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Abstract

Covariant scalar fields exhibit divergences when quantized in two
or more spacetime dimensions: n ≥ 2. Does perturbation theory, ef-
fective theories, the renormalization group, etc., tell us all there is to
know about these problems? An alternative approach identifies the
cause of divergences as due to the effort to multiplicatively relate two
measures that are mutually singular, while the cure for those diver-
gences is to introduce an O(~) counterterm that converts mutually
singular measures into equivalent measures. This procedure leads to a
nontrivial, divergence-free formulation for all n ≥ 2. Finally, a critical
comparison of the new methods with traditional procedures is given.

1 Introduction

As a representative example of the models considered, we focus on a scalar
field φ(x), x ∈ R

n, with the classical (but imaginary time) action functional

I(φ) =
∫

{1
2
[(∇φ)(x)2 +m2

0φ(x)
2] + g0φ(x)

4} dnx . (1)
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In turn, the quantization of this field may be addressed by the formal func-
tional integral

S(h) ≡ M
∫

e(1/~)
∫

h(x)φ(x) dnx−(1/~)[I(φ)+F (φ,~)/2] Πxdφ(x) , (2)

where M is chosen so that S(0) = 1, h(x) is a smooth source function, and
F (φ, ~) represents an as-yet unspecified counterterm to control divergences,
which should formally vanish as ~ → 0 so that the proper classical limit
formally emerges. Rather than adopt a standard version of the counterterm,
we seek a counterterm that eliminates all divergences. Although the formal
functional integral (2) is essentially undefined, it can be given meaning by
first introducing a lattice regularization in which the spacetime continuum is
replaced with a periodic, hypercubic lattice with lattice spacing a > 0 and
with L < ∞ sites along each axis. The sites themselves are labeled by multi-
integers k = {k0, k1, . . . , ks} ∈ Z

n, n = s + 1, and hk and φk denote field
values at the kth lattice site; in particular, k0 is designated as the Euclidean
time variable. This regularization results in the Ln-dimensional integral

Slatt(h) ≡ M

∫

e(1/~)Z
−1/2Σkhkφk an−(1/2~) [Σk,k∗ (φk∗−φk)

2 an−2+m2

0
Σkφ

2

k an]

× e−(1/~)g0Σk φ
4

k an−(1/2~)ΣkFk(φ,~) a
n

Πkdφk . (3)

Here we have introduced the field-strength renormalization constant Z. The
factors Z, m2

0, and g0 are treated as bare parameters implicitly dependent
on the lattice spacing a, k∗ denotes one of the n nearest neighbors in the
positive direction from the site k, and M is chosen so that Slatt(0) = 1.
The counterterm Fk(φ, ~) also implicitly depends on a, and the notation
Fk(φ, ~) means that the formal, locally generated counterterm F (φ, ~) may,
when lattice regularized, depend on finitely-many field values located within
a small, finite region of the lattice around the site k; this issue will become
clarified when Fk(φ, ~) is determined.

Since the lattice regulation has led to finitely many integrations in (3),
it is instructive to focus on the emergence of divergences as the continuum
limit is taken, which we define as a → 0, L → ∞, with aL fixed and finite.
Divergences already arise as L → ∞ without the need for aL → ∞ as well;
for a discussion of the limit aL → ∞ see [1].
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1.1 Simple examples of divergences and their removal

As an illustration of the kind of divergences of interest, let us initially consider
an elementary example of moments, for p ≥ 1, of a normalized probability
distribution given, for J < ∞, by

Ip ≡
∫

[ΣJ
j=1y

2
j ]

p e−ΣJ
j=1

y2j ΠJ
j=1(dyj/

√
π) = O(Jp) . (4)

Here, the approximate evaluation arises just by expanding the term [ΣJ
j=1y

2
j ]

p

in the integrand, which leads to Jp terms each of O(1). For any p ≥ 1,
these moments all diverge as J → ∞. We normally attribute this kind
of divergence to having an infinite number of integration variables, and we
regularize similar integrals by restricting the number of integration variables
(at least effectively, if not explicitly). Despite this natural assignment of the
cause of divergences, it is in fact not true, in general, that an infinite number
of integration variables is the cause of divergences. To illustrate that point,
let us first change the integration variables to what we call “hyperspherical
coordinates” defined by yj ≡ κηj, κ2 ≡ ΣJ

j=1y
2
j , and 1 ≡ ΣJ

j=1η
2
j , where

0 ≤ κ < ∞ and −1 ≤ ηj ≤ 1. Expressed in the new integration variables,
(4) becomes

