations

of motion at a given order and write an associated effective action if desired.

The reason for choosing this exotic gravity theory is its high amount of symmetry, and

we would like to see if we can use this symmetry to guess a dual CFT. Any proposal for a

dual theory is subject to a number of constraints:

• The central charge must be large and purely imaginary to correspond to a weakly

curved bulk theory. This implies that the CFT is necessarily non-unitary.
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• The chiral algebra of the CFT must be WN ; if we wish to engineer this through a

diagonal WZW coset, one of the levels should be equal to 1. The other level need not

be an integer, or even real, as the CFT is not unitary. To make contact with Vasiliev’s

theory, we should take N → ∞.

• The CFT is Euclidean and so the chiral algebra is actually complexified. Thus, any

su(N) factors in the chiral algebra are better thought of as sl(N,C).

• The operator spectrum must contain spin-zero operators dual to the scalars of Vasiliev’s

theory. These scalars should have real masses (although the CFT is not unitary,

the bulk theory should be unitary.) Using the standard dS/CFT formula for the

dimensions [4], we have

∆± = 1±
√
1−M2ℓ2. (4.1)

If we suppose3 that the dimensions are given (as in the AdS case [13]) by ∆± = 1± λ,

this formula implies that λ = N
k+N

is either purely real or purely imaginary. At the level

of the linearized equations of motion, positivity of M2 is the only dynamical constraint

from the bulk theory; the higher spin fields are nonpropagating and their linearized

equations are already determined by the bulk symmetries.

• N , which is related to the Lie algebra Casimirs, should be real.

Taken together, these constraints are quite restrictive.

The most tempting identification, given the form of the central charge in AdS (3.11) is to

hold λ fixed while mapping N → iN and correspondingly k → ik. The coupling parameter

λ is then real and the masses of the scalars fall into the range 0 ≤ M2ℓ2 ≤ 1. This suggestion

has the appealing property that the correlation functions in AdS map to dS in a natural way.

It is conceivable that this procedure is essentially correct. Unfortunately, I do not know of

any way to accomplish this identification on the CFT side (apart from formally mapping the

correlation functions) if the current algebra is an affine Lie algebra.

3It was emphasized to me by T. Hartman that, in the AdS case [13], the allowed representations of

the current algebra were explicitly computed. Here, in contrast, the nonunitary WZW coset is not of a

standard type and it is not clear whether the desired representations exist. It is conceivable that the correct

representations have a different dimension formula, giving a different constraint on the possible values of the

coupling λ, or that their dimensions turn out to be incompatible with identifying the allowed operators with

dual scalar fields. Clearly, it would be interesting to determine the allowed representations rigorously. One

possible approach for doing this might be to generalize the results of [34], who gave a prescription for finding

the admissible states in nonunitary fractional WZW cosets.
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However, there is an alternative limit which does satisfy all the constraints we have listed.

If we assume that the current algebra is of standard type, then the parameter N is real and

a real λ is inconsistent with an imaginary central charge. Therefore, we have to consider the

other case, where λ is purely imaginary. For the WZW coset

sl(N)k ⊕ sl(N)1
sl(N)k+1

one should take

k = −N +
i

γ
(4.2)

In the limit N → ∞ and γ → ∞, the central charge then takes the form

c = iγ(N3 −N) +O(γ0N3). (4.3)

This scaling limit is evidently quite different from the usual scaling in the AdS case. Note

that in particular, to obtain a large central charge in our de Sitter proposal it is not necessary

to take N to infinity (although when N is finite, we do not have a candidate for the bulk

theory.) The form of c in (4.3) is the same as in the Drinfeld-Sokolov description, where one

considers an SU(N) WZW model at level kDS. In the limit kDS → ∞, we have cN(kDS) ≃
−kDSN(N2 − 1) (see Appendix B of [13]) so presumably one should set kDS = −iγ. This

relation between kDS and k in the coset, of course, is different from the case in AdS3/CFT2.

With the assumptions we have made about the allowed operators of the CFT, the imag-

inary λ implies that that the mass is large in de Sitter units:

M2ℓ2 > 1. (4.4)

Curiously, this corresponds to the case of complex operator dimensions,

∆± = 1∓ iγN, (4.5)

which are ordinarily rather confusing. Most of the studies of scalars in dS/CFT have focused

on the case of real operator dimensions and 0 ≤ M2ℓ2 < 1. It would be nice to understand

the case of complex dimensions in more detail. Although the masses are infinite in de Sitter

units, they are small in Planck units. We have ℓ ≃ 2
3
γN3G, so

M ≃ 3

2N2G
(4.6)

That is, the large N limit suppresses large quantum gravity effects in the bulk. Finally,

another way of thinking about the large γ,N limit is to take N → ∞ with γ/N held fixed.

In this limit, we have

GM2ℓ ∼ γ

N
(4.7)
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The gravitational interaction between two particles at rest is proportional to GM2, so this

condition implies that we are holding the strength of the gravitational interaction fixed (in

characteristic dS units.)

The considerations presented in this section are evidently rather schematic. It is not

at all clear that the coset CFT proposed here makes any kind of sense. Apart from the

usual concerns about non-unitary theories, one should ask whether the usual construction

of the coset minimal model goes through, whether the partition function converges, and

so on. Very little is known about CFTs with complex central charge 4. Hopefully the

considerations presented in this paper are suggestive of what types of CFTs one should

think about as possible de Sitter duals.

Of course it is also important to compute three-point functions in the bulk theory. In

AdS3, the three-point functions were computed in [33], and turn out to depend on the

parameters of the CFT through the quantity λ. The proposal in this paper suggests that

one should continue λ to large imaginary values (analogous to the result in [15] where one

mapped N to −N in relating AdS to dS.) In the AdS case, the three point functions were

studied in [33]; unfortunately their analysis is done for a specific value of the scalar mass,

in the “undeformed” Vasiliev theory; to study the correlators relevant for our case requires

a computation in the “deformed” Vasiliev theory. Even the two-point functions in de Sitter

space are a rich subject and it seems likely that their higher-spin analogues will be interesting

too (for example, it would be interesting to revisit the description of α-vacua [36, 37] in the

context of this CFT.) It would also be interesting to study the semiclassical partition function

of the higher spin theory directly on the bulk side, generalizing the work of [38]. I intend to

revisit these problems in future work [39].
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