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We present new models of non-linear electromagnetism which satisfy the Noether-Gaillard-Zumino
current conservation and are, therefore, self-dual. The new models differ from the Born-Infeld-type
models in that they deform the Maxwell theory starting with terms like λ(∂F )4. We provide a
recursive algorithm to find all higher order terms in the action of the form λ

n
∂
4n
F

2n+2, which are
necessary for the U(1) duality current conservation. We use one of these models to find a self-dual
completion of the λ(∂F )4 correction to the open string action. We discuss the implication of these
findings for the issue of UV finiteness of N = 8 supergravity.

PACS numbers:

I. INTRODUCTION

In this paper we discuss a method for constructing effective Lagrangians for non-linear theories with duality sym-
metries. This work builds on earlier papers by [1], [2], [3]. The hope is that this procedure may shed further light on
counterterms in maximal supergravity theories. In particular it may improve our understanding of the role of E7(7)

electro-magnetic duality symmetry in N = 8 supergravity.

Here we study a simplified class of models with only one vector field, no scalars and duality group U(1). Although
the E7(7) symmetry of N = 8 supergravity is a global continuous symmetry it has some unusual features which were
uncovered for the first time in 1981 by Gaillard and Zumino [4] in the construction of extended supergravities (for a
recent review see [5]). The familiar global continuous symmetries are defined by the Noether current conservation and
are well known since 1918. However, duality symmetries have subtleties in the vector sector of the theory. Namely,
the vector part of the action is not invariant under duality symmetry, but transforms in a specific way, so that the
Bianchi identities and equations of motion transform into each other by duality symmetry. This feature is guaranteed
by the conservation of the Noether-Gaillard-Zumino current and the corresponding NGZ identity.

Several theories with U(1) duality are known. At the free, linear, level, there is Maxwell’s electromagnetism and
the higher-derivative generalizations constructed in [2]. At the interacting, non-linear, level, there is the Born-Infeld
(BI) theory [6–8] and its generalizations [9, 10]. The fact that the original BI theory has electromagnetic duality was
first noticed by Schrödinger [7]. The action of this model and of the generalizations constructed so far only contain
powers of the Maxwell field strength F , and no higher derivatives. The BI Lagrangian had been derived by Fradkin
and Tseytlin [8] as the low-energy spacetime effective Lagrangian for the vector field with a constant field strength,
coupled to a string. The self-duality of Born-Infeld action and the relation to the D3-brane of type IIB superstring
theory and its SL(2, Z)-symmetry was studied in [11]. For a review on BI action and open superstring theory we refer
to [12].

The action of the BI model has a well-known closed form det1/2(ηµν + Fµν ), while the actions of its generalization
do not, so the Lagrangian has to be written as an infinite power series. Gibbons and Rasheed [9] have shown that
there is a function of one variable’s worth of Lagrangians admitting duality rotations and gave an explicit algorithm
for their construction. These models were developed in more detail in [10] and more recently in [3]. The action of all
these models is identical at the F 2, F 4, F 6 level, but they differ at the F 8 and higher levels.

In this paper we will construct two simple self-dual models of non-linear electrodynamics whose first deviation from
the free Maxwell theory starts with a (∂F )4 term and contain terms of higher order in F and derivatives. We will
present recursive procedure to construct all of them.

http://arxiv.org/abs/1112.0332v2


A term of this kind
(

(∂F )4
)

is known to arise in the 4-point amplitude of the open string1 [13]. It was shown in

[15] that, with this term (and other F 4 with higher derivatives present in the 4-point amplitudes), the theory satisfies
the NGZ identity, and is consistent with electro-magnetic self-duality. Here we will show that a combination of the
two simple self-dual models gives precisely the (∂F )4 term studied in [15] as well as higher-order terms required to
satisfy the NGZ current conservation at the n-point level.

