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Abstract

We consider sequences of random variables whose probability generating functions
are polynomials all of whose roots lie on the unit circle. The distribution of such random
variables has only been sporadically studied in the literature. We show that the random
variables are asymptotically normally distributed if and only if the fourth normalized (by
the standard deviation) central moment tends to 3, in contrast to the common scenario for
polynomials with only real roots for which a central limit theorem holds if and only if the
variance goes unbounded. We also derive a representation theorem for all possible limit
laws and apply our results to many concrete examples in the literature, ranging from com-
binatorial structures to numerical analysis, and from probability to analysis of algorithms.

1 Introduction
The close connection between the location of the zeros of a function (or a polynomial) and the
distribution of its coefficients has long been the subject of extensive study; typical examples
include the order of an entire function and its zeros in Analysis, and the limit distribution
of the coefficients of polynomials when all roots are real in Combinatorics, Probability and
Statistical Physics. We address in this paper the situation when the roots of the sequence of
probability generating functions all lie on the unit circle. While one may convert the situation
with only unimodular zeros to that with only real zeros by a suitable change of variables,
such root-unitary polynomials turn out to have many fascinating properties due mainly to the
boundedness of all zeros. In particular, we show that the fourth normalized central moments
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are (asymptotically) always bounded between 1 and 3, the limit distribution being Bernoulli if
they tend to 1 and Gaussian if they tend to 3.

Although this class of polynomials does not have a standard name, we will refer to them as,
following Kedlaya (2008) and for convention, root-unitary polynomials. Other related terms
include self-inversive (zeros symmetric in the unit circle), reciprocal or self-reciprocal (P (z) =
znP (z−1)), uni-modular (all coefficients of modulus one), palindromic (aj = an−j), etc., when
P (z) =

∑
06j6n ajz

j is a polynomial of degree n.
Unit roots of polynomials play a very special and important role in many scientific and en-

gineering disciplines, notably in statistics and signal processing where the unit root test decides
if a time series variable is non-stationary. On the other hand, many nonparametric statistics are
closely connected to partitions of integers, which lead to generating functions whose roots all
lie on the unit circle. We will discuss many examples in Sections 4 and 5. Another famous
example is the Lee-Yang partition function for Ising model, which has stimulated a widespread
interest in the statistical-physical literature since the 1950’s.

While there is a large literature on polynomials with only real zeros, the distribution of the
coefficients of root-unitary polynomials has only been sporadically studied; more references
will be given below. It is well known that for polynomials with nonnegative coefficients whose
roots are all real, one can decompose the polynomials into products of linear factors, implying
that the associated random variables are expressible as sums of independent Bernoulli ran-
dom variables. Thus one obtains a Gaussian limit law for the coefficients if and only if the
variance tends to infinity; see the survey paper Pitman (1997) for more information and for
finer estimates. A representative example is the Stirling numbers of the second kind for which
Harper (1967) showed that the generating polynomials have only real roots1; he also established
the asymptotic normality of these numbers by proving that the variance tends to infinity. For
more examples and information on polynomials with only real roots, see Brenti (1994), Pitman
(1997) and the references therein. See also Haigh (1971), Hayman (1956), Rényi (1972) for
different extensions.

Our first main result states that if we restrict the range where the roots of the polynomials
Pn(z) can occur to the unit circle |z| = 1, then the asymptotic normality of Xn defined by the
coefficients is determined by the limiting behavior of its fourth normalized central moment.
Throughout this paper, write X∗n := (Xn − E(Xn))/

√
V(Xn).

Theorem 1.1. Let {Xn} be a sequence of discrete random variables whose probability gen-
erating functions E(zXn) are polynomials of degree n with all roots ρj lying on the unit circle
|ρj| = 1.

– (Bounds for the fourth normalized central moment)

1 6 E (X∗n)4 < 3 (n > 1). (1)

– (Asymptotic normality) The sequence of random variables {X∗n} converges in distribution
(and with all moments) to the standard normal law N (0, 1) if and only if

E (X∗n)4 → 3 (n→∞). (2)

1The fact that the Stirling polynomials (of the second kind) have only real roots had been known long before
Harper; see for example d’Ocagne (1887); in addition, Bell (1938) wrote (without providing reference) that all
results of d’Ocagne’s paper were already obtained thirty years before him by a number of English authors.
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– (Asymptotic Bernoulli distribution) The sequence {X∗n} converges to Bernoulli random vari-
able assuming the two values −1 and 1 with equal probabilities if and only if

E (X∗n)4 → 1 (n→∞). (3)

This theorem implies that Gaussian and Bernoulli distributions are in a certain sense ex-
tremal limit laws for the distribution of Xn, maximizing and minimizing asymptotically the
value of the fourth moment E (X∗n)4, respectively, with other limit laws lying in between.

A standard example where Gaussian limit law arises is the number of inversions in random
permutations (or Kendall’s τ -statistic)

P(n2)
(z) =

∏
16k6n

1 + z + · · ·+ zk−1

k
.

A straightforward calculation shows that the fourth normalized central moment has the form

3− 9(6n2 + 15n+ 16)

25n(n− 1)(n+ 1)
,

which implies the asymptotic normality by Theorem 1.1; see Feller (1945), Section 4 for more
details and examples.

On the other hand, a Bernoulli limit law results from the simple example

P2n(z) =
1 + z2n

2
.

It is then natural to ask to which limit laws other than normal and Bernoulli can the sequence
of random variables X∗n converge. The simplest such example is the uniform distribution

P2n(z) =
1 + z + z2 + · · ·+ z2n

2n+ 1
;

or, more generally, the finite sum of uniform distributions

Pn1+···+nk(z) =
∏

16j6k

1 + z + · · ·+ z2nj

2nj + 1
.

Observe that the moment generating functions of the above three distributions have the
following representations.

– Normal distribution: es2/2;

– Bernoulli distribution (assuming ±1 with equal probability):

es + e−s

2
= cos(is) =

∏
k>1

(
1 +

4s2

(2k − 1)2π2

)
;

– Uniform distribution (with zero mean and unit variance):

1

2
√

3

∫ √3
√
3

exs dx =
sin(
√

3 is)√
3 is

=
∏
k>1

(
1 +

3s2

k2π2

)
.
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Here we used the well-known expansions (see Titchmarsh (1975))

cos s =
∏
k>1

(
1− 4s2

(2k − 1)2π2

)
,

sin s

s
=
∏
k>1

(
1− s2

k2π2

)
.

We show that these are indeed special cases of a more general representation theorem for the
limit laws.

Theorem 1.2. Let {Xn} be a sequence of random variables whose probability generating
functions are polynomials with only roots of modulus one. If the sequence {X∗n} converges
to some limit distribution X , then the moment generating function of X is finite and has the
infinite-product representation

E(eXs) = eqs
2/2
∏
k>1

(
1 +

qk
2
s2
)
, (4)

where q and the sequence {qk} are all non-negative numbers such that

q +
∑
k>1

qk = 1.

