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ABSTRACT

We analyse geometric type IIA flux compactifications leading to N = 4 gauged super-

gravities in four dimensions. The complete landscape of isotropic vacua is presented, which

turns out to belong to a unique theory. The solutions admit an uplift to maximal super-

gravity due to the vanishing of the flux-induced tadpoles for all the supersymmetry-breaking

branes. Such an uplift is sketched out and the full N = 8 mass spectra are discussed. We

find the interesting presence of a non-supersymmetric and nevertheless stable minimum.

1 Introduction

Half-maximal and maximal gauged supergravities in four dimensions are the low-energy effec-

tive theories arising from flux compactifications in string theory, provided that only internal

manifolds and extended objects are included which are compatible with such amounts of su-

persymmetry. In the last decade the embedding tensor formalism has been used extensively

in the context of (half-)maximal supergravity in order to describe all the deformations of

the free theory in a duality-covariant way. Nevertheless, it has already been pointed out

in the literature that not all the gaugings of supergravity have a higher-dimensional origin

in terms of a geometric flux compactification in string theory. This indicates that gaug-

ings coming from geometric flux compactifications are not a closed set under general duality

transformations and this is the origin of non-geometric fluxes [1]. Gaugings associated with

such fluxes might yet have a higher-dimensional description in terms of a double field theory

(DFT) [2, 3], in which duality covariance becomes the fundamental principle to start with,

independently of the compactification procedure. Because of this interpretation, gauged su-

pergravities with extended supersymmetry seem to be suitable frameworks for investigating
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the nature of non-geometric fluxes, as summarised in table 1.

SUSY G stringy interpretation

N = 4 SL(2)× SO(6, 6) S- and T-duality

N = 8 E7(7) U-duality

Table 1: Half-maximal and maximal gauged supegravities in four dimensions seem to be

suitable playgrounds to understand how to restore duality covariance in flux compactifica-

tions.

After introducing the SO(3) truncation of half-maximal supergravity as the effective the-

ory arising from specific type IIA orientifold reductions with background fluxes, we analyse

the landscape of isotropic vacua in geometric backgrounds, i.e. including metric and gauge

fluxes. We find a set of anti-de Sitter (AdS) critical points admitting an uplift to N = 8,

one of which is remarkably stable without preserving any supersymmetry. More details on

this work can be found in refs [4–6]. The goal of finding de Sitter (dS) vacua motivates the

analysis of non-geometric flux compactifications as possible future extensions.

2 The geometric type IIA with O6/D6 setup

Upon the SO(3) truncation, half-maximal supergravity in four dimensions reduces to a three-

field STU model in the following way

SL(2)× SO(6, 6) −→ SL(2)× SO(2, 2) = SL(2)S × SL(2)T × SL(2)U .

The truncation allows for forty SO(3)-singlet embedding tensor components that can be

written in terms of an SL(2)× SO(2, 2) tensor ΛαABC = Λα(ABC), with α = ± and A = 1, ..., 4

being SL(2) and SO(2, 2) fundamental indices, respectively. As shown in ref. [4], these forty

embedding tensor components correspond exactly with the set of generalised fluxes in type

II orientifold reductions on a Z2×Z2 isotropic orbifold. As a consequence of the truncation,

the theory preserves only N = 1 supersymmetry out of the original N = 4. Therefore, the

corresponding scalar potential can be written in terms of a (logarithmic) Kähler potential

K and a holomorphic superpotential W by using the standard N = 1 expression

V (SO(3)) = eK
(
−3|W |2 + |DW |2

)
. (2.1)

At the effective level, fluxes appear as arbitrary superpotential couplings up to linear in S

and up to cubic in T and U . The scalar potential computed from (2.1) turns out to coincide
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W couplings Type IIA fluxes Embedding tensor components

a0 F6 −Λ+333

a1 F4 Λ+334

a2 F2 −Λ+344

a3 F0 Λ+444

b0 H3 −Λ−333

b1 ω Λ−334

c0 H3 Λ+233

c1 , c̃1 ω Λ+234 , Λ+133

Table 2: The set of SO(3)-invariant embedding tensor components of Λ admitting a higher-

dimensional origin as type IIA fluxes: a metric flux ω together with R-R F0,2,4,6 and NS-NS

H3 gauge fluxes.

with the scalar potential given in ref. [7] up to terms projected out by a set of N = 4

quadratic constraints on the embedding tensor Λ [4].
Restricting to the components of Λ that can be interpreted as metric or gauge fluxes in

a type IIA realisation of the model, we are left with the following superpotential

WIIA = a0 − 3 a1 U + 3 a2 U
2 − a3 U3 − b0 S + 3 b1 S U + 3 c0 T + (6 c1 − 3 c̃1)T U , (2.2)

consisting of nine flux-induced couplings (see table 2). These fluxes are demanded to satisfy

the set of N = 4 quadratic constraints

c1 (c1 − c̃1) = 0 , b1 (c1 − c̃1) = 0 (ω2 = 0) ,

−a3 c0 − a2 (2 c1 − c̃1) = 0 (N6
⊥ = 0) ,

(2.3)

where the first two constraints are related to the nilpotency of the twisted exterior derivative

operator, whereas the third one imposes the absence of D6-branes wrapping the directions

orthogonal to the O6-planes, which would break supersymmetry explicitly down to N = 1.