We will also describe a more general class of models where there are terms with Fn, without derivatives, as well
as terms with derivatives ∂2mF 2n. In all cases the algorithm for a construction of such actions satisfying the NGZ
identity will be given.

II. U(1) DUALITY, NO SCALARS

Our goal is to construct actions S(F ), where Fµν ≡ ∂µAν − ∂νAµ is the Maxwell field strength, which have a
non-linear U(1) duality. Two classes of such actions are known in the literature: that of the Born-Infeld theory and
its generalizations [9, 10], that depend only on F and not on its derivatives, and the action constructed in [2] which
has higher derivatives but is quadratic in F .

As usual, we define the dual field strength G(F ) by

G̃µν ≡ 1
2ǫ

µνρσGρσ ≡ 2
δS(F )

δFµν
. (2.1)

The infinitesimal U(1) duality transformations that interchange the equations of motion ∂µG̃
µν = 0 and Bianchi

identities ∂µF̃
µν = 0 are given by

δ

(

F
G

)

=

(

0 B
−B 0

)(

F
G

)

. (2.2)

The necessary condition for the theory to be selfdual is conservation of the the NGZ current [4], which in U(1) models
without scalars requires that

∫

d4x(FF̃ +GG̃) = 0 . (2.3)

The U(1) case is a special case of a more general Sp(2n,R) duality group

δ

(

F
G

)

=

(

A B
C D

)(

F
G

)

. (2.4)

which also acts on scalars, δφ = δφ(A,B,C,D).

In the general case, the NGZ identity requires the action to be of the form [4]

S = 1
4

∫

d4xFG̃+ Sinv , (2.5)

where Sinv is exactly invariant under the duality group δSinv = 0. This is a reconstructive identity, since, in principle,
it may be used to find the action from the knowledge of Sinv and G(F ). On the other hand,

δS = 1
2

∫

d4x δ(FG̃) = 1
4

∫

d4x(G̃BG+ F̃CF ) . (2.6)

Eqs. (2.5) and (2.6) are equivalent to NGZ current conservation, whereas eq. (2.3) is a particular form of the current

conservation, valid only for U(1) models without scalars. Indeed, only for U(1) in absence of scalars δS = 1
2 G̃BG,

with B = −C and A = 0 and therefore

1
2 G̃BG = 1

4 (G̃BG+ F̃CF ) ⇒

∫

d4x(FF̃ +GG̃) = 0 . (2.7)

1The same type of terms have been considered in [14] as part of the effective action of a single D3-brane. They have been shown to fit
elegantly into an SL(2,Z)-invariant function that encodes both the perturbative and non-perturbative contributions to the amplitude.
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A. New reconstructive identity in U(1) models without scalars

As mentioned before, to use the generic reconstructive identity (2.5) one needs, in addition to G(F ) in each particular
model, additional information on Sinv. In the U(1) models without scalars that we are considering here, this additional
information comes form the following general observation: if λ is the coupling constant of the model (so the linear
Maxwell term is independent of it), then, Sinv is related to the full action by

Sinv = −λ
∂S

∂λ
. (2.8)

This relation follows from the uniqueness of Sinv for a given non-linear theory, with given non-linear duality transfor-
mations and from the invariance of λ∂S

∂λ . The precise coefficient relating these two objects follows from the study of
the linear and next-to-linear terms of a generic action. For example, it is well known [4] that in the BI model one has
Sinv = −g2 ∂S

∂g2 .