The above examples show that qk = 8
π2(2k−1)2 for Bernoulli distribution and qk = 6

π2k2
for

the uniform distribution. More examples will be discussed below.
It remains open to characterize infinite-product representations of the form (4) that are

themselves the moment generating functions of limit laws of root-unitary polynomials. On the
other hand, many sufficient criteria for root-unitarity have been proposed in the literature; see,
for example, the book Milovanović et al. (1994) and the recent papers Lalin and Smyth (2012);
Suzuki (2012) for more information and references.

This paper is organized as follows. We first prove Theorem 1.1 in the next section when n
is even, and then modify the proof to cover polynomials of odd degrees. Theorem 1.2 is then
proved in Section 3. We then apply the results to many concrete examples from the literature:
Section 4 for normal limit laws and Section 5 for non-normal laws. A class of polynomials
with non-normal limit law is included in Appendix since the root-unitarity property has not yet
been proved.

2 Moments and the two extremal limit distributions
For convenience, we begin by considering (general) polynomials of even degree with all their
roots lying on the unit circle

P2n(z) =
∑

06k62n

pkz
k,

where pk > 0. To avoid triviality, we assume that not all pk’s are zero. Observe that if |ρ| = 1
and P (ρ) = 0, then P (ρ) = 0. If ρ = 1, then its multiplicity must be even since all other roots
can be grouped in pairs and are symmetric with respect to the real line. Thus our polynomials
can be factored as

P2n(z) =
∏

16j6n

(z − ρj)(z − ρj),

where |ρj| = 1 for j = 1, . . . n. This factorization implies that root-unitary polynomials are
always self-inversive.
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Lemma 2.1. The coefficients of a root-unitary polynomial of even degree 2n are symmetric
with respect to n, that is

pn−k = pn+k (0 6 k 6 n).

Proof. By replacing z by 1/z, we get∑
06k62n

p2n−kz
k = z2nP2n(1/z) =

∏
16j6n

(1− zρj)(1− zρj)

=
∏

16j6n

(z − ρj)(z − ρj) = P2n(z) =
∑

06k62n

pkz
k.

Taking the coefficients of zk on both sides, we obtain p2n−k = pk for 0 6 k 6 2n, which
proves the lemma.

2.1 Random variables, moments and cumulants
Since the coefficients of P2n(z) are nonnegative, we can define a random variable X2n by

E(zX2n) =
P2n(z)

P2n(1)
.

For convenience, we write ρj = eiφj since |ρj| = 1. Then

(z − ρj)(z − ρj) = 1− (ρj + ρj)z + z2 = 1− 2z cosφj + z2.

It follows that

E(zX2n) =
∏

16j6n

1− 2z cosφj + z2

2(1− cosφj)
. (5)

Note that φj 6= 0 for 1 6 j 6 n since P2n(1) > 0.
It turns out that the mean values of such random variables are identically n.

Lemma 2.2. For n > 1

E(X2n) = n. (6)

Proof. By (5), take derivative with respect to z and then substitute z = 1.

The relation (6) indeed holds more generally for self-inversive polynomials; see, for exam-
ple, Sheil-Small (2002).

Corollary 2.3. All odd central moments of X2n are zero

E
(
X2n − n

)2m+1
= 0 (m = 0, 1, . . . ).

Proof. This follows from the symmetry of the coefficients pk.
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For even moments, we look at the cumulants, which are defined as

E(e(X2n−n)s) = exp

(∑
m>1

κm(n)

m!
sm

)
,

where κ2m+1(n) = 0.

Lemma 2.4. The 2m-th cumulant κ2m(n) of X2n is given by

κ2m(n) = (2m)!
∑

16k6m

(−1)k−1

k2k
hm,kSn,k (m > 1), (7)

where 22k sinh2k(s/2) =
∑

m>k hm,ks
2m, with hk,k = 1, and

Sn,k :=
∑

16j6n

1

(1− cosφj)k
.

Proof. By (5), we have

log
1− 2es cosφ+ e2s

2(1− cosφ)
= log

(
es +

(es − 1)2

2(1− cosφ)

)
= s+ log

(
1 + 2

sinh2(s/2)

1− cosφ

)
.

Thus

logE(e(X2n−n)s) =
∑

16j6n

log

(
1 + 2

sinh2(s/2)

(1− cosφj)

)
,

which implies (7) by a direct expansion.

2.2 Variance and fourth central moment
In particular, we obtain, from (7),

σ2
n := V(X2n) = κ2(n) =

∑
16j6n

1

1− cosφj
. (8)

Lemma 2.5. The variance satisfies the inequalities

n

2
6 σ2

n 6 n2. (9)

Proof. The lower bound follows from (8) and the inequality 1− cosφj 6 2. The upper bound
is also straightforward

V(X2n) =
1

P2n(1)

∑
06k62n

pk(k − n)2 6 n2,

which shows that the distance of the unit zeroes of P2n(z) to the point 1 is always larger than
c/n, where c > 0 is an absolute constant.
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On the other hand, by the elementary inequalities

2

π2
t2 6 1− cos t 6

t2

2
(t ∈ [−π, π]), (10)

we have

2 6
σ2
n∑

16j6n φ
−2
j

6
π2

2
.

We now turn to the fourth central moment. Define

ωn :=
1

σ4
n

∑
16j6n

1

(1− cosφj)2
. (11)

Lemma 2.6. (i) For n > 1,

1 6 E
(
X2n − n
σn

)4

6 3− 1

2σ2
n

< 3. (12)

(ii)

E
(
X2n − n
σn

)4

→ 3 iff ωn → 0. (13)

Proof. By definition and by (7),

E
(
X2n − n

σ

)4

= 3 +
κ4(n)

σ4
n

= 3 + σ−2n − 3ωn. (14)

Now

σ−2n − 3ωn = − 1

σ4
n

∑
16j6n

2 + cosφj
(1− cosφj)2

6 − 1

2σ4
n

∑
16j6n

1

1− cosφj
= −1

2
σ−2n < 0,

proving the upper bound of (12). On the other hand, since 1/σn 6
√

2/n (by (9)), we see that
(13) also holds. It remains to prove the lower bound of (12), which results directly from the
Cauchy-Schwarz inequality

1 = E
(
X2n − n
σn

)2

6

(
E
(
X2n − n
σn

)4
)1/2

.

By (10), we can replace the condition ωn → 0 by

∑
16j6n

φ−4j = o

(( ∑
16j6n

φ−2j

)2)
.

On the other hand, E((Xn−n)/σn)4 → 3 is equivalent to κ4(n)/κ22(n)→ 0; the latter condition
is in many cases easier to manipulate.

Note that (12) proves (1) when n is even.
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2.3 Estimates for the moment generating functions

Lemma 2.7. Assume ωn → 0. For all s ∈ C such that |s| 6 min{σn, ω−1/4n }/4, we have

E(e(X2n−n)s/σn) = exp

(
s2

2
+O

(
|s|3

σn
+ ωn|s|4

))
. (15)

Proof. By (5),

logE(eX2ns/σn) =
∑

16j6n

log

(
1 + (es/σn − 1) +

(es/σn − 1)2

2(1− cosφj)

)
Note that, by (8),

σ2
n > max

16j6n

1

1− cosφj
.

