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Application of second generation wavelets to blind

spherical deconvolution

T. Vareschi ∗

Abstract

We adress the problem of spherical deconvolution in a non para-
metric statistical framework, where both the signal and the operator
kernel are subject to error measurements. After a preliminary treat-
ment of the kernel, we apply a thresholding procedure to the signal
in a second generation wavelet basis. Under standard assumptions
on the kernel, we study the theoritical performance of the result-
ing algorithm in terms of Lp losses (p ≥ 1) on Besov spaces on
the sphere. We hereby extend the application of second generation
spherical wavelets to the blind deconvolution framework [16]. The
procedure is furthermore adaptive with regard both to the target
function sparsity and smoothness, and the kernel blurring effect. We
end with the study of a concrete example, putting into evidence the
improvement of our procedure on the recent blockwise-SVD algo-
rithm [6].

Keywords: Blind deconvolution; blockwise SVD; spherical deconvolution;
second generation wavelets; nonparametric adaptive estimation; linear in-
verse problems.
Mathematical Subject Classification: 62G05, 62G99, 65J20, 65J22.

1 Introduction

1.1 Statistical framework

Consider the following problem : we aim at recovering a signal f ∈ L2(S2).
f is not observed directly, but through the action of a blurring process
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modeled by a linear operatorK. To this end, we consider the classic white
noise model, where the available information is the noisy version

gε =Kf + εẆ (1.1)

of f , where Ẇ is a white noise on S2 and K : L2(S2) → L2(S2) is a
measurable operator. We further restrict the shape of K by assuming
that K is a convolution operator on L2(S2), a classic framework ([13],
[17] and [16]) enjoying convenient mathematical properties (see Part 1.2).
This model is equivalently formulated in a density estimation framework,
in which one aims at recovering the density f of a random variable X
on S2 from a n-sample (θ1X1, ...,θnXn) of Z = θX (with the analogy
ε ∼ n−1/2), where θ is a random element in the group of SO3 with density
hθ, and Z has a density fZ ∈ L2(S2). In practice, the blurring operatorK
is seldom directly observable and is itself subject to measurement errors.
This covers the cases where either K is unknown but approximated via
preliminary inference, or K is known but always observed with noise for
experimental reasons. The result is a noisy version Kδ, satisfying

Kδ =K + δḂ (1.2)

where Ḃ is a gaussian white noise on L2(SO3), independent from Ẇ .
The relevance of this generic setting was adequately discussed in Efro-
movich and Kolchinskii [8] and Hoffmann and Reiß [14], and covers nu-
merous fields of applications. Let us mention, for example, image process-
ing, a field which covers astronomy as well as electronic microscopy where
an image, assimilated to a function f ∈ L2([0, 1]2) is observed through
its convolution with the Point Spread Function of the measuring device,
which hence requires to be estimated in first instance (see [23],[1]).
For u, u′, v, v′, w,w′ ∈ L2(S2), observable quantities obtained from
1.1 and 1.2 hence take the form 〈Kf, u〉 + εα(u) (signal) and
〈Ku, v〉 + δβ(v,w) (operator) where α(u) ∼ N (0, ‖u‖2), β(v,w) ∼
N (0, ‖v‖2‖w‖2) and E[α(u)α(u′)] = 〈u, u′〉L2(S2), E[β(v,w)β(v′, w′)] =
〈v, v′〉L2(S2)〈w,w′〉L2(S2).
As we stated, we deal with a convolution on the 2-dimensional sphere.
Namely, if Z admits a density h on SO3 with respect to the Haar measure,
then Kf has the following expression

Kf(ω) =

∫

SO3

f(g−1ω)h(g)dg (1.3)

where dg is the Haar measure on SO3. That is, f is averaged on a neigh-
bourhood of ω with weight h(g) for each rotation g−1 applied to ω. This
problem, together with the introduction of needlets, is for example well
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illustrated by the study of ultra high energy cosmic rays (UHECR).
An UHECR is a radiation hitting the earth with very high energy, and
whose physical origin is still unknown. Yet the understanding the mech-
anisms at work in this phenomenon is fundamental. Current hypothesis
involve pulsars, hypernovaes or black holes. Robust statistic tools are
heavily required, in order to properly estimate the density shape of the
radiation, which is highly related to the physical processes at stake in its
formation. One could ask, for example, whether the density is uniformly
distributed among the sphere, indicating a cosmological cause, or if it
is the superposition of localized spikes. In the latter case, it is crucial
to determine precisely the positions of this spikes. In practice however,
observations (X1, ...,Xn) of such radiations are often subject to various
physical perturbations, translated through the impulse response of the
measuring device. We modelize these by a random rotation θ, which is
to say we actually observe (θ1X1, ...θnXn) realisations of the random
variable Z = θX. The difficulty of the problem is characterized by the
spreading of hθ around the identity : the less localized it is, the more dif-
ficult the estimation of f should be. Moreover, the law of θ is not known
in general, even if some assumptions can restrict its shape. In this case,
preliminary inference is necessary, and leads to an estimator Kδ of K.