Ip =

∫

κ2p e−κ2

κJ−1dκ 2δ(1− ΣJ
j=1η

2
j ) Π

J
j=1(dηj/

√
π) . (5)

No longer do we have Jp terms each being O(1). Instead, the incipient
divergence as J → ∞ arises from a steepest descent evaluation of the integral
over κ in which we find that κ2 = O(J), and thus the integral is O(Jp) as
it must be. Observe that the divergence arises from the unlimited growth
of the power J − 1 of the hyperspherical radius variable κ. Hypothetically,
if we could change the κ-measure factor from κJ−1 to κR−1, where R > 0 is
fixed and finite, and we also rescale the overall expression by TJ (chosen so
that the new distribution is normalized for p = 0 for all J), we are led to the
expression

I ′p ≡ TJ

∫

κ2p e−κ2

κR−1dκ 2δ(1− ΣJ
j=1η

2
j ) Π

J
j=1(dηj/

√
π) (6)

for which all divergences disappear as J → ∞ without reducing the number
of integration variables. We call this procedure of changing the κ-measure
factor: measure mashing.
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Why is it that divergences arise for (5) when they do not arise for (6)?
The answer lies in the support of the measures. To appreciate this remark, let
us start with a very simple example. Consider the one-dimensional integral

∫ 1+c

c
ei tu du = ei tc (ei t − 1)/(it) . (7)

Apart from the phase factor, the integrand is the function Qc(u) which is
unity within the interval [c, 1 + c] and zero elsewhere. Clearly, there exists
no well-behaved function W (u) such that Qc′(u) = eW (u)Qc(u) when c′ 6= c.
By contrast, if we regularize both Qc′(u) and Qc(u) by smoothing them out
so that they both have the same support (e.g., the whole real line), there
would indeed be a well-behaved function Wreg(u) that would connect them.
However, as the regularization is being removed, and the two supports tend
toward their original values, the function Wreg(u) will develop divergences
for the simple reason, e.g., that it has to create something where there was
nothing before. The lesson this example shows is: a perturbation analysis
works when the beginning and ending measures have equivalent support and
fails when the beginning and ending measures have (at least partially) disjoint
support.

Not all cases of (partially) disjoint support between measures are self evi-
dent as was the case for our one-dimensional example. The probability mea-
sure dµβ(y) ≡ Π∞

j=1e
−βy2j

√

β/π dyj on R
∞ is disjoint for unequal β values as

follows from the fact that, for J < ∞, the random variable YJ ≡ J−1ΣJ
j=1e

i tyj

has the property that limJ→∞ YJ = e−t2/4β with probability one for all t. On
expansion to order t2, it follows that

lim
J→∞

J−1
∑J

j=1 y
2
j = 1/2β (8)

for all sequences {yj}∞j=1 supported by µβ. Change β and the old and new
supports are disjoint! That fact alone is responsible for the divergence of the
moments Ip, p ≥ 1, in (4).

2 Determining the proper counterterm for

covariant models

We now return to the the lattice-regularized functional integral (3). In order
for this mathematical expression to be physically relevant following a Wick
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rotation to real time, we impose the requirement of reflection positivity [2],
which is assured if the counterterm satisfies

ΣkFk(φ, ~) ≡ Σk0 {Σ′

kFk(φ, ~)} (9)

where each element {Σ′

kFk(φ, ~)} involves fields all of which have the same
temporal value k0, but may involve several other fields at nearby sites to k
in spatial directions only. (The primed sum Σ′

k denotes a sum over a single
spatial slice all sites of which have the same k0.)