From the definition (11) of ωn, we also have

1

σ4
n

max
16j6n

1

(1− cosφj)2
6 ωn,

which means that

max
16j6n

1

1− cosφj
6 σ2

n

√
ωn. (16)

Thus ∣∣∣∣es/σn − 1 +
(es/σn − 1)2

2(1− cosφj)

∣∣∣∣ 6 e2|s|/σn
(
|s|
σn

+ |s|2
√
ωn

)
Since ωn → 0 by assumption, the right-hand side is less than, say 2/3, for large enough n when
|s| remains bounded. Thus we can use the Taylor expansion of log(1 + w) and obtain

log

(
1 + (es/σn − 1) +

(es/σn − 1)2

2(1− cosφj)

)
=

s

σn
+

s2

2σ2
n(1− cosφj)

+O

(
|s|3

σ3
n(1− cosφj)

+
|s|4

σ4
n(1− cosφj)2

+
|s|6

σ6
n(1− cosφj)3

)
.

By (16)
|s|6

σ6
n(1− cosφj)3

6
|s|6√ωn

σ4
n(1− cosφj)2

.

It follows, after summing over all j, that

logE(eX2ns/σn) =
s2

2
+
ns

σn
+O

(
|s|3

σn
+ (|s|4 + |s|6

√
ωn)ωn

)
.

Now if |s| 6 min{σn, ω−1/4n }/4, then ω3/2
n |s|6 6 ωn|s|4/16, and this proves (15).

Lemma 2.8. For s ∈ R, the inequality

E(e(X2n−n)s/σn) 6 exp
(
3
2
s2e2s/σn

)
(17)

holds.
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Proof. By (5) and the elementary inequality 1 + y 6 ey for real y, we obtain

E(zX2n) =
∏

16j6n

(
1 + (z − 1) +

(z − 1)2

2(1− cosφj)

)
6
∏

16j6n

exp

(
z − 1 +

(z − 1)2

2(1− cosφj)

)
= en(z−1)+σ

2
n(z−1)2/2.

Thus

E(e(X2n−n)s/σn) 6 exp

(
n

(
es/σn − 1− s

σn

)
+ 1

2
σ2
n(es/σn − 1)2

)
6 exp

(
n

2σ2
n

s2es/σn +
s2

2
e2s/σn

)
,

and (17) follows from the inequality n/σ2
n 6 2.

2.4 Normal limit law
We now prove the second part of Theorem 1.1 in the case of polynomials of even degree,
namely, {(Xn− n)/σn} converges in distribution and with all moments to the standard normal
distribution if and only if

E
(
X2n − n
σn

)4

→ 3.

Proof. Consider first the sufficiency part. By (13), ωn → 0, and we can apply the estimate
(15), implying the convergence in distribution of (X2n − n)/σn to N (0, 1).

On the other hand, by Lemma 2.8,

E(e(X2n−n)s/σn) =
∑
m>0

(
X2n − n
σn

)2m
s2m

(2m)!
6 e

3
2
s2e2s/σn .

Taking s = 1, we conclude that all normalized central moments of X2n are bounded above by

E
(
X2n − n
σn

)2m

6 (2m)!e
3
2
e2/σn .

Thus we also have convergence of all moments.
For the necessity, we see that if {(X2n− n)/σn} converges in distribution to N (0, 1), then

the the fact that the moments of (X2n − n)/σn are all bounded implies that all the normal-
ized central moments of X2n converge to the moments of the standard normal distribution; in
particular, the fourth normalized central moments converge to 3.
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2.5 Bernoulli limit law
We now examine the case when the fourth moment converges to the smallest possible value,
that is

E
(
X2n − n
σn

)4

→ 1. (18)

Note that

V
(
X2n − n
σn

)2

= E

((
X2n − n
σn

)2

− 1

)2

= E
(
X2n − n
σn

)4

− 1.

If (18) holds, then by Chebyshev’s inequality, we see that

P
(
X2n − n
σn

∈ (−1− ε,−1 + ε)
⋃

(1− ε, 1 + ε)

)
→ 1,

for any ε > 0. By symmetry of the random variable X2n − n

P
(
X2n − n
σn

∈ (−1− ε,−1 + ε)

)
= P

(
X2n − n
σn

∈ (1− ε, 1 + ε)

)
.

We conclude that the distributions of (X2n − n)/σn converge to a Bernoulli distribution that
assumes the two values 1 and −1 with equal probability.

2.6 Polynomials of odd degree
To complete the proof of Theorem 1.1, we need to address the situation of odd-degree polyno-
mials.

Assume Q2n−1(z) is a root-unitary polynomial of degree 2n − 1 with non-negative coeffi-
cients. If we multiply it by the factor 1 + z, then the resulting polynomial

P2n(z) = (1 + z)Q2n−1(z)

remains root-unitary with non-negative coefficients. This means that the moment generat-
ing functions of the corresponding random variables E(eY2n−1s) := Q2n−1(e

s)/Q2n−1(1) and
E(eX2ns) := P2n(es)/P2n(1) are connected by the identity

E(eX2ns) =
1 + es

2
E(eY2n−1s).

This leads to the relation

X2n
d
= Y2n−1 +B, (19)

where B is independent of Y2n−1 and takes the values 0 and 1 with equal probability. Thus

E(Y2n−1) = E(X2n)− 1
2

= n− 1
2
,

V(Y2n−1) = V(X2n)− 1
4

= σ2
n − 1

4
, (20)
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and
E (Y2n−1 − E(Y2n−1))

4 = E(X2n − n)4 − 3
2
σ2
n + 5

16
. (21)

Thus we obtain

E

(
Y2n−1 − E(Y2n−1)√

V(Y2n−1)

)4

6
σ4
n

(σ2
n − 1

4
)2

E

(
X2n − n√
V(X2n)

)4

−
3
2
σ2
n − 5

16

(σ2
n − 1

4
)2
,

which, by (12), is bounded above by

σ4
n

(σ2
n − 1

4
)2

(
3− 1

σ2
n

)
−

3
2
σ2
n − 5

16

(σ2
n − 1

4
)2

= 3− 1

σ2
n

− 6σ2
n − 1

σ2
n(4σ2

n − 1)2
6 3− σ−2n < 3.

Thus the fourth normalized central moment is bounded above by 3; the lower bound follows
from the same Cauchy-Schwarz inequality used in the even-degree cases.

On the other hand, since (again by (19))

X2n − E(X2n)√
V(X2n)

d
=

√
V(Y2n−1)√
V(X2n)

· Y2n−1 − E(Y2n−1)√
V(Y2n−1)

+
B − 1

2√
V(X2n)

,

we have, by (20),

X2n − E(X2n)√
V(X2n)

d
=
Y2n−1 − E(Y2n−1)√

V(Y2n−1)

(
1 +O

(
1√
n

))
+O

(
σ−1n
)
. (22)

The last identity implies that both sides converge to the same limit law.
Assume that the fourth central moment of Y2n−1 satisfies

E

(
Y2n−1 − E(Y2n−1)√

V(Y2n−1)

)4

→ 3. (23)

Then, by (21), we obtain

E

(
X2n − E(X2n)√

V(X2n)

)4

=

(
V(Y2n−1)

V(X2n)

)2

E

(
Y2n−1 − E(Y2n−1)√

V(Y2n−1)

)4

+O
(
σ−1n
)
.

