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1. Introduction

Cohen and Glashow noticed [1], [2] that many physical phenomena, like for example the

length contraction and time dilatation, are left unchanged if we do not assume the invari-

ance of the physics with respect to the full Lorentz group but only to its SIM(2) subgroup.

This opens new possibilities in the particle phenomenology, in particular concerning neu-

trino masses.

The implications of such a theory for neutrino masses were discussed in [4]. The

modifications of the electromagnetic theory were discussed in [3].

The supersymmetric theory based on the SIM(2) subgroup was considered in [5] and

its superspace formulation was developed in [6]. Feynman rules in SIM(2) superspace

formalism were presented in [7]. Wess-Zumino model with Lorentz breaking mass term

was used as an example on which the one loop calculation and renormalization was demon-

strated.

If we wish to consider neutrions with mass added by a SIM(2) invariant but Lorentz

breaking term, then the whole standard model, including the gauge sector, has to be treated

as a SIM(2) symmetric theory. Thus it is important to investigate the implications of

SIM(2) symmetry for gauge theories. In the non-supersymmetric case this was done for

example in [3] and [4].
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In the supersymmetric case there are several articles, for example [5], [6], [7], where

the detailed treatment of a theory with chiral multiplet is provided. Although the aspects

of the gauge theory are discussed on several ocasions in these articles and the SIM(2)

modifications of it are provided, the detailed treatment of gauge theory, especially in a

superspace formulation is still missing. This article tries to fill this gap.

The paper is organised as follows. In sections 2 and 3 the notion of SIM(2) (su-

per)field is introduced and it is shown how Lorentz (super)field can be decomposed into

SIM(2) (super)fields. In order to gain familiarity with SIM(2) (super)field formalism, the

equations of motion for massless spin 1
2 and spin 2 fields are rewritten using SIM(2) fields

and discussed in detail. The sections 4, 5, 6 are devoted to the gauge chiral representation

of supersymmetric gauge theory. In section 4 the simple case of abelian gauge theory is

discussed, it is shown that gauge freedom can be completely fixed in SIM(2) invariant

way. The results are then generalised to non-abelian case in section 5 and in section 6 it

is shown that some of the SIM(2) superfields are auxiliary and can be eliminated from

the action. Section 7 is devoted to the covariant representation of supersymmetric gauge

theory. At the end of this section it is shown how the covariant representation is related to

the gauge chiral representation presented in previous sections. In section 8 it is discussed

how are the results presented in previous sections are affected if we add a SIM(2) invariant

but Lorentz breaking mass term.

2. SIM(2) group and properties of SIM(2) fields

SIM(2) is a subgroup of the Lorentz group which preserves a chosen null vector n up to

rescalings. We will assume that this null vector is chosen such that its coordinates are

n++̇ = 1, n+−̇ = n−+̇ = n−−̇ = 0.

The SIM(2) group is four dimensional and solvable. As a basis of its Lie algebra we

can choose four generators of symmetry J++, J+−, J̄+̇+̇, J̄+̇−̇
. Because it is solvable, we

know from the theory of group representations, that all irreducible representations are one

dimensional, but not all of its representations are fully reducible.

Our main purpose will be to modify a Lorentz invariant theory by adding small SIM(2)

invariant but not Lorentz invariant perturbations. For this reason we are not interested in

the general theory of representations of the SIM(2) group. It will be enough for us to look

at how the representations of the Lorentz group behave when we reduce the symmetry to

only the SIM(2) subgroup.

We start by looking at the behaviour of left and right handed Weyl spinors (i.e. repre-

sentations (12 , 0) and (0, 12)). We can decompose the spinor space by the method described

in [6]. We introduce another null vector ñ satisfying n · ñ = 1, whose components we choose

to be ñ++̇ = 1, ñ+−̇
= ñ

−+̇ = ñ
−−̇

= 0. Then the spinor space can be decomposed by

the projectors n/ñ/
2 and ñ/n/

2 . The projector n/ñ/
2 projects the left(right) Weyl spinors on the

one-dimensional SIM(2) invariant subspace, while the projector ñ/n/
2 projects on its one-

dimensional complement, which is not uniquely determined, because there is a freedom in
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choosing ñ. 1 The action of infinitesimal SIM(2) rotations on the Weyl spinors is

(

δψ+

δψ−

)

=

(

iǫ+− 0

iǫ−− −iǫ+−

)(

ψ+

ψ−

)

,

(

δψ̄+̇

δψ̄
−̇

)

=

(

iǭ+̇−̇
0

iǭ
−̇−̇

−iǭ+̇−̇

)(

ψ̄+̇

ψ̄
−̇

)

, (2.2)

where ǫ+−, ǫ−−, ǭ+̇−̇
, ǭ

−̇−̇
are some infinitesimal parameters.

If we want to know how other finite dimensional representations of the Lorentz group

behave when we reduce the symmetry to the SIM(2) subgroup, we use the fact that any

such representation can be expressed in terms of tensor products of left and right handed

Weyl representations, whose behaviour have already been discussed.

Now we look at how the fields, i.e. functions over configuration space carrying repre-

sentation of the Lorentz group, behave when we reduce the symmetry from the Lorentz

group to the SIM(2) subgroup. The simplest case is a scalar field, which transforms as

φ′(x′) = φ(x). In the infinitesimal form this reads as

δφ(x) = −δxαα̇∂αα̇φ(x), (2.3)

where the infinitesimal transformations of space time coordinates are

δxαα̇ = −ǫαβx
βα̇ − ǭα̇β̇x

αβ̇. (2.4)

When the symmetry is reduced to the SIM(2) subgroup, the rule (2.3) remains valid

but the infinitesimal transformations of space time coordinates δxαα̇ are less general because

ǫ−+ and ǭ−̇+̇ are set to zero in (2.4).

The case of spinor fields, which transforms under the infinitesimal Lorentz rotations

as

δψα(x) = −δxαα̇∂αα̇ψα(x) + ǫα
βψβ(x),

δψ̄α̇(x) = −δxαα̇∂αα̇ψ̄α̇(x) + ǭα̇
β̇ψ̄β̇(x), (2.5)

is far more interesting. When the symmetry is reduced to the SIM(2) subgroup, then we

use the projectors n/ñ/
2 and ñ/n/

2 to split the fields in the same way as we did in the case of the

left and right Weyl spinors. The infinitesimal SIM(2) transformations now read as

δψ+(x) = −δxαα̇∂αα̇ψ+(x) + iǫ+−ψ+(x),

δψ−(x) = −δxαα̇∂αα̇ψ−(x)− iǫ+−ψ−(x) + iǫ−−ψ+(x),

δψ̄+̇(x) = −δxαα̇∂αα̇ψ̄+̇(x) + iǭ+̇−̇
ψ̄+̇(x),

δψ̄
−̇
(x) = −δxαα̇∂αα̇ψ̄−̇

(x)− iǭ+̇−̇
ψ̄
−̇
(x) + iǭ

−̇−̇
ψ̄+̇(x). (2.6)

1In our particular choice of n and ñ the left and right Weyl spinors are decomposed as

ψ =

(

ψ+

ψ−

)

=

(

0

ψ−

)

+

(

ψ+

0

)

, ψ̄ =

(

ψ̄+̇

ψ̄
−̇

)

=

(

0

ψ̄
−̇

)

+

(

ψ̄+̇

0

)

