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An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable
time-evolution law for the probability distribution of the Ising-spins our model describes a quan-
tum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field
approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary
number of electrons and positrons, including the characteristic interference effects for two-fermion
states, are described by the classical statistical model. For one-particle states in the non-relativistic
approximation we derive the Schrödinger equation for a particle in a potential from the time evolu-
tion law for the probability distribution of the Ising-spins. Thus all characteristic quantum features,
as interference in a double slit experiment, tunneling or discrete energy levels for stationary states,
are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum
mechanics, the discreteness of particles is traced back to the discreteness of occupation numbers
or Ising-spins, while the continuity of the wave function reflects the continuity of the probability
distribution for the Ising-spins.

I. INTRODUCTION

Can the quantum-mechanical interference pattern in a
double-slit experiment be described by a suitable time evo-
lution of a classical statistical ensemble? Can this be ex-
tended to the quantum-interference of multi-fermion sys-
tems? Can the evolution law for the classical probabilities
be causal and local in the sense that the probability dis-
tribution at time t + ǫ can be computed from the one at
time t, and that the evolution of local properties of the
distribution is only influenced by the distribution in a lo-
cal neighborhood? We answer these questions with a clear
“yes”. While a general discussion how “no-go-theorems”
as Bell’s inequalities [1, 2] or the Kochen-Specker theorem
[3] can be circumvented can be found in ref. [4], we con-
centrate in this paper on the construction of a classical
statistical model that can describe real physical situations.
We will investigate an Ising-type model for discrete oc-

cupation numbers or Ising-spins on the sites of a lattice.
Intuitively, if a particle is present on a lattice site x the
Ising-spin is up, and if no particle is present it is down.
Since the associated occupation numbers only take the val-
ues one or zero, one sees already the close analogy to oc-
cupation numbers of fermionic multi-particle systems. The
notion of presence or absence of particles can be extended
to more general ground states, as a half-filled state. Now a
flip of the Ising-spin at x from down to up corresponds to a
change from a situation with no particle at x to one with a
particle at x. More precisely, we will consider four or eight
“species” of Ising-spins. These species correspond to the
real degrees of freedom for Majorana or Dirac spinors.
The state of the system or the classical statistical ensem-

ble is characterized by the probability distribution for the
possible configurations of Ising-spins. For the formulation
of dynamics one has to postulate an evolution law which
describes how this probability distribution changes in time.
For the Ising-spins there is no notion of underlying continu-
ous and deterministic classical dynamics for “trajectories”
-each Ising-spin can only take two values. A differential

evolution equation has therefore to be formulated on the
level of probability distributions. This constitutes the fun-
damental law defining the dynamics. (It is the analogue of
the Liouville equation for a statistical ensemble of Newto-
nian classical particles.) The only basic restrictions on the
form of this law are that all probabilities have to remain
positive and the sum of all probabilities must equal one
for all times t. We propose a specific causal and local evo-
lution law. With this evolution law our Ising-type model
describes a quantum field theory for Dirac fermions in an
arbitrary external electromagnetic field. The Schrödinger
equation for a quantum particle in a potential follows for
one-particle states in the non-relativistic approximation.

With our proposed evolution equation for a classical sta-
tistical ensemble of Ising-spins, the Schrödinger equation
and all associated quantum phenomena as interference,
tunneling, the uncertainty relation and discrete energy lev-
els for stationary states, are implemented within classical
statistics. We follow here the concept of “probabilistic re-
alism” that there is one reality, but the fundamental laws
are formulated as probabilistic laws. It seems not entirely
excluded that our evolution law for the probability distri-
bution could be produced by cellular automata [5]. This
seems, however, rather difficult, and it is not needed for
our purpose.

Time evolution laws for classical statistical ensembles
that account for the full dynamics of quantum particles
have been found previously for more restricted settings.
For a single particle in a potential a suitable evolution
equation for the probability density in phase space has been
proposed in ref. [6]. It leads to the Schrödinger equation
after “coarse graining”. This “quantum evolution equa-
tion” modifies Liouville’s equation. In ref. [6] the different
behavior of classical and quantum particles is traced back
to the specific form of the evolution equation. A continuous
interpolation between the “classical” and “quantum” evo-
lution law can describe “zwitters” - particles whose prop-
erties interpolate continuously between classical and quan-
tum particles. This earlier approach constitutes already a
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powerful demonstration that there is no difference in princi-
ple between classical statistics and quantum statistics since
a continuous interpolation between both is possible. It also
allows the formulation of consistent theories that are arbi-
trarily close to quantum mechanics, with a small parameter
accounting for deviations that can be restricted by exper-
iment. However, the generalization of this setting to a
multi-particle situation is cumbersome. It is much simpler
to base a realistic model directly on the analogy between
Ising-spins and occupation numbers for fermions, as done
in the present paper. Furthermore, the setting of ref. [6]
does not account explicitly for the discrete particle prop-
erties, while in the present paper they can be associated
directly to the discrete Ising-spins.

In ref. [7], [8], [9] the map between Ising-type models
and quantum fermions has been developed. In particular,
ref. [9] has already constructed a classical statistical en-
semble for massless Majorana spinors in four dimensions.
The present paper builds on these findings. It extends
this formalism to include a mass term, to formulate Dirac
spinors and to add the coupling to external electromagnetic
fields. These steps are needed for a description of realistic
situations. The discussion of one-particle states can now
describe electrons in a potential. For a non-relativistic ap-
proximation we can derive the Schrödinger equation from
the proposed evolution law for the classical statistical en-
semble of Ising-spins.

Our Ising-type model is formulated for a lattice of dis-
crete points in space and we use discrete time steps. (The
lattice formulation of the present paper differs in some as-
pects from ref. [9].) As long as the number of lattice
points (in space) remains finite all mathematical opera-
tions are defined unambiguously and the model is fully
regularized. The map between classical statistics for the
Ising-type model and quantum fermions can be done on
this level where no ambiguities are present. At the very
end one may perform the continuum limits of vanishing
lattice distance and vanishing size for the time steps. We
formulate the model in a way such that the unitary time
evolution is already realized for discrete time steps and a
finite number of lattice points in space. This implies cer-
tain restrictions on the precise lattice formulation for which
more details will be discussed in a separate paper.

Our paper is organized as follows: In sect. II we for-
mulate the classical statistical ensemble for Ising-spins and
we introduce the important concept of the “classical wave
function”. Up to signs this is the square root of the prob-
ability distribution. Time evolution laws preserving the
positivity and normalization of the probability distribution
can be most easily formulated in terms of the classical wave
function. Since the normalization condition states that the
classical wave function is a vector with unit length, we can
formulate the normalization preserving evolution equations
as rotations of a vector. We also employ the simple map be-
tween the classical wave function and a Grassmann wave
function. It has been shown in refs. [7], [9] that a lin-
ear time evolution of a Grassmann wave function can be
mapped to a Grassmann functional integral and vice versa.
This permits us to formulate the evolution law for the clas-

sical wave function and probability distribution directly in
terms of the action of a Grassmann functional integral.
This possibility is of great help for the implementation of
the symmetries preserved by the evolution as, for example,
the Lorentz symmetry for relativistic particles.

In sect. III we present the lattice action for massless
Majorana fermions in four dimensions. Since the classical
wave function is a real object, it should be an element of a
real Grassmann algebra. The continuum limit of the lattice
action realizes Lorentz-symmetry. In sect. IV we extract
the time evolution of the Grassmann wave function from
the real Grassmann functional integral defined in sect. III.
It obtains by “integrating” out the Grassmann variables at
past (or future) times. Sect. V shows that the time evolu-
tion is unitary. This holds already for discrete time steps
and can therefore be extended in a straightforward way
to the continuum limit of infinitesimal time steps. Sect.
V establishes the concrete evolution law for the classical
wave function and therefore the probability distribution
of the classical ensemble of Ising-spins. In sect. VI we
briefly recapitulate how expectation values of observables
in the classical statistical ensemble can be computed from
the Grassmann wave function.

In sect. VII we turn to the notion of statistical states
with a fixed number of fermions. We concentrate on the
one particle state and show that it describes the prop-
agation of a massless Majorana or Weyl fermion. This
can be generalized to multi-fermion states. The equiva-
lence between Majorana and Weyl spinors in four dimen-
sions gives a first glance on the emergence of a complex
structure which is discussed in sect. VIII. The presence
of a complex structure is characteristic for quantum me-
chanics where the “physics of phases” plays a crucial role.
While single Majorana spinors are described by a real four-
component quantum wave function, Weyl spinors are for-
mulated in terms of an equivalent complex two-component
quantum wave function. For Dirac spinors a different com-
plex structure will be used and we therefore resume in sect.
VIII briefly the general features of complex structures in
our setting of a real Grassmann functional integral and a
real classical wave function. In sect. IX we finally add a
mass term. We present some explicit instructive examples
for the classical probability distributions that represent the
propagation of massive Majorana spinors.

In sect. X we turn to Dirac spinors. They are sim-
ply represented as two Majorana spinors. The electro-
magnetic gauge transformations rotate the two Majorana
spinors into each other. The coupling to an external elec-
tromagnetic field involves therefore both types of Majorana
spinors. We discuss the complex structure, the usual Weyl
representation of Dirac spinors and the symmetries of the
model. From the Grassmann functional integral we ex-
tract again the evolution equation for the Grassmann wave
function. The associated evolution equation for the prob-
ability distribution of the classical statistical ensemble for
Ising-spins describes the dynamics of an arbitrary number
of electrons and positrons in an external electromagnetic
field. Sect. XI discusses the one-particle states. The clas-
sical eight-component real wave function obeys the Dirac
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equation in an external electromagnetic field. The complex
representation and the non-relativistic limit are straightfor-
ward. This results in the Schrödinger equation for a par-
ticle in a potential. All characteristic features of quantum
mechanics, as interference, tunneling or discrete energy lev-
els can therefore be derived from our evolution equation for
a classical statistical ensemble of Ising-spins. This is one
more clear concrete example that quantum physics can be
described by classical statistics! Even though this is not
the main purpose of the present paper, we comment how
the discrete particle properties in quantum mechanics are
related to the discrete Ising-spins, and how the continuity
of the wave function simply reflects the continuity of the
classical probability distribution. Particle-wave duality ap-
pears as a simple consequence of our classical statistical
setting. Our conclusions are presented in sect. XII.

II. PROBABILITY DISTRIBUTION AND WAVE

FUNCTION

A classical statistical ensemble is specified by its states
τ and a probability distribution {pτ}, which associates to
every τ a positive probability pτ ≥ 0. The distribution is
normalized Στpτ = 1. Classical observables take in every
state τ a fixed value Aτ , and the mean value obeys 〈A〉 =
ΣτAτpτ .

1. Generalized Ising model

We will consider an Ising-model type system for discrete
Ising-spins sγ(~x) = ±1, with ~x points on a suitable three-
dimensional lattice and γ denoting different “species” of
Ising-spins, γ = 1 . . .Ns. For Ns = 4 our system will be
equivalent to a quantum field theory for Majorana or Weyl
spinors, while for Ns = 8 we will describe Dirac spinors.
The states τ are sequences or configurations of Ising-spins,
τ = {sγ(~x)}. Instead of Ising-spins, we will actually use
occupation numbers or bits nγ(~x) =

(
sγ(~x) + 1

)
/2, such

that the states τ describe bit sequences of numbers nγ(~x) =
0, 1 , τ =

{
nγ(~x)

}
. We will consider a setting with L3/8

lattice points (L even) such that the number of states is

2(NsL
3/8). The continuum limit L → ∞ is taken at the

end.
The sequences or configurations of occupation numbers{
nγ(~x)

}
show already a strong analogy to the basis states

of a quantum theory for an arbitrary number of fermions,
formulated in the occupation number basis for positions.
We will exploit this analogy in order to formulate a funda-
mental “evolution law” for the time evolution of the prob-
ability distribution pτ (t), such that our system describes a
relativistic quantum field theory for fermions.
We emphasize that the form of the evolution law is not

known a priori - we do not introduce any underlying de-
terministic theory of “classical trajectories” or similar con-
cepts. We note that no continuous time evolution for indi-
vidual Ising-spins sγ(x) can be formulated, since sγ(x) only
admits discrete values ±1. On the other hand, the time
evolution of the probability density may well be continu-
ous. We postulate that the basic dynamics describes the

time evolution of probabilities. The corresponding dynam-
ical law must be specified in order to define the model. The
only constraint to be imposed a priori is that is respects
for all t the positivity and normalization of the classical
probability distribution

pτ (t) ≥ 0 ,
∑

τ

pτ (t) = 1. (1)

2. Classical wave function

A useful concept for the construction of a consistent time
evolution law is the classical wave function [6],

qτ (t) = sτ (t)
√
pτ (t) , pτ (t) = q2τ (t) , sτ (t) = ±1. (2)

This is a real function which is given by the square roots
of the probabilities up to signs sτ (t). Consistent evolution
laws correspond to rotations of the vector qτ (t),

qτ (t) =
∑

ρ

Rτρ(t, t
′)qρ(t

′),

∑

ρ

Rτρ(t, t
′)Rσρ(t, t

′) = δτσ. (3)

The positivity of pτ = q2τ is automatic, and the normal-
ization of the distribution remains preserved provided it
was normalized for some initial time tin, since the length
of a vector or Στ q

2
τ = Στpτ is preserved by rotations. We

will specify a linear evolution for the wave function. In
other words, we will consider rotation matrices Rτρ that
are independent of the wave function.
The classical wave function specifies the probability dis-

tribution uniquely. The specification of an evolution law
for the wave function therefore defines the dynamics of the
classical statistical system completely. In the other direc-
tion, different choices of the sign functions sτ (t) correspond
to a choice of gauge. For all expectation values and corre-
lations that can be computed from the probability distri-
bution

{
pτ (t)

}
the gauge choice does not matter. Natural

gauge choices preserve the continuity and differentiability
properties of the wave function by avoiding arbitrary dis-
crete jumps which would be induced by arbitrary jumps
in the sign functions [6]. In contrast to the discussion of
classical mechanics in a Hilbert space by Koopman and
von Neumann [10], the classical wave function is real, such
that at this step no phases appear as new degrees of free-
dom beyond the probability distribution.
Quantum wave functions are usually defined in a com-

plex Hilbert space. Indeed, many characteristic quantum
features are closely associated to the “physics of phases”.
In our setting we will define a complex quantum wave func-
tion by introducing a complex structure in the real space

spanned by {qτ}. The 2(NsL
3/8) real components of the

vector {qτ} can then be associated to a complex vector

with dimension 2(NsL
3/8)−1. One complex structure can

be closely related to the equivalence between Majorana
and Weyl spinors in four dimensions [11], [12] [9], but more
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general complex structures are possible. There is no con-
ceptual difference between the classical and quantum wave
function in our setting.