Using this general observation, one can derive a new, more useful, reconstructive identity:

S(F ) =
1

4λ

∫

d4x dλFG̃ . (2.9)

To prove is, we will first prove that λ∂S
∂λ is duality invariant2, using the NGZ identity and the definition (2.1) (2.3):

λ
∂

∂λ

∫

d4x(FF̃ +GG̃) = 2λ

∫

d4x
∂G̃

∂λ
G = λ

∫

d4x
∂

∂λ

(

δS

δF

)

G = 0 . (2.10)

Then, since the functional variation and the partial derivative with respect to λ commute, and using (2.2), we find
that

0 =

∫

d4x
δ

δF

(

λ
∂S

∂λ

)

G = B−1

∫

d4x
δ

δF

(

λ
∂S

∂λ

)

δF = B−1δ

(

λ
∂S

∂λ

)

. (2.11)

Now, using the observation (2.8) in (2.5) that

S + λ
∂S

∂λ
= 1

4

∫

d4xFG̃ , (2.12)

which can integrated immediately, leading to (2.9).

The new reconstructive identity (2.9) is particularly well-suited to find the action as a series expansion in λ when
the dual field strength G is also available as a series expansion in λ: defining3

G̃(F ) = −F + 2

∞
∑

n=1

λnG̃(n)(F ) , (2.13)

S = − 1
2

∫

d4xF 2 + 2
∞
∑

n=1

λnS(n) , (2.14)

so that the λ = 0 free limit of the theory is the Maxwell theory, we find that each term in the expansion of the action
is given by

S(n) =
1

4(n+ 1)

∫

d4xFG̃(n)(F ) . (2.15)

2This is just a particular case of the general theorem proven in Appendix B of Ref. [4]. Note that the general proof in Ref. [4] is based
on a condition that the duality transformation of scalars do not depend on a coupling associated with the deformation, meanwhile, the
transformation law of vectors does depend on such a coupling. This raises the issue whether in extended supersymmetric theories, where
scalars and vectors are in the same multiplet, the construction of this type is available.

3The global factors of 2 have been introduced for later convenience, since they lead to simpler expressions for the coefficients T (n)± to be
introduced later.
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In the models that we are going to consider G̃(F ) is given by a series expansion of the above form with all the
terms of higher order in λ given by a simple recursion relation and these results can be checked explicitly order by
order in λ.

B. NGZ identity with graviphoton convention

To proceed, we introduce the standard supergravity graviphoton conventions [16], employed in [3] in the covariant
procedures for perturbative non-linear deformation of duality-invariant theories. In the complex basis we define

T = F − iG, T ∗ = F + iG , (2.16)

which transform under finite U(1) duality transformations with a phase, so, under (2.2)

δT = iBT . (2.17)

We also introduce the self-dual notation,

T± = 1
2 (T ± iT̃ ) . (2.18)

and form 4 different combinations of the components of the graviphoton field, see Table II B. Observe that T ∗+ = T−∗.
In this notation, the NGZ identity (2.3) takes the form

∫

d4x
[

T ∗+T+ − T ∗−T−
]

= 0 , (2.19)

In the linear Maxwell theory T+ = 0, so

T+ = F+
− iG+ = 0 , (2.20)

which implies G̃ = −F . In more general theories in which the dual field G is treated as independent of F , this
constraint is used to eliminate the non-physical degrees of freedom and express G as a function of F and scalars, if
any, and it is known as a linear twisted self-duality constraint.

In [2], Bossard and Nicolai proposed to use a non-linear deformation of the twisted self-duality constraint based on
a manifestly duality invariant source of deformation I(1)(T ) to construct a self-dual theory. We will follow here the
generalized procedure used in [3]. Let us assume that a manifestly duality-invariant I(1)(T ) is given. It was shown in
[3] that if, instead of vanishing as required by the linear twisted self-duality condition, T+ is given by the non-linear
twisted self-duality condition

T+
µν =

δI(1)(T−, T ∗+)

δT ∗+
µν

, (T+
µν)

∗ = T ∗−
µν =

δI(1)(T−, T ∗+)

δT−
µν

, (2.21)

it follows that the NGZ identity is satisfied automatically. One computes T ∗+T+ − T ∗−T−, using (2.21) and finds
that it vanishes since it is proportional to the variation of I(1)(T ) under duality, which vanishes since δI(1) = 0:

∫

d4x
[

T ∗+T+ − T ∗−T−
]

=

∫

d4x

[

T ∗+ δI(1)(T−, T ∗+)

δT ∗+
− T− δI(1)(T−, T ∗+)

δT−

]

=
1

B
δI(1) = 0 . (2.22)

Thus, once the eqs. (2.21) are solved for G(F ) there is no need to check the NGZ identity, it is satisfied and we have
the G(F ) of a self-dual theory.