, (2.1)

where the first term on the right hand side belongs to the invariant subspace, while the second belongs to

its complement.
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While the transformation of the projection ψ+(x) is expressed in terms of itself and does

not depend on the projection ψ−(x), the transformation of the projection ψ−(x) depends

on both ψ+(x) and ψ−(x). We cannot separate the projections ψ+(x) and ψ−(x) from each

other because they are mixed by SIM(2) transformations. This means that in a SIM(2)

symmetric theory, the field ψ+(x) may appear without ψ−(x) being present, but ψ−(x) has

to appear in multiplet with ψ+(x). The same is true also for ψ̄+̇(x) and ψ̄−̇
(x). However we

can remedy this by defining modified projections ψ̃+(x), ψ̃−(x) and
˜̄ψ+̇(x),

˜̄ψ
−̇
(x), which

have the property that SIM(2) transformations do not mix them among each other. They

are defined as

ψ̃+(x) = ψ+(x), ψ̃−(x) = ψ−(x)−
∂
−+̇

∂++̇

ψ+(x),

˜̄ψ+̇(x) = ψ̄+̇(x),
˜̄ψ
−̇
(x) = ψ̄

−̇
(x)−

∂+−̇

∂++̇

ψ̄+̇(x), (2.7)

and their infinitesimal transformations are

δψ̃+(x) = −δxαα̇∂αα̇ψ̃+(x) + iǫ+−ψ̃+(x),

δψ̃−(x) = −δxαα̇∂αα̇ψ̃−(x)− iǫ+−ψ̃−(x),

δ ˜̄ψ+̇(x) = −δxαα̇∂αα̇
˜̄ψ+̇(x) + iǭ+̇−̇

˜̄ψ+̇(x),

δ ˜̄ψ
−̇
(x) = −δxαα̇∂αα̇

˜̄ψ
−̇
(x)− iǭ+̇−̇

˜̄ψ
−̇
(x). (2.8)

Because the SIM(2) transformations do not mix them among each other we can regard

each of them as a separate SIM(2) field, each of them may appear separately in a SIM(2)

symmetric theory. Unlike the case with unmodified projections, ψ̃−(x) does not have to

appear in the multiplet with ψ̃+(x). Note that apart from the change of the x variable, the

transformations of ψ̃+(x) and ψ̃−(x) are governed only by one (complex) parameter ǫ+−.

This parameter scales and changes the phase of these SIM(2) fields in such a way that the

scale and the phase of ψ̃−(x) is changed in the opposite way as for ψ̃+(x). This gives us a

nice interpretation of the subscripts + and −. 2

The price we have to pay for the nice properties of these SIM(2) fields is the intro-

duction of the nonlocal operator 1
∂++̇

. This operator has to be linear, has to satisfy the

condition ∂++̇
1

∂++̇
= 1, which defines it as a Green function of ∂++̇ and we will also re-

quire that it commutes with all space-time derivatives
[

∂αα̇,
1

∂++̇

]

= 0. Let f(x) be some

function, then the condition that the derivation ∂++̇ has to commute with 1
∂++̇

gives

[

1

∂++̇

, ∂++̇

]

f(x) =

(

1

∂++̇

∂++̇ − ∂++̇

1

∂++̇

)

f(x) =
1

∂++̇

∂++̇f(x)− f(x) = 0. (2.9)

2This fact is useful when we are constructing SIM(2) invariants. For example it is easy to understand

why the expression
∫

d4xψ̃−(x)∂++̇
˜̄ψ
−̇
(x) is SIM(2) invariant. The derivative ∂++̇ transforms as ∂′

++̇
=

(1 + iǫ+− + iǭ+̇−̇
)∂++̇ so it is scaled by both parameters ǫ+− and ǭ+̇−̇

, while each of the SIM(2) fields

ψ̃−(x) and ˜̄ψ
−̇
(x) is scaled by one of them in the opposite way as ∂++̇. The result is that the expression

ψ̃−(x)∂++̇
˜̄ψ
−̇
(x) is not scaled at all. The integral ensures that the expression is invariant with respect to

the transformations of the x variable so the whole expression is SIM(2) invariant.
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But this is evidently not true for nonzero functions satisfying ∂++̇f(x) = 0. This indicates

that we have to work with the space of functions which is somewhat reduced, namely to

those satisfying (2.9). One way how to define the operator 1
∂++̇

is

1

∂++̇

f(x) =

∫ x++̇

−∞

dt++̇f(t++̇). (2.10)

In this case the space of functions we are working with has to be reduced to those satisfying

limx++̇→−∞
f(x) = 0. One of the most important consequences of the fact that we have to

work with the reduced space of functions is that the equation ∂++̇f(x) = 0 has only one

solution f(x) = 0.

In order to understand the behaviour of these SIM(2) fields and their relation to the

Lorentz fields from which we constructed them we will look at two well known models.

First we will look at a massless fermion and then at an abelian gauge field.

A massless fermion is described by a spinor field ψα(x) satisfying the equation of

motion

∂αα̇ψ
α(x) = 0. (2.11)

If we rewrite it in terms of SIM(2) fields ψ̃+(x) and ψ̃−(x) we get a set of equations

i∂++̇ψ̃−(x) = 0, i∂+−̇
ψ̃−(x)−

�

i∂++̇

ψ̃+(x) = 0. (2.12)

As was mentioned before, the equation ∂++̇ψ̃−(x) = 0 implies ψ̃−(x) = 0 because we

are forced to work with the restricted space of functions. Thus the above equations are

equivalent to

ψ̃−(x) = 0, �ψ̃+(x) = 0. (2.13)

We see that all dynamics is carried by the field ψ̃+(x), while the field ψ̃−(x) is auxiliary.

An abelian gauge field Aa(x) (or equivalently Aαα̇(x) in the spinor notation) is a vector

field, which is subject to the gauge transformation

A′

a(x) = Aa(x) + ∂ag(x), (2.14)

where g(x) is an arbitrary scalar function. The equation of motion is

∂a (∂aAb(x)− ∂bAa(x)) = 0. (2.15)

We will work in the light-cone gauge n · A(x) = 0, which breaks Lorentz invariance, but

does not break SIM(2) invariance. This condition does not fix the gauge completely, we

can still perform the gauge transformations with n · ∂g(x) = 0. If we work on-shell we

can use this gauge freedom to set ∂ · A(x) = 0. In order to do that we have to perform a

gauge transformation with function g(x) satisfying the set of equations �g(x) = −∂ ·A(x),

n · ∂g(x) = 0. This set of equations has solution only if �(n · ∂)g(x) = (n · ∂)�g(x) =

−n · ∂(∂ ·A(x)) = 0, but the validity of this integrability condition is ensured by equation
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of motion as can be easily verified by multiplying (2.15) by nb. Thus we can search for

solutions satisfying

n ·A(x) = 0, ∂ ·A(x) = 0, �A(x) = 0. (2.16)