Let us next consider (3) limited to a test function supported on a single
spatial slice, e.g., hk ≡ a−1δk0,0 fk, for which (3) becomes equivalent [1] to

S ′

latt(f) =

∫

eZ
−1/2Σ′

kfkφk a
s/~ Ψ0(φ)

2Π′

kdφk , (10)

where Ψ0(φ) denotes the normalized ground-state wave function of the Hamil-
tonian operator H for the problem, expressed in the Schrödinger represen-
tation, with the property that HΨ0(φ) = 0. (The primed product Π′

k runs
over all sites on a single spatial slice with a fixed value of Euclidean time
k0.) Expressed in hyperspherical coordinates for the N ′ ≡ Ls sites on a
spatial slice—for which φk ≡ κηk, κ

2 ≡ Σ′

kφ
2
k, 1 ≡ Σ′

kη
2
k, 0 ≤ κ < ∞, and

−1 ≤ ηk ≤ 1—(10) becomes

S ′

latt(f) =

∫

eκZ
−1/2Σ′

kfk ηk as/~ Ψ0(κη)
2 κN ′

−1dκ 2δ(1− Σ′

kη
2
k) Π

′

kdηk . (11)

In the continuum limit, as L → ∞ and therefore N ′ = Ls → ∞, divergences
will generally arise because, in that limit, if parameters like m0 or g0, are
changed, the measures become mutually singular due to the overwhelming
influence of N ′ in the measure factor κN ′

−1. However, just as in the example
studied before, we can avoid that conclusion provided the ground-state distri-
bution Ψ0(φ)

2 contains a factor that serves to mash the measure. Specifically,
we want the ground-state wave function to have the form

Ψ0(φ) =
“M ′ e−U(φ,~,a)/2 κ−(N ′

−R)/2 ”

= M ′e−U(κη,~,a)/2 κ−(N ′
−R)/2Π′

k[Σ
′

lJk,lη
2
l ]

−(1−R/N ′)/4

= M ′e−U(φ,~,a)/2 Π′

k[Σ
′

lJk,lφ
2
l ]
−(1−R/N ′)/4 . (12)

The first line (in quotes) indicates the qualitative κ-behavior that will effec-
tively mash the measure, while the second and third lines illustrate a specific
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functional dependence on field variables that leads to the desired factor. Here
we choose the constant coefficients Jk,l ≡ 1/(2s+1) for l = k and for l equal
to each of the 2s spatially nearest neighbors to the site k; otherwise, Jk,l ≡ 0.
Thus, Σ′

lJk,lφ
2
l provides an average of field-squared values at and nearby the

site k. As part of the ground-state distribution, this factor is dominant for
small-field values, and its form is no less fundamental than the rest of the
ground-state distribution that is determined by the gradient, mass, and inter-
action terms that fix the large-field behavior. The factor R/N ′ appears in the
local expression of the small-field factor, and on physical grounds that quo-
tient should not depend on the number of lattice sites in a spatial slice nor on
the specific parameters mentioned above that define the model. Therefore,
we can assume that R ∝ N ′, and so we set

R ≡ 2basN ′ , (13)

where b > 0 is a fixed factor with dimensions (Length)−s to make R dimen-
sionless. Even though the ground-state distribution diverges when certain
of the ηk-factors are simultaneously zero, these are all integrable singulari-
ties since whenever any subset of the {ηk} variables are near zero, there are
always fewer zero factors arising from the singularities thanks to the local
averaging procedure; this very fact has motivated the averaging procedure.

The choice we have made to mash the measure is not unique, but it is
“minimal” in the sense that any other function of κ would require dimensional
factors.

To obtain the required functional form of the ground-state wave function
for small-field values, we choose our counterterm to build that feature into
the Hamiltonian. In particular, the counterterm is a specific potential term
of the form

1
2
Σ′

kFk(φ, ~) a
s ≡ 1

2
~
2Σ′

kFk(φ) a
s (14)

where, with T (φ) ≡ Π′

r[Σ
′

lJr,lφ
2
l ]
−(1−2bas)/4,

Fk(φ) ≡ a−2s

T (φ)

∂2T (φ)

∂φ2
k

= 1
4
(1− 2bas)2a−2s

(

∑

′

t

Jt,kφk

[Σ′

mJt,mφ2
m]

)2

−1
2
(1− 2bas)a−2s

∑

′

t

Jt,k

[Σ′

mJt,mφ2
m]
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+(1− 2bas)a−2s
∑

′

t

J2
t,kφ

2
k

[Σ′

mJt,mφ2
m]

2
. (15)

Although Fk(φ) does not depend only on φk, it nevertheless becomes a local
potential in the formal continuum limit.