3. Grassmann wave function

We will specify the time evolution of the wave function{
qτ (t)

}
within a formalism based on a real Grassmann al-

gebra. This will make the close connection to fermions
most transparent [7]. The Grassmann formulation relies
on the isomorphism between states τ and the basis ele-
ments gτ of a Grassmann algebra that can be constructed
from the Grassmann variables ψγ(x). Each basis element
gτ is a product of Grassmann variables

gτ = ψγ1
(x1)ψγ2

(x2) . . . (4)

which is ordered in some convenient way. To be specific, we
define some linear ordering of the lattice points and place
variables with “smaller x” to the left, and for each x place
smaller γ to the left. If a Grassmann element gτ contains
a given variable ψγ(x) we put the number nγ(x) in the
sequence τ to 0, while we take nγ(x) = 1 if the variable
ψγ(x) does not appear in the product (4). This specifies

the map between the 2(NsL
3/8) independent basis elements

gτ of the Grassmann algebra and the states τ .
An arbitrary element g of the Grassmann element can

be expanded in terms of the basis elements

g =
∑

τ

qτgτ . (5)

A time dependent wave function
{
qτ (t)

}
can therefore be

associated to a time dependent element of the Grassmann
algebra g(t), provided the coefficients qτ (t) are real and
normalized according to

∑
τ q

2
τ (t) = 1. We will formulate

the fundamental evolution law as an evolution law for the
“Grassmann wave function” g(t). For this purpose we will
formulate in the next section a Grassmann functional in-
tegral for a quantum field theory of massless Majorana or
Weyl fermions. It will involve NsL

3/8 Grassmann vari-
ables ψγ(t, x) for every discrete time point t. In section
IV we will present a prescription how the Grassmann wave
function g(t) and the fundamental evolution law can be ex-
tracted from this functional integral. This will establish a
map between a quantum field theory for fermions and Ising
type classical statistical ensembles with dynamics specified
by an appropriate evolution law.

III. MASSLESS MAJORANA FERMIONS

1. Action

In this section we formulate the quantum field theory
of a free Majorana spinor for a discrete space lattice on a
torus. It will be defined by a Grassmann functional integral
based on a real Grassmann algebra, and we take Ns =
4. Due to the finite number of (L/2)3 space points we
have at any given t a finite number L3/2 of Grassmann
variables ψγ(t, ~x), with four “species” γ = 1 . . . 4. (No

complex conjugate Grassmann variables are defined at this
stage.) For the associated classical statistical ensemble the
states correspond to sequences of L3/2 occupation numbers
nγ(~x) that can take values nγ(~x) = 0, 1. The total number

of classical states equals 2L
3/2 and remains finite for finite

L.
We also will take time t on a finite discrete chain. The

functional integral will therefore involve a finite number of
Grassmann variables. It is fully regularized and all quan-
tities are well defined. The continuum limit L → ∞ of an
infinite number of Grassmann variables will only be taken
at the end.
We start with the action for the regularized quantum

field theory

S =

tf−ǫ∑

t=tin

L(t), (6)

with Lagrangian

L(t) =
∑

x

ψγ(t, x)Bγ(t+ ǫ, x). (7)

Here we define

Bγ(t+ ǫ, x) =
∑

{v}

Yγδ
(
{v}
)
ψδ(t+ ǫ, xk + vk∆), (8)

with
∑

{v}

=
∏

j

( ∑

vj=±1

)
(9)

and

Yγδ
(
{v}) = 1

8

[
1−

∑

k

(vk + wk Ĩ)Tk − v1v2v3Ĩ
]
γδ
. (10)

Thus Bγ(t + ǫ, x) involves a linear combination of Grass-
mann variables at lattice sites which are diagonal neigh-
bors of x, corresponding to corners of a cube with basis
length 2∆, with x being at its center. The sums extend
over j, k, l = 1 . . . 3 and each corner corresponds to a par-
ticular combination of the three signs vj = ±1. We define
wk by w1 = −v2v3, w2 = v1v3, w3 = −v1v2. Eqs. (7), (10)
and the following imply a summation over repeated indices
γ, δ = 1 . . . 4.
We have also introduced the three real symmetric 4× 4

matrices Tk as

T1 =

(
0, 1

1, 0

)
, T2 =

(
0, c

−c, 0

)
, T3 =

(
1, 0

0,−1

)
, T T

k = Tk,

(11)
with

c =

(
0, 1

−1, 0

)
= iτ2, (12)

and 1 stands for the unit 2 × 2 matrix. The product of
these matrices yields the real antisymmetric 4× 4 matrix

Ĩ = −
(
c, 0

0, c

)
= T1T2T3 , Ĩ

T = −Ĩ . (13)
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The sum in eq. (6) extends over discrete time points
tn, with

∫
t
= ǫ

∑
t = ǫ

∑
n , tn+1 − tn = ǫ, n ∈ Z,

tin ≤ tn ≤ tf . The time-continuum limit is taken as
ǫ → 0 for fixed tin, tf . Similarly, we sum in eq. (7) over
points x of a lattice. For this purpose we consider for ev-
ery given t a cubic lattice with lattice distance 2∆ and∫
x = 8∆3

∑
x. We take ǫ = ∆ and place the space-time

lattice points on a hypercubic bcc lattice with distance 2∆
between nearest neighbors, which we call the “fundamen-
tal lattice”. For even t = 2nǫ the space lattice points are
even, xk = 2m′

k∆, with n,m′
k ∈ Z. This will be called

the even sublattice. The odd sublattice consists of the odd
time points t = (2n + 1)ǫ for which the space points are
also odd, xk = (2m′

k+1)∆. The action (6) involves indeed
only Grassmann variables for points on the fundamental
lattice. For even t eq. (7) involves Grassmann variables
ψγ(t, x) living on the even sublattice, while the combina-
tion Bγ(t+ ǫ, x) lives on the odd sublattice. For odd t the
role of the sublattices is exchanged, now with ψ on the odd
and B on the even sublattice. This construction eliminates
“lattice doublers” - a more detailed discussion of the lattice
implementation will be given elsewhere.
The action (6) is an element of a real Grassmann alge-

bra - all coefficients multiplying the Grassmann variables
ψγ(t, x) are real. Within the Grassmann algebra the op-
eration of transposition amounts to a total reordering of
all Grassmann variables. The action (6) is antisymmetric
under this operation,

ST = −S. (14)

If we define formally the Minkowski action SM = iS the

latter is hermitean, SM = S†
M since S∗

M = −SM .
As an important ingredient for the probabilistic interpre-

tation and time evolution discussed in the next two sections
we observe that one can obtain Bγ from ψγ by a rotation

Bγ(x) =
∑

y

R̄γδ(x, y)ψδ(y),

∑

y

R̄ηδ(z, y)R̄γδ(x, y) = δηγδ(z, x). (15)

In eq. (15) Bγ and ψδ refer to the same time arguments,
but we note that x is not a point on the space-lattice on
which the Grassmann variables ψδ(y) live. The quantity
Bγ(x) is a linear combination of Grassmann variables living
on the corners of a cube with center at x. Since the number
of lattice points y and the number of centers of cubes x
is the same, we may nevertheless interpret R̄γδ(x, y) as a
quadratic matrix. We may formally extend the space to
objects living on a cubic lattice with lattice distance ∆ for
each t. In this extended space R̄ acts as a rotation matrix
despite the fact that x and y refer to points on different
sublattices of the fundamental lattice. The second equation
(15) and the following equations should be interpreted in
this sense.
In order to show that R̄ is on orthogonal matrix we write

it as a product

R̄ = R̃1R̃2R̃3, (16)

with

R̃k = D+
k − TkD

−
k . (17)

Here the shift operators

D±
k (x, y) =

1

2

[
δ(x, y −∆k)± δ(x, y +∆k)

]
(18)

act as

∑

y

D±
k (x, y)ψ(y) =

1

2

[
ψ(x+∆k)± ψ(x−∆k)

]
. (19)

They obey

∑

y

D±
k (x, y)D

±
k (y, z) = (20)

1

4

[
δ(x, z − 2∆k) + δ(x, z + 2∆k)± 2δ(x, y)

]
,

and
∑

y

D+
k (x, y)D

−
k (y, z) =

∑

y

D−
k (x, y)D

+
k (y, z) =

1

4

[
δ(x, z − 2∆k)− δ(x, z + 2∆k)

]
. (21)

With

(D±
k )

T = ±D±
k , R̃T

k = D+
k + TkD

−
k , (22)

one finds indeed R̃T
k R̃k = 1. Observing that all shift oper-

ators D±
k , D

±
l mutually commute, one easily verifies that

B in eq. (10) indeed obeys

B = R̃1R̃2R̃3ψ. (23)

We next discuss the continuum limits in space and time
for the action (6)-(10). The space continuum limit ∆ → 0
is characterized by

(D+
k ψ)(x) → ψ(x) , (D−

k ψ)(x) → ∆∂kψ(x), (24)

with ∂k = ∂/∂xk the continuum derivative. In the contin-
uum limit one finds

R̃k → 1−∆Tk∂k (25)

and

Bγ(x) = ψγ(x)−∆
∑

k

(Tk)γδ∂kψδ(x) + 0(∆2). (26)

We further employ

∂tψ(t) =
1

ǫ

[
ψ(t+ ǫ)− ψ(t)

]
, (27)

such that the Grassmann property ψ2
γ(t, x) = 0 results in

ψγ(t, x)∂tψγ(t, x) =
1

ǫ
ψγ(t, x)ψγ(t+ ǫ, x). (28)
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For ∆ = ǫ we obtain the continuum relation

ψ(t, x)B(t + ǫ, x) = ǫ(ψ∂tψ −
∑

k

ψTk∂kψ). (29)

The factor of ǫ combines with Σt into
∫
t = ǫΣt. Finally, the

factor 8∆3 in the relation between
∫
x
and

∑
x is absorbed

in the continuum limit by a rescaling of the Grassmann
variables by a factor (2∆)(−3/2).

2. Lorentz symmetry

We next show that the action (6) is Lorentz-symmetric
in the continuum limit ǫ = ∆,∆ → 0. In the continuum
limit we write the action as

S =

∫

t,x

{
ψγ∂tψγ − ψγ(Tk)γδ∂kψδ

}
. (30)

It involves now four Grassmann functions ψγ(t, x), γ =
1 . . . 4, x = (x1, x2, x3). The integral extends over three di-
mensional space and time, with ∂t = ∂/∂t and ∂k = ∂/∂xk.
The Lorentz invariance of the action (30) is most easily

established by employing the real matrices

γ0 =

(
0 , τ1

−τ1 , 0

)
, γk = −γ0Tk, (31)

such that

S = −
∫

t,x

ψ̄γµ∂µψ , ψ̄ = ψTγ0, (32)

where µ = (0, k) and ∂0 = ∂t. We define ψ̄γ = ψδ(γ
0)δγ .

(We consider ψ here as a vector with components ψγ and
suppress the vector indices. The Pauli matrices are denoted
by τk.) The real 4× 4 Dirac matrices γµ obey the Clifford
algebra

{γµ, γν} = 2ηµν , (33)

with signature of the metric given by ηµν =
diag(−1, 1, 1, 1). This can be easily verified by using
the relations

{Tk, Tl} = 2δkl , {γ0, Tk} = 0. (34)

Furthermore, one finds

(γ0)T = −γ0 , (γk)T = γk, (35)

and the relations

[Tk, Tl] = 2ǫklmĨTm , [Tk, Ĩ] = 0 , Ĩ2 = −1,

γ0γ1γ2γ3 = Ĩ , {γ0, Ĩ} = 0 , {γk, Ĩ} = 0. (36)

Infinitesimal Lorentz-transformations can be written as

δψγ = −1

2
ǫµν (Σ

µν)γδ ψδ , ǫµν = −ǫνµ, (37)

where we have omitted to indicate the associated transfor-
mations of the coordinates. The Lorentz generators Σµν

obtain from the Dirac matrices as

Σµν = −1

4
[γµ, γν ], (38)

and obey

Σ0k = −1

2
Tk , Σ

kl = −1

2
ǫklmĨTm, (39)

We recognize in eq. (32) the standard Lorentz invariant
action for free Majorana fermions in a Majorana represen-
tation of the Clifford algebra with real γµ-matrices.

3. Functional integral

The functional integral is defined by the partition func-
tion

Z =

∫
Dψḡf

[
ψ(tf )

]
e−Sgin

[
ψ(tin)

]
, (40)

with the functional measure
∫

Dψ =
∏

t,x

∫ (
dψ4(t, x) . . . dψ1(t, x)

)
. (41)

The boundary terms gin and ḡf only depend on the Grass-
mann variables ψ(tin) and ψ(tf ), respectively. As we will
see below, the boundary terms ḡf and gin are related to
each other, such that the functional integral (40) is fully
specified by the choice of gin.
The basic definition of Z is formulated on the discrete

space-time lattice with finite volume. Thus Z is a well
defined real number. We will show later that for a suitable
normalization of gin one obtains Z = 1, independently of
L. The continuum limit L→ ∞ for the partition function
is therefore trivial.
We will use the Grassmann function integral (40) in or-

der to specify the fundamental evolution law for the proba-
bility distribution

{
pτ (t)} of the classical statistical ensem-

ble for Ising-spins. The positivity and normalization of the
probabilities holds for an arbitrary choice of gin, provided
ḡf is related to gin appropriately. For every given gin the
probability distribution {pτ(t)} is uniquely computable for
all t, such that the functional integral (40) indeed specifies
the time evolution of the probability distribution.

IV. GRASSMANN WAVE FUNCTION FROM

FUNCTIONAL INTEGRAL

In this section we compute for the functional integral
(40) a Grassmann wave function g(t), which is an element
of the Grassmann algebra constructed from the Grassmann
variables ψγ(t, x) at given t. The central idea is to “inte-
grate out” the Grassmann variables at times t′ 6= t [13].
The expansion coefficients of g(t) will specify the classical
wave function

{
qτ (t)

}
.