Now we look how the light-cone gauge and equations of motion look like if we work

with SIM(2) fields

Ã++̇(x) = A++̇(x),

Ã
−+̇(x) = A

−+̇(x)−
∂
−+̇

∂++̇

A++̇(x),

Ã+−̇
(x) = A+−̇

(x)−
∂+−̇

∂++̇

A++̇(x),

Ã
−−̇

(x) = A
−−̇

(x)−
∂
−+̇

∂++̇

A+−̇
(x)−

∂+−̇

∂++̇

A
−+̇(x) +

∂
−+̇

∂++̇

∂+−̇

∂++̇

A++̇(x), (2.17)

which are defined in such a way that each of them is closed under the action of SIM(2)

group. In the light-cone gauge Ã++̇(x) = 0 and we are allowed to make gauge transforma-

tions with ∂++̇g(x) = 0. However we are forced to work with reduced space of functions

where the equation ∂++̇g(x) = 0 allows only one solution g(x) = 0. This means that in

this formalism the light-cone gauge completely fixes the gauge freedom. The equations of

motion are now

∂++̇∂++̇Ã−−̇
(x) = 0,

�Ã
−+̇(x) + ∂

−+̇∂++̇Ã−−̇
(x) = 0,

�Ã+−̇
(x) + ∂+−̇

∂++̇Ã−−̇
(x) = 0,

∂
−+̇

∂++̇

�Ã+−̇
(x) +

∂+−̇

∂++̇

�Ã
−+̇(x) + ∂

−+̇∂+−̇
Ã

−−̇
(x) = 0. (2.18)

Because the equation ∂++̇∂++̇Ã−−̇
(x) = 0 has only one solution Ã

−−̇
(x) = 0, we have to

search for solutions satisfying

Ã++̇(x) = 0, Ã
−−̇

(x) = 0, �Ã
−+̇(x) = 0 = �Ã+−̇

(x). (2.19)

We see that all dynamics is carried by the complex field Ã
−+̇(x), while the field Ã−−̇

(x) is

auxiliary. Although the calculations were affected by the fact that the space of functions

is reduced, we still get the correct number of physical modes for the Maxwell equations of

motion.

3. SIM(2) supergroup and properties of SIM(2) superfields

The Lie superalgebra of SIM(2) supersymmetry [5], is obtained by reducing the super-

Poincare superalgebra. The Lorentz part is reduced to SIM(2) rotations and the super-

translations εQ+ ε̄Q̄ are restricted to those satisfying n/ε = 0 = n/ε̄.
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The SIM(2) superspace and its algebra of covariant derivatives [6] can be obtained

from their super-Poincare counterparts. The SIM(2) superspace has all of the space-time

coordinates but the set of Grassmann odd coordinates is reduced to the projection n/ñ/
2 θ

and its hermitian conjugate. The covariant spinor derivative D can be split into the piece

d = ñ/n/
2 D which we keep in the algebra and the remaining piece q = n/ñ/

2 D.

If we use our choice of vectors n, ñ, the generators of the SIM(2) superalgebra consists

of rotations J++, J+−, J̄+̇+̇, J̄+̇−̇
, space-time translations Pαα̇ and supertranslations Q+,

Q̄+̇. The superspace is parametrised by space-time coordinates xαα̇ and two Grassmann

odd coordinates θ+, θ̄+̇. The algebra of covariant derivatives consists of derivatives d+ =

D+, d̄+̇ = D̄+̇ (the minus components of d = ñ/n/
2 D and d̄ = ñ/n/

2 D̄ are equal to zero) which

are subject to the relation

{d+, d̄+̇} = i∂++̇. (3.1)

The only nonzero components of q and q̄ are q− = D− and q̄
−̇
= D̄

−̇
.

In order to rewrite actions and other expressions containing super-Poincare invariant

superfields into SIM(2) formalism we need to replace each super-Poincare superfield by a

set of SIM(2) superfields having the same component content. This is done by the method

of covariant projections. First define a projection symbol

‖ ≡ | ñ/n/
2
θ=0,

ñ/n/
2
θ̄=0

= |θ−=0,θ̄−̇=0, (3.2)

which projects the Grassmann odd coordinates which are not part of the SIM(2) super-

space to zero.

We replace a scalar complex super-Poincare superfield F with four complex SIM(2)

projections f , f−, f−̇, f−−̇
related to the superfield F as

f = F‖,

f− = q−F‖,

f
−̇
= q̄

−̇
F‖,

f
−−̇

= 1
2

[

q−, q̄−̇
]

F‖. (3.3)

The super-Poincare superfields will be denoted by uppercase letters, while its SIM(2)

projections will be denoted by the same lowercase letter. When the the projections f , f−,

f
−̇
, f

−−̇
are SIM(2) rotated, they are mixed with each other. This is a consequence of

the fact that spinor covariant derivatives are transformed according to (2.6) under SIM(2)

rotations. The minus components of the covariant derivatives, which are used to define the

projections, are mixed with the plus components which results in the mixing of projections.

In the case of a chiral superfield Φ, only two projections φ, φ− are independent, in

the case of antichiral superfield Φ̄ only the projections φ̄, φ̄
−̇
are independent 3 , moreover

3The other projections are

φ
−̇
= 0, φ

−−̇
= − i

2
∂
−−̇
φ, φ̄− = 0, φ̄

−−̇
= i

2
∂
−−̇
φ̄. (3.4)
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they satisfy the conditions

d̄+̇φ = 0, d̄+̇φ− = i∂
−+̇φ,

d+φ̄ = 0, d+φ̄−̇ = i∂+−̇
φ̄. (3.5)

It is possible to change the definition of the projections in such a way, that SIM(2)

rotations do not mix them among each other, moreover we will see, that in the case of a

chiral superfield the conditions (3.5) will be simplified. The idea is that we replace the

covariant derivatives used in the definition of SIM(2) projections with operators defined

according to (2.7), i.e. with the operators

q̃− = D− −
∂
−+̇

∂++̇

D+, ˜̄q
−̇
= D̄

−̇
−
∂+−̇

∂++̇

D̄+̇. (3.6)

The new projections are defined as

f̃ = F‖,

f̃− = q̃−F‖,

f̃
−̇
= ˜̄q

−̇
F‖,

f̃
−−̇

= 1
2

[

q̃−, ˜̄q−̇
]

F‖. (3.7)

They transform by rescaling under SIM(2) group. The infinitesimal SIM(2) rotations are

δf̃ = −
(

δxαα̇∂αα̇ + δθ+∂+ + δθ̄+̇∂̄+̇

)

f̃ ,

δf̃− = −
(

δxαα̇∂αα̇ + δθ+∂+ + δθ̄+̇∂̄+̇

)

f̃− − iǫ+−f̃−,

δf̃
−̇
= −

(

δxαα̇∂αα̇ + δθ+∂+ + δθ̄+̇∂̄+̇

)

f̃
−̇
− iǭ+̇−̇

f̃
−̇
,

δf̃
−−̇

= −
(

δxαα̇∂αα̇ + δθ+∂+ + δθ̄+̇∂̄+̇

)

f̃
−−̇

− i(ǫ+− + ǭ+̇−̇
)f̃

−−̇
. (3.8)

The first term on the right side accounts for the shift in the coordinates, the second term

results in the scaling.