More generally, the full Hamiltonian operator including the desired coun-
terterm is defined as

H = −1
2
~
2a−2s∑′

k

∂2

∂φ2
k

as + 1
2
~
2a−2s∑′

k

1

Ψ0(φ)

∂2Ψ0(φ)

∂φ2
k

as

= −1
2
~
2a−2s

∑

′

k

∂2

∂φ2
k

as + 1
2

∑

′

k,k∗(φk∗ − φk)
2as−2 + 1

2
m2

0

∑

′

kφ
2
k a

s

+g0
∑

′

kφ
4
k a

s + 1
2
~
2∑′

kFk(φ) a
s − E0 . (16)

Indeed, this latter equation implicitly determines the ground-state wave func-
tion Ψ0(φ)!

It is important to observe that no normal ordering applies to the terms
in the Hamiltonian. Instead, local field operator products are determined by
an operator product expansion [1]. In addition, note that the “counterterm”
1
2
~
2Σ′

kFk(φ) does not depend on any parameters of the model and specif-
ically not on g0. This is because the counterterm is really a counterterm
for the kinetic energy. This fact follows because not only is HΨ0(φ) = 0,
but then HqΨ0(φ) = 0 for all integer q ≥ 2. While [Σ′

k∂
2/∂φ2

k]Ψ0(φ) may
be a square-integrable function, the expression [Σ′

k∂
2/∂φ2

k]
qΨ0(φ) will surely

not be square integrable for suitably large q. To ensure that Ψ0(φ) is in the
domain of Hq, for all q, the derivative term and the counterterm must be
considered together to satisfy domain requrements, hence our claim that the
counterterm should be considered as a renormalization of the kinetic energy.

Since the counterterm does not depend on the coupling constant, it follows
that the counterterm remains even when g0 → 0, which means that the
interacting quantum field theory does not pass to the usual free quantum field
theory as g0 → 0, but instead it passes to what we have called a pseudofree
quantum field theory. This behavior is not unknown; see [1] and references
therein. As a relevant example, consider the classical (Euclidean) action
functional (1). Regarding the separate components of that expression, and
assuming both m0 > 0 and g0 > 0, a multiplicative inequality [3, 4] states
that

{g0
∫

φ(x)4 dnx}1/2 ≤ C̃
∫

[(∇φ)(x)2 +m2
0φ(x)

2] dnx (17)
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where C̃ = (4/3)[g
1/2
0 m

(n−4)/2
0 ] when n ≤ 4 (the renormalizable cases), and

C̃ = ∞ when n ≥ 5 (the nonrenormalizable cases), which in the latter case
means there are fields for which the integral on the left side of the inequality
diverges while the integral on the right side is finite. In other words, there
are different free and pseudofree classical theories when n ≥ 5. Thus, for
n ≥ 5, it is reasonable to assume that the free quantum field theory is also
different from the pseudofree quantum field theory. Moreover, the quantum
models developed in this letter with the unconventional counterterm provide
viable candidates for those quantum theories normally classified as nonrenor-
malizable, and they do so in such a manner that in a perturbation analysis
divergences do not arise because all the underlying measures are equivalent
and not mutually singular! (A discussion of the divergence-free properties
from a perturbation point of view appears in [1], an analysis that also deter-
mines the dependence of Z, m2

0, and g0 on the parameters a and N ′.) Since
the unconventional counterterm conveys good properties to the nonrenormal-
izable models, it is natural to extend such good behavior to the traditionally
renormalizable models (n ≤ 4) by using the unconventional counterterm for
them as well, giving them an alternative version of quantization. Thus, we
are led to adopt the lattice regularized Hamiltonian H (16), including the
counterterm, for all spacetime dimensions n ≥ 2.

