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Abstract. Recently, the group of coincidence isometries of the root lattice A4 has been

determined providing a classification of these isometries with respect to their coincidence indices.

A more difficult task is the classification of all CSLs, since different coincidence isometries

may generate the same CSL. In contrast to the typical examples in dimensions d ≤ 3, where

coincidence isometries generating the same CSL can only differ by a symmetry operation, the

situation is more involved in 4 dimensions. Here, we find coincidence isometries that are not

related by a symmetry operation but nevertheless give rise to the same CSL. We indicate how

the classification of CSLs can be obtained by making use of the icosian ring and provide explicit

criteria for two isometries to generate the same CSL. Moreover, we determine the number of

CSLs of a given index and encapsulate the result in a Dirichlet series generating function.

1. Introduction

In crystallography, CSLs are a well established tool for the description and classification of

grain boundaries, see [1] and references given there. CSLs have been studied for several decades

in dimensions d ≤ 3. In higher dimensions they became interesting after the discovery of

quasicrystals. Here, we discuss a 4-dimensional lattice, namely the root lattice A4, which is

intimately related to quasicrystals with fivefold symmetry and the Penrose tiling in particular.

Let us recall some basic notions first. A lattice Γ in the Euclidean space Rd, can be described

as the set of all integer linear combinations of a basis {b1, . . . , bd} of Rd, which is denoted by

Γ = 〈b1, . . . , bd〉Z. A coincidence site lattice (CSL) of a lattice Γ is defined as Γ ∩ RΓ , where R

is a linear isometry and the corresponding coincidence index Σ(R) = [Γ : (Γ ∩ RΓ )] is finite,

i.e. R and RΓ share a common sublattice. The orthogonal group, i.e. the group of all linear

isometries of Rd, is denoted by O(d,R). We define the set of all coincidence isometries as

OC(Γ ) := {R ∈ O(d,R) | Σ(R) < ∞}

and its restriction to rotations as SOC(Γ ). According to [1–3], OC(Γ ) and SOC(Γ ) are not only

subgroups of O(d,R), but subgroups of the group of all similarity isometries which is defined as

OS(Γ ) := {R ∈ O(d,R) | αRΓ ⊂ Γ for some α ∈ R+} . A sublattice of Γ of the form αRΓ is

called a similar sublattice (SSL) of Γ . If we denote the denominator of a matrix R ∈ OS(Γ )

relative to the lattice Γ as denΓ (R) := min{α ∈ R+ | αRΓ ⊂ Γ} , we have the following

characterisation, see [2] for details:
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OC(Γ ) = {R ∈ OS(Γ ) | denΓ (R) ∈ N} (1)

In the following sections we first describe the root lattice A4 in a suitable setting. Then, we

briefly introduce the key objects required for the analysis of its CSLs, as well as their relations to

each other. We continue by reviewing some parts of the classification of the coincidence rotations

of the root lattice A4, see [2, 4] for details, and extend this analysis by providing explicit criteria

for two coincidence isometries to generate the same CSL. Finally, we classify the CSLs of the

root lattice A4 with respect to their coincidence indices and encapsulate the result in a Dirichlet

series generating function which gives the number of CSLs for every index.

2. The root lattice A4

The root lattice A4 is usually defined in a 4-dimensional hyperplane of R5 as follows:

A4 := {(x1, . . . , x5) ∈ Z5 | x1 + . . .+ x5 = 0}

However, this realisation of A4 in R5 is not suitable for our purposes. We prefer the following

realisation in R4

L :=
〈
(1, 0, 0, 0), 1

2(−1, 1, 1, 1), (0,−1, 0, 0), 1
2(0, 1, τ−1,−τ)

〉
Z

where τ = (1 +
√
5)/2 is the golden ratio; see [2, 5, 6] for details. Note that L is just rescaled

by a factor 1√
2
in comparison to A4. This particular description L is very convenient for our

problem, as it enables us to use the arithmetic of the quaternion algebra H(Q(
√
5 )); see [7] for

a detailed introduction to Hamilton’s quaternions. To simplify the notation we define

K := Q(
√
5 ) = {r + s

√
5 | r, s ∈ Q},

which is a quadratic number field. The algebra H(K) is explicitly given as

H(K) = K ⊕ iK ⊕ jK ⊕ kK,

where the generating elements satisfy Hamilton’s relations i2 = j2 = k2 = ijk = −1. It is

equipped with a conjugation .̄ which is the unique mapping that fixes the elements of the centre

of the algebra K and reverses the sign on its complement. If we write

q = (a, b, c, d) = a+ ib+ jc+ kd, this means q̄ = (a,−b,−c,−d).

The reduced norm and trace in H(K) are defined by

nr(q) := qq̄ = |q|2 and tr(q) := q + q̄,

where we canonically identify an element α ∈ K with the quaternion (α, 0, 0, 0). For any

q ∈ H(K), |q| is its Euclidean length, which need not be an element of K. Nevertheless, one

has |rs| = |r||s| for arbitrary r, s ∈ H(K). Due to the geometric meaning, we use the notations

|q|2 and nr(q) in parallel. An element q ∈ H(K) is called integral when both nr(q) and tr(q) are

elements of

O := Z[τ ] := {m+ nτ | m,n ∈ Z},



which is the ring of integers of the quadratic number field K.