In the case of a chiral superfield Φ only the projections φ̃, φ̃− are nonzero, for an

antichiral superfield Φ̄ only ˜̄φ, ˜̄φ
−̇
are nonzero, moreover they satisfy the conditions

d̄+̇φ̃ = 0, d̄+̇φ̃− = 0,

d+
˜̄φ = 0, d+

˜̄φ
−̇
= 0. (3.9)

We will call SIM(2) superfields satisfying such conditions SIM(2) chiral and SIM(2)

antichiral. The following holds for the hermitian conjugation

(φ̃) = ˜̄φ, (φ̃−) = − ˜̄φ
−̇
, ( ˜̄φ) = φ̃, ( ˜̄φ

−̇
) = −φ̃−. (3.10)

In the case of real superfield V = V̄ the hermitian conjugation acts as

(ṽ) = ṽ, (ṽ−) = −ṽ
−̇
, (ṽ

−̇
) = −ṽ−, (ṽ

−−̇
) = ṽ

−−̇
. (3.11)
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One of the remarkable properties of SIM(2) superfields is that any complex SIM(2)

superfield f can be decomposed as a sum of a chiral SIM(2) superfield c and an antichiral

SIM(2) superfield ā

f = ā+ c. (3.12)

The chiral and antichiral SIM(2) superfields appearing in the decomposition can be cal-

culated as

c =
d̄+̇d+

i∂++̇

f, ā =
d+d̄+̇
i∂++̇

f, (3.13)

the identity (3.1) then leads to (3.12).

4. Abelian case

The aim of this section is to show how does the super-Poincare symmetric abelian gauge

theory looks like if we rewrite it in the SIM(2) formalism. We have decided to treat

the abelian case separately from the non-abelian case because its simplicity allows us to

perform calculations which would be difficult to do in the non-abelian case and to compare

results in SIM(2) formalism with the results in the usual Poincare-invariant formalism.

The super-Poincare abelian gauge theory contains a real scalar superfield V and is

invariant under the gauge transformation

V ′ = V + iΛ̄− iΛ, (4.1)

where Λ is a chiral superfield. In order to rewrite it in the SIM(2) superspace formalism

we define the SIM(2) projections ṽ, ṽ−, ṽ−̇, ṽ−−̇
, λ̃, λ̃−,

˜̄λ, ˜̄λ
−̇
of V , Λ, Λ̄ in the same way

as we did in (3.7). As a consequence of the reality of the superfield V we have (3.11), the

chirality and antichirality of Λ and Λ̄ results in conditions (3.9), (3.10) with λ̃ in place of

φ̃.

The gauge transformation (4.1) rewritten for the SIM(2) superfields is

ṽ′ = ṽ + i˜̄λ− iλ̃, ṽ′
−
= ṽ− − iλ̃−,

ṽ′
−−̇

= ṽ
−−̇

+
i

2

�

i∂++̇

(

˜̄λ+ λ̃
)

, ṽ′
−̇
= ṽ

−̇
+ i˜̄λ

−̇
. (4.2)

The action for the gauge field is

S =

∫

d4xd2θW 2 (4.3)

where

Wα = iD̄
2
DαV. (4.4)

In the SIM(2) superspace formalism it looks like

S =

∫

d4xd+d̄+̇

[

−d+

(

ṽ
−−̇

+
1

2

�

i∂++̇

ṽ

)

d̄+̇

(

ṽ
−−̇

−
1

2

�

i∂++̇

ṽ

)

+ d+ṽ−̇
�

i∂++̇

d̄+̇ṽ−

]

.

(4.5)
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It is possible to fix the gauge freedom in a way that respect SIM(2) supersymmetry.

A convenient choice of gauge fixing conditions, which completely fix the gauge freedom, is

ṽ = 0, d+ṽ− = 0 = d̄+̇ṽ−̇. (4.6)

If ṽ, ṽ−, ṽ−̇, ṽ−−̇
are arbitrary then we can go to the above gauge by performing the gauge

transformation (4.2) with

λ̃ = −i
d̄+̇d+

i∂++̇

ṽ, λ̃− = −i
d̄+̇d+

i∂++̇

ṽ−. (4.7)

The only gauge transformations preserving our gauge fixing conditions are those with

λ̃ = 0 = λ̃−, so there is no remaining gauge freedom.

In this gauge the action (4.5) reduces to

S =

∫

d4xd+d̄+̇
(

−d+ṽ−−̇
d̄+̇ṽ−−̇

+ ṽ
−̇
�ṽ−

)

. (4.8)

In the gauge fixed form, the whole dynamics of super-Poincare abelian gauge theory is

described by one real Grassmann even SIM(2) superfield ṽ
−−̇

and one chiral Grassmann

odd SIM(2) superfield ṽ
−̇
(and its conjugate ṽ−).

The classical equations of motion are

δS

δṽ
−−̇

= d+d̄+̇ṽ−−̇
− d̄+̇d+ṽ−−̇

= 0,
δS

δṽ−
= �d+ṽ−̇ = 0. (4.9)

They are equivalent to

�ṽ
−̇
= 0, ṽ

−−̇
= 0. (4.10)

We see that ṽ
−−̇

is auxiliary superfield and all dynamics is carried by the superfield ṽ
−̇

(which contains two bosonic and two fermionic degrees of freedom).

We will look how the above gauge and equations of motion look like if we rewrite them

in terms of components of V

C = V |, χα = iDαV |, χ̄α̇ = −iD̄α̇V |,

M = D2V |, M̄ = D̄2V |, Aαα̇ =
1

2
[D̄α̇,Dα]V |,

λα = iD̄2DαV |, λ̄α̇ = −iD2D̄α̇V |, D′ =
1

2
DαD̄2DαV |. (4.11)

where | = |θα=0,θ̄α̇=0 denotes projection, which leaves only θ-independent part.

The gauge fixing conditions (4.6) imply

C = 0, χ+ = 0 = χ̄+̇, A++̇ = 0,

M = 0 = M̄, λ+ = ∂++̇χ̄−̇
, λ̄+̇ = ∂++̇χ−. (4.12)

The last two conditions can be also written as χ− = 1
∂++̇

λ̄+̇, χ̄−̇
= 1

∂++̇
λ+. We can write

these conditions also in the form which does not depend on the choice of the vector n as

C = 0, M = 0 = M̄, n ·A = 0, χ = i
n/

2n · ∂
λ, (4.13)
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The only fields which are not completely constrained by these conditions are the scalar D′,

the spinor λ, and the vector A which is constrained by n · A = 0. The components of the

SIM(2) superfields appearing in the action can be in the given gauge expressed as

ṽ−| =
1

i∂++̇

λ̄+̇ =
1

i∂++̇

˜̄λ+̇, ṽ
−̇
| = −

1

i∂++̇

λ+ = −
1

i∂++̇

λ̃+,

d̄+̇ṽ−| = A
−+̇ = Ã

−+̇, d+ṽ−̇| = −A+−̇
= −Ã+−̇

,

d+ṽ−−̇
| = −λ̄

−̇
+
∂+−̇

∂++̇

λ̄+̇ = −˜̄λ
−̇
, d̄+̇ṽ−−̇

| = −λ− +
∂
−+̇

∂++̇

λ+ = −λ̃−,

1

2
[d+, d̄+̇]ṽ−−̇

| = D′, ṽ
−−̇

| = −A
−−̇

+
∂
−+̇

∂++̇

A+−̇
+
∂+−̇

∂++̇

A
−+̇ = −Ã

−−̇
,

(4.14)

The equations of motion (4.10) written for the components are

�λ̃+ = 0 = �
˜̄λ+̇, �Ã+−̇

= 0 = �Ã
−+̇,

λ̃− = 0 = ˜̄λ
−̇
, Ã

−−̇
= 0, D′ = 0. (4.15)

Here we can identify the equation of motion of the massless fermion (2.13) and the equation

of motion of the abelian gauge field (2.19).