In the models that we are going to study, the non-linear, twisted, self-duality constraint can be solved as a power
series in a parameter λ:

T+ = −2

∞
∑

n=1

λnT (n)+ , (2.23)

so

iG+ = F+ + 2

∞
∑

n=1

λnT (n)+ , (2.24)
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Graviphoton Components Chirality Charge

T
+ = F

+
− iG

+ + +

T
∗+ = F

+ + iG
+ + -

T
− = F

−
− iG

− - +

T
∗− = F

− + iG
− - -

TABLE I: The 4 combinations of the graviphoton components have ± chirality and ± duality charge.

from which we can get the coefficients of the series (2.13) for n > 0

G̃(n) = −(T (n)+ + c.c.) , (n > 0) . (2.25)

and of (2.14) for n > 0 (for n = 0 they have been chosen to correspond to Maxwell’s theory)

2S(n) = −
1

2(n+ 1)

∫

d4x
[

F+T (n)+ + c.c.
]

, (n > 0) . (2.26)

III. BORN INFELD WITH HIGHER DERIVATIVES AND DUALITY CURRENT CONSERVATION

In this section we are going to construct two deformations of the Maxwell theory using two particularly simple

manifestly duality invariant sources of deformation I
(1)
A (T ) and I

(1)
B (T ) given, respectively, by

I
(1)
A (T ) ≡

λ

23
t(8)µ1ν1µ2ν2µ3ν3µ4ν4∂αT

∗+µ1ν1∂αT−µ2ν2∂βT
∗+µ3ν3∂βT−µ4ν4 , (3.1)

I
(1)
B (T ) ≡

λ

23
t(8)µ1ν1µ2ν2µ3ν3µ4ν4∂αT

∗+µ1ν1∂βT
−µ2ν2∂αT ∗+µ3ν3∂βT−µ4ν4 , (3.2)

where the tensor t(8) is defined in the Appendix, or, using the shorthand notation introduced in the Appendix,

I
(1)
A (T ) ≡

λ

23
t(8)abcd∂αT

∗+a∂αT− b∂βT
∗+ c∂βT−d , (3.3)

I
(1)
B (T ) ≡

λ

23
t(8)abcd∂αT

∗+a∂βT
− b∂αT ∗+ c∂βT−d . (3.4)

At first order in λ the models that one obtains using the procedure described in the previous section are associated
to the following deformations of the action

S
(1)
A = 1

4

∫

d4x t(8)abcd∂αF
+ a∂αF− b∂βF

+ c∂βF− d , (3.5)

S
(1)
B = 1

4

∫

d4x t(8)abcd∂αF
+ a∂βF

− b∂αF+ c∂βF− d . (3.6)

Alternative forms of these corrections which do not use the t(8) tensor are eqs. (A9) and (A10).

In what follows we are going to construct explicitly the model A, using I
(1)
A (T ) in the non-linear twisted self-dual

condition.