The icosian ring I consists of all linear combinations of the vectors

(1, 0, 0, 0), (0, 1, 0, 0), 1
2(1, 1, 1, 1),

1
2(1−τ, τ, 0, 1)

with coefficients in O. The elements of I are called icosians. For more information on this

remarkable object, see for example [6, 8–10] and references given there.

An element p ∈ I is called I-primitive when αp ∈ I, with α ∈ K, is only possible with α ∈ O.
Similarly, a sublattice Λ of L is called L-primitive when αΛ ⊂ L, with α ∈ Q, implies α ∈ Z.

Whenever the context is clear, we simply use the term “primitive” in both cases.

The detailed arithmetic structure of I plays a key role in the characterisation of the coincidence

rotations for L; see [2]. Another important object for this characterisation is the following map,

called twist map. If q = (a, b, c, d), it is defined by the mapping

q 7→ q̃ := (a′, b′, d′, c′) ,

where ′ denotes the algebraic conjugation in K, as defined by the mapping
√
5 7→ −

√
5. The

algebraic conjugation in K is also needed to define the absolute norm on K, via N(α) := |αα′| .
For the various properties of the twist map, e.g. ˜̃q = q and p̃q = q̃p̃ where p, q ∈ I, we refer the

reader to [6] and references therein. The most important properties in our present context are

summarised in the following Lemma, see [6, Proposition 1] and [2, Lemma 4], which describes

the relations between L and I.

Lemma 1. Within H(K), one has Ĩ = I and

L = {x ∈ I | x̃ = x} = {x+ x̃ | x ∈ I} = φ+(I),

where the Q-linear mapping φ+ : H(K) −→ H(K), is defined by φ+(x) = x+ x̃.

The dual A∗
4 of the the root lattice A4, here in form of the dual of the lattice L, is given by

L∗ := {x ∈ R4 | 〈x|y〉 ∈ Z for all y ∈ L}.

3. CSLs

The investigation of CSLs of L can be restricted to rotations only, since L = L, which means

that any orientation reversing operation can be obtained from an orientation preserving one

after applying conjugation first. Let SOS(L) be the group of all similarity rotations of the

lattice L. Considering Eq. (1), it is obvious how SOC(L) and SOS(L) are related in general.

By [6, Corollary 1] we know that any similarity rotation of L is of the form x 7→ 1
|qq̃| qxq̃ with

q ∈ I, which we refer to as R(q), or more precisely we define R(q)x := 1
|qq̃ | qxq̃. We denote the

denominator of R(q) by den(q). Among the elements of SOS(L), we can identify the elements

of SOC(L) as follows; see [2] for the proof.

Proposition 2. Let 0 6= q ∈ I be an arbitrary icosian. Then, the lattice 1
|qq̃| qLq̃ ∩ L is a CSL

of L if and only if |qq̃| ∈ N. If q is primitive, then den(q) = |qq̃|.
We call an icosian q ∈ I admissible when |qq̃ | ∈ N. As nr(q̃) = nr(q)′, the admissibility of q

implies that N
(
nr(q)

)
= |qq̃ |2 is a square in N. An immediate consequence of Proposition 2 is

that

SOC(L) = {R(p) | p ∈ I is primitive and admissible } , (2)

which delivers the following classification.



Theorem 3. The CSLs of L are precisely the lattices of the form L∩ 1
|qq̃ | qLq̃ with q ∈ I primitive

and admissible.

This is the first step to connect certain primitive right ideals pI of the icosian ring with the

CSLs of L. Before we continue in this direction, let us consider the relation with the coincidence

rotations, see [2, Lemma 5].

Lemma 4. Let r, s ∈ I be primitive and admissible quaternions, with rI = sI. Then, one has

L ∩ rLr̃
|rr̃| = L ∩ sLs̃

|ss̃| .

The converse statement to Lemma 4 is not true, as the equality of two CSLs does not imply the

corresponding ideals to be equal. An example is provided by r = (τ, 2τ, 0, 0) and s = (τ2, τ, τ, 1),

which define the same CSL, though s−1r is not a unit in I. The CSL is spanned by the basis

{(1, 2, 0, 0), (2,−1, 0, 0), (32 ,
1
2 ,

1
2 ,

1
2), (−1, 12 ,

τ−1
2 ,− τ

2 )}. Note that, as a direct consequence of [6,

Lemma 5], two primitive quaternions r, s ∈ I are related by a rotation symmetry of L if and

only if rI = sI.