5. Gauge chiral representation

This section is devoted to the non-abelian theory in the gauge chiral representation. We

will show that it is possible to use the same SIM(2) invariant gauge fixing conditions as

in the case of the abelian theory to completely remove the gauge freedom. Then we will

show how the action looks like in this gauge. We will not present the results for the case

where the gauge is not fixed.

In the supersymmetric non-abelian gauge theory we have a chiral superfield Φ with

values in the representation space, and we require that it is invariant with respect to a

local gauge transformation

Φ′ = eiΛΦ, (5.1)

where Λ is a Lie algebra valued chiral superfield, i.e. Λ = ΛATA, where ΛA are chiral

superfields and TA are hermitian generators of Lie algebra. In order to construct a gauge

invariant equivalent of the term Φ̄Φ, we introduce a Lie algebra valued real scalar superfield

V , which transforms as

eV
′

= eiΛ̄eV e−iΛ, (5.2)

so the term Φ̄eV Φ is gauge invariant.

The decomposition of the superfields V and Λ to SIM(2) superfields can be done in

the same way as in the case of abelian gauge theory, i.e. according to (3.7). The SIM(2)

superfields ṽ, ṽ−, ṽ−̇, ṽ−−̇
satisfy the conditions (3.11), the SIM(2) superfields λ̃, λ̃−,

˜̄λ,
˜̄λ
−̇
satisfy the conditions (3.9), (3.10).
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Although it is not possible to rewrite the gauge transformation (5.2) for SIM(2) su-

perfields in a compact form (at least we do not know how to do it), it is possible to fix the

gauge in the same way as in the case of abelian theory, i.e. by requiring

ṽ = 0, d+ṽ− = 0 = d̄+̇ṽ−̇. (5.3)

Before we show that this choice of gauge is possible, we prove that an exponential of

any complex SIM(2) superfield f can be written as

ef = eāec, (5.4)

where c is a chiral SIM(2) superfield and ā is an antichiral SIM(2) superfield. This is very

similar to the decomposition (3.12) which allows us to write any SIM(2) superfield as a

sum of a chiral and an antichiral SIM(2) superfields. In the abelian case the decomposition

(5.4) can be inferred directly from (3.12).

First we will assume that the decomposition (5.4) is possible and find out what c and ā

should be. Then we will show that this assumption is correct. A simple calculation shows,

that the SIM(2) superfields c and ā have to satisfy the equations

d̄+̇

(

e−fd+e
f
)

= e−ci∂++̇e
c, d+

(

d̄+̇e
fe−f

)

= i∂++̇e
āe−ā. (5.5)

The solutions of these equations can be formally written with the help of the path-ordering

operators R and L, which order the arguments according to increasing and decreasing

value of x++̇. The argument having the largest value of x++̇ is the rightmost in the case

of operator R and the leftmost in the case of the operator L. The solutions are

ec = R exp

(

−i

∫ x++̇

−∞

d̄+̇

(

e−fd+e
f
)

dt++̇

)

,

eā = L exp

(

−i

∫ x++̇

−∞

d+

(

d̄+̇e
fe−f

)

dt++̇

)

. (5.6)

Now we define a new SIM(2) superfield f ′ as

ef
′

= e−āefe−c, (5.7)

In order to prove that the decomposition (5.4) is really possible, we have to prove that

f ′ = 0. With the help of (5.5) it can be shown that

d̄+̇

(

e−f ′

d+e
f ′

)

= 0, d+

(

d̄+̇e
f ′

e−f ′

)

= 0. (5.8)

These equations are equivalent to

d̄+̇d+e
f ′

= d̄+̇e
f ′

e−f ′

d+e
f ′

, d+d̄+̇e
f ′

= −d̄+̇e
f ′

e−f ′

d+e
f ′

. (5.9)

Their sum gives us the equation 0 = (d̄+̇d+ + d+d̄+̇)e
f ′

= i∂++̇e
f ′

, which is equivalent to

∂++̇f
′ = 0. The only solution of the last equation is f ′ = 0 and this completes our proof.
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Now we are going to prove that the gauge (5.3) is admissible. We will show that

by performing two subsequent gauge transformations we can go from arbitrary SIM(2)

superfields ṽ, ṽ−, ṽ−̇, ṽ−−̇
to superfields satisfying our gauge fixing conditions.

Let make a projection on SIM(2) superspace on both sides of (5.2)

(

eV
′

)
∥

∥

∥
=
(

eiΛ̄eV e−iΛ
)
∥

∥

∥
⇒ eṽ

′

= ei
˜̄λeṽe−iλ̃. (5.10)

We want to set ṽ′ = 0, which will be achieved if eṽ = e−i˜̄λeiλ̃. The decomposition (5.4)

tells us, that this happens when we choose

λ̃ = −i ln

(

R exp

(

−i

∫ x++̇

−∞

d̄+̇
(

e−ṽd+e
ṽ
)

dt++̇

))

. (5.11)

Now we may assume that ṽ = 0 and perform another gauge transformation to set

d+ṽ− = 0. In order to preserve the condition ṽ = 0 we have to choose a gauge transforma-

tion with λ̃ = 0. By acting with D− on both sides of (5.2) and then making projection on

the SIM(2) superspace we obtain

D−

(

eV
′

)
∥

∥

∥
= D−

(

eiΛ̄eV e−iΛ
)
∥

∥

∥
⇒ ṽ′

−
= ṽ− − iλ̃−. (5.12)

If we choose

λ̃− = −i
d̄+̇d+

i∂++̇

ṽ−, (5.13)

we set d+ṽ
′

−
= 0 (and also d̄+̇ṽ

′

−̇
= 0).

This completes the proof of the admissibility of the gauge fixing conditions (5.3).

Because the only gauge transformation which preserves our gauge fixing conditions is the

one with λ̃ = 0, λ̃− = 0, the gauge freedom is fixed completely.

The action for the non-abelian gauge field in the Poincare invariant formalism is

S =

∫

d4xd2θ tr
(

W 2
)

(5.14)

where

Wα = iD̄
2 (
e−V Dαe

V
)

. (5.15)

If we rewrite it in the SIM(2) superspace formalism with the gauge being fixed ac-

cording to (5.3) then we get

S =

∫

d4xd+d̄+̇ tr

(

ṽ
−̇
�ṽ− + d̄+̇

(

ṽ
−−̇

+
1

2
{ṽ−, ṽ−̇}

)

d+

(

ṽ
−−̇

+
1

2
{ṽ−, ṽ−̇}

)

+

(

ṽ
−−̇

+
1

2
{ṽ−, ṽ−̇}

)

[d+ṽ−̇, d̄+̇ṽ−]

− d+ṽ−̇

[

d̄+̇ṽ−,
∂+−̇

∂++̇

d̄+̇ṽ−

]

− d̄+̇ṽ−

[

d+ṽ−̇,
∂
−+̇

∂++̇

d+ṽ−̇

]

)

.