1. Integrating out past and future

The functional integral (40) involves variables for arbi-
trary time points tn. In order to construct a wave function
g(t) which only refers to a particular time t we have to “in-
tegrate out” the information referring to other time points
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t′ 6= t [9, 13]. This can be done by decomposing the action
(6)

S = S< + S>,

S< =
∑

t′<t

L(t′) , S> =
∑

t′≥t

L(t′). (42)

The wave function g(t) obtains now by integrating out all
Grassmann variables for t′ < t

g(t) =

∫
Dψ(t′ < t)e−S<gin. (43)

We observe that g(t) depends only on the Grassmann vari-
ables ψ(t). More precisely, it is an element of the Grass-
mann algebra that can be constructed from the Grassmann
variables ψγ(t, x).
The conjugate wave function is defined as

g̃(t) =

∫
Dψ(t′ > t)ḡfe

−S> . (44)

Again, this is an element of the Grassmann algebra con-
structed from ψ(t). In terms of g and g̃ the partition func-
tion reads

Z =

∫
Dψ(t)g̃(t)g(t), (45)

where the Grassmann integration
∫
Dψ(t) extends now

only over the Grassmann variables ψγ(t, x) for a given time
t.

2. Classical probabilities and wave function

We next expand g in terms of the basis elements gτ of
the Grassmann algebra generated by the variables ψγ(t),

g(t) =
∑

τ

qτ (t)gτ
[
ψ(t)

]
. (46)

We associate the real coefficients qτ (t) with the classical
wave function, such that the classical probabilities obtain
as pτ (t) = q2τ (t). This requires for every t the normalization∑

τ q
2
τ (t) = 1. We will show in the next section that this

normalization condition is indeed obeyed, provided it holds
for the initial wave function g(tin) = gin

[
ψγ(tin, x)

]
.

The conjugate basis elements of the Grassmann algebra
g̃τ are defined [7] by the relation

g̃τgτ =
∏

x

∏

γ

ψγ(x) (47)

(no sum over τ) and the requirement that no variable ψγ(x)
appears both in g̃τ and gτ . They obey

∫
Dψ(t)g̃τ

[
ψ(t)

]
gρ
[
ψ(t)

]
= δτρ. (48)

Expanding

g̃(t) =
∑

τ

q̃τ (t)g̃τ
[
ψ(t)

]
(49)

yields

Z =
∑

τ

q̃τ (t)qτ (t). (50)

We will see in the next section that for a suitable choice of
ḡf the conjugate wave function obeys for all t the relation
q̃τ (t) = qτ (t). Together with the normalization condition∑

τ q
2
τ = 1 this guarantees Z = 1.

In consequence, we can express the classical probabilities
pτ (t) directly in terms of the Grassmann functional integral

pτ (t) =

∫
DψḡfPτ (t)e

−Sgin, (51)

with Pτ (t) a projection operator

Pτ (t)gρ
[
ψ(t)

]
= gτ

[
ψ(t)

]
δτρ,∫

Dψ(t)g̃σ
[
ψ(t)

]
Pτ (t)gρ

[
ψ(t)

]
= δτσδτρ. (52)

The formal expression of Pτ in terms of the Grassmann
variables ψ(t) and derivatives ∂/∂ψ(t) can be found in ref.
[14].
The interpretation of the Grassmann functional inte-

gral in terms of classical probabilities is based on the
map g(t) →

{
pτ (t)

}
, which in turn is related to the map

{qτ} → {pτ} = {q2τ}. The map g(t) ↔
{
qτ (t)

}
is invert-

ible. A given state or classical statistical ensemble may be
specified by the “initial value” at some time t0, g(t0), or the
associated wave function

{
qτ (t0)

}
or classical probability

distribution {pτ (t0)
}
. This is equivalent to the specifica-

tion of gin = g(tin) in the functional integral.

V. TIME EVOLUTION

In this section we compute the time evolution of the
wave function

{
qτ (t)

}
and the associated probability dis-

tribution {pτ (t)
}

=
{
q2τ (t)

}
. This will lead to a type of

generalized Schrödinger equation for the real wave func-
tion

{
qτ (t)

}
, as well as an associated evolution equation

for the Grassmann wave function g(t). We will use the
properties of this evolution equation in order to establish
that the norm

∑
τ q

2
τ (t) is conserved, such that

{
q2τ (t)

}

can indeed be interpreted as a time dependent probability
distribution.
Due to the particular form of the action (6), which only

involves one type of Grassmann variables (and no conju-
gate variables as in ref. [7]) the discrete formulation of the
functional integral is crucial. We will see that g(t) jumps
between two neighboring time points, while it is smooth
between g(t+2ǫ) and g(t). We will therefore distinguish be-
tween even and odd time points and use the definition (46)
of the wave function only for even times. (For odd times
one may employ a different definition, which will guarantee
the smoothness of the time evolution of

{
qτ (t)

}
for both

even and odd time points [9].) In the continuum limit,
ǫ→ 0, the time evolution of the wave function is described
by a continuous rotation of the vector

{
qτ (t)

}
.
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As a consequence of its definition (46) the Grassmann
wave function obeys the time evolution

g(t+ ǫ) =

∫
Dψ(t)e−L(t)g(t). (53)

This determines
{
qτ (t+ ǫ)

}
in terms of

{
qτ (t)

}
. Thus the

action (6)-(10) specifies the dynamics how the probability
distribution

{
pτ (t)

}
evolves in time. The particular dy-

namics of a given model is determined by the form of Bγ

in eq. (10).

1. Unitary time evolution

We want to establish the relation (3) which guaran-
tees the preservation of the sum of probabilities

∑
τ pτ =∑

τ q
2
τ = 1, with t′ → t, t → t + 2ǫ. For this purpose we

employ the property (15). The relation between qτ (t+ 2ǫ)
and qτ (t) is computed from eq. (53).
Inserting the specific form (7) for L(t) the evolution

equation (53) reads

g(t+ǫ) =

∫
Dψ(t) exp

{
−
∑

x

∑

γ

ψγ(t, x)Bγ(t+ǫ, x)
}
g(t).

(54)
We may write g(t) in a product form

g(t) =
∏

x

∏

γ

[
aγ(t, x) + bγ(t, x)ψγ(t, x)

]
, (55)

with some fixed ordering convention of the factors assumed,
e.g. smaller γ to the left for given x, and some linear
ordering of the lattice points, with “lower” points to the
left. In the product form eq. (54) yields

g(t+ ǫ) =

∫
Dψ(t)

∏

x

∏

γ

(56)

{[
1− ψγ(t, x)Bγ(t+ ǫ, x)

][
aγ(t, x) + bγ(t, x)ψγ(t, x)

]}

=
∏

x

∏

γ

{
bγ(t, x) + ηγaγ(t, x)Bγ(t+ ǫ, x)

}
.

Here we use the fact that each individual Grassmann inte-
gration

∫
dψγ(t, x) can be performed easily,

∫
dψ(1 − ψϕ)(a+ bψ) = b− aϕ, (57)

and ηγ = ±1 results from the anticommuting properties of
the Grassmann variables ϕ, with

η1 = η3 = 1 , η2 = η4 = −1. (58)

As a result, we can write

g(t+ ǫ) =
∑

τ

qτ (t)Cgτ
[
Bγ(t+ ǫ, x)

]
, (59)

where Cgτ obtains from gτ by the following replacements:
(i) for every factor ψγ(x) in gτ one has a factor 1 in Cgτ ;
(ii) for every pair (x, γ) for which no ψγ(x) is present in gτ

one inserts a factor ηγψγ(x) in Cgτ . The ordering of the
factors ηγψγ(x) is the same as the ordering assumed in the
product (55). This implies that we can indeed write the
action of C on the product (55) as

Cg(t) =
∏

x

∏

γ

(
bγ(t, x) + ηγaγ(t, x)ψγ(t, x)

)
. (60)

The conjugation operator C maps every basis element gτ
into its conjugate element g̃τ up to a sign στ = ±1,

Cgτ = στ g̃τ . (61)

Applying C twice on the product (55) multiplies each factor
by ηγ . The factors ηγ drop out due to the even number of
minus signs, such that C is an involution, C2 = 1, or

C2gτ = gτ . (62)

The jump between g and Cg for neighboring time points
suggests the use of eq. (46) for the definition of the wave
function

{
qτ (t)

}
only for “even time points”, namely those

that obey tn = tin + 2nǫ, n ∈ N. Repeating the procedure
leading to eq. (59) one obtains

g(t+ 2ǫ) =
∑

τ

qτ (t)gτ
[
Aγ(t+ 2ǫ, x)

]
, (63)

where Aγ is a linear combination of Grassmann variables
ψδ(t + 2ǫ, x) which live on the same sublattice of the fun-
damental lattice as ψδ(t, x). For an arbitrary linear trans-
formation

Bγ(t+ ǫ, x) = Fγδ(x, y; t+ ǫ)ψδ(t+ ǫ, y) (64)

with unit Jacobian, detF = 1, we can write

g(t+ 2ǫ) =

∫
Dψ(t+ ǫ)

exp
{
− ψγ(t+ ǫ, x)Bγ(t+ 2ǫ, x)

}
g(t+ ǫ)

=

∫
DB(t+ ǫ) (65)

exp
{
−Bγ(t+ ǫ, x)Aγ(t+ 2ǫ, x)

}
g(t+ ǫ),

with

Aγ(t+ 2ǫ, x) = (F−1)Tγδ(x, y; t+ ǫ)

×Fδη(y, z; t+ 2ǫ)ψη(t+ 2ǫ, z). (66)

Here we sum over repeated indices δ, η and repeated co-
ordinates y, z and write the Grassmann integration as an
integration over new variables Bγ(t + ǫ, x). We next use
the expression (56) for g(t+ ǫ) and perform the integration
over Bγ(t+ ǫ, x),

g(t+ 2ǫ) =
∏

x,γ

ηγ
(
aγ(t, x) + bγ(t, x)Aγ(t+ 2ǫ, x)

)
. (67)

This replaces in g(t) every factor ψγ(t, x) by Aγ(t + 2ǫ, x)
such that eq. (66) specifies the expression Aγ(t + 2ǫ, x)
appearing in eq. (63).
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We next employ the important property that F is given
by the orthogonal matrix R̄ in eq. (15), which is inde-
pendent of t. Since (F−1)T = F we end with the simple
expression

Aγ(t+ 2ǫ, x) = R̄2
γη(x, z)ψη(t+ 2ǫ, z), (68)

where

R̄2
γη(x, z) = R̄γδ(x, y)R̄δη(y, z) (69)

defines a transformation between Grassmann variables on
the same sublattice. The matrix R̄2 is, in turn, also or-
thogonal (R̄2)T R̄2 = 1. We conclude that g(t+ 2ǫ) can be
obtained from g(t) by a simple rotation of the Grassmann
variables.
Since Aγ(x) is related to ψγ(x) by a rotation (68), it is

straightforward to show that gτ
[
Aγ(x)

]
is also connected

to gτ
[
ψγ(x)

]
by a rotation among the basis elements

gτ
[
Aγ(x)

]
=
∑

ρ

gρ
[
ψγ(x)

]
Rρτ ,

∑

ρ

RτρRσρ = δτσ. (70)

One infers

g(t+ 2ǫ) =
∑

τ,ρ

qτ (t)gρ
[
ψγ(t+ 2ǫ)

]
Rρτ

=
∑

τ

qτ (t+ 2ǫ)gτ
[
ψγ(t+ 2ǫ)

]
, (71)

with a rotated wave function

qτ (t+ 2ǫ) =
∑

ρ

Rτρqρ(t). (72)

This establishes eq. (3).
Rotations preserve the length of the vector {qτ} such

that
∑

τ q
2
τ (t) is independent of t. Choosing gin =∑

τ qτ (tin)gτ
[
ψ(tin)

]
with

∑
τ q

2
τ (tin) = 1 one infers∑

τ q
2
τ (t) = 1 for all t. Therefore

{
pτ (t)

}
=
{
q2τ (t)

}
has

indeed for all t the properties of a probability distribu-
tion, namely positivity of all pτ and the normalization∑

τ pτ = 1. In analogy to quantum mechanics we call a
time evolution which preserves the norm of

{
qτ (t)

}
a “uni-

tary time evolution”. A unitary time evolution is crucial
for the probabilistic interpretation of the functional inte-
gral (40).

2. Evolution of conjugate wave function

We next want to show the relation (for t even)

g̃(t− 2ǫ) =
∑

τ,ρ

q̃τ (t)Rτρg̃ρ
[
ψγ(t− 2ǫ, x)

]
. (73)

The definition (44) of the conjugate wave function q̃ then
implies

q̃τ (t− 2ǫ) =
∑

ρ

q̃ρ(t)Rρτ , (74)

such that

q̃τ (t) =
∑

ρ

Rτρq̃ρ(t− 2ǫ). (75)

Comparing with eq. (72) one infers that qτ (t) and q̃τ (t)
obey the same evolution equation. (By an analogous argu-
ment eq. (75) also holds for t odd.) If q and q̃ are equal for
some particular time t0, they will remain equal for all t.
If
{
q̃τ (t0)

}
equals

{
qτ (t0)

}
for some time t0 we can use

q̃τ (t) = qτ (t) for all t and infer from eq. (50)

Z =
∑

τ

q2τ (t). (76)

As it should be, Z remains invariant under rotations (72)
of the vector {qτ} and is therefore independent of t.
In order to show eq. (73) we employ the definition (44)

which implies

g̃(t− ǫ) =

∫
Dψ(t)g̃(t)e−L(t−ǫ), (77)

or

g̃(t− ǫ) =

∫
Dψ(t)g̃(t) exp

{
−
∑

x

ψγ(t− ǫ, x)Bγ(t, x)
}

=

∫
Dψ(t)g̃(t) exp

{
−
∑

x,y

ψγ(t− ǫ, x)R̄γδ(x, y)ψδ(t, y)
}

=

∫
Dψ(t)g̃(t) exp

{
−
∑

x

B̃γ(t− ǫ, x)ψγ(t, x)
}
, (78)

with

B̃γ(t, x) =
∑

y

ψδ(t, y)R̄δγ(y, x)

=
∑

y

(R̄−1)γδ(x, y)ψδ(t, y). (79)

Performing the Grassmann integral one finds

g̃(t− ǫ) =
∑

τ

q̃τ (t)C̃g̃τ
[
B̃γ(t− ǫ, x)

]
, (80)

where the map C̃ acts similarly as C, with ηγ replaced by

η̃γ = −ηγ , η̃1 = η̃3 = −1, η̃2 = η̃4 = 1, and C̃2 = 1. A
similar step yields

g̃(t− 2ǫ) =
∑

τ

q̃τ (t)g̃τ
[
Ãγ(t− 2ǫ, x)

]
(81)

with

Ãγ(t− 2ǫ, x) = (R̄2)−1
γδ (x, y)ψδ(t− 2ǫ, y). (82)

One concludes

g̃τ
[
Ãγ(t− 2ǫ, x)

]
=
∑

ρ

g̃ρ
[
ψγ(t− 2ǫ, x)

]
R−1

ρτ (83)

and infers eq. (73).
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3. Boundary terms

The final point we have to settle in order to establish the
normalization Z = 1 and the expression (51) concerns the
equality of q̃(t0) and q(t0) for some arbitrary time t0. This
is achieved by a proper choice of the relation between the
boundary terms ḡf and gin in eq. (40). For this purpose we
may imagine that we (formally) solve the evolution equa-
tion (72) in order to compute

{
qτ (tf )

}
in terms of

{
qτ (tin

}
,

gin =
∑

τ qτ (tin)gτ
[
ψ(tin)

]
. (We assume that tin and tf

are even.) Using

g(tf ) =
∑

τ

qτ (tf )gτ
[
ψ(tf )

]
, (84)

g̃(tf ) =
∑

τ

q̃τ (tf )g̃τ
[
ψ(tf )

]
= ḡf , (85)

it is sufficient to choose ḡf such that q̃τ (tf ) = qτ (tf ).
Equivalently, we may specify the wave function

{
qτ (t0)

}
={

q̃τ (t0)
}
at some arbitrary even time t0 and compute the

corresponding gin and ḡf by a solution of the evolution
equation, using the fact that the rotation (72) can be in-
verted in order to compute q(t− ǫ) form q(t).
If we would not adopt the choice q̃τ (tf ) = qτ (tf ) the

functional integral (40) would amount to a transition am-
plitude, which is another useful notion in quantum field
theory. We are interested, however, in a classical proba-
bilistic setting and therefore focus on the choice of ḡf that
guarantees Z = 1 for all t. In practice, neither gin nor
ḡf need to be computed explicitly since we only use the
Grassmann functional integral for extracting the evolution
equation for the Grassmann wave function g(τ) and the
classical wave function

{
qτ (t)

}
.

