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Abstract

The wall crossing formula of Kontsevich and Soibelman gives an implicit relation between

the BPS indices on two sides of the wall of marginal stability by equating two symplectomor-

phisms constructed from the indices on two sides of the wall. The wall crossing formulæ of

Manschot, Pioline and the author give two apparently different explicit expressions for the

BPS index on one side of the wall in terms of the BPS indices on the other side. We prove the

equivalence of all the three formulæ.
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1 Introduction

The central objects in a wall crossing formula are a BPS index in some Hilbert space H, and a

moduli space over which the Hilbert space could vary. The BPS index remains constant over

most of the moduli space but could jump across certain codimension one subspaces known

as the walls of marginal stability. When this happens, wall crossing formula gives a relation

between the BPS indices on two sides of the wall [1–39].

In situations relevant to supersymmetric string theory / gauge theory the Hilbert space

that is of relevance is the space of quantum states carrying some fixed set of gauge charges,

collectively denoted by a vector γ. The moduli space is parametrized by the asymptotic values
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of certain scalar fields of the theory. If the theory also contains some global conserved U(1)

charge Q, then we can define a refined index Ωref(γ, y) which computes the index weighted by

yQ for some continuous variable y. Under certain circumstances this refined index also remains

constant over most of the moduli space and jumps only across the walls of marginal stability.

For example in supersymmetric gauge theories we can define such an index by taking Q to be

an appropriate linear combination of the angular momentum and R-symmetry generator [27].

In string theory, there are no global R-symmetry charges, but we can define a refined index

by taking Q to be one of the angular momentum generators [40, 41]. Such an index is not

protected under a change in the string coupling, ı.e. it can jump even without crossing a wall

of marginal stability, but we could nevertheless study its jump across the walls of marginal

stability keeping the string coupling fixed at some small value. A refined wall crossing formula

is a relation between the refined indices on two sides of the wall of marginal stability. This

is more general than ordinary (also referred to as ‘numerical’) wall crossing formula, since by

setting y = 1 in the former we recover the latter.

The known wall crossing formulæ take simpler form in terms of the ‘rational refined index’

defined as [14–16, 42–44]

Ω̄ref(γ, y) ≡
∑

m|γ

y − y−1

m (ym − y−m)
Ωref(γ/m, ym) . (1.1)

In the y → 1 limit this gives Ω̄(γ) =
∑

m|γ m
−2Ω(γ/m). We shall denote by Ω±

ref(γ, y) the

refined indices on two sides of a wall of marginal stability, and by Ω̄±
ref(γ, y) the corresponding

rational refined indices. A wall crossing formula corresponds to a relation between Ω+
ref and

Ω−
ref , or equivalently between Ω̄+

ref and Ω̄−
ref . We shall work with the indices Ω̄±

ref but if needed

we can invert (1.1) to calculate Ω±
ref in terms of Ω̄±

ref [30, 33].

The charge γ is a member of some charge lattice equipped with a symplectic inner product.

Given a pair of vectors γ1, γ2 on the charge lattice, we denote by 〈γ1, γ2〉 the symplectic inner

product between γ1 and γ2. This inner product is anti-symmetric under the exchange of γ1

and γ2 and is linear in γ1, γ2. Typically the charge lattice has dimension d for some even

integer d, but for a given wall of marginal stability the relevant charge vectors for which the

index jumps across the wall are of the form rα+ sβ, where α, β are two vectors whose central

charges align at the wall and r and s are two non-negative rational numbers. We denote by

Λ the set of all such non-zero charge vectors in the lattice. Without any loss of generality we

can choose a convention in which 〈β, α〉 > 0 and represent rα + sβ ∈ Λ by a vector (r, s) in a

two dimensional plane. In this convention all the elements of Λ are represented as vectors in
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the first quadrant of this two dimensional plane, and given γ1, γ2 ∈ Λ, γ1 and γ2 are arranged

in a clockwise (anti-clockwise) order if 〈γ1, γ2〉 > 0 (〈γ1, γ2〉 < 0) (see Fig. 1). We denote by

Zγ the central charge for any vector γ ∈ Λ – a function of the moduli and a linear function of

γ such that the mass of a BPS state of charge γ is given by |Zγ| – and choose our convention

such that

〈γ1, γ2〉 Im (Zγ1Z̄γ2) < 0 , ∀ γ1, γ2 ∈ Λ , (1.2)

on the side of the wall in which we label the index by Ω+
ref . On the other side of the wall

〈γ1, γ2〉 Im (Zγ1Z̄γ2) > 0 and the refined index is denoted by Ω−
ref . Then the wall crossing

formula, written in the notation of [30], takes the form:

Ω̄−
ref(γ, y) =

∑

n≥1

∑

unordered setα1,...,αn∈Λ
α1+...+αn=γ

gref({αi}, y)

|Aut({αi})|

∏n

i=1
Ω̄+

ref(αi, y) , (1.3)

where gref({αi}, y) is a function to be specified later, and |Aut({αi})| is a symmetry factor

defined as follows. If the set {αi} consists of m1 copies of β1, m2 copies of β2 etc. then

|Aut({αi})| =
∏

k mk!. The sum in (1.3) runs over all possible unordered decompositions of

the vector γ into the vectors α1, · · ·αn ∈ Λ. However this can also be rewritten as a sum over

the ordered decomposition of the vector γ into the vectors α1, · · ·αn ∈ Λ as follows:

Ω̄−
ref(γ, y) =

∑

n≥1

1

n!

∑

ordered decompositionα1+...+αn=γ

gref({αi}, y)
∏n

i=1
Ω̄+

ref(αi, y) . (1.4)

For a single argument gref(α; y) is taken to be 1, so that the n = 1 term on the right hand

side of (1.3) just gives Ω̄+
ref(γ, y). The wall crossing formula for rational numerical index can

be found by taking the y → 1 limit of the above formula.

One of the results discussed in [30] is that once we use the index Ω̄ instead of Ω, the

effect of having two or more identical αi’s is captured completely by the symmetry factor

|Aut({αi})| =
∏

k mk!. In order to make full utilization of this fact, it is useful to regard the

αi’s as elements of a two dimensional vector space spanned by α and β, not necessarily lying

on the lattice, and gref as continuous function of these αi’s. We shall give the expressions

for gref for generic non-identical, non-parallel vectors αi lying in the first quadrant of the two

dimensional plane spanned by α, β. From this we can recover the results for two or more

identical or parallel αi’s as limits of this general formula.1

1For the KS wall crossing formula, this prescription was proved in [30] (last paragraph of §4.4). For the
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γ1

γ2

β

α

γ2 > γ1

Θ(γ2, γ1) = 1

Θ(γ1, γ2) = 0

〈γ1, γ2〉 > 0

Figure 1: Figure illustrating the definition of γ2 > γ1 and Θ(γ2, γ1).

The wall crossing formula of Kontsevich and Soibelman (KS) [11–13] and Manschot, Pioline

and the author (MPS) [30] differ in their specification of the functions gref . Ref. [30] actually

proposed two different versions of the wall crossing formula. The first one, called the ‘higgs

branch formula’, is based on Reineke’s result on quiver moduli spaces [45] (see also [14], [46] for

related results), and the second one, called the ‘coulomb branch formula’, is based on quantum

mechanics of multiple black holes [7–10]. We shall describe the higgs branch formula for gref in

§2 and the KS formula for gref in §3. In either case we shall describe the formula as a function

of generic non-identical, non-parallel vectors αi in the first quadrant of the plane spanned by

α and β. The equivalence of the two formulæ was tested in [30] for low values of n but was

not proven. In §4 and §5 we prove the equality of these two apprently different formulæ for

gref . Finally in §7 we describe the coulomb branch formula for gref and prove its equality with

the higgs branch formula.

Since our higgs branch formula is based on Reineke’s formula on quiver moduli spaces [45]

and since the latter has close relationship with both the wall crossing formulæ of KS [11] as

well as that of Joyce and Song [14–16], the equality of the higgs branch formula and the KS

formula is not unexpected [47]. Nevertheless our analysis gives a direct combinatorial proof of

this equivalence. The equivalence with the coulomb branch formula is new, – to our knowledge

this has not appeared in connection with the wall crossing formula before [30].

MPS wall crossing formulæ this is included in the prescription for computing gref , and follows from the ability
to replace Bose/Fermi statistics by Boltzmann statistics at the cost of replacing Ω by Ω̄. To our knowledge
this has not been proved for the Joyce-Song (JS) wall crossing formula [14–16], but the agreement between JS
and other wall crossing formulæ in explicit examples indicate that this is valid also in that case.
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Notations and conventions: We shall end this section by describing some useful notations

and conventions which we shall use. We define:

γ1 < γ2 if 〈γ1, γ2〉 > 0

γ1 > γ2 if 〈γ1, γ2〉 < 0

Θ(γ1, γ2) =

{
1 for γ1 > γ2
0 for γ1 < γ2

. (1.5)

Thus for example if (γ1, γ2) follows a clockwise order then γ1 < γ2 and Θ(γ2, γ1) = 1,

Θ(γ1, γ2) = 0. Since this notation will be used extensively in the rest of the paper, it will

be useful to keep in mind the physical picture shown in Fig. 1. We shall also sometimes de-

scribe the situation in Fig. 1 by saying that γ1 is to the left of γ2 or that γ2 is to the right of

γ1. (1.5) satisfies useful identities like:

γ1 < γ2 ⇔ γ1 < γ1 + γ2 ⇔ γ1 + γ2 < γ2, γ1 > γ3 if γ1 > γ2, γ2 > γ3,

Θ(γ1 + γ2, γ1) = Θ(γ2, γ1) = Θ(γ2, γ1 + γ2) . (1.6)

We shall also use the symbol Θ to denote the usual step function of a real variable

Θ(x) =
{
1 for x ≥ 0
0 for x < 0

. (1.7)

Which of the two definitions we are using in any given context can be understood by examining

the argument of Θ.

Since the sum in (1.3) runs over unordered set of αi’s, we can choose a specific order of the

{αi} when we give the functional form of gref . We shall choose the convention in which the

{αi}’s are ordered as

α1 < α2 < α3 · · · < αn . (1.8)

In other words in the two dimensional plane α1, · · ·αn form a clockwise order. We can also

express (1.8) as

Θ(αi, αj) = Θ(i− j) , ∀ i, j . (1.9)

Finally we introduce the shorthand notation

αij ≡ 〈αi, αj〉 . (1.10)

In the rest of the paper we shall not explicitly display the variable y in the argument of gref

and other functions, but it should be understood that all the quantities depend on y.
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2 ‘Higgs branch’ wall crossing formula

First we shall describe the ‘higgs branch’ formula for gref , which will be denoted by ghiggs.

ghiggs(α1, · · ·αn) is given by the Poincare polynomial of a quiver with n nodes, each carrying

a U(1) factor, and with αij arrows directed from the i-th node to the j-th node for i < j.

The latter in turn is given by the Reineke formula [45]. The algorithm for calculating ghiggs

following the original Reineke formula leads to many terms whose contributions cancel. We

shall state the result using a slightly different but equivalent algorithm given in [30] (§3.3)

where some of these cancellations are taken into account. Some applications of this formula

can be found in [48, 49]

Let σ(i) for 1 ≤ i ≤ n denote a permutation of the numbers 1, · · ·n. ghiggs is given as a

sum over different permutations σ. It takes the form:

ghiggs(α1, . . . , αn) = (−1)−1+n
(
y − y−1

)1−n
∑

σ

N
(n)
higgs({αi}; σ) (−y)

∑
l<k ασ(l)σ(k)

= (−1)−1+n(−y)−
∑

i<j αij
(
y − y−1

)1−n

×
∑

σ

N
(n)
higgs({αi}; σ) (−y)

2
∑

l<k
σ(l)<σ(k)

ασ(l)σ(k)

,

N
(n)
higgs({αi}; σ)

= (−1)s(σ)−1
n∏

k=2
σ(k)<σ(k−1)

Θ

(
α1 + · · ·αn,

n∑

i=k

ασ(i)

)
n∏

k=2
σ(k)>σ(k−1)

Θ

(
n∑

i=k

ασ(i), α1 + · · ·αn

)

= (−1)s(σ)−1

n−1∏

k=1
σ(k+1)<σ(k)

Θ

(
k∑

i=1

ασ(i), α1 + · · ·αn

)
n−1∏

k=1
σ(k+1)>σ(k)

Θ

(
α1 + · · ·αn,

k∑

i=1

ασ(i)

)
,

s(σ) = 1 +
n−1∑

k=1

Θ(ασ(k), ασ(k+1)) = 1 +
n−1∑

k=1

Θ(σ(k)− σ(k + 1)) . (2.1)

The Θ in the second expression for s(σ) is the ordinary step function. It has been shown in

appendix A that this is equivalent to the formula derived in §3.3 of [30] which in turn was

shown in [30] to be equivalent to the Reineke formula [45]. The equality of the two expressions

for N
(n)
higgs({αi}; σ) given in (2.1) follows from a simple shift k → k + 1 and the identities given

in (1.6). Although for physical charges the αij’s are integers and hence (2.1) is uniquely defined

everywhere in the complex y-plane, we shall at the intermediate steps work with analytically

continued αij’s away from integer values. In this case we shall use (2.1) to define ghiggs along
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the negative y-axis in the range −1 < y < 0 and then analytically continue the result to the

rest of the complex plane.2

Since (2.1) will play a central role in our analysis, it will be useful to keep in mind a

physical picture of this equation. What this equation tells us is that for a given permutation

to contribute to ghiggs it must satisfy the conditions:

k∑

i=1

ασ(i) < α1 + · · ·αn for σ(k) < σ(k + 1)

k∑

i=1

ασ(i) > α1 + · · ·αn for σ(k) > σ(k + 1) . (2.2)

Furthermore, when the above condition is satisfied, its contribution to N
(n)
higgs is 1 or −1 de-

pending on whether the number of neighboring pairs for which σ(i) > σ(i + 1) is even or

odd.

For n = 2 the permutations are (12) and (21). Using (2.1) we get s(12) = 1, s(21) = 2,

N
(2)
higgs(12) = (−1)s(12)−1Θ(α1 + α2, α1) = Θ(α2, α1) = 1 and N

(2)
higgs(21) = (−1)s(21)−1Θ(α2, α1 +

α2) = −Θ(α2, α1) = −1. Thus we get

ghiggs(α1, α2) = −(−y)−α12(y − y−1)−1((−y)2α12 − 1) . (2.3)

We shall end this section by summarizing some useful properties of ghiggs:

1. ghiggs contains a sum of exponents of the form (−y)
∑

i<j sijαij where sij = 1 or −1. Since

there are n(n − 1)/2 pairs of αij ’s, there are 2n(n−1)/2 possible choices of the {sij}’s.