Case of a known operator

We shall concentrate here on the case where δ = 0, and describe the
path which finally led to the introduction and use of needlets in this
setting. Spherical harmonics constitute the most natural set of functions
to expand a target function f ∈ L2(S2), and present a structure highly
compatible with deconvolution problems. It prompted Healy et al. [13]
to solve the deconvolution problem with their use, hereby reaching op-
timal L2 rates of convergence (Kim and Koo [17]). Unfortunately their
performances can prove quite poor in general cases, since they lack local-
ization in the spatial domain (see [12]). More recently, spherical wavelets
were introduced (Shröder and Sweldens [25] and Narcowich and Ward
[19]) and have found various applications for a direct estimation of f , in-
cluding geophysics or atmospherics sciences (see for example Freeden and
Schreiner [9] or Freeden and Michel [10]). However, these wavelets, which
rely on a spatial construction, have an infinite support in the frequency
domain, and hence are not suited for the case of spherical deconvolution,
unlike spherical harmonics. The solution to this problem was brought by
Narcowich and Ward [19], who introduced a new set of functions, called
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needets, which preserve the frequency localization of spherical harmonics
as well as the compatibility with inverse problems, all the while remedy-
ing their lack of spatial localization. Since then, needlets became widely
used in astrophysics (Marinucci et al. [18] or Guilloux et al. [12]) or brain
shape modeling (Tournier et al. [26]). In particular, Kerkyacharian et al.
[16] reached near-minimax rates of convergence for Lp losses (1 ≤ p ≤ ∞)
in the present spherical deconvolution setting.

Resolution when K is unknown : Galerkin projection

In the case of unknown operator K, the main methods involve SVD,
WVD and Galerkin schemes (see [3],[4],[14] for example). We now give
an overview of the so called Galerkin method and present its application
to blind-deconvolution. It is based upon on a discretization of 1.1 and
1.2 through the choice of appropriate test functions. Suppose we want
to recover f from the observation g = Kf . Let X,Y ⊂ L2(S2) be two
finite dimensional subset which admit the respective orthogonal bases
ϕ = (ϕk)k=1,...,n and Φ = (Φk)k∈1,...,n. The Galerkin approximation fn of
f is the solution of the equation

〈Kfn, v〉 = 〈g, v〉 ∀v ∈ Y

⇔
∑

k≤n

〈Kϕk,Φk′〉〈fn, ϕk〉 = 〈g,Φk′〉 ∀k′ ≤ n (1.4)

fn is easily computable, as the equivalent solution of the finite dimen-
sional linear system gn = Knfn where gn is the vector whose components
are (〈g, ϕk〉)k≤n and Kn the matrix with entries (〈Kϕk, ϕ′

k〉)k,k′≤n. Hence,
this method relies on the discretization of the operator K, together with
the discretization of the function f .
Galerkin projection were successfully applied to blind deconvolution to
reach optimal rates of convergence on generic Hilbert spaces ([8]) or on
Besov spaces through wavelet-thresholding technics ([14], [4]).
Its remains to handle two practical problems : the algorithm must include
and articulate two essential steps, namely the inversion ofK and the reg-
ularization of the datas through a projection/thresholding scheme . Note
that both the signal and the operator K can be subject to regularization
(see [14],[6]).
The second practical problem remains in chosing the right functions ϕk
and Φk. This choice should ideally answer the dilemma to find a set which
is both compatible with the representation of f (through the belonging
to a certain set of functions) and with the structure of K (see [14], [6]).
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Spherical harmonics respond optimaly to the problem in the case of spher-
ical deconvolution on Sobolev spaces for a L2 error, since they realize a
blockwise-SVD decomposition of K, as shown in 1.1. More importantly
here, when δ is non negative, they allow a fine treatment of Kδ thanks to
the sparse structure of the original operator K, which allowed Delattre
et al. [6] to reach optimal L2-rates of convergence for a natural class of
operators and functions. Thus, we should always seek to preserve this
property of sparsity whenever possible.