(5.16)

Note that each term in the sum is separately SIM(2) invariant.
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Now we will look what happens when the theory contains another field coupled to the

gauge field. We have decided to use the model with a chiral field Φ minimally coupled to

the gauge field V , i.e. the action in the super-Poincare formalism is

S =

∫

d4xd2θd2θ̄ Φ̄eV Φ. (5.17)

The SIM(2) superfields corresponding to the super-Poincare chiral field Φ and its hermitian

conjugate Φ̄ are defined according to (3.7) and satisfies the conditions (3.9), (3.10). When

the action is rewritten in the SIM(2) formalism it looks like

S =

∫

d4xd+d̄+̇

(

− ˜̄φ
�

i∂++̇

φ̃− ˜̄φ
−̇
φ̃−

− ˜̄φ
−̇
ṽ−φ̃− ˜̄φṽ

−̇
φ̃− + ˜̄φ

(

ṽ
−−̇

+
1

2
(ṽ−ṽ−̇ − ṽ

−̇
ṽ−)

)

φ̃

+

(

∂+−̇

∂++̇

˜̄φ

)

(

d̄+̇ṽ−
)

φ̃− ˜̄φ

(

∂+−̇

∂++̇

d̄+̇ṽ−

)

φ̃

− ˜̄φ
(

d+ṽ−̇
)

(

∂
−+̇

∂++̇

φ̃

)

+ ˜̄φ

(

∂
−+̇

∂++̇

d+ṽ−̇

)

φ̃

)

.

(5.18)

Each term from the first and second row is separately SIM(2) invariant. This is not true

for terms from the last two rows where we have to group the terms in each row to get

invariant expressions.

The formalism presented in this section have manifest SIM(2) invariance but there is

no gauge invariance because we are working in a gauge which completely removes it. This

will be useful when we want to quantise it because there will not be any ghosts. But for

other purposes it would be more beneficial if we had a formalism where the gauge freedom

is not removed and where both SIM(2) invariance and gauge invariance are manifest.

5.1 Alternative decomposition of V into SIM(2) superfields

We may also use the projections defined as

v̂ = V ‖ , v̂− = e−V
(

D−e
V
)
∥

∥ , v̂
−̇
=
(

D̄
−̇
eV
)

e−V
∥

∥ ,

v̂
−−̇

=

(

1

2
D−

(

D̄
−̇
eV e−V

)

eV −
1

2
eV D̄

−̇

(

e−V D−e
V
)

)
∥

∥

∥

∥

,

λ̂ = Λ‖, λ̂− = i
(

D−e
−iΛ
)

eiΛ
∥

∥ , ˆ̄λ = Λ̄‖, ˆ̄λ
−̇
= −ie−iΛ̄

(

D̄
−̇
eiΛ̄
)
∥

∥

∥
.

(5.19)

They satisfy the reality conditions (3.11), but the chirality conditions for λ̂, λ̂−,
ˆ̄λ, ˆ̄λ

−̇
and

infinitesimal SIM(2) rotations are more complicated and contain derivatives acting on eV .
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The gauge transformations are

ev̂
′

= ei
ˆ̄λev̂e−iλ̂,

v̂′
−
= eiλ̂

(

v̂− − iλ̂−

)

e−iλ̂,

v̂′
−̇
= ei

ˆ̄λ
(

v̂
−̇
+ iˆ̄λ

−̇

)

e−iˆ̄λ,

v̂′
−−̇

= ei
ˆ̄λv̂

−−̇
e−iλ̂ +

i

2
∂
−−̇
ei

ˆ̄λev̂e−iλ̂ −
i

2
ei

ˆ̄λev̂∂
−−̇
e−iλ̂, (5.20)

If we used the covariant derivatives D̃−,
˜̄D
−̇

(3.6) instead of D−, D̄−̇
in the definition

of projections (5.19), then the gauge transformations would be more complicated, but

SIM(2) projections would have nicer properties. The projections of V would still satisfy

the reality conditions (3.11), the projections of Φ, Φ̄ would satisfy chirality conditions (3.9)

and reality conditions (3.11). The infinitesimal SIM(2) rotations would look like (3.8).

6. Elimination of the auxiliary superfields

How many real components, i.e. real fields with values in the representation space, are

contained in the superfields V and Φ? How many of them are physical, i.e. how many of

them carry dynamics? There are 16 real components in V and 8 real components in Φ.

Each V and Φ have four physical components (two bosonic and two fermionic).

The super-Poincare superfields were replaced by SIM(2) superfields. The superfield

Φ was replaced by two SIM(2) chiral superfields φ̃, φ̃−, each having four real components.

In the case of the superfield V we have completely fixed the gauge by (5.3) and only one

real SIM(2) superfield ṽ
−−̇

and one SIM(2) chiral superfield ṽ− (and its conjugate ṽ
−̇
)

remains in the rewritten action. Each of ṽ
−−̇

, ṽ− has 4 real components so we got rid of 8

components of V .

In this section we will show that the SIM(2) superfields φ̃− and ṽ
−−̇

are auxiliary and

can be eliminated from the action. After that we will obtain an action containing only

superfields whose components are physical.

We start by eliminating the auxiliary SIM(2) superfield φ̃−. By varying the action

(5.18) with respect to ˜̄φ
−̇

we obtain the equation of motion d+φ̃− + d+(ṽ−φ̃) = 0. Its

solution φ̃− = − 1
i∂++̇

d̄+̇d+(ṽ−φ̃) (and its conjugate) can be used to eliminate φ̃− and ˜̄φ
−̇

from the action. The resulting action is

Sc =

∫

d4xd+d̄+̇

(

− ˜̄φ
�

i∂++̇

φ̃+ ˜̄φ

(

ṽ
−−̇

+
1

2
{ṽ−, ṽ−̇}

)

φ̃− ˜̄φ
(

d+ṽ−̇
) 1

i∂++̇

(

(

d̄+̇ṽ−
)

φ̃
)

+

(

∂+−̇

∂++̇

˜̄φ

)

(

d̄+̇ṽ−
)

φ̃− ˜̄φ

(

∂+−̇

∂++̇

d̄+̇ṽ−

)

φ̃− ˜̄φ
(

d+ṽ−̇
)

(

∂
−+̇

∂++̇

φ̃

)

+ ˜̄φ

(

∂
−+̇

∂++̇

d+ṽ−̇

)

φ̃

)

.

(6.1)

We generalise our model before we eliminate the auxiliary SIM(2) superfield ṽ
−−̇

from

it. Instead of a model with one chiral superfield Φ we will consider a model with multiple
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chiral superfields Φ(k) coupled to the gauge superfield. The action will be

S = Sg +
∑

k

S(k)
c , (6.2)

where Sg is the action (5.16) for the gauge superfield and S
(k)
c are the actions (6.1) with

the SIM(2) superfield φ̃ replaced by φ̃(k). When the auxiliary SIM(2) superfield ṽ
−−̇

is

eliminated from this action we obtain the action

S = Sg +
∑

k

S(k)
c +

∑

k,l

S(k,l)
e , (6.3)

where the part of the action containing only the gauge superfield is

Sg =

∫

d4xd+d̄+̇ tr

(

ṽ
−̇
�ṽ− − d+ṽ−̇

[

d̄+̇ṽ−,
∂+−̇

∂++̇

d̄+̇ṽ−

]

− d̄+̇ṽ−

[

d+ṽ−̇,
∂
−+̇

∂++̇

d+ṽ−̇

]

−

(

d+
i∂++̇

[d+ṽ−̇, d̄+̇ṽ−]

)(

d̄+̇
i∂++̇

[d+ṽ−̇, d̄+̇ṽ−]

)

)