4. Continuous evolution equation

Finally, we cast the evolution law (72) into the form of a
differential time evolution equation by taking the limit ǫ→
0. This results in a generalized Schrödinger type equation
for the real wave function

{
qτ (t)

}
,

∂tqτ (t) =
∑

ρ

Kτρqρ(t). (86)

Since the evolution describes a rotation, the matrix K is
antisymmetric

Kρτ = −Kτρ. (87)

We identify this evolution equation with the generalized
Schrödinger equation for a quantum wave function for the
special case of a real wave function and purely imaginary
and hermitean Hamiltonian H = i~K.
The time evolution (86) translates directly to the prob-

abilities (no summation over τ here)

∂tpτ = 2
∑

ρ

Kτρsτsρ
√
pτpρ. (88)

Once the signs sτ (t0) are fixed by some appropriate con-
vention at a given time t0, the signs sτ (t) are computable

in terms of the probabilities pτ (t0). This follows since for
all t the wave function qτ (t) is uniquely fixed by qτ (t0) or
pτ (t0), and pτ (t) is uniquely determined by qτ (t). In princi-
ple, it is therefore possible to formulate the time evolution
law for the probabilities uniquely in terms of the proba-
bilities pτ (t0). However, an expression of ∂tpτ (t) in terms
of pτ (t) needs to keep track of the sign functions sτ (t).
In principle, this can be done by an updating procedure.
The sign sτ can flip only at times t where pτ (t) = 0. If it is
flipped or not at these times is decided by the requirements
pτ > 0,Στpτ = 1 for the following times [9].
Instead of such an updating procedure it is much more

convenient to use the wave function and the linear evolu-
tion law (86) for the description of the classical statistical
ensembles associated to the action S. The basic reason is
the condition of unit norm of the probability distribution.
This can be quite cumbersome for a general evolution equa-
tion for {pτ}, but it is extremely simple on the level of {qτ}
where only the length of a real vector has to be preserved.

5. Grassmann evolution equation

The matrix K can be extracted from the Grassmann
evolution equation

∂tg = Kg, (89)

according to

∂tg(t) =
1

2ǫ

[
g(t+ 2ǫ)− g(t)

]
= Kg(t) =

∑

τ

qτ (t)Kgτ

=
∑

τ,ρ

qτ (t)gρ
[
ψγ(x)

]
Kρτ =

∑

τ

∂tqτ (t)gτ
[
ψγ(x)

]
.

(90)

(In eq. (90) we use a fixed basis, corresponding to the
basis elements gτ constructed from ψ(t) for g(t), and from
ψ(t+2ǫ) for g(t+2ǫ).) For our model of free fermions the
Grassmann evolution generator K is given by

K =
∑

x

∂

∂ψγ(x)
(Tk)γδ∂kψδ(x). (91)

This yields the matrix element in eq. (86),

Kρτ =

∫
Dψg̃ρKgτ . (92)

In order to proof the relations (89), (91) we infer from
eqs. (63), (68) the relation

g(t+ 2ǫ)− g(t) =
∑

τ

qτ (t)
(
gτ [R̄

2ψ]− gτ [ψ]
)

(93)

and use the continuum limit ǫ = ∆ → 0, cf. eqs. (16),
(25),

R̄2ψ = (1− 2ǫ
∑

k

Tk∂k)ψ. (94)
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We then employ the identity (in linear order in ǫ and sum-
mation over k implied)

gτ
[
(1 − 2ǫTk∂k)ψ

]

=

(
1 + 2ǫ

∑

x

∂

∂ψγ(x)
(Tk)γδ∂kψδ(x)

)
gτ [ψ]

= (1 + 2ǫK)gτ [ψ] (95)

in order to establish eqs. (89), (91).
Taking finally the space-continuum limit by rescaling

ψγ(x) and ∂/∂ψγ(x) such that

{
∂

∂ψγ(x)
, ψδ(y)

}
= δγδδ

3(x− y), (96)

we arrive at the continuum form of the Grassmann evolu-
tion equation

∂tg = Kg , K =

∫

x

∂

∂ψγ(x)
(Tk)γδ∂kψδ(x). (97)

This evolution equation will be the basis for the interpre-
tation of the time dependent wave function

{
qτ (t)

}
and

probability distribution
{
pτ (t)

}
in terms of propagating

fermionic particles.

VI. OBSERVABLES

Classical observables A take a fixed value Aτ for every
classical state τ . In classical statistics the possible out-
comes of measurements of A correspond to the spectrum
of possible values Aτ . The expectation value of A obeys

〈A〉 =
∑

τ

pτAτ . (98)

Our description of the system will be based on these clas-
sical statistical rules. For example, we may consider the
observable measuring the occupation number Nγ(x) of the
bit γ located at x. The spectrum of possible outcomes of
measurements consists of values 1 or 0, depending if a given
state τ = [nγ(x)] has this particular bit occupied or empty.
For the Grassmann basis element gτ associated to τ

one finds Nγ(x) = 0 if gτ contains a factor ψγ(x), and
Nγ(x) = 1 otherwise. We can associate to this observable
a Grassmann operatorNγ(x) obeying (no summation here)

Nγ(x)gτ =
(
Nγ(x)

)
τ
gτ , Nγ(x) =

∂

∂ψγ(x)
ψγ(x). (99)

Two occupation number operators Nγ1
(x1) and Nγ2

(x2)
commute.
In general, we may associate to each classical observ-

able A a diagonal quantum operator Â acting on the wave
function, defined by

(Âq)τ = Aτ qτ . (100)

This yields the quantum rule for expectation values

〈A〉 = 〈qÂq〉 =
∑

τ,ρ

qτ Âτρqρ, (101)

with Â a diagonal operator Âτρ = Aτ δτρ. In the Grass-
mann formulation one uses the associated Grassmann op-
erator A obeying

Agτ = Aτgτ , (102)

such that

〈A〉 =
∫

Dψg̃Ag. (103)

Here g̃ is conjugate to g, i.e. for g =
∑

τ qτgτ one has
g̃ =

∑
τ qτ g̃τ .

In classical statistics the time evolution of the expecta-
tion value is induced by the time evolution of the proba-
bility distribution

〈A(t)〉 =
∑

τ

pτ (t)Aτ . (104)

This corresponds to the Schrödinger picture in quantum
mechanics

〈A(t)〉 = 〈q(t)Âq(t)〉, (105)

or the corresponding expression in terms of the Grassmann
algebra

〈A(t)〉 =
∫

Dψg̃(t)Ag(t). (106)

Using ∂tq = Kq (86) and ∂tg = Kg (97) we infer for the
time evolution of the expectation value the relations

∂t〈A〉 = 〈q[Â,K]q〉 =
∫

Dψg̃[A,K]g. (107)

Conserved quantities are represented by Grassmann oper-
ators that commute with K, [A,K] = 0.

VII. PARTICLE STATES

Our system admits a conserved particle number, corre-
sponding to the Grassmann operator N ,

N =

∫

y

∂

∂ψγ(y)
ψγ(y) , [N ,K] = 0. (108)

The particle number is Lorentz invariant. We can decom-
pose an arbitrary Grassmann element into eigenstates of
N

g =
∑

m

Amgm , N gm = mgm. (109)
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The time evolution does not mix sectors with different par-
ticle number m, such that the coefficients Am are time in-
dependent

∂tg =
∑

m

Am∂tgm , ∂tgm = Kgm. (110)

We can restrict our discussion to eigenstates of N . The
range of m is [0, B], with B = NsL

3/8 = L3/2 the number
of independent Grassmann variables.

1. Vacuum

Let us consider some static vacuum state g0 with a fixed
particle number m0,

Kg0 = 0 , N g0 = m0g0 ,

∫
Dψg̃0g0 = 1. (111)

An example for a possible vacuum state is the totally empty
state g0 = |0〉, with

|0〉 =
∏

α

ψα =
∏

x

∏

γ

ψγ(x) =
∏

x

(ψ1ψ2ψ3ψ4),

N|0〉 = 0. (112)

It obeys
∫

Dψ|0〉 = 1 , |0̃〉 = 1. (113)

For m0 6= 0 we shift the particle number by an additive
“renormalization” n = m−m0, such that the vacuum cor-
responds to n = 0, and g = Angn. An eigenstate of N with
eigenvalue m = m0 + n is called a n-particle state if n is
positive, and a n-hole state for negative n.

2. One-particle and one-hole states

We next define creation and and annihilation operators
a†γ(x), aγ(x) as

a†γ(x)g =
∂

∂ψγ(x)
g , aγ(x)g = ψγ(x)g. (114)

They obey the standard (anti-)commutation relations

{
a†γ(x), aǫ(y)

}
= δγǫδ(x− y) , N =

∫

x

a†γ(x)aγ(x),

[a†γ(x),N ] = −a†γ(x) , [aγ(x),N ] = aγ(x). (115)

Acting with the creation operator on the vacuum produces
one-particle states

g1(t) =

∫

x

qγ(t, x)a
†
γ(x)g0 = G1g0,

(N −m0)g1 = g1. (116)

If needed, we may multiply G1 with an appropriate nor-
malization factor such that the wave function obeys

∫

x

∑

γ

q2γ(x) = 1, (117)

and g1 has a standard normalization.
Similarly, a one-hole state with n = −1 obtains by em-

ploying the annihilation operator

g−1(t) =

∫

x

q̂γ(t, x)aγ(x)g0

= −
∫

x

q̄γ(t, x)(γ
0)γδaδ(x)g0 = G−1g0,

(N −m0)g−1 = −g−1. (118)

No one-hole states exist for the vacuum (112), but this
issue is different if m0 6= 0, as for example for g0 = 1 where
m0 = B.
If we transform the one-particle wave function qγ(t, x)

infinitesimally according to

δqγ = −1

2
ǫµν (Σ

µν)γδ qδ (119)

the operator G1 is Lorentz invariant. (We omit here the
part resulting from the change of coordinates.) Similarly,
q̂γ transforms as qγ and the corresponding infinitesimal
transformation results in an invariant G−1. If the vac-
uum g0 is Lorentz invariant, the Lorentz transformed one-
particle or one-hole wave functions will obey the same evo-
lution equations as the original wave functions.
The time evolution of the one particle wave function qγ

is given by

∂tg1 = Kg1 =

∫

x

(∂tq
∂

∂ψ
)g0 =

∫

x

q

[
K, ∂

∂ψ

]
g0. (120)

and similar for the hole. With
[
K, ∂

∂ψγ(x)

]
= −∂k

∂

∂ψǫ(x)
(Tk)ǫγ (121)

and

[
K, ψγ(x)

]
= −∂kψǫ(x)(Tk)ǫγ , (122)

one obtains Dirac equations for real wave functions (with
∂0 = ∂t)

γµ∂µq = 0 , γµ∂µq̂ = 0. (123)

We emphasize that these equations follow for arbitrary
static states g0 which obey Kg0 = 0.

3. Weyl and Majorana spinors

Let us consider g0 = |0〉 where aγ(x)|0〉 = 0 implies that
no hole states exist. There are then only particle states
and the propagating degrees of freedom correspond to Ma-
jorana fermions. In four dimensions Majorana spinors are
equivalent to Weyl spinors [11]. Indeed, we may introduce
a complex structure by defining a two-component complex
spinor

ϕ(x) =

(
ϕ1(x)
ϕ2(x)

)
, ϕ1 = q1 + iq2 , ϕ2 = q3 + iq4. (124)
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The matrices Tk = γ0γk are compatible with this com-
plex structure. They are translated to the complex Pauli
matrices

Tk = γ0γk → τk, (125)

while the operation ϕ → iϕ corresponds to the matrix
multiplication q → Ĩq. (Cf. ref. [9] for more details of the
map from Majorana to Weyl spinors.) The Dirac equation
reads in the complex basis

∂tϕ = τk∂kϕ , i∂tϕ = −τkPkϕ , Pkϕ = −i∂kϕ, (126)

and the Lorentz generators are given by

Σkl → − i

2
ǫklmτm , Σ0k → −1

2
τk. (127)

In contrast, the multiplications with γ0 cannot be repre-
sented by a multiplication of ϕ with a complex 2×2 matrix,
since

q → γ0q =̂ ϕ→ −τ2ϕ∗. (128)

If we express ϕ∗ in terms of the two-component complex
vector

χ = Eϕ∗ = −iτ2ϕ∗ =

(
−q3 + iq4
q1 − iq2

)
, (129)

the transformation q → γ0q corresponds to

ϕ→ −iχ , χ→ −iϕ. (130)

We may now introduce the complex four component vec-
tor

ΨM =

(
ϕ
χ

)
, (131)

for which all matrix multiplications q → γµq can be rep-
resented by multiplication with complex matrices of the
Clifford algebra,

γ0 =

(
0, −i
−i, 0

)
, γk =

(
0, −iτk
iτk, 0

)
, (132)

Σ0k = −1

2

(
τk, 0
0, −τk

)
, Σkl = − i

2
ǫklm

(
τm, 0
0, τm

)
.