Thus the left-hand side also tends to 3 and, consequently, X2n is asymptotically normally dis-
tributed. The asymptotic distribution of X2n then implies, by (22), that of Y2n−1.

The proof for the Bernoulli case is similar and is omitted.

3 The infinite-product representation for general limit laws
We first prove Theorem 1.2 in this section, and then mention some of its consequences.
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3.1 Proof of Theorem 1.2
It suffices to consider only the sequence of polynomials of even degree. The symmetry of distri-
bution of the limit lawX follows from the symmetry of coefficients of polynomials P2n(z). The
inequality (17) for the moment generating function of (X2n − n)/σn implies that the moment
generating function of the limit distribution X is also finite, and thus X is uniquely determined
by its moments. This means that the sequence {(X2n − n)/σn} converges in distribution to X
as n→∞ if and only if

E
(
X2n − n
σn

)m
→ E(Xm) (m > 0),

as n → ∞. Thus the cumulant κ̄m(n) of (X2n − n)/σn of order m also converges to the
cumulant of X of order m for m > 1. Note that κ̄2m+1(n) = 0 for m > 0 and (see (7))

κ̄2m(n) = σ−2mn κ2m(n) =
(2m)!

σ2m
n

∑
16k6m

(−1)k−1

k2k
hm,kSn,k.

Since Sn,k 6 σ2k
n , we the deduce that

κ̄2m(n)

(2m)!
=

(−1)m−1

m2m
· Sn,m
σ2m
n

+O(σ−2n ),

for any fixed m. Now σn →∞, we conclude that

κ2m
(2m)!

= lim
n→∞

κ̄2m(n)

(2m)!
=

(−1)m−1

m2m
lim
n→∞

Sn,m
σ2m
n

. (24)

We now introduce the distribution function

Fn(x) :=
∑
1

σ2n(1−cosφj)
<x

1

σ2
n(1− cosφj)

,

with support in the unit interval. Then

Sn,N
σ2N
n

=

∫ 1

0

xN−1 dFn(x).

The fact that the left-hand side of the above expression has a limit (24) implies that the corre-
sponding sequence of distribution functions Fn(x) also converges weakly to some limit distri-
bution function F (x). Therefore

lim
n→∞

Sn,N
σ2N
n

=

∫ 1

0

xN−1 dF (x),

which implies that the cumulants of the limit distribution X can be expressed as

κ̄2m
(2m)!

= lim
n→∞

κ̄2m(n)

(2m)!
=

(−1)m−1

m2m
lim
n→∞

Sn,m
σ2m
n

=
(−1)m−1

m2m

∫ 1

0

xm−1 dF (x).
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It follows that

E(eXs) = exp

(∑
m>1

κ2m
(2m)!

s2m

)

= exp

(∑
m>1

(−1)m−1s2m

m2m

∫ 1

0

xm−1 dF (x)

)

= exp

(∫ 1

0

log (1 + xs2/2)

x
dF (x)

)
.

(25)

Note that the distribution function Fn(x) has no more than b1/εc points of discontinuity in
the interval [ε, 1] if ε > 0. Thus the weak limit F (x) of the sequence of Fn(x) has the same
property: F (x) has no more than b1/εc points of discontinuity qk in the interval [ε, 1], where
qk is the limit of certain points of discontinuity of function Fn(x). This means that F (x) is a
distribution function of the form

F (x) =

{
q +

∑
qk<x

qk, if x > 0,
0, if x < 0,

where qk > 0 with
∑

k>1 qk = 1−q. Here q equals the jump of the function F (x) at zero. Thus∫ 1

0

log (1 + xs2/2)

x
dF (x) =

q

2
s2 +

∑
k>1

log
(

1 +
qk
2
s2
)
.

Substituting this expression into (25), we obtain (4). This completes the proof of Theorem 1.2.

3.2 An alternative proof of Theorem 1.2
A less elementary proof of Theorem 1.2 relies on the Hadamard factorization theorem (see
(Titchmarsh, 1975, Ch. 8); see also Newman (1974) for a similar context). Indeed, assume that
(X2n − n)/σn converges in distribution to some limit law X , then the inequality (17) implies
that ∣∣E(eXs)

∣∣ 6 e3|s|
2/2 (s ∈ C).

In other words, it is an entire function of order 2. Hadamard’s factorization theorem then
implies that such a function can be represented as an infinite product

E(eXs) = eAs
2+Bs

∏
ρ

(
1− s

ρ

)
es/ρ,

where ρ ranges over all zeros of the function of the left-hand side. On the other hand, the fact
that all zeroes of the functions E(e(X2n−n)s/σn) are symmetrically located on the imaginary line
implies the same property for E(eXs). This yields

E(eXs) = eAs
2+Bs

∏
k>1

(
1 +

s2

t2k

)
,

for some real sequence tk > 0. Now E(X) = 0 implies that B = 0. Also E(X2) = 1 leads to

A+
∑
k>1

t−2k = 1.

Denoting by q = 2A and qk = 2/t2k, we obtain the representation (4).

13



3.3 Implications of the infinite-product factorization
By (4),

κ2m =
(−1)m−1

m2m

∑
j>1

qmj (m > 2).

This yields the sign-alternating property for the sequence {κ2m}.

Corollary 3.1. If X is not the normal law, then all even cumulants are non-zero and have
alternating signs

(−1)m−1κ2m > 0 (m > 1).

Corollary 3.2.
1 6 E(X4) 6 3.

Proof. By (4),

E(X4) = 3

(
1−

∑
j>1

q2j

)
, (26)

which implies the upper bound; the lower bound follows directly from Cauchy-Schwarz in-
equality 1 = E(X2) 6

√
E(X4).

Corollary 3.3. The standard normal distribution is the only distribution for which the fourth
moment reaches the maximum value 3 in the class of distributions that are the limits of random
variables whose probability generating functions are root-unitary polynomials; similarly, the
Bernoulli distribution assuming ±1 with probability 1/2 each is the only distribution whose
fourth moment reaches the minimum value 1 in the same class of distributions.

Proof. Note that the standard normal law corresponds to the choices q = 1 and qj ≡ 0, the first
part of the corollary follows then from (26).

For the lower bound, assume that Y is a symmetric distribution such that E(Y ) = 0 and
E(Y 2) = E(Y 4) = 1. Then

V(Y 2) = E(Y 2 − 1)2 = E(Y 4 − 2Y 2 + 1) = 0.

This means that Y can only assume two values P(Y ∈ {−1, 1}) = 1. The symmetry of Y now
implies that Y assumes the values 1 and −1 with equal probabilities.

Remark 3.4. The uniqueness of the standard normal and Bernoulli laws also implies that a
sequence of random variables {Xn} converges to normal or Bernoulli if and only if its fourth
normalized central moment converges to 3 or to 1, respectively. This provides an alternative
proof of the last two statements of Theorem 1.1.