However of these only those terms which have the form:

(−y)

∑
i<j

σ(i)<σ(j)

ασ(i)σ(j)−
∑

i>j
σ(i)<σ(j)

ασ(i)σ(j)

= (−y)
∑

i<j ασ(i)σ(j) (2.4)

for some permutation σ appear in the sum. This already restricts the sum to n! terms

corresponding to n! possible choices of σ. The constraints (2.2) further reduce the number

of terms.

2A physical interpretation of the exponent
∑

l<k ασ(l)σ(k) is as follows. Let us represent the αi’s as vectors
in the two dimensional plane such that αij is the area of the parallelogram with sides αi and αj . Then∑

l<k ασ(l)σ(k) is the area of the oriented polygon with sides ασ(1), ασ(2), · · · ασ(n) and −ασ(1) − · · · − ασ(n).
In general the polygon can be self-intersecting in which case the area has to be taken as the sum of the areas
of each component polygon weighted with ±1 depending on the orientation of the boundary of that particular
component. I wish to thank the referee for suggesting this interpretation.
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2. Let Aa (1 ≤ a ≤ 2n − 1) denote the collection of all non-empty subsets of {1, 2, · · ·n}

and let

γ(a) ≡
∑

i∈Aa

αi . (2.5)

Then N
(n)
higgs({αi}; σ) depends only on the relative orientation of the vectors γ(a) relative

to (α1 + · · ·αn), but not on the relative orientations of γ(a) and γ(b). This is apparent

from the fact that the argument of the Θ’s appearing in (2.1) involve only the pairs

(γ(a), α1 + · · ·αn) but not (γ
(a), γ(b)).

3. We can improve upon the above result if we focus on the term corresponding to a given

permutation σ. The corresponding N
(n)
higgs({αi}; σ) depends only on the relative orienta-

tion of
∑k

i=1 ασ(i) and α1+· · ·αn for 1 ≤ k ≤ n−1, and of course the relative orientation of

the pairs (αi, αj). All the other γ
(a)’s are irrelevant. Thus while computing N

(n)
higgs({αi}; σ)

for a particular σ we can freely deform the αi’s as long as we do not change the relative

orientation between
∑k

i=1 ασ(i) and α1 + · · ·αn for any k, and also preserve the relative

orientation between the αi’s.

4. If a permutation σ appears in the sum in (2.1), then the permutation σ′ where the order

of all the elements is reversed, also appears in the sum.

Proof: We have

σ′(i) = σ(n+ 1− i) . (2.6)

Eq.(2.1) now gives

N
(n)
higgs({αi}; σ

′) = (−1)s(σ
′)−1

n−1∏

k=1
σ′(k+1)<σ′(k)

Θ

(
k∑

i=1

ασ′(i), α1 + · · ·αn

)

n−1∏

k=1
σ′(k+1)>σ′(k)

Θ

(
α1 + · · ·αn,

k∑

i=1

ασ′(i)

)
,

= (−1)s(σ
′)−1

n−1∏

k=1
σ(n−k)<σ(n−k+1)

Θ

(
k∑

i=1

ασ(n−i+1), α1 + · · ·αn

)

n−1∏

k=1
σ(n−k)>σ(n−k+1)

Θ

(
α1 + · · ·αn,

k∑

i=1

ασ(n−i+1)

)
,
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= (−1)s(σ
′)−1

n−1∏

ℓ=1
σ(ℓ)<σ(ℓ+1)

Θ

(
n∑

j=ℓ+1

ασ(j), α1 + · · ·αn

)

n−1∏

ℓ=1
σ(ℓ)>σ(ℓ+1)

Θ

(
α1 + · · ·αn,

n∑

j=ℓ+1

ασ(j)

)
, (2.7)

with

s(σ′) = 1 +

n−1∑

k=1

Θ(σ′(k)− σ′(k + 1)) = 1 +

n−1∑

k=1

Θ(σ(n− k + 1)− σ(n− k))

= 1 +

n−1∑

j=1

Θ(σ(j + 1)− σ(j)) = 1 + (n− 1)−

n−1∑

j=1

Θ(σ(j)− σ(j + 1)) . (2.8)

Comparing (2.7), (2.8) with (2.1) we get

N
(n)
higgs({αi}; σ

′) = (−1)n−1N
(n)
higgs({αi}; σ) , (2.9)

showing that N
(n)
higgs({αi}; σ

′) is non-zero iff N
(n)
higgs({αi}; σ) is non-zero. Since reversing the

permutation reverses the sign of
∑

i<j ασ(i)σ(j), the result given above shows that ghiggs

is invariant under y → y−1. This is of course expected from the fact that ghiggs is the

Poincare polynomial of the moduli space of abelian quivers.

Finally note that if we are interested in the ordinary (numerical) index instead of the refined

index, the relevant g is obtained by taking the y → 1 limit of (2.1) [49]. This limit is apparently

singular, but given that ghiggs(α1, . . . , αn) is the Poincare polynomial of abelian quivers and

hence has a finite y → 1 limit, the singularities must cancel after we sum over all permutations

σ. Thus if we define y = eν and expand
∑

σ N
(n)
higgs({αi}; σ) (−y)

∑
l<k ασ(l)σ(k) in a power series

in ν, all powers of ν up to νn−2 must cancel. As a result we can extract the y → 1 limit of

ghiggs by picking the order νn−1 term from the expansion of each (−y)
∑

l<k ασ(l)σ(k) term, and

then taking the ν → 0 limit of the resulting expression. This gives,

gnumerical(α1, . . . , αn)

= (−1)−1+n 21−n 1

(n− 1)!
×
∑

σ

N
(n)
higgs({αi}; σ)(−1)

∑
l<k ασ(l)σ(k)

(
∑

l<k

ασ(l)σ(k)

)n−1

→ (−1)−1+n 21−n 1

(n− 1)!
(−1)

∑
l<k αlk ×

∑

σ

N
(n)
higgs({αi}; σ)

(
∑

l<k

ασ(l)σ(k)

)n−1

, (2.10)
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where the second expression is valid in the limit when the αi’s, instead of being general two

dimensional vectors, approach lattice vectors so that αij ’s approach integers. For generic

charges (2.10) appears to be closely related to, but not quite the same as the JS wall crossing

formula [14–16]. (A short review of the JS formula and its implementation can be found

in [30], section 5.) In particular in the JS formula the summand
(∑

l<k ασ(l)σ(k)

)n−1
is replaced

by a slightly different term obtained by summing over trees. However for non-generic charges

ı.e. when some αi’s – and/or their linear combinations with positive integer coefficients – are

equal or parallel to each other, the JS prescription involves sum over many more terms, while

the MPS prescription simply requires us to take the limit of the formula for generic charges

and supply the Boltzmann factor 1/|Aut({αi})| = 1/
∏

k mk! as described in (1.3). It will be

interesting to find a direct combinatoric proof of the equivalence of (2.10) with the JS wall

crossing formula.

3 KS wall crossing formula

We shall now describe a version of the KS wall crossing formula given in [30]. To describe the

KS wall crossing formula we introduce an algebra with elements of the form eγ with γ ∈ Λ,

satisfying the commutation relations:

[eγ , eγ′] = κ(γ, γ′) eγ+γ′ , κ(γ, γ′) =
(−y)〈γ,γ

′〉 − (−y)−〈γ,γ′〉

y − y−1
. (3.1)

Let α1, · · ·αn be a set of vectors arranged so that α1 < α2 < · · · < αn, ı.e. in the two dimensional

representation α1, · · ·αn are arranged in a clockwise fashion. As before, we denote by {Aa} the

collection of all possible non-empty subsets of the integers 1, · · ·n, and define γ(a) =
∑

i∈A(a) αi.

We shall order the Aa’s so that γ(a)’s form a clockwise order as a increases: γ(a) < γ(b) for

a < b. Now we begin with the product eαn · · · eα1 and then try to reverse the order using

(3.1), bringing this into a linear combination of terms of the form eγ(a1)eγ(a2) · · · eγ(ak) with

a1 < a2 < · · · < ak, γ
(a1) + · · · γ(ak) = α1 + · · ·αn:

eαn · · · eα1 =

n∑

k=1

∑

{a1,···ak}

γ(a1)+···γ(ak)=α1+···+αn;a1<a2···<ak

h(α1, · · ·αn; γ
(a1), · · ·γ(ak)) eγ(a1) · · · eγ(ak) , (3.2)

for some functions h. The gref for KS wall crossing formula, denoted by gKS, is given by the

coefficient of eα1+···+αn in this expression:

gKS(α1, · · ·αn) = h(α1, · · ·αn;α1 + · · ·αn) . (3.3)

11



For example for n = 2 we write

eα2eα1 = eα1eα2 + κ(α2, α1) eα1+α2 . (3.4)

Thus we have

gKS(α1, α2) = κ(α2, α1) . (3.5)

This agrees with the corresponding formula (2.3) for ghiggs(α1, α2). The equivalence of gKS(α1, · · ·αn)

and ghiggs(α1, · · ·αn) has been tested explicitly up to n ≤ 5 [30].

We shall now examine if gKS also satisfies the four properties of ghiggs listed at the end of

§2.

1. We shall first show that like in the expression for ghiggs given in (2.1), each term in gKS

can also be associated with a permutation, ı.e. gKS can be expressed as

gKS(α1, . . . , αn)

= (−1)−1+n(−y)−
∑

i<j αij
(
y − y−1

)1−n
∑

σ

N
(n)
KS({αi}; σ)(−y)

2
∑

l<k
σ(l)<σ(k)

ασ(l)σ(k)

= (−1)−1+n
(
y − y−1

)1−n
∑

σ

N
(n)
KS({αi}; σ)(−y)

∑
l<k ασ(l)σ(k) (3.6)

for some integers N
(n)
KS({αi}; σ). Suppose we begin with a pair of generators eαi

, eαj
and

pick up their commutator. Then the coefficient of this term, besides the (y − y−1)−1

term, is proportional to (−y)αij − (−y)−αij . The first term has the interpretation of a

permutation in which i is to the left of j and the second term has the interpretation of

being associated with a permutation in which j appears to the left of i. If we now pick

the commutator of eαi+αj
with a third generator eαk

, then we get a factor proportional

to (−y)αik+αjk − (−y)−αik−αjk . The first term has the interpretation of a permutation in

which the i and j are to the left of k and the second term has the interpretation of a

permutation in which k is to the left of i and j. Thus this can be combined with the

earlier ordering (ij) or (ji) without any conflict.3 This argument can be extended to

more general situations. Individual steps in arriving at (3.2) consists of manipulating a

product eγ(a)eγ(b) by reversing their order where γ(a) and γ(b) are defined as in (2.5) with

non-overlapping sets Aa and Ab. Now while reversing the order in the product eγ(a)eγ(b)

3In contrast if we had found a term like αik−αjk−αij in the exponent it would have the interpretation that
k is to the right of i and left of j, and j is to the left of i. Clearly there is no arrangement of i, j, k satisfying
these requirements.
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the commutator gives eγ(a)+γ(b) multiplied by a factor proportional to (−y)〈γ
(a),γ(b)〉 −

(−y)〈γ
(b),γ(a)〉. The first term can be regarded as coming from a configuration where all

the elements of Aa are to the left of all the elements of Ab and the second term can

be regarded as coming from a configuration where all the elements of Aa are to the

right of all the elements of Ab. Suppose further that earlier, while arriving at eγ(a) by

combining eαi
for i ∈ Aa we have gotten a sum of terms each of which can be associated

with the permutation of the elements inside Aa and a similar relation holds for eγ(b) .

When we multiply these by the (−y)〈γ
(a),γ(b)〉 − (−y)〈γ

(b),γ(a)〉 factor, individual terms in

the product will correspond to specific permutation of the elements inside Aa and specific

permutation of the elements inside Ab, and on top of that all the elements of Aa could

be to the left of all the elements of Ab or all the elements of Ab could be to the left of

all the elements of Aa. Thus each term multiplying eγ(a)+γ(b) can be regarded as coming

from some permutation of the elements of Aa ∪ Ab. This now shows by induction that

at every stage of the manipulation that leads to the KS formula for wall crossing, we

produce a set of terms each of which can be associated with a permutation of the αi’s

involved. As a result the final expression for gKS must also contain only those powers of

y which have the interpretation of being associated with a permutation as in (3.6). We

shall see this more explicitly in (5.4), (5.5), (5.7).

2. Like ghiggs, gKS is also a piecewise analytic function of the αi’s. The form of the function

depends on the relative orientation between γ(a) and α1 + · · ·αn and is independent of

the relative orientation between the γ(a)’s. This was proved in [30], but for completeness

we shall repeat the proof. Let us suppose that by manipulating the product eαn · · · eα1

we have brought it into the form (3.2). Since κ(γ, γ′) is an analytic function of γ, γ′,

it follows from (3.1) that the coefficient of eα1+···αn in this expression, which is given by

sum of products of κ(γ, γ′) with γ =
∑

i∈A αi, γ
′ =

∑
i∈B αi for some subsets A and B

of {1, 2, · · ·n}, is an analytic function of the αi’s inside a chamber in which the relative

order of the γ(a)’s is fixed. Now suppose that we deform some of the αi’s to make a pair of

γ(a)’s switch their relative orientation but none of the γ(a)’s cross the ray corresponding to

α1+ · · ·αn. In particular let us suppose that the relevant pairs are γ(b) and γ(c), and that

the deformation takes us from γ(b) < γ(c) to γ(b) > γ(c). In this case γ(b) and γ(c) are either

both on the left or both on the right of α1+· · ·αn. Let us for definiteness assume that they

are both to the left. Now to bring the products of eγ(a) ’s to the standard order we need to

express the product eγ(b)eγ(c) inside any term as eγ(c)eγ(b) + κ(γ(b), γ(c))eγ(b)+γ(c) . However
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since γ(b) and γ(c) are both on the left of α1+· · ·αn, the extra term proportional to eγ(b)+γ(c)

can never give a factor of eα1+···αn . Thus under such deformations gKS(α1, · · ·αn), which

is the coefficient of eα1+···αn at the end of this manipulation, remains unchanged. This

shows that gKS(α1, · · ·αn) is a piecewise analytic function of the αi’s, with the form of

the function determined by the relative orientation between the γ(a)’s and α1 + · · ·αn.