For our further discussion we need to replace the primitive and admissible icosian p, and with

it p̃, by certain O-multiples, such that their norms have the same prime divisors in O. In view

of the form of the rotation x 7→ 1
|pp̃| pxp̃, this is actually rather natural because it restores some

kind of symmetry of the expressions in relation to the two quaternions involved. For a primitive

and admissible icosian p ∈ I we choose explicitly

αq =

√
lcm(nr(q),nr(q̃ ))

nr(q)
∈ O , (3)

where we assume a suitable standardisation for the lcm (least common multiple) of two elements

of O; see [2] for details. Moreover, we have the relation αq̃ = α̃q = α ′
q. The icosian αqq is

called the extension of the primitive admissible element q ∈ I, and (αqq, α
′
q q̃ ) the corresponding

extension pair. Since αq and α′
q are central, the extension does not change the rotation, i.e.

qxq̃

|qq̃| =
qαxq̃α
|qαq̃α |

holds for all quaternions x. Note that the definition of the extension pair is unique up to units

of O, and that one has the relation

nr(qα) = lcm
(
nr(q),nr(q̃ )

)
= nr(q̃α) = |qα q̃α| ∈ N .

Following [2] we define the set

L(q) = {qx+ x̃q̃ | x ∈ I} = φ+(qI) .

Note that, due to Ĩ = I, one has L(q) = L̃(q). This leads to the following parametrisation of the

CSLs of L, compare [2, Theorem 2].

Theorem 5. Let q ∈ I be admissible and primitive, and let qα = αqq be its extension. Then,

the CSL defined by q is given by

L ∩ 1

|qq̃| qLq̃ = L(qα) = (qαI+ Iq̃α) ∩ L.

and its index is ΣL(q) = nr(qα) = lcm(nr(q),nr(q)′) .



4. The Number of CSLs of each Index

Until now we have followed the argumentation in [2], which lead to the classification of all

coincidence rotations of the lattice L. In order to obtain a classification of the actual CSLs,

we make use of the corresponding classification for the icosian ring I and its submodul L[τ ],

which can either be seen as O-modules of rank 4 or as lattices in R8, so all our definitions of the

introductory section apply. Since any coincidence rotation of L is a coincidence rotation of L[τ ]

and I, we can start our analysis from the classification of the CSLs of I, which directly gives a

first sufficient condition when two CSLs of L are equal, see [11] for details.

Lemma 6. Let p1, p2 ∈ I be primitive and admissible, such that

|p1|2 = |p2|2 and glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|).

Then L ∩ 1
|p1p̃1|p1Lp̃1 = L ∩ 1

|p2p̃2|p2Lp̃2.

In fact, the converse holds only if |p1|2 = |p2|2 is not divisible by the splitting prime p = 5.

For the general situation we have the following

Theorem 7. Let p1, p2 ∈ I be primitive and admissible. Then

L ∩ 1
|p1p̃1|p1Lp̃1 = L ∩ 1

|p2p̃2|p2Lp̃2

if and only if

|p1|2 = |p2|2 and glcd(p1,
|p1p̃1|

c
) = glcd(p2,

|p2p̃2|
c

), (4)

where c =
√
5, if |p1|2 = |p2|2 is divisible by 5 and c = 1 otherwise.

Note that |p1|2 = |p2|2 directly implies that the coincidence indices and denominators

coincide, which is clearly necessary for the CSLs to be equal. The second condition of (4)

tells us how much p1 and p2 are allowed to differ in terms of their decomposition in irreducible

elements of I. If |p1|2 = |p2|2 is not divisible by 5 and nr(p1) = nr(p1)
′, then (and only then) the

second condition is equivalent to p1 = p2ǫ where ǫ is a unit of I, which means that R1 and R2

are symmetry related. Hence, in this special case, and only then, we can deduce from two equal

CSLs that they are generated by coincidence rotations which are symmetry related, whereas in

all other cases there are at least two rotations that are not symmetry related but give the same

CSL.

Now, we can conclude with the derivation of the Dirichlet series for the number of CSLs of

L of a given index, see [12] for a introduction to Dirichlet series. Note, that by [1, Lemma 2.5,

Theorem 2.2] the number of CSLs of a given index n is the same for the lattices A4 and L as

well as their dual lattice L∗. Let f(n) be the number of CSLs of index n. Then, f(n) is a

multiplicative arithmetic function, given at prime powers pr with r ≥ 1 by

f(pr) =





6 · 52r−2 for p = 5

(p2 + 1)p2r−2 for p ≡ ±2 (mod 5)
(p+1)2

p3−1
(p2r+1 + p2r−2 − 2p

(r−1)
2 ) for p ≡ ±1 (mod 5), r odd,

(p+1)2

p3−1

(
p2r+1 + p2r−2 − 2 (p2+1)

p+1 p
(r−2)

2

)
for p ≡ ±1 (mod 5), r even.



Finally elementary calculations involving geometric series yield its Dirichlet series generating

function compare [11, 13]:

D(s) =

∞∑

n=1

f(n)

ns
=

(
1 + 6 5−s

1−52−s

) ∏

p≡±1 (5)

1+p−s+2p1−s+2p−2s+p1−2s+p1−3s

(1−p2−s) (1−p1−2s)

∏

p≡±2 (5)

1+p−s

1−p2−s

= 1 + 5
2s + 10

3s + 20
4s + 6

5s +
50
6s + 50

7s + 80
8s + 90

9s + 30
10s + 144

11s + . . .
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