A. Model A

The simplest way to solve the non-linear twisted self-dual condition with I
(1)
A (T ) is to plug the series expansion

(2.23) into both sides of it and identify the terms with the same powers of λ. First, observe that the expansion (2.23)

5



for T+ implies for T ∗+ and T−

T ∗+ = 2F+ + 2
∞
∑

n=1

λnT (n)+ , (3.7)

T− = 2F− + 2

∞
∑

n=1

λnT (n)+∗ . (3.8)

it is, then, convenient, to define4

T (0)+ = F+ , (3.9)

so

T ∗+ = 2

∞
∑

n=0

λnT (n)+ , (3.10)

T− = 2
∞
∑

n=0

λnT (n)+∗ . (3.11)

With these definitions, the non-linear twisted self-dual condition for this model, which is

T+
a = −

λ

22
t(8)abcd∂α(∂

αT−b∂βT
∗+c∂βT−d) , (3.12)

takes the form

∞
∑

n=1

λnT (n)+
a = t(8)abcd

∑

p,q,r=0

λp+q+r+1∂α(∂
αT (p)−b∂βT

(q)∗+c∂βT (r)−d) , (3.13)

from which it follows that

T (n)+
a = t(8)abcd

∑

p,q,r=0

δp+q+r+1,n∂α(∂
αT (p)−b∂βT

(q)∗+c∂βT (r)−d) , (3.14)

which can be solved recursively, given that T
(0)+
a = F+

a . Thus,

T (1)+
a = t(8)abcd∂α(∂

αF−b∂βF
+c∂βF−d) , (3.15)

T (2)+
a = t(8)abcd

[

∂α(∂
αF−b∂βF

+c∂βT (1)−d) + ∂α(∂
αF−b∂βT

(1)+c∂βF−d) + ∂α(∂
αT (1)−b∂βF

+c∂βF−d)
]

,(3.16)

T (3)+
a = t(8)abcd

[

∂α(∂
αF−b∂βF

+c∂βT (2)−d) + ∂α(∂
αF−b∂βT

(1)+c∂βT (1)−d) + permutations
]

, (3.17)

etc. The action can be obtained immediately by using the power series expansion of reconstructive identity (2.26).
Explicitly, we get:

2S(0) = − 1
4

∫

d4xF 2 , (3.18)

2S(1) = 1
2

∫

d4x t(8)abcd∂αF
+ a∂αF− b∂βF

+ c∂βF− d , (3.19)

2S(2) = − 1
2

∫

d4x
[

T (1)+
aT

(1)+a + c.c.
]

= − 1
2

∫

d4x
{

t(8)abcdt
(8)

defg∂α
(

∂αF− b∂βF
+ c∂βF− d

)

∂γ
(

∂γF− e∂δF
+ f∂δF− g

)

+ c.c.
}

, (3.20)

4Notice, however, the expansion of T+ is still given by (2.23) and has no term of zero order in λ.
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etc., up to total derivatives. It can be checked order by order that this action is related to the dual field strength
iG+ = F+ − T+ by (2.1):

G+
µν = 2i

δS

δF+µν
, (3.21)

as required.

B. Model B

The recursive algorithm for generating a complete action above produces the λn term from the previous ones. The
derivation of this model follows the exact steps which we outlined in the case A. Each time the sequence of (+−+−)
has to be replaced by (+ + −−), the rest is the same. Therefore we will not provide more details on the derivation
of the B model.

IV. SUPERSYMMETRIZABLE BORN-INFELD DUALITY SYMMETRIC MODEL WITH HIGHER

DERIVATIVES

The model with derivatives of F known from the open superstring effective action [13] was shown to satisfy the
NGZ current conservation condition (2.3) in [15]. In this model the first deformation of the Maxwell theory is given
by the quartic coupling term

S(1) =
λ

24

∫

d4x t
(8)
abcd∂µF

a∂µF b∂νF c∂νF
d , (4.1)

in the notation introduced in the Appendix. As shown there, it can be rewritten in the form (eq. (A11))

S(1) =
λ

22

∫

d4x t(8)abcd
[

∂µF
+a∂µF−b∂νF

+c∂νF−d + 1
2∂µF

+a∂νF
−b∂µF+c∂νF−d

]

. (4.2)

It is clear that, to reproduce this quartic term in the action we must take a combination of the models A and B
studied above and use, as manifestly self-dual source of deformation

I
(1)
string(T ) = I

(1)
A (T ) + 1

2I
(1)
B (T ) =

λ

23
t
(8)
abcd[∂µT

∗+a∂µT− b∂νT
∗+ c∂νT−d +

1

2
∂µT

∗+ a∂µT ∗+ b∂νT
− c∂νT−d] . (4.3)

the resulting non-linear, twisted, self-duality constraint can be solved by the same recursive procedure we employed
for the model A above and the dual field strength G(F ) and corresponding action can be found by the use of the new
reconstructive identity.