3. As in the case of ghiggs, one can improve the result if we focus on a term corresponding

to a given permutation σ. We shall show that in this case the coefficient depends only

on the relative orientation of
∑k

i=1 ασ(i) and α1 + · · ·αn for different values of k, and

not on the relative orientation between γ(a) and α1 + · · ·αn for other γ(a)’s. To see this

let us again suppose that by manipulating the product eαn · · · eα1 we have brought it

into the form (3.2). Now suppose that we deform the αi’s so that a specific γ(a) crosses

α1+ · · ·αn from left to right. At the same time the vector γ(b) ≡ α1+ · · ·αn−γ(a) crosses

α1+ · · ·αn from right to left. Before deformation the generators eγ(a) and eγ(b) would have

been arranged in the order eγ(a)eγ(b) , but after the deformation we need to reverse their

order picking up a term proportional to {(−y)〈γ
(a),γ(b)〉 − (−y)〈γ

(b),γ(a)〉}eα1+···αn. The first

term has the interpretation of all the elements in the set Aa being to the left of all the

elements in the set Ab (which is the complement of the set Aa) and the second term has

the interpretation of all the elements in the set Ab being to the left of all the elements

in the set Aa. Thus such a term can change the coefficient of a term associated with

the permutation σ only if in σ all the elements of Aa are to the left (or right) of all the

elements of the compliment of Aa. In other words Aa must contain a set of k elements

to the left (or a set of (n− k) elements to the right) for some integer k. This shows that

the coefficient of a term associated with the permutation σ in gKS can only depend on

the relative orientation between ασ(1) + · · ·ασ(k) and α1 + · · ·αn for different integers k

but not on the relative orientation between γ(a) and α1 + · · ·αn for other sets Aa.

4. Finally we turn to the fourth property of ghiggs which states that if a permutation σ

appears in ghiggs then its reverse permutation will also appear. As discussed at the end

of §2, this is equivalent to proving the symmetry of ghiggs under y → y−1. This property

is automatic in gKS since the y dependence arises from the κ(γ1, γ2) factors which are

manifestly invariant under y → y−1.

In the next two sections we shall prove the equality of gKS(α1, · · ·αn) and ghiggs(α1, · · ·αn)

for generic charge vectors {αi} for which all vectors of the form
∑

i∈A αi for different subsets
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A of {1, · · ·n} are strictly ordered. The special cases where some of these vectors are parallel

or identical to each other are then obtained as limts of this generic case. One question that

arises naturally is whether the limit is well defined, ı.e. whether it could depend on which side

we approach the limit from. This is somewhat obscure for the expression (2.1) for ghiggs since

it involves the step functions which jump discontinuously as the relative ordering between the

vectors in the argument switch. However for gKS defined through (3.2), (3.3) it is clear that

the limit is well defined, since the effect of switching the order between two vectors γ and γ′

vanishes as γ and γ′ become parallel to each other: eγeγ′ → eγ′eγ when γ and γ′ are parallel.

Thus for example if we approach a configuration where two vectors αi and αj become parallel

to each other, then the left hand side of (3.2) is independent of whether they approach this

configuration from the αi > αj side or αi < αj side. Similarly if a pair of γ(a)’s become

parallel to each other, then h(α1, · · ·αn;α1 + · · ·αn) appearing on the right hand side of (3.2)

is independent of how this limit is approached. Eq.(3.3) then shows that for gKS the limit to

degenerate configuration of vectors is well defined. The equality of gKS and ghiggs for generic

vectors, which will be proved in the next two sections, then implies that even for ghiggs the

limit to degenerate configurations of vectors is well defined, ı.e. it does not depend on which

side we take the limit from.

We must reemphasize however that for degenerate configurations of vectors ghiggs must be

defined as a limit of (2.1) for non-degenerate configurations. For example if we were to write

a computer program for computing ghiggs, the algorithm must involve adding to the αi’s some

randomly generated two dimensional vectors of small magnitude – which makes the configu-

ration non-degenerate – while computing N
(n)
higgs({αi}; σ), but while computing the exponent

∑
l<k ασ(l)σ(k) of (−y) we can continue to use the original vectors. For a fixed permutation

σ the quantities N
(n)
higgs({αi}; σ) may depend on the choice of the random vectors which we

add to the αi’s, but the argument of the previous paragraph shows that the final result for

ghiggs(α1, · · ·αn) will be independent of this choice.

4 Recursion relations for the KS wall crossing formula

We shall now derive a set of recursion relations for gKS(α1, · · ·αn). Since γ(a) =
∑

i∈Aa
αi, it

is clear that the eγ(a) factor in (3.2) arises as a result of manipulating the product of eαi
’s for

i ∈ Aa, to bring it from the anti-clockwise ordering to the clockwise ordering. Furthermore

the result of this manipulation is not affected by the αi’s outside the set Aa, and hence gives
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a factor of gKS({αi, i ∈ Aa}). Thus we get

h(α1, · · ·αn; γ
(a1), · · ·γ(ak)) =

k∏

ℓ=1

gKS({αi, i ∈ Aaℓ}) . (4.1)

Using this we may rewrite (3.2) as

eαn · · · eα1 =
n∑

k=1

∑

{a1,···ak}

γ(a1)+···γ(ak)=α1+···+αn;a1<a2···<ak

(
k∏

ℓ=1

gKS({αi, i ∈ Aaℓ})

)
eγ(a1) · · · eγ(ak) . (4.2)

We shall now use (4.2) to derive a recursive procedure for determining gKS. Suppose we

know the result for gKS(α1, · · ·αn). Then to find gKS(α1, · · ·αn, αn+1) with α1 < α2 < · · · <

αn < αn+1, we multiply eq.(4.2) from the left by eαn+1 , and then try to rearrange the right

hand side by moving eαn+1 to the extreme right, so that in each product the eγ’s have their γ’s

in clockwise order as we move from left to right. For example in the first step we write

eαn+1eγ(a1)eγ(a2) · · · eγ(ak) = eγ(a1)eαn+1eγ(a2) · · · eγ(ak) + κ(αn+1, γ
(a1))eγ(a1)+αn+1

eγ(a2) · · · eγ(ak) .

(4.3)

In the next step we manipulate the first term as

eγ(a1)eαn+1eγ(a2)eγ(a3) · · · eγ(ak)

= eγ(a1)eγ(a2)eαn+1eγ(a3) · · · eγ(ak) + κ(αn+1, γ
(a2))eγ(a1)eγ(a2)+αn+1

eγ(a3) · · · eγ(ak) . (4.4)

For the second term of (4.3) we have to consider two possibilities. If γ(a1) + αn+1 < γ(a2) we

already have all the terms in the product in the correct order and we can stop manipulating

this term. On the other hand if γ(a1) + αn+1 > γ(a2) we write

κ(αn+1, γ
(a1))eγ(a1)+αn+1

eγ(a2)eγ(a3) · · · eγ(ak)

= κ(αn+1, γ
(a1))eγ(a2)eγ(a1)+αn+1

eγ(a3) · · · eγ(ak)

+κ(αn+1, γ
(a1))κ(αn+1 + γ(a1), γ(a2))eγ(a1)+γ(a2)+αn+1

eγ(a3) · · · eγ(ak) . (4.5)

In the next step we shall need to manipulate the product of eγ(a3) with the terms to its left

and so on.

To extract gKS(α1, · · ·αn+1) from this we have to determine the coefficients of eα1+···αn+1 .

Now by examining (4.3) we can see that the first term on the right hand side can never

contribute to this sum. This is because we have γ(a1) < αn+1, γ
(a2), · · ·γ(ak). Thus whatever
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manipulation we do to bring eγ(a1)eαn+1eγ(a2) · · · eγ(an) in the clockwise order, the eγ(a1) will never

be involved in the manipulation and continue to sit at the left. Thus every term that we get

from this will have an eγ(a1) factor at the extreme left and we shall never get eα1+···αn+1 . By

the same logic, the first term on the right hand side of (4.5) will never produce eα1+···αn+1 . By

repeated use of this logic we see that the only term in eαn+1eγ(a1)eγ(a2) · · · eγ(ak) proportional to

eα1+···αn+1 is given by

κ(αn+1, γ
(a1))κ(αn+1+γ(a1), γ(a2)) · · ·κ(αn+1+γ(a1)+ · · · γ(ak−1), γ(ak)) eαn+1+γ(a1)+···γ(ak) , (4.6)

and furthermore this term exists only under the condition

αn+1+γ(a1) > γ(a2), αn+1+γ(a1)+γ(a2) > γ(a3), · · · , αn+1+γ(a1)+· · ·γ(ak−1) > γ(ak) . (4.7)

Using (4.2) we now get

gKS(α1, · · ·αn+1) =
n∑

k=1

∑

{a1,···ak}

γ(a1)+···γ(ak)=α1+···+αn; a1<a2···<ak

(
k∏

ℓ=1

gKS({αi, i ∈ Aaℓ})

)

×Θ(αn+1 + γ(a1), γ(a2))Θ(αn+1 + γ(a1) + γ(a2), γ(a3)) · · ·Θ(αn+1 + γ(a1) + · · · γ(ak−1) , γ(ak))

×κ(αn+1, γ
(a1))κ(αn+1 + γ(a1), γ(a2)) · · ·κ(αn+1 + γ(a1) + · · · γ(ak−1) , γ(ak)) , (4.8)

where Θ(γ1, γ2) has been defined in (1.5).

5 Equivalence of KS and ‘higgs branch’ wall crossing

formulæ

We shall now prove the equivalence of gKS and ghiggs using the method of induction, ı.e. we

shall assume that gKS(α1, · · ·αm) = ghiggs(α1, · · ·αm) for m ≤ n and then prove the result for

m = n + 1. The equality of gKS(α1, α2) and ghiggs(α1, α2) will then imply the equivalence of

gKS(α1, · · ·αn) and ghiggs(α1, · · ·αn) for all n.

5.1 gKS as a sum over permutations

Assuming the equality of gKS(α1, · · ·αm) = ghiggs(α1, · · ·αm) for m ≤ n we can replace gKS by

ghiggs on the right hand side of (4.8) and get

gKS(α1, · · ·αn+1) =
n∑

K=1

∑

{a1,···aK}

γ(a1)+···γ(aK )=α1+···+αn; a1<a2···<aK

(
K∏

ℓ=1

ghiggs({αi, i ∈ Aaℓ})

)
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×Θ(αn+1 + γ(a1), γ(a2))Θ(αn+1 + γ(a1) + γ(a2), γ(a3)) · · ·Θ(αn+1 + γ(a1) + · · · γ(aK−1) , γ(aK ))

×κ(αn+1, γ
(a1))κ(αn+1 + γ(a1), γ(a2)) · · ·κ(αn+1 + γ(a1) + · · ·γ(aK−1) , γ(aK)) . (5.1)

Note that we have replaced the summation variable k by K since soon we shall use the variable

k for other purposes. Let na be the total number of elements in the set Aa and let I
(a)
1 , · · · I

(a)
na

be the elements of Aa, ordered so that I
(a)
1 < I

(a)
2 < · · · I

(a)
na . After substituting the expression

for ghiggs given in (2.1) we get

gKS(α1, · · ·αn+1) =

n∑

K=1

∑

{a1,···aK}

γ(a1)+···γ(aK )=α1+···+αn; a1<a2···<aK

(−1)n−K(y − y−1)K−n

∑

σ̄
σ̄(Aak

)=Aak
∀ k

[{ K∏

ℓ=1

naℓ
−1∏

k=1

σ̄

(

I
(aℓ)
k+1

)

<σ̄

(

I
(aℓ)
k

)

Θ
( k∑

j=1

α
σ̄(I

(aℓ)

j )
,

naℓ∑

j=1

α
σ̄(I

(aℓ)

j )

)}

{ K∏

ℓ=1

naℓ
−1∏

k=1

σ̄

(

I
(aℓ)
k+1

)

>σ̄

(

I
(aℓ)
k

)

Θ
( naℓ∑

j=1

α
σ̄(I

(aℓ)

j )
,

k∑

j=1

α
σ̄(I

(aℓ)

j )

)}
(−y)

∑K
k=1

∑
l′,l∈Aak

, l<l′ ασ̄(l)σ̄(l′)

(−1)
∑K

ℓ=1

∑naℓ
−1

k=1 Θ
(
σ̄
(
I
(aℓ)

k

)
−σ̄

(
I
(aℓ)

k+1

))]
×

{K−1∏

k=1

Θ
(
αn+1 + γ(a1) + · · · γ(ak), γ(ak+1)

)}

K∏

ℓ=1

(
(−y)

∑
i∈Aaℓ

α(n+1)i+
∑ℓ−1

r=1

∑
j∈Aaℓ

,i∈Aar
αij − (−y)

−
∑

i∈Aaℓ
α(n+1)i−

∑ℓ−1
r=1

∑
j∈Aaℓ

,i∈Aar
αij

)

×(y − y−1)−K (5.2)

where in the expression the sum over σ̄ denotes sum over a restricted set of permutations each

of which permutes the elements of the set Aak among themselves for every k. We shall now

express the factor in the last but one line of (5.2) as

K∏

ℓ=1

(
(−y)

∑
i∈Aℓ

α(n+1)i+
∑ℓ−1

r=1

∑
j∈Aaℓ

,i∈Aar
αij − (−y)

∑
i∈Aaℓ

αi(n+1)+
∑ℓ−1

r=1

∑
i∈Aaℓ

,j∈Aar
αij

)
(5.3)

and expand this as a sum of 2K terms. After substituting this into (5.2) we get

gKS(α1, · · ·αn+1)

= (−1)n(y − y−1)−n
n∑

K=1

∑

{a1,···aK}

γ(a1)+···γ(aK )=α1+···+αn; a1<a2···<aK

(−1)K
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∑

σ̄
σ̄(Aak

)=Aak
∀ k

[{ K∏

ℓ=1

naℓ
−1∏

k=1

σ̄

(

I
(aℓ)
k+1

)

<σ̄

(

I
(aℓ)
k

)

Θ
( k∑

j=1

α
σ̄(I

(aℓ)

j )
,

naℓ∑

j=1

α
σ̄(I

(aℓ)

j )

)}

{ K∏

ℓ=1

naℓ
−1∏

k=1

σ̄

(

I
(aℓ)
k+1

)

>σ̄

(

I
(aℓ)
k

)

Θ
( naℓ∑

j=1

α
σ̄(I

(aℓ)

j )
,

k∑

j=1

α
σ̄(I

(aℓ)

j )

)}
(−y)

∑K
k=1

∑
l′,l∈Aak

, l<l′ ασ̄(l)σ̄(l′)

(−1)
∑K

ℓ=1

∑naℓ
−1

k=1 Θ
(
σ̄
(
I
(aℓ)

k

)
−σ̄

(
I
(aℓ)

k+1

))]
×

K−1∏

k=1

Θ
(
αn+1 + γ(a1) + · · · γ(ak), γ(ak+1)

)

K∑

q=0

(−1)K−q
∑

{s1,···sq}
1≤s1<s2···<sq≤K

(−y)
∑

ℓ 6=s1,···sq

(∑
i∈Aaℓ

αi(n+1)+
∑ℓ−1

r=1

∑
j∈Aar ,i∈Aaℓ

αij

)
+
∑

ℓ=s1,···sq

(∑
i∈Aaℓ

α(n+1)i+
∑ℓ−1

r=1

∑
i∈Aar ,j∈Aaℓ

αij

)

(5.4)

Here s1, · · · sq are the values of ℓ in (5.3) for which we pick the first term of the factor, where

for the rest of the values of ℓ we pick the second factor. The prefactor of (−1)n(y − y−1)−n on

the right hand side of (5.4) matches a similar factor in (2.1) with n replaced by n+1. Leaving

aside these factors the net power of (−y) in a given term in the right hand side of (5.4) is given

by

K∑

k=1

∑

l′,l∈Aak
l<l′

ασ̄(l)σ̄(l′) +
K∑

ℓ=1
ℓ 6=s1,···sq

∑

i∈Aaℓ

αi(n+1) +
∑

ℓ=s1,···sq

∑

i∈Aaℓ

α(n+1)i

+
K∑

ℓ=1
ℓ 6=s1,···sq

ℓ−1∑

r=1

∑

j∈Aar ,i∈Aaℓ

αij +
∑

ℓ=s1,···sq

ℓ−1∑

r=1

∑

i∈Aar ,j∈Aaℓ

αij (5.5)

This can be expressed as
n+1∑

i,j=1
i<j

ασ(i)σ(j) , (5.6)

where σ denotes a permutation of {1, · · ·n+ 1} given by

{σ(1), · · ·σ(n + 1)} = {σ̄(AaK ), · · · σ̄( 6Aasq ), · · · σ̄( 6Aas1
) · · · σ̄(Aa1), n+ 1, σ̄(Aas1

), · · · σ̄(Aasq )} .