,

(6.4)

the part containing chiral superfield coupled to the gauge superfield is

S(k)
c =

∫

d4xd+d̄+̇

(

− ˜̄φ(k)
�

i∂++̇

φ̃(k) − ˜̄φ(k)
(

d+ṽ−̇
) 1

i∂++̇

(

(

d̄+̇ṽ−
)

φ̃(k)
)

+

(

∂+−̇

∂++̇

˜̄φ(k)
)

(

d̄+̇ṽ−
)

φ̃(k) − ˜̄φ(k)
(

∂+−̇

∂++̇

d̄+̇ṽ−

)

φ̃(k)

− ˜̄φ(k)
(

d+ṽ−̇
)

(

∂
−+̇

∂++̇

φ̃(k)
)

+ ˜̄φ(k)
(

∂
−+̇

∂++̇

d+ṽ−̇

)

φ̃(k)

− ˜̄φ(k)
(

d+d̄+̇ − d̄+̇d+

(i∂++̇)
2

[d+ṽ−̇d̄+̇ṽ−]

)

φ̃(k)

)

,

(6.5)

and there is also a part where the chiral superfields are mixed among each other

S(k,l)
e =

∫

d4xd+d̄+̇ tr

(

−

(

d+
i∂++̇

(

φ̃(k) ˜̄φ(k)
)

)(

d̄+̇
i∂++̇

(

φ̃(l) ˜̄φ(l)
)

))

. (6.6)

There are terms whose structure is different from the structure of the terms which were

present in the original actions (5.16), (5.18). In the original actions the nonlocal operator
1

∂++̇
always acted on terms composed of only one SIM(2) superfield. This means that it is

possible to have Feynman rules where each nonlocal operator is associated with only one

leg of the vertex. This is not true for the actions with eliminated auxiliary superfields. For

example in the third term in (6.1) the operator 1
∂++̇

acts on
(

d̄+̇ṽ−
)

φ̃. In Feynman diagram

with a vertex corresponding to such term, the nonlocal operator will not be associated with

single but with a pair of legs.
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7. Covariant representation

In this section we will develop another formulation of SIM(2) gauge theory. It will be

based on the covariant representation of the supersymmetric gauge theory. We will see

that it is possible to develop a formalism in which both the SIM(2) invariance and the

gauge invariance are manifest. At the end of the section we will show how this formalism

is related to the formalism developed in the previous section.

We begin with a brief presentation of the covariant representation of the super-Poincare

gauge theory. In the covariant representation we use a covariantly chiral superfieldΦ, which

satisfy the condition ∇̄α̇Φ = 0 (∇αΦ̄ = 0), instead of the chiral superfield Φ used in the

previous section. We will distinguish superfields used in the covariant representation from

the superfields used in the previous section by typesetting them in bold letters.

The covariant derivatives ∇α, ∇̄α̇, ∇αα̇ are subject to the commutation relations

{∇α,∇β} = 0 = {∇̄α̇, ∇̄β̇}, {∇α, ∇̄α̇} = i∇αα̇,

[∇α,∇ββ̇] = CαβW̄ β̇, [∇̄α̇,∇ββ̇ ] = Cα̇β̇W β ,

[∇αα̇,∇ββ̇] = −i(Cα̇β̇F αβ + CαβF̄ α̇β̇), (7.1)

the field strengths W α, W̄ α̇, F αβ , F̄ α̇β̇, D
′ satisfy the relations

∇̄α̇W β = 0, ∇αW̄ β̇ = 0,

∇αW β = F αβ − iCαβD
′, ∇̄α̇W̄ β̇ = F̄ α̇β̇ + iCα̇β̇D

′. (7.2)

The superfield Φ and the covariant derivatives transform under the gauge transforma-

tion as

Φ′ = eiKΦ, ∇′

α = eiK∇αe
−iK , ∇̄′

α̇ = eiK∇̄α̇e
−iK , ∇′

αα̇ = eiK∇αα̇e
−iK , (7.3)

where K is a real Lie algebra valued superfield.

The SIM(2) projections of the superfields Φ, Φ̄ are defined in a similar way as in the

case of the superfields Φ, Φ̄, the main difference is that we use the covariant derivatives

instead of the ordinary ones. The covariant SIM(2) projections

φ̃ = Φ‖, φ̃
−
=

(

∇− −∇
−+̇

1

∇++̇

∇+

)

Φ

∥

∥

∥

∥

,

˜̄φ = Φ̄‖, ˜̄φ
−̇
=

(

∇̄
−̇
−∇+−̇

1

∇++̇

∇̄+̇

)

Φ̄

∥

∥

∥

∥

, (7.4)

satisfy the covariant SIM(2) chirality conditions

∇̄+̇φ̃ = 0 = ∇+
˜̄φ, ∇̄+̇φ̃−

= 0 = ∇+
˜̄φ
−̇
. (7.5)

Note that the ordering of the covariant derivatives in (7.4) is important because not all of

them commute among themselves. If the covariant derivatives ∇
−+̇, ∇+−̇

were not placed

in front of the other derivatives then the SIM(2) projections φ̃
−
, ˜̄φ

−̇
would not satisfy the
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covariant SIM(2) chirality conditions. The projections φ̃, φ̃
−
, ˜̄φ, ˜̄φ

−̇
, to which we will

refer also as to SIM(2) superfields, transforms with respect to the infinitesimal SIM(2)

transformations exactly as the field f in (3.8). The gauge transformations acts on them as

φ̃
′

= eikφ̃, φ̃
′

−
= eikφ̃

−
, (7.6)

where the real SIM(2) superfield k = K‖ is the projection of the superfield K 4.

The actions for the scalar chiral field and for the gauge field

Sscalar =

∫

d4xd2θd2θ̄ Φ̄Φ, Sgauge =

∫

d4xd2θ tr
(

W 2
)

, (7.8)

rewritten in the SIM(2) superspace formalism they become 5

Sscalar =

∫

d4x∇+∇̄+̇

(

− ˜̄φ
−̇
φ̃
−
− ˜̄φ

∇̄+̇

∇++̇

(

�cov + d′
) ∇+

∇++̇

φ̃ (7.10)

+ ˜̄φ
−̇
w̄+̇

1

i∇++̇

φ̃+ ˜̄φ
1

i∇++̇

(

w+φ̃−

)

)

,

Sgauge =

∫

d4x∇+tr
(

−w−

(

f+−
+ d′

)

+w+f−−

)

. (7.11)

where �cov = 1
2∇

αα̇∇αα̇ is d’Alembertian composed of covariant derivatives and

w+ = W+‖, w̄+̇ = W̄ +̇‖, d′ = D′‖, f+−
= F+−‖, f

−−
= F−−‖, (7.12)

are the SIM(2) projections of the corresponding super-Poincare field strengths. It is easy

to see that each term in (7.10) and (7.11) is gauge invariant. The SIM(2) invariance of

(7.10) follows directly from the transformation rules for the superfields and the derivatives

appearing in it. In order to prove the SIM(2) invariance of (7.11) we have to transform

each subscript in the superfields w+, w−, f+−
, f

−−
according to (2.2) and then use the

identities ∇+w− = f+−
− d′, ∇+w+ = f++.