1.2 Harmonic analysis on SO3 and S2

The next part provides preliminary tools in order to apply a blockwise
scheme to the case of spherical deconvolution. It is a quick overview of
harmonic analysis on the spaces S2 and SO3 which is mostly inspired by
Healy et al. [13]. Let us define the Euler matrices

u(ϕ) =



cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 , a(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




where ϕ ∈ [0, 2π), θ ∈ [0, π).
Every rotation g in SO3 is the product of 3 elementary rotations :

ε = u(ϕ)a(θ)u(ψ) (1.5)

where ϕ,ψ ∈ [0, 2π), θ ∈ [0, π) are the Euler angles of g. Let l ∈ N and
−l ≤ m,n ≤ l. We also define the rotational harmonics

Rlmn(ϕ, θ, ψ) = e−i(mϕ+nψ)P lmn(cos(θ)) (1.6)

where P lmn are the second type Legendre functions.
The functions Rlmn, l ∈ N, |m|, |n| 6 l are the eigenfunctions of the
Laplace-Beltrami operator on SO3, associated with the eigenvalues 2l+1.
Therefore, the system (

√
2l + 1Rlmn)

l
mn forms a complete orthonormal

basis of L2(SO3). Let h ∈ L2(SO3). For all l ≥ 0, the projection of h on
the space of rotational harmonics with degree l is

l∑

m,n=−l

ĥlmnR
l
mn

where ĥlmn is the (l,m, n) Fourier coefficient of h, defined by

ĥlmn =

∫

SO3

h(g)Rlmn(g)dµg (1.7)
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An analogous study is available on S2. Any point ω ∈ S2 is determined
by its spherical coordinates (θ, ϕ):

ω = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) (1.8)

where θ ∈ [0, π) and ϕ ∈ [0, 2π). Let l a positive integer, m,n two inte-
gers ranking from −l to l. Define the following functions, known as the
spherical harmonics, on S2 :

Y l
m = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
P lm(cos(θ)) (1.9)

where P lm are the Legendre functions. The set (Y l
m) constitutes an or-

thonormal basis of L2(S2). Note Hl the space of spherical harmonics of
degree l and P l the orthogonal projector onto Hl. For every function
f ∈ L2(S2),

P lf =

l∑

m=−l

f̂ lmY
l
m

where f̂ lm is the (l,m) Fourier coefficient of f , defined by

f̂ lm =

∫

S2
f(ω)Y lm(ω)dω

The term of Blockwise-SVD finds its roots in the following proposition,
which expresses the link between Fourier coefficients of h∗ f and those of
h and f . A proof is present in [13].

Proposition 1.1 (Blockwise property). Let h ∈ L2(SO3) and f ∈ L2(S2)
The Fourier coefficients of h ∗ f are

(ĥ ∗ f)lm =

l∑

n=−l

ĥlmnf̂
l
n =

l∑

n=−l

〈h ∗ Y l
n, Y

l
m〉f̂ ln

Hence, if K is a convolution operator over L2(S2) and f ∈ L2(S2), and
if we note, K l the matrix

(
〈KY l

n, Y
l
m〉

)
|m|,|n|≤l

∈M2l+1(C) and f
l the vec-

tor (〈f, Y l
m〉)|m|≤l, Proposition 1.1 translates into

(
Kf

)l
= K lf l. Hence,

turning back to the Galerkin projection of K, take ϕ = Φ = (Y l
m)m,l,

|m| ≤ l. Proposition 1.1 actually implies that the Galerkin matrix(
〈KY l1

m1
, Y l2

m2
〉
)
li≥0,|mi|≤li, i=1,2

is sparse, with blocks Kl on its diagonal.