It is interesting to observe that, after partial integration, the above quartic term is very close to the (∂F )4 term
found in ref. [17], although the latter, corresponding to an amplitude calculation, is not real in its current form. It is
likely that for the effective action one can produce the real expression dividing the one in ref. [17] by two and adding
the Hermitean conjugate.

V. MORE GENERAL U(1) DUALITY, NO SCALARS MODELS

Using the covariant procedures for perturbative non-linear deformation of duality-invariant theories [3] we can
construct more general models with NGZ current conservation. For example, we may consider more general sources
of deformation.

I
(1)
fn

(T−, T ∗+) =
∑

n=1

fn

(

I(1)(T−, T ∗+)
)n

, (5.1)

7



where I(1)(T−, T ∗+) is defined in (4.3) and fn are arbitrary constants, and the model we described above in details
has f1 = 1 and fn = 0, n > 1. In addition, we may add terms which depend only on F ’s without derivatives, for
example, the ones studied in [3].

Any manifestly U(1) duality invariant I(T−, T ∗+) with space-time derivatives action of T ’s or without, has to have
the same number of T−’ s as T ∗+’s, and has to be Lorentz covariant. In such case, one expects a recursive equation,
defining Gµν(F ) from the equation

T+
µν =

δI(T−, T ∗+)

δT ∗+
µν

, (5.2)

as shown in the simple models defined in [3] without derivatives and in sec. III in case with derivatives. The solution
is guaranteed to satisfy the NGZ U(1) current conservation [3].

This eq. (5.2) in all cases provides a recursive procedure determining G(F ) as a powers series in λ. The action in
these most general models of U(1) duality without scalars is given by the new reconstructive identity (2.9).

VI. DISCUSSION

In this paper we have constructed explicitly the first complete model of Born-Infeld type with higher derivatives,
which has an electromagnetic U(1) duality. The model is given by the power series expansion of the Lagrangian and
involves all powers of the Maxwell field strength and their derivatives.

S = SMaxwell −

∞
∑

n=1

λn

2(n+ 1)

∫

d4x
[

F+µνT (n)+
µν + c.c.

]

. (6.1)

Here T (n) ∼ ∂4nF 2n+1 and the explicit expression is given via a recursive algorithm in eq. (3.14), which defines T (n)

in terms of T (m) with m < n and starts with T (0)+ = F+. We have also outlined the procedure to produce more
complicated models where terms with and without derivatives on F are mixed.

Apart from the intrinsic motivation to discover a non-linear model with higher derivatives and with duality sym-
metry, which was not known in the past, our goal here was to test the Bossard-Nicolai proposal [2]. The authors
conjectured that there is a straightforward algorithm which allows to construct N = 8 supergravity with higher
derivatives, consistent with E7(7) duality. This conjecture was used in [2] to counter the argument of [1] suggesting
that E7(7) duality symmetry predicts the finiteness of N = 8 supergravity.

However, there is no actual construction of N = 8 supergravity with higher derivatives in [2], which would be a
formidable task. Therefore we performed a detailed investigation of this issue in applications to much simpler models,
such as the Born-Infeld models and their generalizations. An investigation of this issue in [3] demonstrated that the
algorithm of construction of N = 8 supergravity with higher derivatives requires substantial modifications even in
application to the simplest Born-Infeld model. Moreover, it was observed in [3] that the presence of the 4-point UV
divergence F 4f(s, t, u) term in the N = 8 supergravity would require to produce a theory of the Born-Infeld type
with derivatives leads to a non-stop proliferation of the powers of the vector field strength with increasing number of
derivatives.