(5.7)
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σ̄(Aaℓ) contains the elements of Aaℓ ordered according to the permutation σ̄ restricted to the

set Aaℓ . The symbol σ̄( 6Aaℓ) denotes that the corresponding σ̄(Aaℓ) is missing from the list,

since it is placed on the right hand side of n+ 1.

We shall now try to reorganize the sum in (5.4) by first summing over all contributions

corresponding to a given permutation σ of (1, · · ·n + 1), and then summing over σ. Let R

denote the position of n + 1 on the right hand side of (5.7), ı.e. σ(R) = n + 1. We introduce

sets of integers

B1 = {1, · · · I1 − 1}, B2 = {I1, · · · I2 − 1}, · · · Bp = {Ip−1, · · · (R− 1)} , (5.8)

and

Cq = {(R + 1), · · ·J1 − 1}, Cq−1 = {J1, · · ·J2 − 1}, · · · C1 = {Jq−1, · · · (n+ 1)} . (5.9)

for appropriate integers I1, · · · Ip−1 and J1, · · ·Jq−1 with p = K − q and I1 < I2 < · · · Ip−1 <

R < J1 < J2 < · · · < Jq−1 such that

{{σ(B1)}, · · · {σ(Bp)}} = {{σ̄(AaK )}, · · · {σ̄( 6Aasq )}, · · · {σ̄( 6Aas1
)} · · · {σ̄(Aa1)}}

{{σ(Cq)}, · · · {σ(C1)}} = {{σ̄(Aas1
)}, · · · {σ̄(Aasq )}} , (5.10)

as ordered sets. Thus σ(Ba)’s correspond to the sets of σ̄(Aai)’s in (5.7) to the left of (n + 1)

and σ(Ca)’s correspond to the sets of σ̄(Aai)’s in (5.7) to the right of (n+ 1). We also define:4

δ(a) =
∑

i∈Ba

ασ(i) =





∑I1−1
i=1 ασ(i) for a = 1∑Ia−1
i=Ia−1

ασ(i) for p− 1 ≥ a ≥ 2∑R−1
i=Ip−1

ασ(i) for a = p

,

τ (a) =
∑

i∈Ca

ασ(i) =





∑J1−1
i=R+1 ασ(i) for a = q∑Jq+1−a−1
i=Jq−a

ασ(i) for q − 1 ≥ a ≥ 2∑n+1
i=Jq−1

ασ(i) for a = 1

. (5.11)

The δ(a)’s correspond to the γ(ai)’s for i = K,K − 1, · · · , 6sq, · · · , 6s1, · · ·1 and τ (a)’s correspond
to the γ(ai)’s for i = sq, sq−1, · · · , s1 in (5.4). A pictorial representation of this arrangement can
be given as follows:

B1 · · · Bp R Cq · · · C1

σ ↓ σ ↓ σ ↓ σ ↓ σ ↓

{σ(1), · · · σ(I1 − 1)}, · · · {σ(Ip−1), · · · σ(R − 1)}, σ(R), {σ(R + 1), · · · σ(J1 − 1)}, · · · {σ(Jq−1), · · · σ(n+ 1)}

δ(1) · · · δ(p) αn+1 τ (q) · · · τ (1)

(5.12)

4We shall use the same index a for Ba, Ca, δ
(a) and τ (a). However it should be understood that for Ba and

δ(a) the index runs from 1 to p and for Ca and τ (a) the index runs from 1 to q.
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The last row describes the sum of all the ασ(i)’s in the sets in the last but one row. The

partitioning described above must satisfy the following constraints:

1. The restrictions a1 < a2 < · · · aK and s1 < s2 < · · · sq in (5.4) translate to the following

restrictions on {δ(a)}, {τ (a)}:

δ(1) > δ(2) > · · · > δ(p), τ (1) > τ (2) > · · · > τ (q) . (5.13)

2. Let us denote by γ̂(k) (1 ≤ k ≤ p+ q) the set of vectors {δ(1), · · · δ(p), τ (1), · · · τ (q)} ordered

so that γ̂(1) < γ̂(2) < · · · γ̂(p+q). Thus we have γ̂(k) = γ(ak) and the third set of Θ’s in

(5.4) imposes the constraints:

αn+1 + γ̂(1) + · · · γ̂(k) > γ̂(k+1) for k = 1, 2, · · ·p+ q − 1 . (5.14)

Using (1.6) this is equivalent to the condition

αn+1 + γ̂(1) > αn+1 + γ̂(1) + γ̂(2) > · · · > αn+1 + γ̂(1) + γ̂(2) + · · ·+ γ̂(p+q) = ᾱ . (5.15)

3. Since for Ia−1 ≤ k ≤ Ia− 1, k ∈ Ba, which is one of the Aai ’s appearing in (5.4), the first

and second set of Θ’s in (5.4) impose the constraints:

δ(a) >
k∑

i=Ia−1

ασ(i) for σ(k + 1) > σ(k), δ(a) <
k∑

i=Ia−1

ασ(i) for σ(k + 1) < σ(k),

Ia−1 ≤ k ≤ Ia − 2, 1 ≤ a ≤ p, I0 ≡ 1, Ip ≡ R . (5.16)

4. Similarly since for Ja−1 ≤ k ≤ Ja − 1, k ∈ Cq−a+1, which is one of the Aa’s appearing in

(5.4), the first and second set of Θ’s in (5.4) impose the constraints:

τ (q+1−a) >

k∑

j=Ja−1

ασ(j) for σ(k + 1) > σ(k),

τ (q+1−a) <
k∑

j=Ja−1

ασ(j) for σ(k + 1) < σ(k),

Ja−1 ≤ k ≤ Ja − 2, 1 ≤ a ≤ q, J0 ≡ R + 1, Jq ≡ n+ 2 .

(5.17)

Note that under the reversal of the permutation associated with σ the roles of τ (a) and

δ(a) get interchanged.
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We can now run the arguments in reverse to find an algorithm for computing gKS as a sum

over permutations and partitions. Given any permutation σ, we consider all possible choices of

the sets Ba and Ca encoded in the choice of the integers p, q, I1, · · · Ip−1, J1, · · ·Jq−1. It is easy

to see that for a given choice of σ and the integers p, q, I1, · · · Ip−1, J1, · · ·Jq−1, the summation

variable K = p + q and permutations σ̄ in (5.4) are completely fixed. We then need to verify

if the corresponding {δ(a)} and {τ (a)} satisfy the four conditions mentioned above. If they

do then we shall call this choice of {p, q, I1, · · · Ip−1, J1, · · ·Jq−1} an allowed partition. The

net contribution for a given σ is then obtained by summing over all the allowed partitions

weighted by the factors which appear in (5.4). With the help of (5.6), the contribution to

gKS(α1, · · ·αn+1) given in (5.4) may then be written as

gKS(α1, . . . , αn+1) = (−1)n
(
y − y−1

)−n
∑

σ

N
(n+1)
KS ({αi}; σ)(−y)

∑
l<k ασ(l)σ(k) , (5.18)

where

N
(n+1)
KS ({αi}; σ) =

∑

allowed partitions

(−1)q+
∑p

a=1 ka+
∑q

a=1 la , (5.19)

ka ≡
∑

k∈Ba, k+1∈Ba

Θ(σ(k)− σ(k + 1)), la ≡
∑

k∈Ca, k+1∈Ca

Θ(σ(k)− σ(k + 1)) . (5.20)

Our goal will be to show that N
(n+1)
KS ({αi}; σ) defined this way agrees with the coefficient

N
(n+1)
higgs ({αi}; σ) given in (2.1).

5.2 Deforming the αi’s

As mentioned in §1, we have taken the αi’s to be generic so that they have finite length and the

angle between two vectors of the form
∑

i∈S1
αi and

∑
i∈S2

αi for any pair of non-overlapping

sets S1, S2 is non-vanishing. We have also seen that neither the result for N
(n+1)
KS ({αi}; σ)

nor the result for N
(n+1)
higgs ({αi}; σ) changes under a deformation of the αi’s which preserves the

relative orientation of the αi’s and the relative orientation of
∑k

i=1 ασ(i) with respect to
∑n+1

i=1 αi

for all k. Our strategy now will be to use the freedom to deform the αi’s and by this process

bring some of the angles and lengths arbitrarily close to zero – much smaller than the angles

and lengths in the starting configuration. Since the angles and lengths which we have brought

arbitrarily close to zero are now much smaller than the other angles and lengths which we do

not change during the deformation – which we shall refer to as generic lengths and angles –

the computation of N
(n+1)
KS ({αi}; σ) given in (5.19) will simplify in this new configuration. We

22



shall then compare this N
(n+1)
KS ({αi}; σ) to N

(n+1)
higgs ({αi}; σ) obtained by replacing n by n+ 1 in

(2.1).

For notational simplicity it will be convenient to define the following quantities associated

with a given permutation σ:

α̃i = ασ(i), ᾱ =
n+1∑

j=1

αj =
n+1∑

j=1

α̃j , βk =
k∑

i=1

α̃i, for 1 ≤ i, k ≤ n+ 1 . (5.21)

In this notation we have the ordering

α̃i > α̃j if σ(i) > σ(j) ⇒ Θ(α̃i, α̃j) = Θ(σ(i)− σ(j)) . (5.22)

The allowed deformations are those which preserve the relative ordering of the α̃i’s and the

relative ordering between βk and ᾱ for each k.

Now if we deform all the α̃i’s at once, or even a pair of α̃i’s which are not placed next to

each other in the chain {α̃1, · · · α̃n+1}, it will change many βi’s at once, and we need to ensure

that none of these βi’s cross over from one side of ᾱ to the other side. For this reason we shall

deform the αi’s in nearest neighbor pairs: take a pair (α̃j, α̃j+1) and deform it to

(α̃j + λα̃j, α̃j+1 + λ′α̃j+1) , (5.23)

with (λ, λ′) a pair of real numbers satisfying the following conditions:

1. λ, λ′ > −1.

2. λα̃j + λ′α̃j+1 ∝ ᾱ. This condition determines λ′ in terms of λ and makes this into a one

parameter deformation.

3. At least one of λ or λ′ is negative. We can for definiteness take λ to be negative.

Clearly (5.23) and the first condition above ensures that in the new configuration α̃j , α̃j+1

preserve their directions. The first and the second condition ensure that with the new α̃i’s, the

new ᾱ remains parallel to the original ᾱ and continues to be directed along the first quadrant.

Finally the third condition ensures that at least one of the vectors among α̃j , α̃j+1 reduces its

length during this deformation. We have taken this to be the vector α̃j .

Now during this deformation all the βk’s for k < j are preserved, while we add a vector

λα̃j + λ′α̃j+1 ∝ ᾱ to the βk’s for k ≥ j + 1. Thus the βk’s for k < j and k > j cannot cross ᾱ,
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and as long as βj does not cross the vector ᾱ, this map preserves N
(n+1)
KS and N

(n+1)
higgs . We can

increase the magnitude of the deformation till one of the following situation is encountered:5

1. The orientation of βj may approach that of ᾱ. In order to preserve N
(n+1)
KS and N

(n+1)
higgs ,

we must stop the deformation infinitesimally before βj becomes exactly parallel to ᾱ. In

this case we shall say that βj has become almost parallel to ᾱ.

2. α̃j may approach zero. In this case βj = βj−1 + α̃j → βj−1. Thus such a situation can

arise before we encounter the first possibility only if βj and βj−1 were on the same side

of ᾱ to begin with. As before we need to stop the deformation infinitesimally before α̃j

becomes exactly zero. In this case we shall say that α̃j has been made almost zero.

3. α̃j+1 may approach zero. In this case βj = βj+1− α̃j+1 → βj+1 and hence such a situation

can arise before encountering the first case only if βj and βj+1 were on the same side of

ᾱ to begin with. In this case we shall say that α̃j+1 has been made almost zero.

If βj becomes almost parallel to ᾱ first we stop the process here. Otherwise we can continue

the process as follows. If we have made α̃j almost zero then we can repeat the process with the

pair (α̃j−1, α̃j+1). The deformation will now affect both βj−1 and βj , but βj = βj−1+ α̃j is now

almost equal to βj−1, and as long as we ensure that the deformation does not take βj−1 across

ᾱ, βj also does not cross ᾱ. Similarly if α̃j+1 has been made almost zero, we can continue

the analysis with the pair (α̃j, α̃j+2). Repeating this procedure we see that at any stage we

work with a pair (α̃k, α̃ℓ) (k ≤ j < ℓ) with all the intervening α̃i’s zero. This process stops

when βk becomes almost parallel to ᾱ. Once this happens, all the other βi’s for k < i < ℓ

(including the βj associated with the starting position) also become almost parallel to ᾱ since

the corresponding α̃i’s have already been made almost zero. We note furthermore that by our

previous argument (points 2 and 3 above) the chain cannot continue past a point k0 for which

βk0−1 and βk0 are on the opposite sides of ᾱ. The situation can be represented as




position i k k + 1 k + 2 · · · ℓ− 2 ℓ− 1 ℓ

α̃i ≃ · 0 0 · · · 0 0 ·

βi ≀‖ ᾱ ᾱ ᾱ · · · ᾱ ᾱ ·




, (5.24)

5Since our initial choice of vectors were generic we need not consider the case where two of these events
occur simultaneously except when it is occurs as a result of some identity that holds for generic {αi}’s.
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with all the βi’s for k ≤ i < ℓ being on the same side of ᾱ. Here the symbol ≀‖ denotes ‘almost

parallel to’. The only exception to this is when in the above diagram k = 1 or ℓ− 1 = n + 1.