4 Applications. I. Normal limit law
We consider in this section applications of our results in the situations when the limit law is
normal.

14



4.1 A simple framework
Our starting point is the polynomials of the form

Pn(z) =
(1− zb1)(1− zb2) · · · (1− zbN )

(1− za1)(1− za2) · · · (1− zaN )
, (27)

where aj , bj are non-negative integers that may depend themselves on N and

n :=
∑

16j6N

(bj − aj).

We assume that Pn(z) has only nonnegative coefficients. Such a simple form arises in a large
number of diverse contexts, some of which will be examined below. In particular, it was studied
in the recent paper Chen et al. (2008).

We now consider a sequence of random variables Xn defined by

E(zXn) =
Pn(z)

Pn(1)
.

We have
Pn(es)

Pn(1)
= exp

(∑
m>1

κN,m
m!

sm
)
,

where

κN,m =
(−1)m

m
Bm

∑
16j6N

(bmj − amj ) (m > 1),

the Bm’s being the Bernoulli numbers. Note that B2m+1 = 0 for m > 1.
An application of Theorem 1.1 yields the following result.

Theorem 4.1. The sequence of the random variables (Xn − E(Xn))/
√
V(Xn) converges to

the standard normal distribution if and only if the following cumulant condition holds

lim
N→∞

κN,4
κ2N,2

=
144

120
lim
N→∞

∑
16j6N(b4j − a4j)(∑
16j6N(b2j − a2j)

)2 = 0. (28)

The cumulant condition largely simplifies the sufficient condition given by Chen et al.
(2008), where they require the convergence of all cumulants

κN,2m
κmN,2

→ 0 (m > 2),

following the proof used by Sachkov (1997). See also Janson (1988) for a related framework.

4.2 Applications of Theorem 4.1
Theorem 4.1 can be applied to a large number of examples. Many other examples related to
Poincaré polynomials, rank statistics, and integer partitions can be found in the literature; see,
for example, Akyıldız (2004); Andrews (1976); van de Wiel et al. (1999) and the references
therein.
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Inversions in permutations The generating polynomial for the number of inversions in a
permutation of n elements (or Kendall’s τ statistic) is given by∏

16j6n

1− zj

1− z
.

In this case, the cumulant condition (28) has the form∑
16j6n(j4 − 1)(∑
16j6n(j2 − 1)

)2 = O(n−1).

Thus the number of inversions in random permutations is asymptotically normally distributed;
see Feller (1945), Sachkov (1997); see also Cronholm and Revusky (1965); Louchard and
Prodinger (2003); Margolius (2001).

Number of inversions in Stirling permutations In this case, we have the polynomial (see
Park (1994)) ∏

16j6n

1− zr+(j−1)r2

1− zr
(r > 1),

and the cumulant condition (28) is of order

κn,4
κ2n,2

=

∑
06j<n

(
(r + jr2)4 − 1

)(∑
06j<n

(
(r + jr2)2 − 1

))2 = O(n−1).

Consequently, the number of inversions in random Stirling permutations is asymptotically nor-
mally distributed.

Gaussian polynomials The generating function for the number p(n,m, j) of partitions of
integer j into at most m parts, each 6 n, is given by (see e.g. Andrews (1976))∑

06j6nm

p(n,m, j)zj =
∏

16j6n

1− zj+m

1− zj
.

Then the cumulant condition has the form∑
16j6n((m+ j)4 − j4)(∑
16j6n((m+ j)2 − j2)

)2 = O

(
1

m
+

1

n

)
.

This means that the coefficients of Gaussian polynomials are normally distributed if both
n,m → ∞; see Mann and Whitney (1947); Takács (1986). More examples can be found
in Andrews (1976).
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Mahonian statistics In this case the polynomials are equal to the general q-multinomial co-
efficients (see Canfield et al. (2011) and Canfield et al. (2012))

Pn(z) =

∏
16j6a1+···+am(1− zj)∏
16j6m

∏
16i6aj

(1− zi)
,

where n =
∑

26k6m ak
∑

16j<k aj . By symmetry, we can assume that a1 > · · · > am. Then
the cumulant condition (28) becomes∑

16j6a1+···+am i
4 −

∑
16j6m

∑
16i6aj

i4(∑
16j6a1+···+am i

2 −
∑

16j6m

∑
16i6aj

i2
)2 =

f4(a1 + · · ·+ am)−
∑

16j6m f4(aj)(
f2(a1 + · · ·+ am)−

∑
16j6m f2(aj)

)2 ,
where f2(x) = (2x3 + 3x2 + x)/6 and f4(x) = (6x5 + 15x4 + 10x3 − x)/30. By induction,
(a1 + · · · + am)k − ak1 − · · · − akm is nonnegative and is nondecreasing in k > 1. Thus the
right-hand side is bounded above by

9 · 31

30

(a1 + · · ·+ am)5 − a51 − · · · − a5m(
(a1 + · · ·+ am)3 − a31 − · · · − a3m

)2
= O

(
a1 + · · ·+ am∑

16i<j6m aiaj

)
= O

(
a1 + · · ·+ am

a1(a2 + a3 + · · ·+ am)

)
= O

(
1

a2 + a3 + · · ·+ am
+

1

a1

)
,

where we use the estimates

(a1 + · · ·+ am)3 − a31 − · · · − a3m � (a1 + · · ·+ am)
∑

16i<j6m

aiaj,

(a1 + · · ·+ am)5 − a51 − · · · − a5m � (a1 + · · ·+ am)3
∑

16i<j6m

aiaj.

Thus we arrive at the same conditions as those in Canfield et al. (2011)

a1 →∞ and a2 + a3 + · · ·+ am →∞,

for the asymptotic normality of the coefficients of Pn(z) when a1 > a2 > · · · > am.

Generalized q-Catalan numbers The generating function has the form∏
26j6n

1− z(m−1)n+j

1− zj
,

and the cumulant condition (28) also holds∑
26j6n

(
((m− 1)n+ j)4 − j4

)(∑
26j6n

(
((m− 1)n+ j)2 − j2

))2 6

∑
26j6n(2mn)4(∑

26j6n(m− 1)2n2
)2 = O

(
n−1
)
,

which means that the generalized q-Catalan numbers are asymptotically normally distributed,
uniformly for all m > 2. This result was previously proved by Chen et al. (2008).
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Sums of uniform discrete distributions LetXn be the sum ofN independent, integer-valued
random variables

Xn := J1 + J2 + · · ·+ JN ,

where Jk is a uniform distribution on the set {0, 1, 2, . . . , dk − 1} with dk > 2, and n =∑
16j6N(dj − 1). Then the corresponding probability generating function E(zXn) is equal, up

to a normalizing constant, to

Pn(z) =
∏

16j6N

1− zdj
1− z

,

which means that Xn is asymptotically normal if and only if∑
16j6N(d4j − 1)(∑
16j6N(d2j − 1)

)2 → 0.