A generalization of the results in [3] to the Born-Infeld model with higher derivatives required additional efforts.
In this paper we were able to construct a toy model of a Born-Infeld N = 8 supergravity, with N = 0 supersymmetry
replacing N = 8 and U(1) duality replacing E7(7). The model indeed has a full non-linearity in powers of λn∂4nF 2n+2

with n → ∞, as predicted in [3].

Thus, whereas we were able to construct the Born-Infeld model with derivatives, and we are planning to develop a
similar construction for supersymmetric models, which also have a U(1) duality symmetry, at present we do not see
any obvious way to extend this construction and develop the Born-Infeld version of N = 8 supergravity along the lines
of [2]. Until the existence of the Born-Infeld version of N = 8 supergravity is demonstrated, the argument that E7(7)

duality symmetry predicts the finiteness of N = 8 supergravity [1] seems still valid. Moreover, even if one manages to
construct a consistent 2-coupling model of N = 8 supergravity with gravitational coupling κ2 as well as Born-Infeld
coupling λ, it will raise a new question whether the conjectured existence of this new theory predicts anything for the
UV behaviour of the original one-coupling N = 8 supergravity, which depends only on gravitational coupling.
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Appendix A: Some useful relations

Using the definition of the Hodge dual

Ãµν ≡ 1
2ǫµνρσA

ρσ ,
˜̃
A = −A , (A1)

and of the self- and anti-self-dual parts

A± = 1
2 (A± iÃ) , (A2)

for 2-forms, one can easily prove the following identities involving arbitrary 2-forms A and B:

ÃB̃ = BA− 1
2 tr(AB)1 , (A3)

ÃB = −B̃A+ 1
2Tr(AB̃)1 , (A4)

A±B± = −B±A± + 1
2Tr(A

±B±)1 , (A5)

A±B∓ = B∓A± . (A6)

The t(8) tensor [18] is totally symmetric in four pairs of antisymmetric indices. It is convenient to use only
one Latin index a, b, c . . . to denote each of these four pairs and write t(8)abcd instead of t(8)µ1ν1µ2ν2µ3ν3µ4ν4 =

t(8)[µ1ν1][µ2ν2][µ3ν3][µ4ν4]. Then, in terms of these indices, t(8) is completely symmetric t(8)abcd = t(8)(abcd).

t(8) can be defined by its contraction with 4 arbitrary 2-forms A,B,C,D:

t(8)abcdA
aBbCcDd = 8[Tr(ABCD) + Tr(ACBD) + Tr(ACDB)]

−2[Tr(AB)Tr(CD) + Tr(AC)Tr(BD) + Tr(AD)Tr(BC)] . (A7)

Then, using the above relations, one can write

t(8)abcd ∂µF
a∂µF b∂νF

c∂νF d = 16
{

Tr
(

∂µF
+∂νF

+
)

Tr
(

∂µF−∂νF−
)

+ 1
2Tr

(

∂µF
+∂µF+

)

Tr
(

∂νF
−∂νF−

)}

, (A8)

and

t(8)abcd ∂µF
+a∂µF−b∂νF

+c∂νF−d = 4Tr
(

∂µF
+∂νF

+
)

Tr
(

∂µF−∂νF−
)

, (A9)

t(8)abcd ∂µF
+a∂νF

−b∂µF+c∂νF−d = 4Tr
(

∂µF
+∂µF+

)

Tr
(

∂νF
−∂νF−

)

, (A10)

from which we find that

t(8)abcd ∂µF
a∂µF b∂νF

c∂d = 4t(8)abcd
[

∂µF
+a∂µF−b∂νF

+c∂νF−d + 1
2∂µF

+a∂νF
−b∂µF+c∂νF−d

]

. (A11)
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