We can also define the matrix

γ̄ = −iγ0γ1γ2γ3 =

(
1, 0
0, −1

)
, (133)

for which ϕ and χ are eigenvectors with eigenvalues ±1.
(Often γ̄ is denoted as γ5.) The transformation q → Ĩq
acts on ψM as ψM → iγ̄ψM . Thus the representation (133),

γ̄ = −iĨ, is consistent with the complex structure. Since χ
is not independent of ϕ the spinor ΨM obeys the Majorana
constraint [11], [12].

B−1Ψ∗
M = ΨM , B = B−1 = −γ2 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 ,

(134)

where BγµB−1 = (γµ)∗.
The real Dirac matrices γµ(M) in the “Majorana repre-

sentation” (31) and the Dirac matrices γµ(W ) in the “Weyl

representation” (132) are related by a similarity transfor-
mation,

q =
1√
2
AΨM , γµ(W ) = A−1γµ(M)A, (135)

with a unitary matrix A

A =
1√
2




1, 0, , 0, 1
−i, 0, 0, i
0, 1, −1, 0
0, −i, −i, 0


 , A†A = 1. (136)

4. Weyl particles

The propagating degrees of freedom correspond to the
solutions of the evolution equation. They are most simply
discussed in terms of the complex equation (126). We can
perform a Fourier transform

ϕ(t, x) =

∫

p

ϕ̃(t, p)eipx =

∫
d3p

(2π)3
ϕ̃(t, p)eipx, (137)

such that the evolution equation becomes diagonal in mo-
mentum space,

i∂tϕ̃(t, p) = −pkτkϕ̃(t, p). (138)

The general solution of eq. (126) obeys

ϕ̃(t, p) = exp(ipkτkt)ϕ̃(p), (139)

with arbitrary complex two-component vectors ϕ̃(p). This
is the standard time evolution for a propagating Weyl par-
ticle.

5. Multi-fermion states

States with arbitrary n describe systems of n fermions.
This is not surprising in view of our translation of the clas-
sical statistical ensemble to a Grassmann functional inte-
gral. For g0 = |0〉 there are only n-particle states, and no
hole states. They can be constructed by applying n cre-
ation operators a†γ(x) on the vacuum. For example, the
two-fermion state obeys

g2(t) =
1√
2

∫

x,y

qγǫ(t, x, y)a
†
γ(x)a

†
ǫ(y)g0. (140)

Due to the anticommutation relation

{
a†γ(x) , a

†
ǫ(y)

}
=

{
∂

∂ψγ(x)
,

∂

∂ψǫ(y)

}
= 0 (141)

the two-particle wave function is antisymmetric, as appro-
priate for fermions

qγǫ(t, x, y) = −qǫγ(t, y, x). (142)
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The Grassmann elements g2 describe states with two Weyl
spinors. A particular class of states can be constructed
as products of appropriately normalized one particle states
q(1), q(2)

qγǫ(x, y) = q(1)γ (x)q(2)ǫ (y)− q(1)ǫ (y)q(2)γ (x). (143)

General two particle states are superpositions of such
states.

6. Symmetries

Besides Lorentz symmetry the action (30) is also invari-
ant under global SO(2) rotations

ψ′
1 = cosα ψ1 − sinα ψ2 , ψ

′
2 = sinα ψ1 + cosα ψ2,

ψ′
3 = cosα ψ3 − sinα ψ4 , ψ

′
4 = sinα ψ3 + cosα ψ4.

(144)

This is easily seen from the infinitesimal transformation

δψγ = αĨγδψδ (145)

and the relations Ĩ2 = −1, ĨT = −Ĩ, [Ĩ , Tk] = 0. These
rotations carry over to the one-particle and one-hole wave
functions qγ and q̂γ .
Correspondingly, the complex two component wave func-

tions ϕ and χ transform as

ϕ′ = eiαϕ , χ′ = e−iαχ. (146)

The SO(2) rotations are now realized as U(1) phase rota-
tions. If we define for a general complex field η the charge
Q̄ by the transformation

η′ = eiαQ̄η (147)

we infer that ϕ carries charge Q̄ = 1, while χ has opposite
charge −1. If ϕ describes degrees of freedom of an elec-
tron, χ describes the corresponding ones for a positron.
We note that charge eigenstates exist only in connection
with a complex structure. The real wave function qγ can
be encoded both in ϕ and χ and may therefore describe
degrees of freedom with opposite charge.
The action (30) is further invariant with respect to dis-

crete symmetries. Among them a parity type reflection
maps

ψ(x) → P̄ψ(x), (148)

with

(
P̄ψ(x)

)
γ

= (γ0)γδψδ(−x), (149)

and we note P̄2 = −1. We may associate P̄ with a CP-
transformation for Weyl spinors. The action (30) is further

invariant under the discrete transformation ψ → Ĩψ. It is
therefore also invariant under a parity type transformation
where P̄ is replaced by ĨP̄.

VIII. COMPLEX STRUCTURE

We have formulated the classical statistical description
of a quantum field theory for Majorana spinors in terms
of a real Grassmann algebra. All quantities in the func-
tional integral (40) and the action (30) or (6)-(10) are real.
The introduction of complex Weyl spinors in eq. (124) or
(129) reveals the presence of a complex structure in this
real formulation. Such complex structures are the basis
for the importance of phases in quantum mechanics. The
Schrödinger equation for a one-particle state can be for-
mulated in terms of a complex wave function, and this
generalizes to multi-particle states.

1. Complex Grassmann variables

Complex Grassmann variables may be introduced in
analogy to eq. (124)

ζ1 =
1√
2
(ψ1 + iψ2) , ζ2 =

1√
2
(ψ3 + iψ4). (150)

Together with the complex conjugate Grassmann variables

ζ∗1 =
1√
2
(ψ1 − iψ2) , ζ

∗
2 =

1√
2
(ψ3 − iψ4) (151)

we have for every x and t four independent Grassmann
variables ζ1, ζ

∗
1 , ζ2, ζ

∗
2 , which replace ψ1, ψ2, ψ3, ψ4.

A general element of a complex Grassmann algebra can
be expanded as

gc =
∑

k,l

cα1...αk,ᾱ1...ᾱl
(x1 . . . xk, x̄1 . . . x̄l)

ζα1
(x1) . . . ζαk

(xk)ζ
∗
ᾱ1
(x̄1) . . . ζ

∗
ᾱl
(x̄l), (152)

with complex coefficients c. For a real Grassmann algebra
the coefficients c are restricted by g∗ = g. From a general
complex gc we can obtain an element of a real Grassmann
algebra as

g =
1

2
(gc + g∗c ). (153)

The action (30) is an element of a real Grassmann algebra
and reads in terms of ζ

S =

∫

t,x

{
ζ†(∂t − τk∂k)ζ + ζT (∂t − τ∗k∂k)ζ

∗
}

= 2

∫

t,x

ζ†(∂t − τk∂k)ζ. (154)

Up to the factor 2, which may be removed by a rescaling
of ζ, this is the action for a free Weyl spinor.
On every factor ζ the action of a matrix multiplication of

ψ by Ĩ amounts to a multiplication with i. More precisely,
we can interpret eq. (150) as a map ψ → ζ[ψ] with the

property ζ[Ĩψ] = iζ[ψ]. For the complex conjugate one

has ζ∗[Ĩψ] = −iζ∗[ψ]. For the infinitesimal transformation
(145) one concludes

δ
[
ζα1

(x1) . . . ζ
∗
ᾱl
(x̄l)

]
= iαQ̄ζα1

(x1) . . . ζ
∗
ᾱl
(x̄l), (155)
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where the charge Q̄ counts the number of factors ζ minus
the number of factors ζ∗ for a given term in the expansion
(152). In other words, products with Q̄+ factors ζ and Q̄−

factors ζ∗ are charge eigenstates with Q̄ = Q̄+−Q̄−. States
with a given Q̄ are degenerate since many different choices
of Q̄+, Q̄− lead to the same Q̄. For a real Grassmann al-
gebra we use eq. (153). Every term in gc with Q̄ 6= 0 is
accompanied by a term with opposite charge −Q̄ in g∗c .
Thus the expansion (152) of eq. (153) involves “charge
eigenspaces” with pairs of opposite axial charge.
It will often be convenient to use an extension to a com-

plex Grassmann algebra, where the coefficients c in eq.
(152) are arbitrary and charge eigenstates belong to the
Grassmann algebra also for Q̄ 6= 0. This can be mapped
at the end to a real Grassmann algebra by eq. (153). The
action of Q̄± on gc is represented as

Q̄+ =

∫

y

ζα(y)
∂

∂ζα(y)
, Q̄− =

∫

y

ζ∗α(y)
∂

∂ζ∗α(y)
. (156)

The Grassmann derivatives ∂/∂ζα obey the standard anti-
commutation relations
{

∂

∂ζα(x)
, ζβ(y)

}
= δαβδ(x− y) ,

{
∂

∂ζα(x)
, ζ∗β(y)

}
= 0.

(157)

In the complex basis we can write the time evolution
equation in the form

i∂tgc = Hgc (158)

with

H = i

∫

x

[
∂

∂ζα
(τk∂kζ)α +

∂

∂ζ∗α
(τ∗k∂kζ

∗)α

]
. (159)

Both Q̄+ and Q̄− commute with H. The operators creating
one hole or one particle states read

q̂γψγ =
1√
2
(ϕ̂∗

αζα + ϕ̂αζ
∗
α),

qγ
∂

∂ψγ
=

1√
2

(
ϕα

∂

∂ζα
+ ϕ∗

α

∂

∂ζ∗α

)
. (160)

The infinitesimal Lorentz transformations of the com-
plex two-component spinors ζ, δζ = − 1

2ǫmnΣ
mnζ, are rep-

resented by the complex 2 × 2 matrices Σmn given by eq.
(127). We also observe that ζ̃ = Eζ = −iτ2ζ transforms as

δζ̃ = 1
2ǫmn(Σ

mn)T ζ̃ such that

1

2
ζ̃T ζ = ζ1ζ2 =

1

2

[
ψ1ψ3 − ψ2ψ4 + i(ψ1ψ4 + ψ2ψ3)

]
(161)

is a Lorentz scalar. The same holds for ζ∗1 ζ
∗
2 such that

the bilinears ψ1ψ3 −ψ2ψ4 and ψ1ψ4 +ψ2ψ3 are separately
Lorentz scalars. Also the product

ζ1ζ2ζ
∗
1 ζ

∗
2 = ψ1ψ2ψ3ψ4 =

1

24
ǫαβγδψαψβψγψδ (162)

is a Lorentz scalar. The functional measure obeys
∫
dψ4dψ3dψ2dψ1 =

∏

γ

dψγ

=

∫
dζ2dζ1

∫
dζ∗2dζ

∗
1 =

∫
dζdζ∗. (163)

2. General complex structure

A real Grassmann algebra will, in general, admit differ-
ent possible complex structures. A discussion of phases in
quantum mechanics needs a specific choice of the complex
structure. For example, our discussion of Dirac-spinors in
sect. X will employ a complex structure different from eq.
(150). We therefore briefly discuss the general properties
of complex structures.
In a real even-dimensional vector space a complex struc-

ture is given by the existence of an involution K, together
with a map I, obeying

K2 = 1 , I2 = −1 , {K, I} = 0. (164)

The matrixK has eigenvalues±1 and we may denote eigen-
states with positive eigenvalues by vR and those with neg-
ative ones by vI ,KvR = vR,KvI = −vI . The matrix I is
a map between vR and vI , implying that the number of
independent vR and vI are equal. We can choose the vI
such that IvR = vI , IvI = −vR and use these properties for
defining a map from the real vectors v to complex vectors
c = vR + ivI = c(v), with the properties c(Kv) =

[
c(v)

]∗
,

c(Iv) = ic(v). A linear operator or observable A can
be represented by multiplication with a complex matrix
if [A, I] = 0.
As an example, we consider the complex structure under-

lying eq. (150). The maps (124) or (150) act on v = {qγ}
or v = {ψγ}, and the matrices K, I are given by

K = K̃ =

(
τ3, 0
0, τ3

)
, I = Ĩ . (165)

Indeed, the map ζ[ψ] given by eq. (150) obeys

ζ[K̃ψ] = ζ∗[ψ] , ζ[Ĩψ] = iζ[ψ]. (166)

A transformation ψ → Aψ is compatible with this com-
plex structure if A obeys

[A, Ĩ] = 0. (167)

In this case A can be represented by complex matrix mul-
tiplication acting on ζ,

ζ[Aψ] = Ãζ[ψ]. (168)

The matrices Tk commute with Ĩ and are therefore com-
patible with the complex structure

ζ[Tkψ] = τkζ[ψ]. (169)

Also Ĩ and Σµν (cf. eq. (39)) are compatible with the
complex structure, where the action of Σµν on ζ is given
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by eq. (127). The matrices A obeying eq. (167) form
a group, since the product of two matrices A1A2 again
commutes with Ĩ. This product is represented by complex
matrix multiplication of Ã1 and Ã2, ζ[A1A2ψ] = Ã1Ã2ζ[ψ].

In contrast, the matrices γµ anticommute with Ĩ, cf. eq.
(36), and are therefore not compatible with the complex
structure (165). One finds

ζ[γ0ψ] = −τ2ζ∗. (170)

The complex structure (164), (165) for the Grassmann vari-
ables can be extended to a complex structure for the real
Grassmann algebra by defining a suitable map g → gc.