Such a situation can arise if in the starting configuration all the βi’s for i ≤ j were on the same

side of ᾱ or all the βi’s for i ≥ j were on the same side of ᾱ. In the former case we may arrive

at a configuration in which all the α̃i’s and βi’s for 1 ≤ i < ℓ are almost zero but none of the

βi’s are almost parallel to ᾱ. In the latter case we can arrive at a situation where all the α̃i’s

for k < i ≤ n + 1 are almost zero and all the βi’s for k ≤ i ≤ n are almost equal (and hence

almost parallel) to ᾱ since by definition βn+1 = ᾱ.

In what follows, the neighborhood of the location of αn+1 will play a special role. We shall

denote the position of αn+1 by R, ı.e. α̃R = αn+1. Thus R marks the maximum of σ(i). We

shall carry out the manipulation described above by taking our starting pair to be (R− 1, R).

Except for the special cases mentioned in the last paragraph, which will be discussed separately

later, at the end of the manipulation we shall arrive at a situation where βR−1 and possibly

some other βi’s around it have been made almost parallel to ᾱ, and some of the α̃i’s around R

have been made almost zero. If the set of points where α̃i becomes almost zero includes also

the point R, then we do not carry out any further deformation of this system. If on the other

hand it does not extend beyond R−1 (e.g. for the case when βR−1 and βR are on the opposite

sides of ᾱ) then we start with the pair (R,R + 1) and carry out a similar manipulation. At

the end of this process we can have several situations:

1. Generically we would get a configuration in which we have




position P − 1 P P + 1 P + 2 · · · R− 1 R · · · Q− 2 Q− 1 Q

α̃i ≃ · · 0 0 · · · 0 0 · · · 0 0 ·

βi ≀‖ · ᾱ ᾱ ᾱ · · · ᾱ ᾱ · · · ᾱ ᾱ ·




,

(5.25)

for some positions R > P > 1 and R < Q < n+ 1 in the chain. Furthermore all the βi’s

for P ≤ i ≤ R− 1 must be on the same side of ᾱ and all the βi’s for R ≤ i ≤ Q− 1 must

be on the same side of ᾱ. Whether these two sets of βi’s lie on the same side of ᾱ or not

depends on whether in the initial configuration βR−1 and βR lie on the same side of ᾱ or

not.

2. If in the starting configuration all the βi’s for i ≤ R − 1 are on the same side of ᾱ then

the chain may continue all the way to the left, setting all the α̃i’s for i ≤ R−1 to almost
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zero. Similarly if all the βi’s for i ≥ R are on the same side of ᾱ then the chain may

continue all the way to the right setting α̃i to be almost zero for all i > R. We shall

consider these special cases separately.

It is useful to note that under a reversal of permutation, the role of β is played by
∑n+1

i=j α̃i =

ᾱ− βj−1. Thus to see the role of reversing the permutation we can express (5.25) as




position Q Q− 1 Q− 2 Q− 3 · · · R R− 1 · · · P + 1 P P − 1

α̃i ≃ · 0 0 0 · · · 0 0 · · · 0 · ·

ᾱ− βi−1 ≀‖ ᾱ ᾱ ᾱ ᾱ · · · ᾱ ᾱ · · · ᾱ · ·




.

(5.26)

Comparing (5.25) and (5.26) we see that the roles of the points P and Q are exchanged under

a reversal of permutation.

5.3 Constraining the permutations and partitions

We shall now show that by making use of the deformations described in §5.2 we can put severe

restrictions on the permutations σ, as well as the choices of the sets {Ba}, {Ca}, which can

contribute to N
(n+1)
KS ({αi}; σ). In particular we shall show that

1. N
(n+1)
KS ({αi}; σ) vanishes unless

βR−1 < ᾱ < βR . (5.27)

Combining this with the previous results we can also conclude that we must have

βi < ᾱ for P ≤ i ≤ R− 1, βi > ᾱ for R ≤ i < Q . (5.28)

2. For a configuration satisfying (5.27) the choice of the sets B1 and C1 described in (5.8),

(5.9) must be such that

I1 ≥ P + 1, Jq−1 ≤ Q . (5.29)

Thus B1 should include at least the elements (1, 2, · · ·P ) and C1 should include at least

the elements (Q,Q+ 1, · · ·n + 1).

3. In order that a permutation contributes to N
(n+1)
KS we must have

βk

{
< ᾱ for σ(k + 1) > σ(k),
> ᾱ for σ(k + 1) < σ(k),

, 1 ≤ k < P , (5.30)
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βk

{
< ᾱ for σ(k + 1) > σ(k),
> ᾱ for σ(k + 1) < σ(k),

, Q ≤ k < n+ 1 . (5.31)

Proof of (5.27): If βR−1 > ᾱ then clearly βR = βR−1+ α̃R = βR−1+αn+1 > ᾱ. Thus to prove

(5.27) we only have to show that N
(n+1)
KS vanishes when βR, βR−1 > ᾱ or βR, βR−1 < ᾱ. These

two cases are in fact related by permutation reversal, so it is enough to consider one of them.

We shall consider the case βR−1, βR < ᾱ.

We proceed as in §5.2, reducing α̃i’s for i < R one by one by starting with the pair (R−1, R).

As we have seen, when βP is almost parallel to ᾱ with all the α̃i for P < i ≤ R−1 almost zero,

then all βk for P ≤ k ≤ R − 1 become almost parallel to ᾱ. In particular we have βR−1 ≃ cᾱ

for some positive constant c. If at this stage α̃R = αn+1 has finite length, then we shall have

βR = βR−1+ α̃R ≃ cᾱ+αn−1 > ᾱ, contradicting our assumption that the starting configuration

has βR < ᾱ. This shows that before we reach the stage where βP becomes almost parallel to

ᾱ, α̃R = αn+1 should become almost zero. Let us stop the deformation as soon as α̃R becomes

almost zero and try to check if the required conditions are satisfied by any choice of the sets

{Ba}, {Ca}. Since we have stopped the deformation at a stage where some of the α̃i’s may be

almost zero but none of the βi’s are almost parallel to ᾱ, at least δ(1) and τ (1), which can be

identified as βI1−1 and ᾱ− βJq−1−1, remain generic. Now (5.13) shows that when we order the

δ(a)’s and τ (a)’s into the sets γ̂(k) with γ̂(1), · · · γ̂(p+q) in the order γ̂(1) < γ̂(2) < · · · < γ̂(p+q),

then γ̂(p+q) must be either δ(1) or τ (1) depending on whether δ(1) > τ (1) or τ (1) > δ(1). Thus

γ̂(p+q) and hence also ᾱ− γ̂(p+q) = αn+1+ γ̂(1)+ γ̂(2)+ · · · γ̂(p+q−1) are generic, ı.e. neither almost

zero nor almost parallel to ᾱ. In this case for k = p+ q− 1 we can drop the αn+1 from the left

hand side of (5.14) since it has been made almost zero, and express (5.14) as

γ̂(1) + · · · γ̂(p+q−1) > γ̂(p+q) . (5.32)

This is in obvious contradiction to the fact that γ̂(k)’s are ordered as

γ̂(1) < γ̂(2) < · · · < γ̂(p+q) . (5.33)

Thus we see that there is no choice of the sets {Ba}, {Ca} satisfying the necessary conditions.

This shows that unless (5.27) holds, N
(n+1)
KS ({αi}; σ) will vanish.

Proof of (5.29): We shall now examine, for a configuration satisfying (5.27), possible ways of

dividing the set to the left of R into the sets {Ba} and the set to the right of R into the sets {Ca}

subject to the constraints given in (5.13)-(5.17). For this we shall carry out the deformations
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all the way to the end so that the final configuration at the end of the deformation takes the

form (5.25). Now it follows from the ordering γ̂(1) < γ̂(2) < · · · < γ̂(p+q) that for any k we have

γ̂(1) + · · · γ̂(k) < γ̂(k+1) + γ̂(k+2) + · · ·+ γ̂(p+q) . (5.34)

On the other hand, it follows from (5.15) that

αn+1 + γ̂(1) + · · · γ̂(k) > ᾱ−
(
αn+1 + γ̂(1) + · · · γ̂(k)

)
= γ̂(k+1) + γ̂(k+2) + · · ·+ γ̂(p+q) . (5.35)

Let k0 be the minimum value of k for which γ̂(k0) is generic, ı.e. neither almost zero nor almost

parallel to ᾱ. In this case for k = k0 we can drop the αn+1 from the left hand side of (5.35)

since αn+1 has been made almost zero, and express it as

γ̂(1) + · · · γ̂(k0) > γ̂(k0+1) + γ̂(k0+2) + · · ·+ γ̂(p+q) . (5.36)

This is in obvious contradiction to (5.34) for k = k0 showing that our initial assumption must

be wrong. In other words all the γ̂(k)’s must be either almost zero or almost parallel to ᾱ.

Since the set {γ̂(k)} includes δ(1) =
∑I1−1

i=1 α̃i and τ (1) =
∑n+1

i=Jq−1
α̃i, they must also satisfy this

criterion. This can happen only if I1 > P and Jq−1 ≤ Q since otherwise δ(1) and/or τ (1) will

involve a sum of α̃i’s which have not been deformed and hence must be generic. Thus we must

satisfy (5.29), and as a consequence δ(1) and τ (1) are almost parallel to ᾱ.

Proof of (5.30), (5.31): For this we first test (5.16) for a = 1. Since I0 = 1, we have∑k
i=I0

ασ(i) = βk for k ∈ B1. Since for i < P we have not deformed α̃i’s and βi’s, they are

generic. On the other hand as argued above δ(1) appearing in (5.16) for a = 1 is almost parallel

to ᾱ. Hence in testing (5.16) for a = 1 and k < P , replacing δ(1) by ᾱ does not make any

difference. After making these replacements we get βk < ᾱ for σ(k + 1) > σ(k) and βk > ᾱ

for σ(k + 1) < σ(k) for 1 ≤ k < P . This gives (5.30). Similarly testing (5.17) for a = q we get

(5.31) since this is related to the previous case by a reversal of permutation.

5.4 Comparison with the constraints on σ for non-vanishing N
(n+1)
higgs ({αi}; σ)

The constraints on σ and the choice of the sets {B(a)}, {C(a)} derived in §5.3 are necessary but

not sufficient for getting a non-vanishing contribution to N
(n+1)
KS ({αi}; σ). Nevertheless it will

be useful at this stage to compare them with the constraints on σ needed for N
(n+1)
higgs ({αi}; σ)

to be non-vanishing. According to (2.1) the latter constraints are given by:

βk

{
< ᾱ for σ(k + 1) > σ(k),
> ᾱ for σ(k + 1) < σ(k),

, for 1 ≤ k ≤ n . (5.37)
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Since σ(R) = n+1 is larger than both σ(R− 1) and σ(R+1), (5.37) for k = R− 1 and k = R

gives:

βR−1 < ᾱ, βR > ᾱ . (5.38)

The conditions on βR−1, βR given in (5.38) agree with the corresponding constraints (5.27)

required for N
(n+1)
KS to be non-vanishing. Furthermore, comparing (5.37) with (5.30), (5.31) we

see that in the range 1 ≤ k < P and Q ≤ k ≤ n, the condition on (βk, α̃k, α̃k+1) needed for

getting non-zero N
(n+1)
higgs agrees with the condition on (βk, α̃k, α̃k+1) needed for getting non-zero

N
(n+1)
KS . Thus we need to focus on the (βk, α̃k, α̃k+1)’s for P ≤ k ≤ Q − 1 and show that for

these also the conditions agree. Since all the βk’s for P ≤ k ≤ R − 1 are on the same side of

ᾱ and all the βk’s for R ≤ k < Q are on the same side of ᾱ, we see from (5.38) that we have

βk < ᾱ for P ≤ k ≤ R− 1 and βk > ᾱ for R ≤ k ≤ Q− 1. Thus (5.37) takes a simple form in

the range P ≤ k ≤ Q− 1:

σ(k + 1) > σ(k) for P ≤ k ≤ R− 1, σ(k + 1) < σ(k) for R ≤ k ≤ Q− 1 , (5.39)

ı.e. the α̃i’s between P and R must be in the increasing sequence and the α̃i’s between R and

Q must be in the decreasing sequence. Furthermore for configurations satisfying (5.39), N
(n+1)
higgs

given in (2.1) takes the form

N
(n+1)
higgs ({αi}; σ) = (−1)s(σ)−1 ,

s(σ)− 1 = (Q− R) +

P−1∑

k=1

Θ(σ(k)− σ(k + 1)) +

n∑

k=Q

Θ(σ(k)− σ(k + 1)) , (5.40)

where the additive factor of Q − R arises from the contribution for R ≤ k ≤ Q − 1. Thus it

remains to prove that for configurations satisfying (5.28), (5.30), (5.31),

1. N
(n+1)
KS is non-vanishing only for configurations which satisfy (5.39).

2. For these configurations N
(n+1)
KS computed from (5.19) agrees with N

(n+1)
higgs given in (5.40).

5.5 Proof of N
(n+1)
KS = N

(n+1)
higgs

We shall now compute N
(n+1)
KS for a given permutation σ and show that the result agrees with

that of N
(n+1)
higgs . We shall begin by analyzing the constraints on α̃k, βk for k ≤ R−1, ı.e. for points

to the left of R. By using the deformation we have set the α̃i’s in the range P < k ≤ R− 1 to

be almost zero but so far we have not said anything about their relative magnitudes. We now
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note that the order in which the vectors are reduced to almost zero during our manipulation is

(α̃R−1, α̃R−2, · · · α̃P+1), ı.e. we first make α̃R−1 almost zero, then α̃R−2 almost zero and so on.

Thus we can arrange the deformations such that the magnitudes of the α̃i are arranged in the

order:

|α̃R−1| << |α̃R−2| << · · · << |α̃P+1| , (5.41)

where now the inequalities refer to standard inequalities between ordinary numbers. This leads

to the equation
ℓ′∑

i=ℓ

α̃i ≃ α̃ℓ for P < ℓ ≤ ℓ′ ≤ R − 1 . (5.42)

It now follows that

δ(a) =

Ia−1∑

i=Ia−1

α̃i ≃ α̃Ia−1 , for a ≥ 2 , (5.43)

since we have shown earlier that I1 > P and hence Ia−1 > P for a ≥ 2. The condition (5.13)

and the fact that δ(1) is almost parallel to ᾱ now gives

ᾱ > α̃I1 > α̃I2 > · · · > α̃Ip−1 . (5.44)

Let us now examine condition (5.16) by expressing it as

δ(a) <

Ia−1∑

i=k+1

ασ(i) for σ(k + 1) > σ(k), δ(a) >

Ia−1∑

i=k+1

ασ(i) for σ(k + 1) < σ(k),

Ia−1 ≤ k ≤ Ia − 2 . (5.45)

Using α̃i ≡ ασ(i) and (5.42), (5.43) we can write this as

α̃Ia−1 < α̃k+1 for α̃k+1 > α̃k, α̃Ia−1 > α̃k+1 for α̃k+1 < α̃k,

for Ia−1 ≤ k ≤ Ia − 2, a ≥ 2 ,

ᾱ < α̃k+1 for α̃k+1 > α̃k, ᾱ > α̃k+1 for α̃k+1 < α̃k,

for P ≤ k ≤ I1 − 2 . (5.46)

A similar set of constraints can be derived for the α̃i’s for R < i < Q by working on the other

side of R.