Additionally, the lattice Hamiltonian (16) also determines the lattice Eu-
clidean action including the unconventional counterterm, which is then given
by

I = 1
2
Σk,k∗(φk∗ − φk)

2 an−2 + 1
2
m2

0Σkφ
2
k a

n + g0Σkφ
4
k a

n + 1
2
Σk~

2Fk(φ) a
n (18)

where in this expression k∗ refers to all n nearest neighbors of the site k in
the positive direction. Although the lattice form of the counterterm involves
averages over field-squared values in nearby spatial regions of the central
site, it follows that the continuum limit of the counterterm is local in nature,
as noted previously. It is noteworthy that preliminary Monte Carlo studies
based on the lattice action (18) support a nontrivial behavior of the φ4

4 model
exhibiting a positive renormalized coupling constant [5].
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3 Comparison to traditional

quantization results

There already exist well-defined, conventional results for φ4
2 and φ4

3, and,
yes, we are proposing alternative quantizations for these models. Unlike the
usual approach, there are no divergences in perturbative expansions in the
new formulation after operator product expansions are introduced for the
local operators, and models like g0φ

4
3 + g′0φ

8
3—a sum of superrenormalizable

and nonrenormalizable models—exhibit reasonable properties. For φ4
4, tradi-

tional methods lead to a renormalizable theory, but nonperturbative methods
support a trivial (free) behavior. On the other hand, our procedures are ex-
pected to be divergence free and nontrivial [5]. The cases φ4

n, n ≥ 5, are
conventionally nonrenormalizable and require an infinite number of distinct
counterterms. The success of the electroweak model suggests that nonrenor-
malizable models are effective field theories, good for low energy questions
with a few perturbative corrections. However, some idealized nonrenormaliz-
able models have actually been completely solved (see, e.g., [6, 7]), and thus
self-consistent solutions may be possible for other models as well. Indeed,
the solution for scalar fields presented in [6, 4] has been critical in developing
the approach presented in this letter; likewise an extension to fermion fields,
inspired by [7], is currently under investigation.

An important key to constructing self-consistent solutions for nonrenor-
malizable models is the realization that the zero-coupling limit of interacting
solutions is different from the usual free theory, e.g., as follows from (17); this
distinction already holds for the classical theory and thus for the quantum
theory. Indeed, this behavior already arises for a single particle with the clas-
sical action A =

∫

{1
2
[ẋ(t)2 − x(t)2]− gx(t)−4} dt. Accepting that fact opens

the door for alternative counterterms that favor operator product expansions
over normal ordering, and can lead to divergence-free formulations. Similar
techniques also seem to be relevant for quantum gravity [8].

The inappropriateness of a perturbation analysis for the nonrenormal-
izable cases that follows from a difference between the pseudofree and free
theory for such cases also eliminates the relevance of Landau poles for such
problems. Those who believe the renormalization group is applicable are
asked to consider the lattice action (18) with its specific form and the special
dependence of its coefficients on the lattice spacing a. The coefficients in the
counterterm (15) have been designed to lead to a nontrivial continuum limit.
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That special dependence on the lattice spacing would be hard to maintain
throughout when taking the continuum limit via a renormalization group
analysis.

4 Acknowledgements

Thanks are extended to B. Bahr, G. Hegerfeldt, S. Shabanov, C. Thorn, and
R. Woodard for helpful comments.

References

[1] J.R. Klauder, “Scalar Field Quantization Without Divergences In All
Spacetime Dimensions”, J. Phys. A: Math. Theor. 44, 273001 (30pages)
(2011).

[2] See, e.g., J. Glimm and A. Jaffe, Quantum Physics, (Springer Verlag,
New York, 1987), Second edition.

[3] O.A. Ladyzenskaja, V. Solonnikov, and N.N. Ural’ceva, Linear and
Quasi-linear Equations of Parabolic Type, (Am. Math. Soc., Providence,
Vol. 23, 1968).

[4] J.R. Klauder, Beyond Conventional Quantization, (Cambridge Univer-
sity Press, Cambridge, 2000 & 2005).

[5] J. Stankowicz, private communication.

[6] J.R. Klauder, “Ultralocal Scalar Field Models”, Commun. Math. Phys.
18, 307-318 (1970).

[7] J.R. Klauder, “Ultralocal Spinor Field Models”, Annals of Physics 79,
111-130 (1973).

[8] J.R. Klauder, “Recent Results Regarding Affine Quantum Gravity”,
arXiv:1203.0691.

10