IX. MASSIVE MAJORANA FERMIONS

The action (30) describes massless Majorana or Weyl
spinors. For a massive Majorana spinor one adds a mass
term

Sm =

∫

t,x

ψ̄(mĨ − m̃)ψ

=

∫

t,x

ψγ

[
m(γ0Ĩ)γδ − m̃(γ0)γδ

]
ψδ. (171)

In the presence of the mass term (171) the action remains
Lorentz-invariant, anti-hermitean and real (for real m, m̃),
and the Minkowski action SM = iS is hermitean. For
discrete time steps the first factor ψ is taken at t, and the
second at t+ ǫ. The U(1)-rotations (144) do not leave Sm

invariant. Indeed, the infinitesimal transformation (145)
results in

M̃ → M̃ + δM̃ , δM̃ = −α[Ĩ , M̃ ] = 2αM̃Ĩ, (172)

where

M̃γδ = m(γ0Ĩ)γδ − m̃(γ0)γδ. (173)

The terms ∼ m and m̃ are rotated into each other,

δm = −2αm̃ , δm̃ = 2αm. (174)

We may use this transformation in order to choose a con-
vention where m̃ = 0. With respect to the parity transfor-
mation P̄ (149) the term ∼ m̃ is invariant, while m changes
sign. On the other hand, Sm is odd with respect to the
discrete transformation ψ → Ĩψ. Thus, with respect to
the parity transformation ĨP̄ one finds that m is invariant
while m̃ changes sign.

1. Evolution equation

For massive Majorana spinors the Grassmann time evo-
lution (97) obeys

K =

∫

x

∂

∂ψγ(x)

{
(Tk)γδ∂k−M̃γδ

}
ψδ(x) = K0+Km, (175)

with

Km = −
∫

x

∂

∂ψγ(x)
M̃γδψδ(x). (176)

The particle number N remains conserved, while the
charge Q̄ is no longer a conserved quantity in the presence
of a mass term.
We may consider general operators of the type

Bǫη(y) =
∂

∂ψǫ(y)
Bǫη(y)ψη(y), (177)

with Bǫη depending on y and derivatives with respect to y.
They obey the commutation relation

[
Bǫη(y),K0

]
= ∂k

{
∂

∂ψγ
(Tk)γǫBǫηψη

}
(178)

+
∂

∂ψγ

{
Bγǫ(Tk)ǫη∂kψη − (Tk)γǫ∂k(Bǫηψη)

}
,

where all quantities on the r.h.s. depend on yk and ∂k =
∂/∂yk. For the mass contribution one finds

[Bǫη(y),Km] =
∂

∂ψγ(y)

[
M̃,B(y)

]
γδ
ψδ(y). (179)

The momentum operator (126) reads in the real Grass-
mann algebra

Pk = −
∫

y

∂

∂ψ
Ĩ∂kψ. (180)

For M̃ 6= 0 it is no longer conserved, while we may define
conserved quantities involving an even number of deriva-
tives

P2
k = −

∫

y

∂

∂ψγ
∂2kψγ . (181)

For any static vacuum state g0,Kg0 = 0, the evolution
of the one-particle state (116) follows eq. (120)

∫

x

∂tqγ(x)
∂

∂ψγ(x)
g0 =

∫

x

qγ(x)

[
K, ∂

∂ψγ(x)

]
g0. (182)

With
[
Km,

∂

∂ψγ(x)

]
= − ∂

∂ψδ(x)
M̃δγ = M̃γδ

∂

∂ψδ(x)
(183)

one finds the evolution equation

∂tq = (Tk∂k − M̃)q , Dq = (γµ∂µ −M)q = 0, (184)

where

M = −γ0M̃ = mĨ − m̃. (185)

For m̃ = 0 the relation {γµ, Ĩ} = 0 implies

D2 = ∂µ∂µ −m2. (186)

By using

[
Km, ψγ(x)

]
= M̃γδψδ(x) (187)
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we find for the one-hole wave function q̂ (118) the same
evolution equation as for the one-particle wave function q,

Dq̂ = 0. (188)

It is instructive to write the one-particle evolution equa-
tion (184) in terms of the two-component complex Weyl
spinor ϕ defined by eq. (124)

∂tϕ = τk∂kϕ− iτ2(m− im̃)ϕ∗. (189)

The fact that ϕ∗ appears shows that the multiplication
with M̃ is not compatible with the complex structure (165).
In terms of χ (129) and ψM (131) one finds

∂tϕ = τk∂kϕ+ (m− im̃)χ,

∂tχ = −τk∂kχ− (m+ im̃)ϕ, (190)

and

∂tψM = γ0(W )(γ
k
(W )∂k − imγ̄(W ) + m̃)ψM ,

(iγµ(W )∂µ +mγ̄(W ) + im̃)ψM = 0, (191)

with γµ(W ) the Dirac matrices in the Weyl representation

(132).

2. General solution for single massive Majorana

particle

In order to find the general solution of eq. (184) we
expand similar to eq. (137). We may consider modes with
a fixed momentum p. (As familiar in quantum mechanics,
these modes are not normalizable for infinite volume and
may be considered as limiting cases of normalizable wave
packets.) For every given p 6= 0 we can define

H(p) =
pkτk
|p| , H2(p) = 1 , pkpk = |p|2, (192)

such that H(p) has eigenvalues ±1. Decomposing ϕ̃(p)
according to the eigenvalues of H(p),

H(p)ϕ̃±(p) = ∓ϕ̃±(p), (193)

and using

χ̃±(t, p) = −iτ2ϕ̃∗
±(t,−p),

H(p)χ̃±(t, p) = ∓χ̃±(t, p), (194)

one has

ϕ(t, x) =

∫

p

(
ϕ̃+(t, p)e

ipx + ϕ̃−(t, p)e
ipx
)
,

χ(t, x) =

∫

p

(
χ̃+(t, p)e

ipx + χ̃−(t, p)e
ipx
)
. (195)

This yields, for m̃ = 0,

∂tϕ̃±(p) = ∓i|p|ϕ̃±(p) +mχ̃±(p),

∂tχ̃±(p) = ±i|p|χ̃±(p)−mϕ̃±(p), (196)

with general solution

ϕ̃+(t, p) = b+(p)e
−iωt − ω − |p|

m
τ2b

∗
+(−p)eiωt,

χ̃+(t, p) = −iτ2b∗+(−p)eiωt − i
ω − |p|
m

b+(p)e
−iωt,

ϕ̃−(t, p) = b−(p)e
iωt +

ω − |p|
m

τ2b
∗
−(−p)e−iωt, (197)

χ̃−(t, p) = −iτ2b∗−(−p)e−iωt + i
ω − |p|
m

b−(p)e
iωt,

where

ω = ω(p) = +
√
|p|2 +m2. (198)

3. Classical probabilities for Majorana fermions

The general solution for ϕ(t, x) depends on four complex
functions contained in b±(p). From the real and imaginary
part of ϕ(t, x) we can infer the four real functions qγ(x) and
therefore the classical probability distributions which de-
scribe the one-particle states. As an example, we consider
the special solution b−(p) = 0, b+,2(p) = 0, b+,1(p) = f(p)
real, for which

ϕ1(t, x) =

∫

p

f(p)ei(px−ωt),

ϕ2(t, x) =

∫

p

−iω − |p|
m

f(−p)ei(px+ωt), (199)

or

q1(t, x) =

∫

p

f(p) cos(px− ωt),

q2(t, x) =

∫

p

f(p) sin(px− ωt),

q3(t, x) = −
∫

p

f(p)
ω − |p|
m

sin(px− ωt),

q4(t, x) = −
∫

p

f(p)
ω − |p|
m

cos(px− ωt). (200)

We may further take f(p) = fδ(p − p̂) with p̂ =

(0, 0,−P ), P > 0, such that, with ω =
√
P 2 +m2,

q1(t, x) = f cos(Px3 + ωt) , q2(t, x) = −f sin(Px3 + ωt),

q3(t, x) = f
ω − P

m
sin(Px3 + ωt),

q4(t, x) = −f ω − P

m
cos(Px3 + ωt). (201)

For this particular example the normalization
∫
x q

2
γ(x) = 1

requires (with V the space-volume)

f2 =
1

2V

m2

m2 + P 2 − P
√
P 2 +m2

. (202)

For the general solution (200) the probabilities pγ(t, x) =
q2γ(t, x) describe the time dependent probability distribu-
tion of a classical statistical ensemble which accounts for
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all properties of a propagating massive single Majorana
fermion. If the vacuum is the totally empty state g0 = |0〉
the states (γ, x) correspond to “Ising states” τ where only
one bit at x of species γ is occupied and all others are
empty. (For a different g0 the classical states associated
to (γ, x) are more complicated.) The probability of a state
(γ, x) is given by pγ(x) = q2γ(x), e.g. according to eq. (200)
with a proper normalization of f(p).
The probability distribution

{
pγ(x)

}
properly accounts

for all characteristic quantum interference phenomena for
modes with different momenta p. This extends to the
correct description of interference for multi-particle states.
(For a concrete example of a two-particle state for massless
Majorana spinors cf. ref. [9].) The appearance of interfer-
ence phenomena is not surprising in view of the formulation
of the time evolution in terms of a Grassmann functional
integral. On a deeper level, it is related to the fact that sim-
ple time evolution equations (3) are linear in the classical
wave function qτ , but not linear in the classical probabili-
ties pτ .

X. DIRAC FERMIONS

Dirac spinors can be composed of two different Majorana
spinors with equal mass. The action reads

S =

∫

t,x

{
ψ1(∂t − Tk∂k +mγ0Ĩ)ψ1

+ψ2(∂t − Tk∂k +mγ0Ĩ)ψ2

}
, (203)

with Tk, Ĩ , γ
0 given by eqs. (11), (13), (31). (For simplicity

we take m̃ = 0 in eq. (171).) The functional integral
extends now over the Grassmann variables ψ1,γ(t, x) and
ψ2,γ(x, t). For a free theory the action involves separate
pieces for ψ1 and ψ2, S = S1 + S2. If the initial state
g(t0) = gin factorizes into two factors, one involving only
ψ1 and the other only ψ2, the Grassmann wave function
g(t) factorizes for all t. There is no need, however, for
g(t0) to factorize and general states g(t) will not be of a
factorisable form.

1. Complex structure

We introduce a complex structure by defining the four-
component complex Grassmann variables ψD

ψD = ψ1 + iψ2 , ψ
∗
D = ψ1 − iψ2. (204)

In terms of the general discussion in sect. VIII the matrices
K and I act as

K

(
ψ1

ψ2

)
=

(
ψ1

−ψ2

)
, I

(
ψ1

ψ2

)
=

(−ψ2

ψ1

)
, (205)

such that ψ1 is the “real part” of ψD, and ψ2 the “imag-
inary part”. The complex structure employed for Dirac
spinors differs from the complex structure (165). We can

express the action (203) in terms of ψD as

S =

∫

t,x

ψ†
D(∂t − Tk∂k +mγ0Ĩ)ψD

= −
∫

t,x

ψ̄D(γµ∂µ −mĨ)ψD, (206)

where we define

ψ̄D = ψ†
Dγ

0. (207)

The matrices γµ and Ĩ appearing in eqs. (206), (207) are
all real. We may also introduce a purely imaginary matrix

γ̄ = −iγ0γ1γ2γ3 = −iĨ , γ̄2 = 1. (208)

It is hermitean and anticommutes with all Dirac matrices
γµ,

γ̄† = γ̄ , {γ̄, γµ} = 0 , [γ̄,Σµν ] = 0. (209)

Often γ̄ is denoted as γ5. On the level of the eight variables
ψ1,γ and ψ2,γ the matrix γ̄ is defined as a real 8×8 matrix,
with I2 not acting on the index γ,

γ̄ = −I2 ⊗ Ĩ , I2 =

(
0,−1

1, 0

)
. (210)

(The matrix I defining the complex structure is given by
I2 according to eq. (205).)
Since γ̄ commutes with the Lorentz-generators Σµν the

projections

ψL =
1

2
(1 + γ̄)ψD , ψR =

1

2
(1− γ̄)ψD (211)

are representations of the Lorentz group. They transform
as the two inequivalent fundamental spinor representations
and describe Weyl spinors. In terms of ψ1,γ , ψ2,γ one has

ψL,R =
1

2



ψ1,1 ∓ ψ2,2 + iψ2,1 ± iψ1,2

ψ1,2 ± ψ2,1 + iψ2,2 ∓ iψ1,1

ψ1,3 ∓ ψ2,4 + iψ2,3 ± iψ1,4

ψ1,4 ± ψ2,3 + iψ2,4 ∓ iψ1,3


 , (212)

where the upper sign relates to ψL and the lower to ψR.
We observe that both ψL and ψR receive contributions both
from ψ1 and ψ2. They differ from the Weyl spinors ζ1, ζ2
that can be formed from ψ1 and ψ2 according to eq. (150).
Using γ̄ we can write the action (206) as

S = −
∫

t,x

ψ̄D(γµ∂µ − imγ̄)ψD = −iSM ,

SM = −
∫

t,x

ψ̄D(iγµ∂µ +mγ̄)ψD. (213)

Defining the hermitean conjugation as a map ψD → ψ∗
D,

accompanied by a complex conjugation of all coefficients
in the Grassmann algebra and a total transposition (re-
ordering) of all Grassmann variables, the hermiticity of the

Minkowski action, S†
M = SM , is easily verified.
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2. Charge and electromagnetic fields

The action (203) is invariant under all symmetry trans-
formations defined in the preceding sections, i.e. those
leaving S1 or S2 separately invariant. There are further
symmetries related to transformations between ψ1 and ψ2.
Rotations between ψ1 and ψ2 can be accounted for by the
infinitesimal transformation

δψ̃ = δ

(
ψ1

ψ2

)
= −βI2ψ̃ =

(
βψ2

−βψ1

)
. (214)

The discretization is the same for ψ1 and ψ2. It therefore
respects the invariance with respect to the transformation
(214). This rotation can be transferred to a phase rotation
of the complex Dirac spinor

δψD = −iβψD. (215)

We associate the transformations (214), (215) with the
U(1)-transformations of electromagnetism. The Dirac
spinor carries charge Q = −1 and can be identified with
the electron. Both components ψL and ψR (211) transform
as Weyl spinors with the same electric charge Q.

We may extend the action by considering Dirac spinors
in an external electromagnetic field Aµ(t, x). As usual this
is done by replacing the derivatives ∂µ in eq. (213) by
covariant derivatives Dµ = ∂µ + ieAµ. This adds to the
action a piece

∆S = −ie
∫

t,x

ψ̄Dγ
µAµψD. (216)

In terms of the real Grassmann algebra involving ψ1 and
ψ2 the additional piece reads

∆S = −e
∫

t,x

{
ψ1(A0 −AkTk)ψ2 − ψ2(A0 −AkTk)ψ1

}
.

(217)
For discrete time steps the first Grassmann variable is
taken at t and the second at t+ ǫ. In the continuum limit
the two terms in eq. (217) are equal. We may consider
the fields Aµ as “sources” for fermion bilinears involving
ψ1 and ψ2. For nonzero Aµ the action is no longer a sum
of independent pieces S1 + S2 for ψ1 and ψ2, respectively.