Finally we have to worry about the constraint (5.14). Since we have the βi’s for P ≤ i ≤

R−1 and the βi’s for R ≤ i < Q on opposite sides of ᾱ, it follows from our previous discussion
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that while manipulating the elements on the left hand side of R, the elements on the right

hand side of R remain fixed. At the end of the first set of deformations α̃n+1 as well as all the

α̃i’s on the right hand side of R remain finite. During the second set of deformations involving

elements on the right hand side of R also α̃n+1 remains finite almost till the end, and becomes

almost zero only at the very last stage. Thus its magnitude can be taken to be larger than

that of all the other almost zero α̃i’s. We can now consider three possible situations depending

on the value we take for k in (5.14):

1. The γ̂(i)’s which appear in the sum on the left hand side of (5.14) contains only δ(a)’s

or τ (a)’s for a ≥ 2. Since these are smaller in magnitude compared to αn+1, while

testing (5.14) we can replace the left hand side of this equation by αn+1. In such cases

these equations hold trivially since any linear combinations of the αi’s with non-negative

coefficients is < αn+1. Let ℓ0 be the integer such that for all k < ℓ0 the situation is as

described above, ı.e. for all k < ℓ0, γ̂
(k) corresponds to either δ(a) or τ (a) with a ≥ 2.

2. For k = ℓ0 the γ̂(ℓ0) in the sum is either δ(1) or τ (1) depending on whether δ(1) < τ (1) or

τ (1) < δ(1). Let us for definiteness assume that this is τ (1). Now the left hand side of

(5.14) will become almost equal to τ (1) and hence is almost parallel to ᾱ. But now the

γ̂(ℓ0+1) on the right hand of the equation is either δ(a) or τ (a) for some a ≥ 2 and hence

is, by eqs.(5.43), (5.44) and the corresponding equations for τ (a), < ᾱ and not almost

parallel to ᾱ. Thus (5.14) still holds. The same argument holds for all subsequent values

of k till k = p + q − 2, with the left hand side almost parallel to ᾱ and the right hand

side < ᾱ and not almost parallel to ᾱ.

3. For k = p + q − 1 the right hand side of (5.14) becomes γ̂(p+q) = δ(1). The left hand

side of the equation is now ᾱ − δ(1). Since both sides are almost parallel to ᾱ we need

to carry out the comparison with a little more care. For this note that (5.14), which

requires ᾱ − δ(1) > δ(1) is equivalent to requiring δ(1) < ᾱ. Since δ(1) = βI1−1 and

P ≤ I1 − 1 ≤ R− 1, (5.28) ensures that δ(1) < ᾱ. Thus (5.14) still holds.

From this we conclude that (5.14) does not impose any additional constraints on the βk’s and

α̃k’s once the other conditions have been satisfied. A similar conclusion holds for the βk’s and

α̃k’s for k > R.

We now need to compute the contribution to N
(n+1)
KS from the allowed configurations. The

net contribution to N
(n+1)
KS comes from summing the weight factor given in (5.19) over all
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possible choice of p and q and the integers I1, · · · Ip−1, J1, · · ·Jq−1 subject to all the constraints.

Now of the constraints given in (5.13)-(5.17), the constraints (5.14) (or equivalently (5.15)) are

the only ones which involve both the sets {Ba} and {Ca}. Since we have argued that these

constraints are automatically satisfied when the other constraints are satisfied, the constraints

on {p, I1, · · · Ip−1} and {q, J1, · · ·Jq−1} become independent of each other and hence we can

carry out the sum over {p, I1, · · · Ip−1} and {q, J1, · · ·Jq−1} independently, and express (5.19)

as

∑

allowed values of
{p,I1,···Ip−1}

(−1)
∑p

a=1

∑Ia−1
k=Ia−1

Θ(σ(k)−σ(k+1))
×

∑

allowed values of
{q,J1,···Jq−1}

(−1)
q+

∑q
a=1

∑Ja−1
k=Ja−1

Θ(σ(k)−σ(k+1))
.

(5.47)

We shall first carry out the sum over p and I1, · · · Ip−1. Besides the constraints given in (5.44),

(5.46), we also need to account for the constraint (5.29) that I1 must be ≥ P + 1. Taking into

account all the constraints and introducing a new variable k = p− 1 we may express the net

contribution as:

(−1)
∑P−1

i=1 Θ(α̃i,α̃i+1)

{ R−2∏

i=P

[
Θ
(
α̃i+1, ᾱ

)
Θ
(
α̃i+1, α̃i)

)
−Θ

(
ᾱ, α̃i+1

)
Θ
(
α̃i, α̃i+1

)]

+

R−P−1∑

k=1

R−1∑

I1=P+1

R−1∑

I2=I1+1

R−1∑

I3=I2+1

· · ·

R−1∑

Ik=Ik−1+1

{
Θ(ᾱ, αI1)

k−1∏

ℓ=1

Θ
(
α̃Iℓ , α̃Iℓ+1

)

I1−2∏

i=P

[
Θ
(
α̃i+1, ᾱ

)
Θ
(
α̃i+1, α̃i

)
−Θ

(
ᾱ, α̃i+1

)
Θ
(
α̃i, α̃i+1

)]

k−1∏

ℓ=1

Iℓ+1−2∏

i=Iℓ

[
Θ
(
α̃i+1, α̃Iℓ

)
Θ
(
α̃i+1, α̃i)

)
−Θ

(
α̃Iℓ , α̃i+1

)
Θ
(
α̃i, α̃i+1

)]

R−2∏

i=Ik

[
Θ
(
α̃i+1, α̃Ik

)
Θ
(
α̃i+1, α̃i)

)
−Θ

(
α̃Ik , α̃i+1

)
Θ
(
α̃i, α̃i+1

)]}}
. (5.48)

In this expression k = p − 1 denotes the total number of Ba’s other than B1. The first term

represents the k = 0 term where there is a single set B1 containing all the elements from 1

to R − 1, and the product of the Θ’s account for the constraint (5.46). In the other terms

the Iℓ’s mark the beginning of the set Bℓ+1 as in (5.8). The product of the Θ’s in the second

line of (5.48) impose the constraints (5.44) and the Θ’s in the last three lines of (5.48) impose

the constraints (5.46). The − sign between the two terms in the first line and the last three

lines originate from the (−1)
∑p

a=1

∑Ia−1
i=Ia−1

Θ(σ(i)−σ(i+1))
factor in (5.47). It takes care of the
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contribution from the pairs (i, i + 1) for P ≤ i ≤ R − 1, but not for values of i outside this

range (e.g. for 1 ≤ i < P ) which has been included as an overall factor at the beginning of

(5.48).

Using the fact that Θ(α̃i, α̃j) = Θ(σ(i) − σ(j)) where the second Θ denotes an ordinary

step function, we can convert (5.48) into a purely combinatoric expression as follows. Let k0

be the integer for which αk0 < ᾱ < αk0+1. We now define c to be any number between k0 and

k0 + 1. Then Θ(α̃i, ᾱ) = Θ(σ(i)− c) and we may rewrite (5.48) as

(−1)
∑P−1

i=1 Θ(σ(i)−σ(i+1))

[ R−2∏

i=P

[
Θ
(
σ(i+ 1)− c

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
c− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

+

R−P−1∑

k=1

R−1∑

I1=P+1

R−1∑

I2=I1+1

R−1∑

I3=I2+1

· · ·

R−1∑

Ik=Ik−1+1

{
Θ(c− σ(I1))

k−1∏

ℓ=1

Θ
(
σ(Iℓ)− σ(Iℓ+1)

)

I1−2∏

i=P

[
Θ
(
σ(i+ 1)− c

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
c− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

k−1∏

ℓ=1

Iℓ+1−2∏

i=Iℓ

[
Θ
(
σ(i+ 1)− σ(Iℓ)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
σ(Iℓ)− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

R−2∏

i=Ik

[
Θ
(
σ(i+ 1)− σ(Ik)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
σ(Ik)− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]}]
.

(5.49)

We now make use of the identity –proved in appendix B – that for any function f(i) satisfying

f(i) 6= f(j) for i 6= j and any constant c, we have

N−1∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

+
N−1∑

k=1

N∑

I1=2

N∑

I2=I1+1

N∑

I3=I2+1

· · ·
N∑

Ik=Ik−1+1

{
Θ(c− f(I1))

k−1∏

ℓ=1

Θ
(
f(Iℓ)− f(Iℓ+1)

)

I1−2∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

k−1∏

ℓ=1

Iℓ+1−2∏

i=Iℓ

[
Θ
(
f(i+ 1)− f(Iℓ)

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
f(Iℓ)− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]
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N−1∏

i=Ik

[
Θ
(
f(i+ 1)− f(Ik)

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
f(Ik)− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]}

=

N−1∏

i=1

Θ(f(i+ 1)− f(i)) . (5.50)

It is easy to see that except for the factor in the first line of (5.49), the left hand side (5.50)

reduces to (5.49) under the identification N = R− P , f(i) = σ(i+ P − 1) and a renaming of

the variables Iℓ to Iℓ − P + 1. Thus (5.49) becomes

(−1)
∑P−1

i=1 Θ(σ(i)−σ(i+1))

R−2∏

i=P

Θ(σ(i+ 1)− σ(i)) . (5.51)

The product of the Θ’s coincide with the first set of conditions given in (5.39).

The case where all the α̃i’s for 1 ≤ i ≤ R − 1 are almost zero requires special treatment.

In this case (5.41) holds all the way to α̃1 with |α̃1| being the largest and (5.42) holds for

1 ≤ ℓ ≤ ℓ′ ≤ R − 1. Thus we have δ(1) ≃ α̃1 and the analog of (5.49) takes the form

R−2∏

i=1

[
Θ
(
σ(i+ 1)− σ(1)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
c− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

+

R−2∑

k=1

R−1∑

I1=2

R−1∑

I2=I1+1

R−1∑

I3=I2+1

· · ·

R−1∑

Ik=Ik−1+1

{
Θ(σ(1)− σ(I1))

k−1∏

ℓ=1

Θ
(
σ(Iℓ)− σ(Iℓ+1)

)

I1−2∏

i=1

[
Θ
(
σ(i+ 1)− σ(1)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
σ(1)− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

k−1∏

ℓ=1

Iℓ+1−2∏

i=Iℓ

[
Θ
(
σ(i+ 1)− σ(Iℓ)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
σ(Iℓ)− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]

R−2∏

i=Ik

[
Θ
(
σ(i+ 1)− σ(Iℓ)

)
Θ
(
σ(i+ 1)− σ(i)

)
−Θ

(
σ(Iℓ)− σ(i+ 1)

)
Θ
(
σ(i)− σ(i+ 1)

)]}
.

(5.52)

This is identical to the left hand side of (5.50) with c replaced by σ(1), f(i) replaced by σ(i)

and N replaced by R− 1. Thus the result is

R−2∏

i=1

Θ(σ(i+ 1)− σ(i)) . (5.53)
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We can analyze the contribution from the right hand side of R by summing over all possible

choices of q and J1, · · ·Jq−1. Since this is related to the previous analysis by a reversal of

permutation the result can be read out from our previous analysis. However there are two

important effects which need to be taken into account. First of all (5.47) has a factor of (−1)q

which in the present context will turn into (−1)k+1. Second in order to convert this problem

to the previous case we need to flip the sign of each term inside [ ] in (5.48) since the pair

(i, i + 1) goes over to (i′ + 1, i′) for some i′ under permutation reversal. This gives a factor

of (−1)f where f essentially counts the total number of nearest neighbor pairs between R+ 1

and Q except the links which connect the end point of Ca to the starting point of Ca−1 for

2 ≤ a ≤ q. Thus we have f = Q−R− 1− (q− 1) = Q−R− k− 1 and hence the net factor is

(−1)f+k+1 = (−1)Q−R . (5.54)

The result of summing over the locations of J1, · · ·Jq−1 in the range R to Q is now given by

(−1)
∑n

i=Q Θ(σ(i)−σ(i+1))(−1)Q−R

Q−1∏

j=R+1

Θ(σ(j)− σ(j + 1)) , (5.55)

both when Q < n + 1 and when Q = n + 1. This shows that between R and Q the σ(j)’s

must form a decreasing sequence. The first factor in (5.55) is the contribution from the points

between Q and n+ 1.

Eqs.(5.51) and (5.55) and the fact that σ(R) = n+ 1 > σ(R− 1), σ(R+ 1) together give

σ(k + 1) > σ(k) for P ≤ k ≤ R− 1, σ(k + 1) < σ(k) for R ≤ k ≤ Q− 1 . (5.56)

which precisely correspond to the condition (5.39) for ghiggs to be non-vanishing. The net

contribution to N
(n+1)
KS for a configuration satisfying (5.56) and the other conditions described

in §5.3 is now given by the product of (5.51) and (5.55) (with P replaced by 1 or Q replaced

by n + 1 in special cases). The result is

N
(n+1)
KS ({αi}; σ) = (−1)r(σ), r(σ) = Q−R +

P−1∑

i=1

Θ(σ(i)− σ(i+ 1)) +

n∑

i=Q

Θ(σ(i)− σ(i+ 1)) .

(5.57)

This is in perfect agreement with (5.40).