Since by our assumption dj > 2, we have dj − 1 � dj and thus we can simplify our necessary
and sufficient condition for asymptotic normality as

d41 + d42 + · · ·+ d4N
(d21 + d22 + · · ·+ d2N)2

→ 0 (N →∞). (29)

Note that dj here can depend on N . The continuous version of this problem with Jk being
uniformly distributed on the intervals [0, dj] was considered in Olds (1952). The corresponding
necessary and sufficient condition obtained in this paper was

max16j6N dj√
d21 + d22 + · · ·+ d2N

→ 0

which is equivalent to condition (29).

Number of inversions in bimodal permutations A permutation σ = (s1, s2, . . . , sn) of
n numbers 1, 2, 3, . . . , n is said to be of a shape (i, k − j, j, l) if the first i numbers in the
permutation are decreasing s1 > s2 > · · · > si, the next k − j numbers are increasing si+1 >
s2 > · · · > si+k−j , then followed by j increasing and l decreasing numbers. Assume that σ is
chosen with equal probability among all permutations of shape (i, k − j, j, l). Then its number
of inversions becomes a random variable In = In(i, k − j, j, l). The probability generating
function of In is, up to some constant, of the form (see Böhm and Katzenbeisser (2005))

Pn(i, k, l, j; z) = z(i2)+(j2)

( ∏
16ν6i

1− zk+ν

1− zν

)( ∏
16ν6l

1− zk+i+ν

1− zν

)( ∏
16ν6j

1− zk−j+ν

1− zν

)
.

The random variables In are asymptotically normally distributed if∑i
ν=1((k + ν)4 − ν4) +

∑l
ν=1((k + i+ ν)4 − ν4) +

∑j
ν=1((k − j + ν)4 − ν4)(∑i

ν=1((k + ν)2 − ν2) +
∑l

ν=1((k + i+ ν)2 − ν2) +
∑j

ν=1((k − j + ν)2 − ν2)
)2 → 0,

which is equivalent to

ik(k + i)3 + l(k + i)(k + i+ l)3 + j(k4 − j4)(
ik(k + i) + l(k + i)(k + i+ l) + j(k2 − j2)

)2 → 0.
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If we assume that the parameters i, j, k, l are proportionate to some parameter t, that is i =
bαtc , j = bβtc , k = bγtc , l = bδtc, where α, β, γ, δ > 0 and α + γ + δ = 1, then the above
condition is satisfied and as a consequence In is asymptotically normally distributed as t→∞.
This fact has been proved in Böhm and Katzenbeisser (2005) by the method of moments.

Rank statistics Many test statistics based on ranks lead to explicit generating functions that
are of the form (27), and thus the corresponding limit distribution can be dealt with by the tools
we established. In particular, we have the following correspondence between test statistics and
combinatorial structures; see van de Wiel et al. (1999) for more information.

Kendall’s τ Inversions in permutations
Mann-Whitney test Gaussian polynomials

Jonckheere-Terpstra test Mahonian statistics

On the other hand, the Wilcoxon signed rank test (see Wilcoxon (1947)) leads to the prob-
ability generating function of the form ∏

16j6n

1 + zj

2
,

which admits a straightforward generalization to (see van de Wiel et al. (1999) for details)∏
16j6n

1 + zaj

2
,

where the aj’s can be any real numbers. When they are all nonnegative integers, we see, by
(28), that the associated random variables are asymptotically normally distributed if and only
if

a41 + · · ·+ a4n
(a21 + · · ·+ a2n)2

→ 0,

as n → ∞. In particular, this applies to Wilcoxon’s test (aj = j) and to Policello and
Hettmansperger’s test (aj = min{2j, n+ 1}; Policello and Hettmansperger (1976)).

4.3 Turán-Fejér polynomials
The class of polynomials we consider here (see (30) below) is of interest for several reasons.
First, they lead to asymptotically normally distributed random variables but do not have the
finite-product form (27). Second, they provide natural examples with non-normal limit laws
when the second parameter varies. Finally, they have a concrete interpretation in terms of the
partitioning cost of some variants of quicksort.

Fejér (1937) studied the Cesàro summation of the geometric series defined by

Fn,k(z) :=
∑

06j6n

Fj,k−1(z) (k > 1),

with
Fn,0(z) :=

∑
06j6n

zj,
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and Turán (1949) proved that all F (k)
n,k (z) are root-unitary for 0 6 k 6 n. We characterize all

possible limit laws for the random variables defined via the coefficients of F (k)
n,k (z) for 0 6 k 6

n.
By the relation

Fn,k(z) = [wn]
1

(1− w)k+1(1− zw)
,

where [wn]f(w) denotes the coefficient of wn in the Taylor expansion of f(w), we have

F
(k)
n,k (z) = [wn]

1

(1− w)k+1
· k!wk

(1− zw)k+1

= k!
∑

06j6n−k

(
j + k

k

)(
n− j
k

)
zj.

Normalizing this polynomial, we obtain

Pn,k(z) :=
∑

06j6n−k

(
j+k
k

)(
n−j
k

)(
n+k+1
2k+1

) zj, (30)

which gives rise to a sequence of probability generating functions of random variables, say
Zn,k. Note that

zkPn−k−1,k(z) =
∑

k6j6n−k−1

(
j
k

)(
n−1−j
k

)(
n

2k+1

) zj,

which arises in the analysis of quicksort using the median of 2k + 1 elements; see Sedgewick
(1980); Chern et al. (2002) or Appendix.

Lemma 4.2. For m > 0

E(Zm
n,k) =

∑
06`6m

S(m, `)`!

(
k+`
k

)(
n+k+1
2k+`+1

)(
n+k+1
2k+1

) , (31)

where S(m, `) denotes the Stirling numbers of the second kind. In particular,

E(Zn,k) =
n− k

2
and V(Zn,k) =

(n− k)(n+ k + 2)

4(2k + 3)
. (32)

Proof. By (30), the relation

jm =
∑

06`6m

S(m, `)j · · · (j − `+ 1),

and the combinatorial identity∑
06j6n−k

(
j + k

k

)(
n− j
k

)(
j

`

)
=

(
k + `

k

)(
n+ k + 1

2k + `+ 1

)
,

(easily proved by convolution), we deduce (31).
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Theorem 4.3. The random variables Zn,k are asymptotically normally distributed if and only
if both k and n− k tend to infinity. If 0 6 k = O(1), then the limit law is a Beta distribution

Zn,k
n

d−→ Beta(k, k). (33)

If 1 6 ` := n− k = O(1), then the limit law is a binomial distribution

Zn,k
d−→ Binom(`; 1

2
).

Proof. By (32), the variance tends to infinity if and only if n− k →∞ (0 6 k 6 n). Also we
obtain, by (31),

E
(
Zn,k − n−k

2

)4
V(Zn,k)2

− 3 = − 2(3n2 + 6n+ k2 + 4k + 6)

(n− k)(n+ k + 2)(2k + 5)
= O

(
n

k(n− k)

)
.

The asymptotic normality then follows. We can indeed obtain a local limit theorem by straight-
forward calculations from (30).