In contrast, D6-branes parallel to the O6-planes are compatible with N = 4 supersymmetry,

hence being allowed. Their corresponding flux-induced tadpole reads

N6
|| = 3 a2 b1 − a3 b0 =

NO6

2
−ND6 . (2.4)

After observing that the set of fluxes given in table 2 is closed under non-compact duality

transformations (i.e. real shifts and rescalings of S, T and U), we can restrict the search for

critical points of the scalar potential to the point S0 = T0 = U0 = i without losing generality.
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The field equations become then quadratic conditions in the fluxes that have to be satisfied

together with the quadratic constraints in (2.3). These equations generate a quadratic ideal

which we decompose in terms of prime ideals by using the Gianni-Trager-Zacharias (GTZ)

decomposition [8] with the help of Singular [9]. By solving them, the complete set of

critical points of the scalar potential is presented in table 3. They turn out to be (modulo

the discrete Z2 symmetry introduced in the caption) different AdS critical points of a unique

theory with an underlying gauging given by the gauge group G0 =ISO(3)nU(1)6.

id a0 a1 a2 a3 b0 b1 c0 c1 = c̃1

1s s
3
√

10

2
λ

√
6

2
λ −s

√
10

6
λ

5
√

6

6
λ − s

√
6

3
λ

√
10

3
λ s

√
6

3
λ

√
10λ

2s s
16
√

10

9
λ 0 0

16
√

2

9
λ 0

16
√

10

45
λ 0

16
√

10

15
λ

3s s
4
√

10

5
λ − 4

√
30

15
λ s

4
√

10

15
λ s

4
√

30

15
λ s

4
√

30

15
λ

4
√

10

15
λ − s 4

√
30

15
λ

4
√

10

5
λ

4s s
16
√

10

9
λ 0 0

16
√

2

9
λ 0

16
√

2

9
λ 0

16
√

2

9
λ

Table 3: The set of critical points of the scalar potential for geometric type IIA isotropic flux

compactifications. The solutions labelled with 1s turn out to preserve N = 1 supersymmetry

for s = +1 and to be non-supersymmetric for s = −1, whereas all the others are non-

supersymmetric. It is worth noticing that s = ± 1 appears as an accidental Z2 symmetry

which relates solutions having exactly the same energy and the same mass spectrum. The

parameter λ is a global scaling parameter such that V ∝ λ2.

Regarding stability at the critical points, we computed in ref. [4] the full mass matrix for

the 38 physical scalars in N = 4 making use of the results in ref. [10]. At this point, we can

say two things: firstly, the solutions 1s are fully stable because of (fake-) supersymmetry, and

secondly the solutions 2s are already unstable because of the presence of a tachyon whose

mass is below the Breitenlohner-Freedman (BF) bound. However, this is not enough since

all the critical points turn out to be compatible with the total absence of sources, i.e., the

flux-induced tadpole (2.4) does accidentally vanish at these points. As a result, they admit

an uplift to N = 8 and hence one should analyse the full mass matrix for the 70 scalars

spanning the coset E7(7)/SU(8) in order to make any final statement about stability. We

worked out the uplifting by embedding the R-symmetry group of half-maximal theory, i.e.

U(4) = U(1) × SU(4), into that of the maximal, i.e. SU(8), and relating the fermionic shifts
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given in ref. [7] to those ones in ref. [11] according to the decomposition

E7(7)
↗
↘

SL(2)× SO(6, 6)

SU(8)

↘
↗

U(1) × SU(4)m︸ ︷︷ ︸
R-symmetry of the N=4 theory

× SU(4)a . (2.5)

After this uplifting, the whole set of critical points are found to satisfy the equations of

motion and the quadratic constraints of the maximal theory. Subsequently we computed

the mass matrix for the scalars in the N = 8 theory using the results in ref. [12]. The

results are summarised in table 4. We find that the solutions 3s are non-supersymmetric

and nevertheless stable. Up to our knowledge, this is the second example in the literature

(after the one in ref. [13]) of such a solution in maximal supergravity; as opposed to the first

example, though, this solution is completely tachyon-free rather than presenting tachyons

although still above the BF bound. A final remark is that now, what used to be an accidental

Z2 symmetry in the solutions has a proper interpretation within the N = 8 theory, i.e. it

interchanges SU(4)m and SU(4)a in eq. (2.5).

id V0 m2
(N=4) m2

(N=8) Stability

1s −λ2 −2

3
−2

3
stable

2s −32

27
λ2 −4

5
−4

5
unstable

3s − 8

15
λ2 0 0 stable

4s −32

27
λ2 0 −4

3
unstable

Table 4: The values of the energy and the normalised mass for the lightest scalar at the set

of critical points. One observes that, when lifting from N = 4 to N = 8, the solutions 4s

become unstable because of the appearance of an unstable tachyonic direction within the

new scalar modes. We remind the reader that in four dimensions the BF bound is given by

m2
BF = −3/4 in units of the scalar potential.

3 Conclusions

The study of isotropic type IIA orientifolds including geometric fluxes and preserving half-

maximal supersymmetry reveals the presence of only AdS vacua in the landscape. The
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solutions turn out to be all liftable to maximal gauged supergravity where they appear as four

different critical points of a unique theory: one is supersymmetric and stable, another one is

non-supersymmetry and nevertheless stable and the remaining two are non-supersymmetry

and unstable. The natural extension of this work will be to study the effect of non-geometric

fluxes in this setup in order to get a richer landscape, maybe even containing dS solutions.
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