Now we will describe how the covariant representation can be transformed to the gauge

chiral representation described in the previous section. If we are working in the super-

Poincare formalism and want to go from the covariant representation to the gauge chiral

4When we operate in the SIM(2) superspace we should use the SIM(2) projections ∇+‖, ∇̄+̇‖, ∇αα̇‖ of

the covariant derivatives which do not contain unwanted Grassmann variables θ−, θ̄−̇. We will not distin-

guish the SIM(2) projections of covariant derivatives from their unprojected super-Poincare counterparts.

It should be clear from the context which derivatives should be used, moreover this difference is not impor-

tant in most cases. The SIM(2) projected covariant derivatives transform under the gauge transformation

as

∇′

+ = e
ik∇+e

−ik
, ∇̄′

+̇ = e
ik∇̄+̇e

−ik
, ∇′

αα̇ = e
ik∇αα̇e

−ik
. (7.7)

5The SIM(2) superfields φ̃
−

and ˜̄φ
−̇

are auxiliary and can be eliminated from the action. If we do that

we obtain the action

S =

∫

d4
x∇+∇̄+̇

(

˜̄φ
∇̄+̇

∇++̇

(

�cov + d
′ −w+

1

i∇++̇

w̄+̇

)

∇+

∇++̇

φ̃

)

. (7.9)
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representation then we have to do the following replacements for the covariant derivatives

and superfields

∇α → e−VDαe
V , ∇̄α̇ → D̄α̇, ∇αα̇ → −i{e−VDαe

V , D̄α̇},

Φ → Φ, Φ̄ → Φ̄eV . (7.13)

In the SIM(2) formalism we have to replace the covariantly chiral SIM(2) superfields

(7.4) and covariant derivatives with expressions containing the chiral SIM(2) superfields

φ, φ−, ordinary derivatives and the gauge fixed superfields ṽ−, ṽ−̇, ṽ−−̇
.

∇+ → d+, ∇̄+̇ → d̄+̇,

∇++̇ → ∂++̇, ∇
−+̇ → ∂

−+̇ − id̄+̇ṽ−, ∇+−̇
→ ∂+−̇

+ id+ṽ−̇,

∇
−−̇

→ ∂
−−̇

+ iṽ
−−̇

− i
∂+−̇

∂++̇

d̄+̇ṽ− + i
∂
−+̇

∂++̇

d+ṽ−̇ +
i

2
{ṽ−, ṽ−̇},

φ̃ → φ̃, φ̃
−
→ φ̃− + ṽ−φ̃− (d̄+̇ṽ−)

d+
i∂++̇

φ̃,

˜̄φ → ˜̄φ, ˜̄φ
−̇
→ ˜̄φ

−̇
+ ˜̄φṽ

−̇
−

(

d̄+̇
i∂++̇

˜̄φ

)

(d+ṽ−̇),

(7.14)

The field strengths appearing in (7.10), (7.11) can be calculated with the help of the

commutation relations (7.1) and the identities (7.2) as

w+ = i[∇̄+̇,∇+−̇
], w̄+̇ = i[∇+,∇−+̇],

f+−
=

1

2

(

[∇
−−̇
,∇++̇] + [∇+−̇

,∇
−+̇]
)

, f
−−

= [∇
−−̇
,∇

−+̇],

w− = i[∇̄+̇,∇−−̇
], w̄

−̇
= i[∇+,∇−−̇

],

d′ =
1

2

(

∇̄+̇w̄−̇
−∇+w− + [∇+−̇

,∇
−+̇]
)

. (7.15)

All actions which have been presented so far respect super-Poincare symmetry even if

they are written in the SIM(2) formalism, which has lower symmetry. In order to break

the Lorentz symmetry we have to add some Lorentz breaking terms. It seems that the

covariant representation is most suitable for constructing such terms because it allows us

to easily verify both the gauge and SIM(2) invariance.

8. Lorentz breaking terms

In this section a brief discussion of effects of SIM(2) invariant Lorentz breaking mass terms

on results presented in previous sections is given.

The following SIM(2) invariant but Lorentz breaking mass term can be added to the

action for the gauge field

Smass−gauge = m2
g

∫

d4x∇+∇̄+̇ tr

(

w̄+̇

1

(i∇++̇)
2
w+

)

. (8.1)
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It can be rewritten in the gauge chiral representation if the substitution (7.14), (7.15) is

performed as

Smass−gauge = −m2
g

∫

d4xd+d̄+̇ tr
(

ṽ
−̇
ṽ−
)

. (8.2)

Instead of the term ṽ
−̇
�ṽ− in (5.16), and in (6.4) we now have ṽ

−̇
(� − m2

g)ṽ− so the

SIM(2) chiral superfield ṽ
−̇
is now massive with mass mg. Note that the mass term does

not break the gauge invariance and there are still two bosonic physical degrees of freedom

in gauge multiplet. If we had added Lorentz invariant mass term for the gauge field, the

gauge invariance would have been broken and there would have been three bosonic physical

degrees of freedom.

The following SIM(2) invariant but Lorentz breaking mass term can be added to the

action for the chiral field

Smass−chiral = m2
c

∫

d4x∇+∇̄+̇

(

˜̄φ
1

i∇++̇

φ̃

)

. (8.3)

It can be rewritten in gauge chiral representation if the substitution (7.14) is performed as

Smass−chiral = m2
c

∫

d4xd+d̄+̇

(

˜̄φ
1

i∂++̇

φ̃

)

. (8.4)

The effect on (5.18), (6.1) and (6.5) is that instead of the term ˜̄φ �

i∂++̇
φ̃ we now have ˜̄φ�−m2

c
i∂++̇

φ̃

thus the SIM(2) chiral superfield φ̃ has now mass mc.

Both the mass term for gauge field and mass term for the chiral field were also proposed

in [6].

9. Conclusions

The model investigated in this paper consists of a gauge superfield minimally coupled

to chiral superfields. Two formulations of the supersymmetric gauge theory in SIM(2)

superspace were presented. The first was based on the gauge chiral representation of the

supersymmetric gauge theory, the second was based on the covariant representation of

supersymmetric gauge theory.

A key observation which allowed us to reformulate the gauge chiral representation in

SIM(2) formalism is that it is possible to completely fix the gauge in a way that does not

break SIM(2) supersymmetry. While in the abelian case treated in section 4 we were able

to obtain results without gauge fixing, in the non-abelian case treated in section 5 we were

able to obtain results in a compact form only if the gauge was fixed. While the gauge fixed

theory does not have any gauge invariance it posses manifest SIM(2) invariance and if we

used it as a starting point for quantisation we would obtain a theory without ghosts.

The number of SIM(2) superfields appearing in the theory has been reduced when we

removed gauge freedom. Moreover in section 6 it was shown that some of the remaining

SIM(2) superfields are auxiliary and can be eliminated from the theory. This further

reduces the number of SIM(2) superfields appearing in the theory but the resulting action

contains terms which would lead to more complicated Feynman rules.
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While the gauge fixed gauge chiral representation gives us a theory suitable for quan-

tisation, the covariant representation presented in section 7 can be rewritten in SIM(2)

formalism in such a way that both SIM(2) invariance and gauge invariance are manifest.

Thus it is more suitable for theoretical considerations. It was described how to rewrite the

expressions from the covariant representation to the gauge fixed gauge chiral representation

in the SIM(2) formalism.

The Lorentz breaking but SIM(2) invariant mass terms can be added to the gauge

superfield or to the chiral superfield. Their effects on results of previous sections was

discussed in section 8.
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