When k = O(1), we have, by (30),

E(Zm
n,k)

nm
→ (k +m)!(2k + 1)!

k!(2k +m+ 1)!
(m > 0),

implying that the moment generating function of the limit law satisfies

E(eZks) =
(2k + 1)!

k!

∑
m>0

(k +m)!

m!(2k +m+ 1)!
sm =

(2k + 1)!

k!k!

∫ 1

0

xk(1− x)kexs dx,

a Beta distribution. Note that we can express the moment generating function in terms of Bessel
functions as

E(e(Zk−1/2)s) =

(
is

4

)−k−1/2
Γ(k + 3

2
)Jk+ 1

2
(is/2)

=
∏
j>1

(
1 +

s2

4ζ2k+1/2,j

)
, (34)

where Jα denotes the Bessel function and the ζα,j’s denote the positive zeros of Jα(z) arranged
in increasing order. By considering 2(Zk − 1/2)

√
2k + 3, we obtain (4) with qj = 2(2k +

3)/ζ2k+1/2,j .
On the other hand, when ` := n− k = O(1), we have, by (31),

Pn,k(z)→
(

1 + z

2

)`
,

a binomial distribution. Note that we have the factorization

E(e(X−`/2)s/
√
`/4) =

∏
j>1

(
1 +

4s2

(2j − 1)2π2`

)`
.
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5 Applications II. Non-normal limit laws
In addition to the extremal cases of the Turán-Fejér polynomials, we consider in this section
more root-unitary polynomials whose coefficients have a limit distribution that is not Gaussian.
A class of polynomials exhibiting a similar non-Gaussian behavior is included in Appendix
because the proof that they are root-unitary is still missing.

5.1 Reimer’s polynomials
In the course of investigating the remainder theory of finite difference, Reimer (1969) proved,
as a side result, that the polynomials

Rn,m(y) :=
∑

06j6n

(
n

j

)
yj
∫ j+1

j

|t(t− 1) · · · (t− n− 1)|m dt.

have only unit roots. We consider the distribution of the coefficients of Rn,m(y).
For simplicity, we consider only m = 1 and write Rn = Rn,1. Define the random variables

Xn by

E(yXn) :=
Rn(y)

Rn(1)
.

Let
Ak := [zk]

z

log(1− z)
(k > 0).

These numbers are (up to sign) known under the name of Cauchy numbers; see (Comtet, 1974,
pp. 293–294). See also the recent paper Kowalenko (2010) for a detailed study of these num-
bers.

Lemma 5.1. For n > 1

E(yXn) = 12
∑

06j6n

(
n

j

)
yn−j(1− y)jAj+2. (35)

Proof. We have

Rn(y) =
∑

06j6n

(
n

j

)
(−1)n+1+jyj

∫ j+1

j

t(t− 1) · · · (t− n− 1) dt

= (n+ 2)!(−1)n+1
∑

06j6n

(
n

j

)
(−1)jyj

∫ j+1

j

(
t

n+ 2

)
dt

= (n+ 2)!(−1)n+1[zn+2]
∑

06j6n

(
n

j

)
(−1)jyj

∫ j+1

j

(1 + z)t dt

= (n+ 2)!(−1)n+1[zn+1]
∑

06j6n

(
n

j

)
(−1)jyj

(1 + z)j

log(1 + z)

= (n+ 2)![zn+1]
(1− (1− z)y)n

log(1− z)
. (36)
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In particular

Rn(1) = (n+ 2)![z]
1

log(1− z)
=

(n+ 2)!

12
,

and (35) follows.

Note that A0 = −1 and

Ak = −
∑

06j<k

Aj
k + 1− j

(k > 1).

All Ak’s are positive except A0.

Lemma 5.2. The moments of Xn satisfy

E(Xm
n ) =

∑
06k6m

ÃkS(m, k)n(n− 1) · · · (n− k + 1) (m > 0), (37)

where

Ãk := 12
∑
06`6k

(
k

`

)
(−1)`A`+2. (38)

In particular,
E(Xn) =

n

2
, V(Xn) =

n

60
(4n+ 11).

Proof. By taking m-th derivative with respect to y and then substituting y = 1 in (36), we
obtain

E(Xn(Xn − 1) · · · (Xn −m+ 1)) = 12[zn+1]
∂m

∂ym
(1− (1− z)y)n

log(1− z)

∣∣∣∣∣
y=1

= 12[zm+1]
(z − 1)m

log(1− z)
n(n− 1) · · · (n−m+ 1),

which yields (37) since

E(Xm
n ) =

∑
06k6m

S(m, k)E(Xn(Xn − 1) · · · (Xn − k + 1)).

Theorem 5.3. The sequence of random variables {Xn/n} converges in distribution toX whose
m-th moment equals Ãm (defined in (38)).

Proof. By (37), E(Xm
n ) ∼ Ãmn

m. Since Ak = O(1/k), we see that Ãm = O(2m), implying
that such a moment sequence determines uniquely a distribution.
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The limit law has the moment generating function

E(eXs) = 12
∑
m>0

sm

m!

∑
06j6m

(
m

j

)
(−1)jAj+2

= 12es
∑
j>0

Aj+2

j!
(−s)j

= − 12

2πis

∫
H

et+s
(

1

log(1 + s
t
)
− t

s
− 1

2

)
dt,

where the integration
∫

H
is taken along some Hankel contour; see (Flajolet and Sedgewick,

2009, p. 745).
When m > 2, we can apply the same arguments but the technicalities are more involved.

5.2 Chung-Feller’s arcsine law
The classical Chung-Feller theorem states that the number of positive terms Wn of the sums
Sn = X1 + · · ·+Xn, where Xi takes ±1 with probability 1/2 each, has the probability

P(Wn = k) =

(
2k

k

)(
2n− 2k

n− k

)
4−n (k = 0, . . . , n).

The limit distribution is an arcsine law (see (Feller, 1968, §III.4))

Wn

n

d−→ W, where P(W < x) =
2

π
arcsin

√
x.

The corresponding probability generating function is a polynomial with only unit roots.
Indeed, following the same proof as in Turán (1949), we can show that E(zWn) is connected to
Legendre polynomials by the relation

E(zWn) = [vn]
1√

(1− v)(1− zv)

= zn/2Legendren

(
z1/2 + z−1/2

2

)
,

so that the root-unitarity of the left-hand side follows from the property that Legendre polyno-
mials have only real roots over the interval [−1, 1]. Note that the moment generating function
of the arcsin law with zero mean and unit variance is given by the Bessel function

E(e(W−1/2)s/
√
2) = e−

√
2s

(
1 +

∑
k>1

(
2k

k

)
(s/
√

2)k

k!

)

= J0(
√

2 is) =
∏
j>1

(
1 +

2s2

ζ20,j

)
,

where the ζ0,j’s are the positive zeros of J0(z). So we have (4) with q = 0 and qj = 4ζ−20,j .
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In a more general manner, from the Gegenbauer polynomials, one can also define the ran-
dom variables Wn by

E(zWn) =
1(

2α+n−1
n

) [vn]
1

(1− v)−α(1− zv)−α

=
∑

06j6n

(
α+j−1

j

)(
α+n−j−1

n−j

)(
2α+n−1

n

) zj (α > 0),

for which all coefficients are positive and E(zWn) has only unit roots. The limit law Wα can be
derived as in the bounded case of the Turán-Fejér polynomials

E(e(Wα−1/2)s) =

(
is

4

)−α+1/2

Γ(α + 1/2)Jα−1/2(is/2)

=
∏
j>1

(
1 +

s2

4ζ2α+1/2,j

)
.