3. Weyl representation

One may use the similarity transformation (135)

ψD,W = A−1ψD , γµ(W ) = A−1γµ(M)A, (218)

in order to bring the Dirac matrices to the Weyl repre-
sentation (132). The action (213), (216) retains its form,
with the replacements γµ → γµ(W ), ψD → ψD,W , ψ̄D →
ψ†
D,Wγ0(W ) = ψ̄D,W . In the Weyl representation the ma-

trix γ̄ is diagonal, γ̄ = diag(1, 1,−1,−1). The Dirac spinor
ψD,W can therefore be written in terms of two-component

spinors ψL and ψR,

ψD,W =

(
ψL

ψR

)
, ψL = (ζ1 + iζ2) , ψR = (ξ1 + iξ2),

ζa =
1√
2

(
ψa,1 + iψa,2

ψa,3 + iψa,4

)
,

ξa =
1√
2

(−ψa,3 + iψa,4

ψa,1 − iψa,2

)
= −iτ2ζ∗a , (219)

which, in turn, can be written as linear combinations of ζ1
and ζ2 or ξ1 and ξ2.
We observe that in this basis the operation of complex

conjugation is represented by an involution K̂ different
from K in eq. (205). In terms of the eight-component field

ψ̃ = (ψ1, ψ2) one has K̂ = diag(1,−1, 1,−1,−1, 1,−1, 1).

The matrix I remains I2 as in eq. (205), and I2 and K̂
anticommute

K̂ =

(
K̃, 0

0,−K̃

)
, I2 =

(
0,−1

1, 0

)
, {K̂, I2} = 0. (220)

Thus the similarity transformation (218) changes the com-
plex structure. On the level of a real representation it can
be expressed by real 8× 8 matrices A′ such that a similar-
ity transformation may, in principle, transform bothK and
I. The matrix I remains unchanged, since iAψ = A(iψ)
in the complex representation. For A 6= A∗, however, the
matrix K changes since (Aψ)∗ 6= Aψ∗.
In the Weyl basis (219) we can take ψL and ψR as two-

component complex spinors. In terms of ψL and ψR the
action reads

S = −
∫

t,x

{
ψ̄Lγ

µ(∂µ + ieAµ)ψL + ψ̄Rγ
µ(∂µ + ieAµ)ψR

−im(ψ̄RψL − ψ̄LψR)
}
, (221)

where we define

ψ̄ = (ψ̄R, ψ̄L) = −i(ψ†
R , ψ†

L)

ψ̄L = ψ̄

(
1− γ̄

2

)
, ψ̄R = ψ̄

(
1 + γ̄

2

)
. (222)

For m = 0 it is invariant under separate “chiral phase
rotations” of ψL and ψR. The transformation δψL =
iαψL, δψR = −iαψR corresponds to δζa = iαδζa and there-
fore to a simultaneous transformation of the type (145) for
ψ1 and ψ2.

4. Left-handed representation

We can also reformulate the action in terms of two left
handed Weyl spinors ψL and ψc

L by introducing

ψc
L = iτ2ψ

∗
R = ζ1 − iζ2,

ψR = −iτ2(ψc
L)

∗ , ψ̄R = (ψc
L)

T τ2. (223)

This yields

S =

∫

t,x

{
ψ†
L

[
∂t + ieA0 − τk(∂k + ieAk)

]
ψL

+(ψc
L)

†
[
∂t − ieA0 − τk(∂k − ieAk)

]
ψc
L

+im
[
(ψc

L)
T τ2ψL + (ψc

L)
†τ2ψ

∗
L

]}
. (224)
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The charge of ψc
L is opposite to ψL - if ψL describes a left-

handed electron, ψc
L accounts for the left-handed positron.

We may group ψL and ψc
L into a four-component com-

plex spinor

ψLL =

(
ψL

ψc
L

)
=

(
ζ1 + iζ2
ζ1 − iζ2

)
. (225)

In this representation the matrix Ĩ defined by eq. (13) is
represented by a multiplication with i,

ψLL[Ĩψ̃] = iψLL, (226)

while the matrix I2, which acts on (ζ1, ζ2) or (ψ1, ψ2) as
defined in eq. (210), is now represented as

ψLL[I2ψ̃] =

(
i, 0

0,−i

)
ψLL. (227)

We observe that the role of Ĩ and I2 is exchanged if we
compare the complex spinors ψLL and ψD,W ,

ψD,W [I2ψ̃] = iψD,W , (228)

ψD,W [Ĩψ̃] =

(
i, 0

0,−i

)
ψD,W = iγ̄ψD,W .

The complex structures associated to ψLL and ψD,W are
therefore different. Nevertheless, the operation of com-
plex conjugation of ψLL or ψD,W corresponds in the real

representation ψ̃ to the same matrix multiplication with
K̂ = diag(K̃,−K̃).

5. Enhanced symmetries for free massless Dirac

spinors

For m = 0, Aµ = 0 the free theory exhibits a symmetry
of SU(2)-rotations among ψL and ψc

L,

δψLL = iωj τ̂jψLL, (229)

with ω3 = β identified with the transformation (215) and
τ̂j the Pauli matrices acting on the two components of ψ2d

(not on the spinor components of ψL and ψc
L). For exam-

ple, the transformation with ω1 acts as

δψL = −ω1τ2ψ
∗
R , δψR = −ω1τ2ψ

∗
L,

δζ1 = iω1ζ1 , δζ2 = −iω1ζ2. (230)

This corresponds to a transformation of the type (145),
now with opposite directions for ψ1 and ψ2. The situation
is similar for the transformation ∼ ω2, where

δζ1 = −iω2ζ2 , δζ2 = −iω2ζ1,

δψ1 = −ω2Ĩψ2 , δψ2 = −ω2Ĩψ1 (231)

leads again to a transformation among ψ1,γ and ψ2,γ which

involves Ĩ.

6. Evolution equation for Dirac fermions

For the action S +∆S (203), (217) the Grassmann evo-
lution equation ∂tg = Kg involves K = K0 +Km +∆K

K0 +Km =

∫

x

∑

a=1,2

∂

∂ψa(x)
(Tk∂k −mγ0Ĩ)ψa(x),

∆K = e

∫

x

[
∂

∂ψ1(x)
(A0(x) −Ak(x)Tk)ψ2(x)

− ∂

∂ψ2(x)
(A0(x)−Ak(x)Tk)ψ1(x)

]
.(232)

Here we work in the Majorana basis (11), (13), (31) and we
have suppressed the spinor index γ. The evolution equation

∂tg(t) = Kg(t) = (K0 +Km +∆K)g(t) (233)

describes the dynamics for an arbitrary number of charged
relativistic fermions (and their antiparticles) in external
electromagnetic fields.
The evolution equation for the classical wave function

(86), and therefore for the probability distribution, ob-
tains from eq. (92). In summary, we have formulated a
time evolution equation for a classical wave function qτ (t)
which describes an arbitrary number of charged electrons
in external electric and magnetic fields. In the next section
we will see that its restriction to one-particle states yields
the relativistic Dirac equation. As usual, a non-relativistic
approximation will yield the familiar Schrödinger equation
for a particle in a potential or moving in external magnetic
fields.

7. Classical observables

Classical observables can be constructed from linear
combinations of products of occupation numbers. We com-
bine the index a = 1, 2 for the two Majorana spinors ψa

with the index γ into a common index ǫ = (γ, a), ǫ = 1 . . . 8.
The Grassmann operators corresponding to the occupation
numbers Nǫ(x) read then

Nǫ(x) =
∂

∂ψǫ(x)
ψǫ(x). (234)

In a formulation with discrete lattice points they obey

N 2
ǫ (x) = Nǫ(x) ,

[
Nǫ(x),Nη(y)

]
= 0. (235)

The basis elements gτ are eigenstates of Nǫ(x),

Nǫ(x)gτ =
(
Nǫ(x)

)
τ
gτ , (236)

with
(
Nǫ(x)

)
τ

= 0 if gτ contains a factor ψǫ(x), and(
Nǫ(x)

)
τ
= 1 if no such factor is present. The expecta-

tion value of a product of occupation numbers obeys

〈Nǫ1(x1)Nǫ2(x2) . . .Nǫm(xm)〉

=

∫
Dψ(t)g̃(t)Nǫ1(x1) . . .Nǫm(xm)g(t)

=
∑

τ

pτ (t)
(
Nǫ1(x1)

)
τ
. . .
(
Nǫm(xm)

)
τ
, (237)
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corresponding to the standard rule for classical statistics.
Obviously, the expectation values of classical observables
can be computed from the probability distribution pτ (t)
and do not involve the signs sτ in eq. (2). Classical prod-
ucts of classical observables commute.
In order to compute the time evolution of expectation

values of classical observables we define

Mǫη(x) =
∂

∂ψǫ(x)
ψη(x), (238)

and use the relation

[
Mǫη(x),K

]
=
∑

α

{
(Tk)ǫα∂k

∂

∂ψα(x)
ψη(x)

+(Tk)ηα
∂

∂ψǫ(x)
∂kψα(x) (239)

+Wǫα(x)Mαη(x) −Mǫα(x)Wαη(x)
}
,

with

Wǫη(x) = −m(γ0Ĩ)αβδab + e
(
A0(x)δαβ −Ak(x)(Tk)αβ

)
ǫab,

(240)
and ∂k = ∂/∂xk, ǫab = −ǫba, ǫ12 = 1, η = (β, b), (Tk)ǫη =
(Tk)αβδab = (Tk)ηǫ. We observe that W is antisymmetric,
Wǫη(x) = −Wηǫ(x). A local particle number can be defined
as

N (x) =
∑

ǫ

N (x) =
∑

ǫ

Mǫǫ(x), (241)

and obeys
[
N (x),K

]
= (Tk)ηα∂kMαη. (242)

According to eq. (107) the time evolution of the classical
mean local particle number involves expectation values of
“off-diagonal” operators Mαη

∂t〈N(x)〉 = (Tk)ηα∂k〈Mαη〉. (243)

The particle number

N =

∫

x

N (x) , [N ,K] = 0, (244)

is conserved.

XI. QUANTUM MECHANICS FOR PARTICLE IN

A POTENTIAL

1. Dirac equation

We next concentrate on one-particle states, described by
Grassmann elements

g1(t) =

∫

x

(
q1,γ(t, x)

∂

∂ψ1,γ(x)
+ q2,γ(t, x)

∂

∂ψ2,γ(x)

)
g0.

(245)
Here g0 is some arbitrary static “vacuum state”. For
Kg0 = 0 we find for the one-particle wave function the
Dirac equation

(γµ∂µ −mĨ)q1 = eAµγ
µq2,

(γµ∂µ −mĨ)q2 = −eAµγ
µq1. (246)

For the derivation of the Dirac equation we use

[
∆K ,

∂

∂ψ1,γ(x)

]

= −e
(
A0(x)

∂

∂ψ2,γ(x)
−Ak(x)(Tk)δγ

∂

∂ψ2,δ(x)

)

[
∆K, ∂

∂ψ2,γ(x)

]
(247)

= e

(
A0(x)

∂

∂ψ1,γ(x)
−Ak(x)(Tk)δγ

∂

∂ψ1,δ(x)

)
.

The time evolution equation for the one particle wave func-
tion then extends eq. (120) to

∂tq1 = (Tk∂k −mγ0Ĩ)q1 + e(A0 −AkTk)q2,

∂tq2 = (Tk∂k −mγ0Ĩ)q2 − e(A0 −AkTk)q1. (248)

This is equivalent to the Dirac equation (246) which can
also be written as a matrix equation.

(γµDµ −mĨ)

(
q1
q2

)
= 0,

Dµ = ∂µ + eAµ

(
0,−1

1, 0

)
= ∂µ + eAµI2. (249)

The usual complex form of the Dirac equation is recovered
if we use a complex one-particle wave function

ϕD = q1 + iq2 , γ
µ(∂µ + ieAµ)ϕD = imγ̄ϕD. (250)

This equation holds for an arbitrary representation of the
Dirac matrices γµ.
The derivation of the Dirac equation for a one-particle

state (245) has only used the general evolution equation
for Grassmann elements g(t) and the condition Kg0 = 0. It
therefore describes the dynamics for a very extended fam-
ily of classical probability distributions or classical wave
functions. Indeed, it is sufficient that g0 is an arbitrary
static state (not necessarily a priori with a fixed particle
number). This reflects the physical property that isolated
one-particle states can occur under a wide variety of cir-
cumstances, and that for sufficient isolation the proper-
ties of the environment do not matter for the dynamics of
the isolated particle. In this context we emphasize, how-
ever, that our model only describes external electromag-
netic fields while we do not account for the fields generated
by the particles that may be present in the environment.
In this sense our setting describes “real physics” only in a
situation where the electromagnetic fields generated by all
present particles can be approximated by a “mean field”
that is independent of individual particle positions. This
is precisely the setting of standard one-particle quantum
mechanics.
The presence of electromagnetic fields influences the con-

ditions for a static “vacuum” or “environment”, Kg0 = 0.
We will concentrate here on simple vacuum states as g0 = 1
or g0 = |0〉, where |0〉 involves a product of all Grassmann
variables and obeys N|0〉 = 0. These states are static for
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arbitrary electromagnetic fields. For simplicity we choose
g0 = |0〉 such that

N g1 = g1. (251)

(The following discussion can be easily generalized, how-
ever, to all static states g0 which are eigenvalues of
N ,N g0 = mγ0, by using a modified local occupation num-
ber where a suitable constant is subtracted from N (x).)