Finally we note that the very special cases when R itself lies at either end can also be easily

incorporated in this analysis. For example if R = 1 we simply need to drop the
∑P−1

i=1 Θ(σ(i)−

σ(i + 1)) term and if R = n + 1 we shall need to drop the Q − R +
∑n

i=QΘ(σ(i) − σ(i + 1))

term. These are also in agreement with the corresponding formula (5.40) for N
(n+1)
higgs .
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6 An alternative approach to proving the equivalence of

the Higgs branch and KS wall crossing formulæ

In §4 and §5 we gave a proof of the equality of gKS and ghiggs for generic choice of the arguments

α1, · · ·αn. This proof used the definition of gKS given in §3 based on the universal enveloping

algebra of the Lie algebra (3.1). The referee suggested a simpler approach based on the

quantum torus algebra

eγeγ′ = (y − y−1)−1 (−y)〈γ,γ
′〉eγ+γ′ , (6.1)

which provides a representation of (3.1). The KS wall crossing formula takes the form:

∏

γ clockwise

exp
[
Ω̄−

ref(γ, y) eγ
]
=

∏

γ anti-clockwise

exp
[
Ω̄+

ref(γ, y) eγ
]
, (6.2)

where
∏

γ clockwise (
∏

γ anti-clockwise) denotes product over all vectors γ ∈ Λ, and the terms

in the product arranged such that as we move from the left to the right the corresponding γ’s

are arranged clockwise (anti-clockwise) in the two dimensional plane. Expanding both sides

using (6.1), and collecting the coefficient of eγ from each side, we get

∞∑

m=1

∑

β1,···βm∈Λ
β1+···βm=γ, β1≤β2≤···≤βm

1

|Aut({β1, · · ·βm})|
(y − y−1)−m(−y)

∑
i<j βij

m∏

i=1

Ω̄−
ref(βi, y)

=
∞∑

n=1

∑

α1,···αn∈Λ
α1+···αn=γ, α1≤α2≤···≤αn

1

|Aut({α1, · · ·αn})|
(y − y−1)−n(−y)−

∑
i<j αij

n∏

i=1

Ω̄+
ref(αi, y) , (6.3)

where by βi = βj we mean βi is either equal or parallel to βj. We now substitute in the left

hand side of this equation the expression for Ω̄−
ref(βi, y) in terms of Ω̄+

ref(αi, y)’s using eqs.(1.3)

with gref replaced by gKS. This gives

∞∑

m=1

∑

β1,···βm∈Λ
β1+···βm=γ, β1≤β2≤···≤βm

1

|Aut({β1, · · ·βm})|
(y − y−1)−m(−y)

∑
i<j βij

m∏

k=1

∑

sk≥1

∑

unordered setα
(k)
1

,...,α
(k)
sk

∈Λ

α
(k)
1 +...+α

(k)
sk

=βk

gKS(α
(k)
1 , . . . , α

(k)
sk )

|Aut({α
(k)
1 , . . . , α

(k)
sk })|

∏sk

i=1
Ω̄+

ref(α
(k)
i , y)

=
∞∑

n=1

∑

α1,···αn∈Λ
α1+···αn=γ, α1≤α2≤···≤αn

1

|Aut({α1, · · ·αn})|
(y − y−1)−n(−y)−

∑
i<j αij

n∏

i=1

Ω̄+
ref(αi, y) . (6.4)
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Comparing the coefficient of
∏n

i=1 Ω̄
+
ref(αi, y) in two sides of this equation we can get a set of

recursion relations involving gKS(α1, · · ·αn) from which we can determine gKS(α1, · · ·αn). Thus

proving the equivalence of gKS and ghiggs is equivalent to checking if ghiggs satisfies the same set

of relations (6.4) as gKS. For this we replace gKS in (6.4) by the expression for ghiggs given in

(2.1) for generic arguments and try to verify the resulting equation. Comparing the coefficients

of
∏n

i=1 Ω̄
+
ref(αi, y) on both sides of this equation for generic αi’s for which

α1 < α2 < · · · < αn (6.5)

and
∑

i∈A αi and
∑

i∈B αi are different from each other for any choice of non-overlapping sets

A and B of {1, 2, · · ·n}, we get:

∑

permutationsσ
of 1,2,···n

n∑

m=1

∑

n1,···nm
0≡n0<n1<n2<···<nm≡n

(y − y−1)−m

{
m−1∏

k=1

Θ (βk+1, βk)

}
(−y)

∑m−1
k=1

∑m
l=k+1〈βk,βl〉

(−1)n−m(y − y−1)m−n(−y)
∑m

k=1

∑nk−1

i=nk−1+1

∑nk
j=i+1 ασ(i)σ(j)(−1)

∑m
k=1

∑nk−1

i=nk−1+1 Θ(ασ(i),ασ(i+1))

m∏

k=1





nk−1∏

i=nk−1+1

σ(i)>σ(i+1)

Θ




i∑

j=nk−1+1

ασ(j), βk




nk−1∏

i=nk−1+1

σ(i)<σ(i+1)

Θ


βk,

i∑

j=nk−1+1

ασ(j)








= (y − y−1)−n (−y)−
∑

i<j αij ,

βk ≡

nk∑

j=nk−1+1

ασ(j) . (6.6)

The sum over σ runs over all permutations of {1, 2, · · ·n}. For a fixed σ, the different choices

of the integers nk correspond to different partitioning of the ordered set {ασ(1), · · ·ασ(n)}. The

sum of the vectors inside the partitions from left to right are given by β1, · · ·βm, satisfying the

constraint β1 < β2 < · · · < βm as in the left hand side of (6.4).6 After cancelling the (y−y−1)−n

factors from the two sides, we note that the net power of (−y) on the left hand side is given

by
∑n−1

i=1

∑n
j=i+1 ασ(i)σ(j), ı.e. the power of (−y) is determined only by the permutation σ and

is independent of the choice of the integers m and n1, · · ·nm which partitions the vectors into

{β1, · · ·βm}. Comparing the different powers of y on the two sides of (6.6) we now get

n∑

m=1

∑

n1,···nm
0≡n0<n1<n2<···<nm≡n

{
m−1∏

k=1

Θ (βk+1, βk)

}
(−1)

n−m+
∑m

k=1

∑nk−1
i=nk−1+1 Θ(ασ(i),ασ(i+1))

6Note that since we are taking the αi’s to be generic, we do not consider the case where some of the βk’s
are equal or parallel to each other.
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m∏

k=1





nk−1∏

i=nk−1+1

σ(i)>σ(i+1)

Θ




i∑

j=nk−1+1

ασ(j), βk




nk−1∏

i=nk−1+1

σ(i)<σ(i+1)

Θ


βk,

i∑

j=nk−1+1

ασ(j)








=
{
1 for σ(1, 2, · · ·n) = (n, n− 1, · · · , 1)
0 otherwise

(6.7)

For a fixed σ, we shall refer to the choice of m and {n1, · · ·nm} for which the summand is

non-vanishing as an allowed partition.

Our goal now is to prove (6.7). We begin with the case σ(1, 2, · · ·n) = (n, n− 1, · · ·1). In

this case the only way to avoid a vanishing contribution from the
∏m−1

k=1 Θ (βk+1, βk) factor is

to choose m = 1, n1 = n. In this case the condition (6.5) tells us that

ασ(i) > ασ(i+1),

i∑

j=1

ασ(j) > β1 = α1 + · · ·αn . (6.8)

Hence the product of the step functions given in the last line on the left hand side of (6.7)

is 1 since for all i we have σ(i) > σ(i + 1) and
∑i

j=1 ασ(j) > β1. The sign of the term is

(−1)n−1+n−1 = 1. Thus the result is 1 in agreement with the right hand side of (6.7).

To deal with the case of other permutations, we note first of all that the right hand side of

(6.7) is independent of the αi’s. Thus we need to show that the left hand side of this equation

must also be invariant under deformations of the αi’s as long as we preserve the order (6.5).

This is not manifest, e.g. during such deformations of the αi’s, in a given term in (6.7) βk

and βk+1 defined in (6.6) may go from βk < βk+1 to βk > βk+1 and as a result Θ(βk+1, βk)

may jump from 1 to 0. Thus if we choose n1, · · ·nm such that initially we have βk < βk+1,

and the restrictions imposed by the various other step functions in (6.7) are satisfied so that

we have a non-zero contribution, during the deformation we may arrive at βk > βk+1 so that

this term ceases to contribute. Thus to show that the left hand side of (6.7) is unchanged

during such a deformation we must identify another contribution that either ceases to exist or

begins to exist when βk and βk+1 switches order, compensating for the change caused due to

the previous effect. We consider two cases separately: ασ(nk) < ασ(nk+1) and ασ(nk) > ασ(nk+1).

In the first case it is easy to see that as long as βk < βk+1, the configuration with m → m− 1,

and the βk’s chosen as {β1, · · ·βk−1, βk + βk+1, βk+2, · · ·βm} also contributes to the left hand

side of (6.6), and furthermore, this configuration also ceases to contribute when we cross over

to the side where βk > βk+1. Furthermore for βk < βk+1 the contribution from these two

configurations have opposite signs so that the sum of the two terms vanishes and there is no

net change in the left hand side of (6.7) as we pass from βk < βk+1 to βk > βk+1. On the other
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hand if ασ(nk) > ασ(nk+1), then the second configuration does not contribute for βk < βk+1 but

does contribute when βk > βk+1 and the sign of the second contribution for βk > βk+1 is the

same as that of the first configuration for βk < βk+1. Thus again the net contribution remains

unchanged during this process.

The other possible source of jump in the left hand side of (6.7) is when
∑i

j=nk−1+1 ασ(j)

crosses βk for some (i, k) during the deformation. In this case we analyze the contribution from

the original partition together with that of another partition corresponding to m → m + 1,

with the βi’s given by

{β1, · · ·βk−1,
i∑

j=nk−1+1

ασ(j),

nk∑

j=i+1

ασ(j), βk+1, · · ·βm}.

The analysis of the net jump of the left hand side of (6.7) from these two terms is the same

as the one given in the last paragraph, with the roles of the first and the second terms getting

exchanged.

This shows that the left hand side of (6.7) is unchanged under continuous deformation of

the αi’s preserving (6.5). Armed with this result we shall now try to prove (6.7) using the

method of induction, ı.e. we shall assume that the result is valid for (n− 1) αi’s and then try

to prove it for n αi’s. Using the invariance of the left hand side of (6.7) under deformations

of the αi’s preserving (6.5), we shall choose ασ(n) to be small in magnitude compared to all

the other ασ(i)’s. In this case all the step functions in (6.7), except for the ones which contain

ασ(n) as one of its arguments, reduce to those for the case of (n− 1) vectors ασ(1), · · ·ασ(n−1).

Thus the possible allowed partitions are of the form:

{β1, · · ·βm + ασ(n)}, {β1, · · ·βm, ασ(n)} , (6.9)

where {β1, · · ·βm} is an allowed partition for (n−1) vectors ασ(1), · · ·ασ(n−1). We now consider

two possibilities:

1. ασ(n) > ασ(n−1): In this case by examining the additional step functions which involve

ασ(n) as one of the arguments we see that both the partitions given in (6.9) can contribute

only when ασ(n) > βm, and they contribute with opposite sign. Thus we conclude that

the net contribution vanishes.

2. ασ(n) < ασ(n−1): In this case the first partition contributes when ασ(n) < βm and the

second partition contributes when ασ(n) > βm. Both contributions are equal, and so we
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get a non-vanishing contribution that is independent of whether ασ(n) < βm of ασ(n) > βm.

This allows us to sum over all partitions {β1, · · ·βm} of ασ(1), · · ·ασ(n−1) freely, allowing us

to use (6.7) for (n−1) vectors. This leaves us with the result that the only permutation for

which we have a non-vanishing contribution is ασ(1) > ασ(2) > · · · > ασ(n−1). Combining

this with the result that ασ(n) < ασ(n−1) we see that the only permutation for which the

result is non-zero is σ(1, 2, · · ·n) = (n, n− 1, · · ·1). This is the desired result.

7 Equivalence of ‘higgs’ and ‘coulomb’ branch wall cross-

ing formulæ

Ref. [30] also proposed a different prescription for computing gref(α1, · · · , αn; y) called the

‘coulomb branch formula’. The formula is similar to (2.1), but with N
(n)
higgs({αi}; σ) replaced by

an apparently different quantity which we shall denote by N
(n)
coulomb({αi}; σ). The prescription

for computing N
(n)
coulomb({αi}; σ) associated with a given permutation σ is as follows:

1. Let us define α̃i ≡ ασ(i) as usual. Now for a given permutation σ we consider a function

W of n real variables x1, · · ·xn ordered as x1 < x2 < · · · < xn:

W = −
∑

i<j

〈α̃i, α̃j〉 log |xi − xj |+ Λ

n∑

i,j=1

〈α̃i, α̃j〉xj , (7.1)

where Λ is a positive constant. It will be useful to think of W as the potential for n

one dimensional particles positioned at x1, · · ·xn. W is invariant under simultaneous

translation of all xi’s by a constant.

2. N
(n)
coulomb({αi}; σ) is non vanishing only if there is an extremum of W with respect to the

variables x2, · · ·xn at fixed x1 = 0:

∂W

∂xi
= 0 for 2 ≤ i ≤ n . (7.2)

This corresponds to an equilibrium configuration of the n particles and fixing x1 = 0 (or

any other fixed value) is possible due to translation invariance of W mentioned above.

When this condition is satisfied N
(n)
coulomb({αi}; σ) takes value 1 or −1, with the sign given

by the sign of detM at the extremum, where Mij = (∂2W/∂xi∂xj), i, j = 2, · · ·n. If

there is more than one extremum then we have to sum over these extrema with weight

factors sign(detM) associated with these different extrema.
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Our goal in this section will be to prove the equality of N
(n)
higgs({αi}; σ) and N

(n)
coulomb({αi}; σ).

We first note that the prescription for computing N
(n)
coulomb given above is invariant under small

deformations of {αi} under which the extrema change their positions or (dis)appear in pairs

by merger or pair creation, but does not (dis)appear singly. The latter may occur if during the

deformation a nearest neighbor pair (xi, xi+1) at the extremum approach each other so that

beyond the point of merger of xi and xi+1 the extremum ceases to exist, or if at the extremum

a set of xi’s get separated from the rest by an infinite distance beyond which the extremum

ceases to exist. Now since as xi → xi+1 the dominant term in ∂W/∂xi is given by

〈α̃i, α̃i+1〉 (xi+1 − xi)
−1 (7.3)

we see that this term cannot be cancelled by the contribution from any other term unless

〈α̃i, α̃i+1〉 approaches zero. Thus as long as the deformations preserve the relative ordering of

the αi’s so that for no pair 〈αi, αj〉 passes through 0, we avoid the first possibility. To examine

the second possibility let us suppose that at the extremum the subset of points {xi, k+1 ≤ i ≤

n} gets separated from the rest {xi, 1 ≤ i ≤ k} by an infinite distance. Since at the extramum

∂W/∂xj should vanish for j ≥ 2, we must have
∑n

j=k+1 ∂W/∂xj = 0. In the large separation

limit the second term in (7.1) dominates and we get

n∑

j=k+1

∂W/∂xj ≃ Λ

n∑

i=1

n∑

j=k+1

〈α̃i, α̃j〉 = Λ〈ᾱ, ᾱ− βk〉 = −Λ〈ᾱ, βk〉 , (7.4)

where βk =
∑k

j=1 α̃j and ᾱ = (α1 + · · ·αn) as before. Thus as long as this is kept away from

zero the extremum of W cannot approach a configuration where x1, · · ·xk separates by an

infinite distance from the rest of the xi’s. Combining these results we come to the conclusion

that if we deform the αi’s without changing the relative orientation between the αi’s and the

relative orientation between any of the βk’s and ᾱ, N
(n)
coulomb({αi}; σ) will remain unchanged.

These are the same set of deformations under which N
(n)
higgs({αi}; σ) remains unchanged.