Note that the random variable 2
√

2α + 1(Wα − 1/2) has variance one.
For other potential examples, see (Johnson et al., 2005, Chapter 6).

5.3 Uniform distribution
The literature abounds with criteria for the root-unitarity of polynomials. Among these, Lakatos
(2002) proved that a complex polynomial P (z) :=

∑
06k6n akz

k with ak = an−k is root-unitary
if

|an| >
∑

06j6n

|an − aj|;

see also Schinzel (2005). In particular, if the coefficients of P (z) are close to a constant, then all
its roots lie on the unit circle. For example, let Ej = j![zj]1/ cosh(z) denote Euler’s numbers;
then the polynomial

Pn(z) = (−1)n
∑

06j6n

(
2n

2j

)
E2jE2n−2jz

j = [wn]
1

cos(
√
w) cos(

√
wz)

,

is root-unitary (see Lalin and Rogers (2011)) with non-negative coefficients. See also Lalin and
Smyth (2012) for more information and other root-unitary polynomials. Observe that

(−1)n

(2n)!

(
2n

2j

)
E2jE2n−2j ∼

4n+2

π2n+2
,

as j, n− j →∞. Thus we can show that the random variables associated with the coefficients
of Pn(z) will be close to uniform, and the limit law is also uniform. Details are omitted here.
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Appendix. A class of mixtures of hypergeometric distributions
Yet another class of polynomials with a similar nature to those of Turán-Fejér arises from the
analysis of the partitioning stages of quicksort and defined as follows (see Chern et al. (2002)).
Consider the random variable Yn defined by

P(Yn = k) =
∑
06j<r

pj

(
k
j

)(
n−1−k
r−1−j

)(
n
r

) ,

where r > 1 and
∑

06j<r pj = 1 is a given known distribution. Many concrete examples
are discussed in Chern et al. (2002). Let P (z) :=

∑
06j<r pjz

j . Assume throughout that
pj = pr−1−j for 1 6 j < r. Numerical evidence suggested that the probability generating
function

E(zYn) =
∑
06j<r

pj
∑
k

(
k
j

)(
n−1−k
r−1−j

)(
n
r

) zk
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are root-unitary for many natural choices of {pj}, but it is unclear for which class of poly-
nomials P (z) will the polynomials be root-unitary2. The results below do not depend on the
root-unitarity of E(zYn).

Assuming from now on pj = pr−1−j for 0 6 j < r, we examine the moment structure of
Yn. Note that this assumption implies that

∑
06j<r jpj = (r − 1)/2.

Lemma 5.4. The m-th moment of Yn is given explicitly by

E(Y m
n ) =

∑
06h6m

νm,h

(
n+h
r+h

)(
n
r

) . (39)

Here
νm,h := (−1)m+hS(m+ 1, h+ 1)

∑
06`6h

s(h+ 1, `+ 1)π`,

where the s(m,h) denote the signless Stirling numbers of the first kind, and π` :=
∑

06j<r pjj
`.

In particular, E(Yn) = (n− 1)/2 and the variance satisfies

V(Yn) =
(4π2 − r2 + 3r)n2 + 2(6π2 − 2r2 + 3r − 1)n+ 8π2 − 3r2 + 3r − 2

4(r + 1)(r + 2)
.

Note that π2 − 4r2 + 3r is always positive because

r(r − 3)

4
< π2

1 =
(r − 1)2

4
6 π2.

Thus the limit law of Yn is never Gaussian for finite r.

Proof. By definition,

E(Y m
n ) =

∑
06j<r

pj
∑
k

km

(
k
j

)(
n−1−k
r−1−j

)(
n
r

) . (40)

The, using the relation

km =
∑

06h6m

(−1)m+hS(m+ 1, h+ 1)(k + 1) · · · (k +m),

we obtain∑
k

km
(
k

j

)(
n− 1− k
r − 1− j

)
=
∑

06h6m

(−1)m+hS(m+ 1, h+ 1)
∑
k

(k + 1) · · · (k + h)

(
k

j

)(
n− 1− k
r − 1− j

)
=
∑

06h6m

(−1)m+hS(m+ 1, h+ 1)(j + 1) · · · (j + h)
∑
k

(
k + h

j + h

)(
n− 1− k
r − 1− j

)
=
∑

06h6m

(−1)m+hS(m+ 1, h+ 1)(j + 1) · · · (j + h)

(
n+ h

r + h

)
.

2The problem can be formulated by asking for which class of polynomials P (z) =
∑

06j<r pjz
j will the

polynomials

[wn]
1

(1− w)(1− zw)
P

(
1

(1− w)(1− zw)

)
have only unit roots?
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Now, by substituting the expression

(j + 1) · · · (j + h) =
∑
06`6h

s(h+ 1, `+ 1)j`,

We then obtain (39).

Theorem 5.5. The sequence of random variables {Yn/n} converges in distribution to a limit
law Y whose moment generating function satisfies

E(eY s) = r
∑
06j<r

pj

(
r − 1

j

)∫ 1

0

exsxr−1−j(1− x)jdx. (41)

Proof. Indeed, by (39),

E(Y m
n )

nm
∼ r!

(r +m)!

∑
06j<r

pj(j + 1) · · · (j +m),

so that
E(Y m

n )

nm
d−→ Y,

where the moment generating function of X is given by

E(eY s) =
∑
m>0

sm

m!

∑
06j<r

pj
Γ(j +m+ 1)Γ(r + 1)

Γ(r +m+ 1)Γ(j + 1)

=
∑
m>0

sm

m!

∑
06j<r

pj
Γ(r − j +m)Γ(r + 1)

Γ(r +m+ 1)Γ(r − j)

= r
∑
m>0

sm

m!

∑
06j<r

pj

(
r − 1

j

)∫ 1

0

(1− x)jxr−1−j+mdx,

which proves (41). The justification of the unique characterization of this limit law is straight-
forward.

Examples.

• The median of (2k + 1) elements: This corresponds to the case when r = 2k + 1 and
pk = 1. We then obtain

E(eY s) =
(2k + 1)!

k!k!

∫ 1

0

exsxk(1− x)kdx,

a Beta distribution (with a Bessel-type infinite-product representation); see (33) and (34).

• Uniform distributon: In this case, pj = 1/r, 1 6 j < r. This is algorithmically uninter-
esting, but has the limit moment generating function (es − 1)/s.

• The ninther (the median of three medians, each being the median of three elements): This
is the case when

{pj}j=0,...,8 =
{

0, 0, 0, 3
14
, 4
7
, 3
14
, 0, 0, 0

}
.

We have a mixture of Beta distributions for the limit law.

Many sophisticated cases can be found in Chern et al. (2002).
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