2. Particle observables

Let us consider the expectation value of the local occu-
pation number

N (x) =
∑

ǫ

Nǫ(x). (252)

We use the identity

[
N (x),

∫

y

qǫ(t, y)
∂

∂ψǫ(y)

]
=
∑

ǫ

qǫ(t, x)
∂

∂ψǫ(x)
(253)

in order to establish the simple relation

〈N (x)〉 =
∑

ǫ

q2ǫ (t, x). (254)

This holds for a wave function g(t) = g1(t), and we use
eq. (103) employing appropriate basis elements (a subset
of {gτ})

g1,ǫ(x) =
∂

∂ψǫ(x)
|0〉 , g̃1,η(y) = ψη(y),

∫
Dψg̃1,η(y)g1,ǫ(x) = δηǫδ(x − y), (255)

with

g1 =

∫

x

qǫ(x, t)g1,ǫ(x) , g̃1 =

∫

y

qη(y, t)g̃1,η(y). (256)

The normalization
∫
Dψg̃1g1 = 1 implies for the one-

particle wave function the normalization

∫

x

∑

ǫ

(
qǫ(x)

)2
=

∫

x

ϕ†
D(x)ϕD(x) = 1, (257)

which is compatible with 〈N〉 = 1, cf. eq. (251). The nor-
malization (257) is preserved by the unitary time evolution
of the one-particle wave function. Indeed, we can write the
Dirac equation (250) as a Schrödinger-type equation

i~∂tϕD = HϕD, (258)

with hermitean Hamiltonian (Tk = γ0γk)

H = i~Tk∂k + ~mγ0γ̄ + ~e(A0 − TkAk) = H†. (259)

For a pure one-particle state the expectation value
〈N(x)〉 can be interpreted in a natural way as the prob-
ability density to find the particle at the position x. This

is precisely the standard interpretation of ψ†
D(x)ψD(x) in

one-particle quantum mechanics,

w(x) = 〈N(x)〉 = ϕ†
D(x)ϕD(x),∫

x

w(x) = 1. (260)

Since N(x) is a classical observable, we can define the po-
sition of the particle as a classical observable

X =

∫

x

xN(x). (261)

The expectation value in classical statistics coincides with
the standard quantum mechanics rule

〈X〉 = 〈
∫

x

xN(x)〉 =
∫

x

xw(x) =

∫

x

ϕ†
D(x)xϕD(x). (262)

This finds a natural extension to arbitrary functions of
the position observable

f(X) =

∫

x

f(x)N(x). (263)

The expectation values of this type of classical observables
follow again the rule of quantum mechanics

〈f(X)〉 =
∫

x

ϕ†
D(x)f(x)ϕD(x). (264)

In particular, one obtains the same formula for the disper-
sion 〈XkXk〉 − 〈Xk〉〈Xk〉 as in quantum mechanics. We
conclude that measurements of the position of a particle,
or more generally the distribution of positions in an ensem-
ble of one-particle states, can be described equivalently in a
classical statistical ensemble with classical observables, or
in quantum mechanics with Hamiltonian (259). The com-
plete time evolution of the distribution of positions is iden-
tical in both descriptions. This covers, in particular, the
characteristic quantum interference in a double slit experi-
ment. The time evolution (86), (92), (233) for the classical
wave function and associated classical probability distri-
bution {pτ} produces for one-particle states exactly the
quantum mechanical interference pattern.

3. Schrödinger equation

Standard quantum mechanics for an electron in a poten-
tial is recovered from the non-relativistic approximation to
the Dirac equation. This is well known, and we sketch
here for completeness only the case Ak = 0. The non-
relativistic approximation becomes valid if eA0 and iTk∂k
are small compared to m. Since (γ0γ̄)2 = 1, it is con-
venient to choose a basis where γ0γ̄ = diag(1, 1,−1,−1).
With V (x) = ~eA0(x) andM = ~m the Hamiltonian (259)
takes the form

H =

(
M , σkpk
σ†
kpk , −M

)
+ V (x), (265)

where we use the standard quantum mechanical momen-
tum operator

pk = −i~∂k. (266)
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The matrices

σ1 = −1 , σ2 = iτ2 , σ3 = iτ3 (267)

arise from

T ′
k = U †TkU = −

(
0 , σk
σ†
k , 0

)
, (268)

with

U =
1√
2

(
τ1 , −τ2
−τ2 , τ1

)
, U †U = 1 , U † = U. (269)

(Note T ′
1 = T1, T

′
2 = −T2.) The unitary matrix U diago-

nalizes γ0γ̄,

γ0γ̄ =

(
0 , −iτ3
iτ3 , 0

)
, U †γ0γ̄U =

(
1 , 0
0 , −1

)
. (270)

We observe for the matrices σk the relations

σ†
kσl + σ†

l σk = σkσ
†
l + σlσ

†
k = 2δkl, (271)

which guarantee {T ′
k, T

′
l } = 2δkl.

We next decompose ϕD into two-component wave func-
tions, ϕT

D = (χT , ρT ), which obey

i~∂tχ = (M + V )χ+ σkpkρ,

i~∂tρ = (−M + V )ρ+ σ†
kpkχ. (272)

For the non-relativistic electron we consider the approxi-

mate solution ρ = Aχ, where A = σ†
kpk/(2M) is deter-

mined by requiring in leading order ∂tρ = A∂tχ. Insertion
into eq. (21) yields for ψ = exp(iMt/~)χ the standard
Schrödinger equation for a particle in a potential V ,

i~∂tψ =
(pkpk
2M

+ V
)
ψ. (273)

As usual, the Dirac equation can also describe non-
relativistic positrons. For this purpose one considers a sec-
ond class of solutions χ = Bρ, with B = −σkpk/(2M). For

ψ̃ = exp(iMt/~)ρ∗ one obtains

i~∂tψ̃ =
(pkpk
2M

− V
)
ψ̃, (274)

and we note the change of sign of the potential due to the
opposite charge of the positron.
All quantum mechanical phenomena extracted from so-

lutions of the Schrödinger equation are described by our
time evolution equation for a classical statistical ensem-
ble of Ising-spins on a lattice. For a potential realizing a
double-slit situation the standard interference pattern is
predicted for this classical statistical ensemble to appear
behind the slits. This holds provided that the initial state
at some time t0 corresponds to a one-particle state describ-
ing a particle moving towards the slits.

4. Particle-wave duality

The discreteness of measurement values in quantum me-
chanics can be traced back to the discrete occupation num-
bers of the Ising-type model. In quantum mechanics we
may define an “interval observable” JR by a function

JR(x) =

{
1 if x ∈ R
0 otherwise

)
. (275)

It has the property

J2
R = JR, (276)

such that its spectrum consists of the discrete values 0 and
1. According to the rules of quantum mechanics, the pos-
sible outcomes of a measurement of JR are 0 or 1. The
interpretation in quantum mechanics is simple: either the
particle is within the region (interval) JR, in which case the
measurement value JR = 1 will be found, or it is outside
this region, and JR = 0 will be found. Particles are discrete
objects - they are either inside or outside an interval.
In our classical statistical Ising-type setting JR is a clas-

sical observable, given by

JR =

∫

R

N(x) =
∑

R

NL(x). (277)

The sum
∑

R extends over all lattice points within the re-
gion R. The classical observable NL(x) corresponds to a
normalization of occupation numbers for the discrete lat-
tice where

(
NL,ǫ

)
τ
= 0, 1. The sum over species NL(x) =∑

ǫ
NL,ǫ(x), cf. eq. (252), can therefore take in any classi-

cal state τ only the discrete values
(
NL(x)

)
τ
= (0, 1 . . . , 8),

according to the total number of eight species. In conse-
quence, for any state τ of the classical statistical ensemble,
(JR)τ is a positive integer or zero. According to the stan-
dard rule of classical statistics these integers describe the
possible outcomes of measurements.
For a one particle state the total particle number equals

one,

1 =

∫

V

N(x) =
∑

V

NL(x), (278)

where
∑
V

extends now over all lattice points in the total

volume. Since R must be contained in V the maximal
allowed value for JR in a one-particle state is one, such that
(JR)τ = 0, 1 are the only possible values of the classical
observable for such a state. This is precisely the quantum
mechanical rule. No new postulate is necessary for this
measurement in quantum mechanics - the quantum rule is
inferred from the standard rule of classical statistics. Of
course, the expectation value of JR for a one particle state
is the same in the quantum mechanical and the classical
statistical description

〈JR〉 =
∫

x

ϕ†
D(x)JR(x)ϕD(x) =

∫

R

ϕ†
D(x)ϕD(x). (279)
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While our model connects the discrete particle aspects
in quantum mechanics directly to the discrete classical
Ising-spins, the continuous wave aspects also arise in a
natural way. The quantum wave function is continuous
because probability distributions and associated classical
wave functions are continuous (at least piecewise). As we
have mentioned already, the characteristic interference ef-
fects for waves and the superposition arise from the linear-
ity of the fundamental evolution equation in the classical
wave function.

XII. CONCLUSIONS

We have derived the Schrödinger equation for a quan-
tum particle in a potential from a classical statistical en-
semble for Ising-spins. The dynamics of the classical sta-
tistical system has to be specified by an appropriate evo-
lution equation for the probability distribution. For this
purpose we employ the classical wave function which is
defined as the positive or negative root of the probability
distribution. The proposed evolution equation is a linear
differential equation for the classical wave function. The
wave function at time t obtains from the wave function at
t′ by a rotation - this guarantees the preservation of the
normalization of the probability distribution.
We have exploited a map between the classical wave

function and a Grassmann wave function which is an el-
ement of a real Grassmann algebra. In turn, the time evo-
lution of the Grassmann wave function can be associated to
a Grassmann functional integral. This allows us to formu-
late the evolution equation for the classical wave function
in terms of the action of a functional integral. The symme-
tries of the model, as Lorentz symmetry and electromag-
netic gauge symmetry for our model of Dirac spinors in an
external electromagnetic field, can be easily implemented
in this way. Since the classical wave function is real we
have to formulate the model in terms of a real Grassmann
algebra.
Our model is regularized on a lattice of space points.

On the one hand, this guarantees that mathematical ex-
pressions are well defined for a finite number of lattice
points, with continuum limit of an infinite number of points
taken at the end. On the other hand, the concept of classi-
cal Ising-spins or associated occupation numbers at every
point x is well defined. The discreteness of the particle
aspects of quantum mechanics can be traced back to the
discrete occupation numbers that can only take the val-
ues zero or one. We also have used discrete time steps,
and we have formulated the lattice action such that the
Grassmann wave function g(t + 2ǫ) obtains from g(t) by
a rotation. The time evolution is unitary not only in the
limit ǫ→ 0, but also for finite ǫ. A unitary time evolution
for infinitesimal time steps is easily achieved by any anti-
symmetric evolution generator Kτρ for the wave function
qτ (t),

∂tqτ (t) =
∑

ρ

Kτρqρ(t). (280)

Generating a unitary evolution also for finite smallest time
steps imposes restrictions on the form of the lattice action.
This, together with the requirement of a real Grassmann
action, requires some care for the construction of the model
and explains the specific form of the action in comparison
with other possible lattice actions.

The proposed evolution equation for the classical sta-
tistical ensemble of Ising-spins does not only lead to
the Schrödinger equation for non-relativistic one-particle
states. It entails the full dynamical equations for a quan-
tum field theory of Dirac fermions in an external electro-
magnetic field. The dynamics of states with an arbitrary
number of fermions, including the characteristic interfer-
ence patterns for indistinguishable fermions in quantum
mechanics, is correctly described.

At this point it seems worthwhile to ask some questions
about the origin of characteristic features of quantum me-
chanics in our classical statistical setting. Particle-wave
duality is realized by the discreteness of Ising-spins on one
side, and the continuous probability distribution or classi-
cal wave function on the other side. Interference arises from
the formulation of the basic evolution law in terms of the
classical wave function. While the classical wave function
is real, it can nevertheless take positive and negative values
which can add to zero locally. The superposition principle
or linearity of the quantum evolution finds a direct origin in
the formulation of a dynamical law for the classical statis-
tical ensemble that is linear in the classical wave function.
The characteristic physics of phases in quantum mechanics
is connected to the presence of a complex structure within
the real Grassmann algebra. Planck’s constant ~ appears
purely as a conversion factor of units. The uncertainty re-
lations can be obtained directly from the possible solutions
of the Schrödinger equation.

Finally, one of the most characteristic elements of the
mathematical formulation of quantum mechanics is the
presence of a non-commutative product for operators and
associated observables. These structures are obviously
present in our formulation and clearly very useful for a dis-
cussion of solutions of the Schrödinger equation or Dirac
equation. We have not addressed in this paper the fun-
damental origin of non-commuting operators and refer in
this context to related work [4], [6], [14]. An essential point
is the observation that a classical statistical ensemble ad-
mits many different product structures for observables, and
therefore also the definition of many different correlation
functions. The correct choice of a correlation function for
the description of a sequence of two measurements depends
on the details of the measurement process. There exist var-
ious idealizations of measurements.

The classical correlation function (“pointwise multiplica-
tion” AτBτ ) is adapted to a situation of negligible mutual
influence between two measurements. It is often not appro-
priate for the description of measurements in subsystems,
that are characteristic for the quantum experiments. For
an idealized separation into a subsystem and its environ-
ment many different classical observables are grouped into
an equivalence class, for which the properties within the
subsystem are identical, but the properties relating to the
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environment differ. Quantum observables are supposed to
measure only properties of the subsystem. They are there-
fore associated to a whole equivalence class of classical ob-
servables, rather than to a single classical observable. A
one-to-one correspondence between quantum and classical
observables is a basic assumption of the Kochen-Specker
theorem [3], which therefore does not apply in our setting.
The classical product of observables often depends on

the properties of the environment and is therefore not suit-
able for idealized measurements of properties of subsys-
tems. This is the point why Bell’s inequalities [1], [2] do
not apply for idealized measurements of properties of sub-
systems. These inequalities implicitly assume the use of the
classical correlation function. In short, Bell’s inequalities
are circumvented not by abandoning locality or causality,
but simply by concentrating on non-classical correlation
functions that are appropriate for measurements in sub-
systems. In other words, the experimental verification that
the observed correlations violate Bell’s inequalities tells us
that the classical correlation function should not be used
for this type of measurements. This is in accordance with
our arguments that classical correlations do not correspond
to idealized measurements of subsystem properties. It has

been shown that in many circumstances the idealized mea-
surements of subsystem properties correspond precisely to
the quantum correlation function that is associated to the
standard non-commutative operator product in quantum
mechanics [4], [6].

The essence of the emergence of non-commutative struc-
tures is the coarse graining of information. Again, this is-
sue has not been addressed in the present paper. It seems
reasonable to expect, however, that a system that is gov-
erned by the Dirac equation on microphysical scales - say
lattice distances shorter than the Planck length - will also
show similar properties at “macroscopic scales” associated
to coarse graining. (Such macroscopic scales can still be
much smaller than all characteristic scales of atom physics
or elementary particle physics.) The basic reason is that
the form of the Dirac equation for one-particle states is
essentially fixed by the symmetries. It will not be altered
if the coarse graining respects the symmetries. While it
remains an interesting task to perform this coarse graining
explicitly, the main message of this paper is already very
clear at the present stage: Quantum field theory can be
obtained from a classical statistical ensemble.
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