We are now ready to begin proving the equality of N
(n)
higgs and N

(n)
coulomb. This has been

checked explicitly for low values on n in [30]. We shall use the method of induction ı.e. assume

that the equality of the N
(m)
higgs and N

(m)
coulomb holds for m ≤ n − 1 and then prove the equality

of N
(n)
higgs and N

(n)
coulomb. Let us consider a particular σ and the associated α̃i’s. We now deform

the pair of charges (α̃n−1, α̃n) according to the prescription of §5.2: α̃n−1 → (1 + λ)α̃n−1,

α̃n → (1 + λ′)α̃n with λαn−1 + λ′αn ∝ ᾱ and λ < 0. We can increase |λ| without changing

the relative orientations between the αi’s and between the βk’s and ᾱ till we encounter one of
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the following situations: either α̃n becomes almost zero (which is equivalent to βn−1 becoming

almost parallel to ᾱ) or α̃n−1 becomes almost zero. In either case the charge that becomes almost

zero does not affect the equilibrium arrangement of the rest of the (n− 1) centers obtained by

extremizing W with respect to the (n − 2) variables. Thus the arrangement of the rest of the

centers at the extremum must follow the rules of N
(n−1)
coulomb({αi}; σ), which by our ansatz are the

same as those of N
(n−1)
higgs ({αi}; σ). We shall now consider the two possibilities separately.

First suppose that α̃n becomes almost zero. In this case the charges α̃1, · · · α̃n−1 for which

N
(n−1)
higgs is non-zero can be found by replacing n + 1 by n− 1 in (5.37)

βk

{
< ᾱ for α̃k+1 > α̃k

> ᾱ for α̃k+1 < α̃k
, for 1 ≤ k ≤ n− 2 . (7.5)

By the assumed equality of N
(n−1)
higgs and N

(n−1)
coulomb, we have an equilibrium configuration of

x1, · · ·xn−1 iff the charges satisfy (7.5). Since the addition of an infinitesimal charge α̃n at

xn will not disturb the equilibrium configuration of the other charges, we only need to look for

an equilibrium position of xn, ı.e. an xn satisfying ∂W/∂xn = 0. From (7.1) we see that

W → Λ

n−1∑

i=1

〈α̃i, α̃n〉xn = Λ〈βn−1, ᾱ− βn−1〉xn = Λ〈βn−1, ᾱ〉xn as xn → ∞

W → −〈α̃n−1, α̃n〉 ln |xn−1 − xn| as xn → xn−1 . (7.6)

At both limits the magnitude of W goes to infinity. Thus if these two limits have the same

sign then ∂W/∂xn must vanish somewhere in the range xn−1 < xn < ∞ and we are guaranteed

to have an extremum. This gives

α̃n−1 > α̃n if βn−1 > ᾱ

α̃n−1 < α̃n if βn−1 < ᾱ . (7.7)

If this condition is satisfied then we may have more than one solution, but the number of

solutions is always odd and all except one contribution cancels when we weigh it by the sign of

detM . If (7.7) does not hold then we could have even number of solutions but their contribution

will cancel pairwise.

(7.7) precisely extends (7.5) all the way to k = n − 1. Thus we see that the condition

for N
(n)
coulomb({αi}; σ) to be non-vanishing coincides with the condition for N

(n)
higgs({αi}; σ) to be

non-vanishing. We shall now show that the signs of N
(n)
coulomb({αi}; σ) and N

(n)
higgs({αi}; σ) also

agree in this case. In the limit when the charge of the n-th center is small we can ignore the
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off diagonal Mni and Min components of the matrix M and express detM as the product of

the determinant of the first (n − 2) × (n − 2) block and ∂2W/∂x2
n. The assumed equality of

N
(n−1)
coulomb({αi}; σ) and N

(n−1)
higgs ({αi}; σ) tell us that the sign of the contribution from the first

(n− 2)× (n− 2) block to detM is given by (2.1)

(−1)
∑n−2

k=1 Θ(α̃i,α̃i+1) . (7.8)

Now we see from (7.6), (7.7) that if α̃n−1 > α̃n ı.e. 〈α̃n−1, α̃n〉 < 0, then W → −∞ as xn →

xn−1,∞ and hence ∂2W/∂x2
n at the extremum is negative. On the other hand if α̃n−1 < α̃n then

∂2W/∂x2
n at the extremum is positive. Thus N

(n)
coulomb({αi}; σ) is obtained by multiplying (7.8)

by a factor of (−1)Θ(α̃n−1,α̃n). This reproduces the formula for N
(n)
higgs given in (2.1), showing

the equality of N
(n)
higgs and N

(n)
coulomb.

Next we consider the case when α̃n−1 becomes almost zero at the end of the deformation.

In this case the arrangement of the charges (α̃1, · · · α̃n−2, α̃n) follows the corresponding rules

for N
(n−1)
higgs . Since α̃n−1 is almost zero we have βn−1 ≃ βn−2, and thus they must be on the same

side of ᾱ. The condition on the charges α̃1, · · · α̃n−2, α̃n for which N
(n−1)
higgs is non-zero can now

be written as

βk

{
< ᾱ for α̃k+1 > α̃k

> ᾱ for α̃k+1 < α̃k,
, for 1 ≤ k ≤ n− 3 ,

βn−2, βn−1

{
< ᾱ for α̃n > α̃n−2

> ᾱ for α̃n < α̃n−2
. (7.9)

By examining the behavior of W as xn−1 → xn−2, xn we get

W → −〈α̃n−2, α̃n−1〉 ln |xn−2 − xn−1| as xn−1 → xn

W → −〈α̃n−1, α̃n〉 ln |xn−1 − xn| as xn−1 → xn . (7.10)

Thus in order that they have the same sign so that we have an extremum we need

α̃n−2 < α̃n−1 < α̃n or α̃n−2 > α̃n−1 > α̃n . (7.11)

Combining this with (7.5) we arrive at the result:

βk

{
< ᾱ for α̃k+1 > α̃k

> ᾱ for α̃k+1 < α̃k,
, for 1 ≤ k ≤ n− 1 ,

βn−2, βn−1 > ᾱ or βn−2, βn−1 < ᾱ . (7.12)

The second condition is of course needed to have an almost zero α̃n−1 in the first place. The

first condition is the same as the one for getting a non-vanishing contribution to N
(n)
higgs({αi}; σ).
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Thus we see that the requirement for having non-vanishing N
(n)
coulomb({αi}; σ) again reduces to

that of having non-vanishing N
(n)
higgs({αi}; σ).

We now need to calculate the sign of the contribution. The centers 1, · · ·n − 2, n give

a factor of (−1)
∑n−3

k=1 Θ(α̃i,α̃i+1)(−1)Θ(α̃n−2,α̃n). Using (7.11) the last factor may be written as

(−1)Θ(α̃n−2,α̃n−1). By studying the behavior of W as xn−1 → xn−2, xn we see that the extra

contribution from the sign of ∂2W/∂x2
n−1 is positive for α̃n−2 < α̃n−1 < α̃n and negative for

α̃n−2 > α̃n−1 > α̃n. Thus the extra contribution can be written as (−1)Θ(α̃n−1,α̃n). Combining

these factors we get

N
(n)
coulomb({αi}; σ) = (−1)

∑n−1
i=1 Θ(α̃i,α̃i+1) , (7.13)

in agreement with the formula (2.1) for N
(n)
higgs({αi}; σ). This establishes the equality of

N
(n)
higgs({αi}; σ) and N

(n)
coulomb({αi}; σ).
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A Physical interpretation of ghiggs

In this appendix we shall show the equivalence between (2.1) and the formula given in [30].

Let {σ(1), σ(2), · · ·σ(n)} denote a permutation of {1, · · ·n}. Associated with each such per-

mutation we can associate a unique number s and a set of numbers m1, · · ·ms−1 by imposing

the following requirements:

1. 1 < m1 < m2 < · · ·ms−1 ≤ n.

2. σ(m) > σ(m− 1) for m 6= m1, m2, · · ·ms−1.

3. σ(ma) < σ(ma − 1) for 1 ≤ a ≤ s− 1.

Physically this partitions the ordered set {σ(1), σ(2), · · ·σ(n)} into s maximally increasing

subsequences: the σ(i)’s increase monotonically with i for i between 1 and m1 − 1, between

ma and ma+1 − 1 for 1 ≤ a ≤ (s− 2), and between ms−1 and n, but between ma − 1 and ma

∀a the monotone increase is broken. The expression for N
(n)
higgs({αi}; σ) given in (2.1) can now
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be rewritten as

N
(n)
higgs({αi}; σ) = (−1)s−1

∏

k=m1,···ms−1

Θ

(
α1 + · · ·αn,

n∑

i=k

ασ(i)

)
n∏

k=2
k 6=m1,···ms−1

Θ

(
n∑

i=k

ασ(i), α1 + · · ·αn

)

(A.1)

Let us define a set of vectors β(1), · · ·β(s) as follows:

β(1) =
n∑

i=ms−1

ασ(i), β(a) =

ms−a+1−1∑

i=ms−a

ασ(i) for 2 ≤ a ≤ s− 1, β(s) =

m1−1∑

i=1

ασ(i) . (A.2)

This allows us to associate to every permutation σ(i) a unique set of vectors {β(a)}. For

example if for n = 4 we consider the permutation (2134) then the partition of (2134) containing

maximally increasing subsequences are {{2}, {1, 3, 4}}, giving β(1) = α1 + α3 + α4, β
(2) = α2.

The product of the Θ’s in (2.1) restricts the sum over permutations to a set K of permutations

satisfying the following conditions:

1. The first set of Θ functions in (A.1) ensure that the vectors {β(a)} associated with the

permutation σ should satisfy
〈

b∑

a=1

β(a), α1 + · · ·+ αn

〉
> 0 ∀ b with 1 ≤ b ≤ s− 1 . (A.3)

2. We can associate with the permutation σ many other partitions containing increasing

subsequences which are not maximal, by dropping the third condition σ(ma) < σ(ma−1).

Thus for example for the permutation (2134) discussed above, examples of partitions con-

taining non-maximal increasing subsequences are {{2}, {1}, {3}, {4}}, {{2}, {1, 3}, {4}}

and {{2}, {1}, {3, 4}}. The second set of Θ-functions in (A.1) guarantee that if we con-

struct the β(a)’s for any such partition following the same procedure, then the condition

(A.3) must fail for at least one b.

Once we have identified the set K of permutations satisfying these properties, (2.1) reduces

to:

ghiggs(α1, . . . , αn) = (−y)−1+n−
∑

i<j αij (y2 − 1)1−n
∑

σ∈K

(−1)s−1(−y)
2
∑

l<k
σ(l)<σ(k)

ασ(l)σ(k)

. (A.4)

This is the formula for ghiggs derived in §3.3 of [30].7 The original Reineke formula [45] corre-

sponds to summing over many more terms corresponding to all increasing sequences (ı.e. not

7In the last term [30] had y··· instead of (−y)···. For physical αij ’s which are integers the two formulæ give
identical results since the exponent is an even integer.
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just the maximal increasing sequences), but it was shown in [30] that the contribution from

many of these terms cancel and at the end only the contribution from the terms given in (A.4),

corresponding to maximal increasing sequences, survive.

B Proof of the Θ identity

In this appendix we shall prove the identity (5.50). Let us denote the left hand side of (5.50)

by P (N, c), ı.e.

P (N, c)

≡
N−1∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

+
N−1∑

k=1

N∑

I1=2

N∑

I2=I1+1

N∑

I3=I2+1

· · ·
N∑

Ik=Ik−1+1

{
Θ(c− f(I1))

k−1∏

ℓ=1

Θ
(
f(Iℓ)− f(Iℓ+1)

)

I1−2∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

k−1∏

ℓ=1

Iℓ+1−2∏

i=Iℓ

[
Θ
(
f(i+ 1)− f(Iℓ)

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
f(Iℓ)− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

N−1∏

i=Ik

[
Θ
(
f(i+ 1)− f(Ik)

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
f(Ik)− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]}
.

(B.1)

We shall assume that (5.50) is valid up to a certain value of N , e.g. we have

P (M, c) =
M−1∏

i=1

Θ(f(i+ 1)− f(i)) , for M ≤ N − 1 (B.2)

and then show that (B.2) also holds for M = N . Now in the k ≥ 1 terms in (B.1) the sum

over k and I2, · · · Ik for fixed I1, after factoring out the I1 dependent but k independent terms,

has the same structure as P (N − I1 + 1, f(I1)) with f(i) → f(i+ I1 − 1). This gives

P (N, c)

=
N−1∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]
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+

N∑

I1=2

Θ(c− f(I1))P (N − I1 + 1, f(I1))
∣∣∣
f(i)→f(i+I1−1)

I1−2∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]
.

(B.3)

Using (B.2) the result can be expressed as

P (N, c)

=

N−1∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]

+
N∑

I1=2

Θ(c− f(I1))
N−1∏

i=I1

Θ(f(i+ 1)− f(i))

I1−2∏

i=1

[
Θ
(
f(i+ 1)− c

)
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)
Θ
(
f(i)− f(i+ 1)

)]
.

(B.4)

Using the relation

Θ(x)Θ(y)−Θ(−x)Θ(−y) = Θ(x)(1−Θ(−y))− (1−Θ(x))Θ(−y) = Θ(x)−Θ(−y) , (B.5)

we can simplify (B.4) to

P (N, c)

=

N−1∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]

+

N∑

I1=2

Θ
(
c− f(I1)

)N−1∏

i=I1

Θ
(
f(i+ 1)− f(i)

) I1−2∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]
.

(B.6)

We can manipulate this by separating out the I1 = N term in the sum and combining it with

the first term. This gives

P (N, c)
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=

N−2∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]

[
Θ
(
f(N)− f(N − 1)

)
−Θ

(
c− f(N)

)
+Θ

(
c− f(N)

)]

+
N−1∑

I1=2

Θ
(
c− f(I1)

)N−1∏

i=I1

Θ
(
f(i+ 1)− f(i)

) I1−2∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]

= Θ
(
f(N)− f(N − 1)

){ N−2∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]

+

N−1∑

I1=2

Θ
(
c− f(I1)

)N−2∏

i=I1

Θ
(
f(i+ 1)− f(i)

) I1−2∏

i=1

[
Θ
(
f(i+ 1)− f(i)

)
−Θ

(
c− f(i+ 1)

)]}
.

(B.7)

We now notice that the term inside the { } has the same form as the right hand side of (B.6)

with N replaced by N − 1. Thus we can manipulate it again in the same way, pulling out a

factor of Θ
(
f(N − 1) − f(N − 2)

)
and replaing N by N − 1 again in the remaining factor.

Repeating this process we arrive at the result:

P (N, c) =

N−1∏

i=1

Θ
(
f(i+ 1)− f(i)

)
, (B.8)

which is the desired result.
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