This justifies the denomination of blockwise-SVD decomposition. In the
sequel, if f ∈ L2(S2) and K : L2(S2) → L2(S2) is a convolution opera-
tor, we will refer indifferently to P lf or f l, and to P lKP l or K

l. Be-
sides, due to Parseval’s formula, we also have ‖P lf‖L2(S2) = ‖f l‖ℓ2(C2l+1)
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and ‖P lKP l‖L2(S2)→L2(S2) = ‖K l‖ℓ2(C2l+1)→ℓ2(C2l+1). Turning back to the
original problem and reminding Proposition 1.1, we can reformulate the
equivalent problem, obtained by projecting 1.1 and 1.2 on every space Hl:

∀l ≥ 0, glε =K
lf l + εẆ

l
(1.10)

∀l ≥ 0, K l
δ =K

l + δḂ
l

(1.11)

where Ẇ
l
is a centered gaussian vector with covariance I2l+1, and Ḃ

l
is

a (2l + 1)× (2l + 1) matrix whose entries are iid variables with common
law N (0, 1).
As we said, spherical harmonics however show great inconvenients when
used in the estimation of a generic function f ∈ L2(S2). We turn to the
presentation of far more accute functions to this end.

2 Needlets

2.1 Construction of Needlets

Needlets were introduced in Narcowich et al. [20], and used in the frame-
work of density estimation on the sphere by Kerkyacharian and Picard
[15], Baldi et al. [2] and Kerkyacharian et al. [16]. As their construction
relies on a rearrangement of spherical harmonics, they inherit the very
useful stability properties of the latter in inverse problems (as expressed
in 1.1). In addition, whereas spherical harmonics’ supports spread all
over the sphere, needlets are almost exponentially localized around their
respective centers, thus allowing a fine multi-resolution analysis and a
description of very general regularity spaces on S2.

Needlet framework

As we have seen, the following decomposition holds : L2(S2) =
∞⊕

l=0

Hl.

The orthogonal projector P l on Hl can be written

P l(f) =

∫
Ll(〈x, y〉)f(y)dy =

∫ l∑

m=−l

Y l
m(x)Y

l
m(y)f(y)dy

where Ll is the Legendre polynomial of degree l, and 〈.〉 stands for the
usual scalar product on R2. Finally, the fact that P l is a projector implies
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the identity ∫

S2
Ll(〈x, y〉)Lk(〈y, z〉)dz = δl,kLl(〈x, z〉) (2.1)

Littlewood-Paley decomposition

Let a be a C∞(R) symetric function, compactly supported in [−1, 1],
decreasing on R+, such that for all x ∈ R, 0 ≤ a(x) ≤ 1 and for all
|x| ≤ 1/2, |a(x)| = 1. Define , for all x ∈ R,

b2(x) = a(
x

2
)− a(x)

b2 is a positive function, supported in [−2;−1/2]
⋃
[1/2; 2], satisfying by

construction
∀|x| ≥ 1,

∑

j≥0

b2(
x

2j
) = 1 (2.2)

Define the kernels

Λj(x, y) =
∑

l≥0

b2(
l

2j
)Ll(〈x, y〉), and Mj(x, y) =

∑

l≥0

b(
l

2j
)Ll(〈x, y〉)

(2.3)

and the associated operators

Bjf =

∫

S2
Λj(x, y)f(y)dy and AJf =

J∑

j=−1

Bjf (2.4)

with the convention B−1f = P 0f . Note that the two sums in 2.3 are
finite since b( l

2j
) = 0 if l /∈ Lj, where Lj is the set of integers between

2j−1 and 2j+1 − 1. It is straightforward to show that, for all f ∈ L2(S2),

‖f‖22 =
∑

j≥0

∑

η∈Zj

〈f,ψj,η〉2 (2.5)

One of the main results in Narcowich et al. [21] is that AJ also mimicks
the best polynomial approximation of f with respect to ‖.‖p for all p ≥ 1,
as expressed in the following theorem:

Theorem 2.1. For all p ∈ [1,∞[, if f ∈ Lp(S2), then
‖AJf − f‖p → 0 as J → ∞

, with uniform convergence if f ∈ C0(S2).
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Space discretization

Proposition 2.2 (Quadrature formula). . Note Pl the set of polynoms
with degree less than l on S2. For each l ≥ 0, there exists a finite set Zl
of cubature points, and non negative reals (λη)η∈Zl

such that

∀f ∈ Pl,
∫

S2
f(ω)dω =

∑

η∈Zl

ληf(η)

Since b( l
2j
) 6= 0 only if 2j−1 ≤ l < 2j+1 the function z 7→ Mj(x, z)

belongs to P2j+1−1, and z 7→ Mj(x, z)Mj(z, y) is an element of P2j+2−2.
For more convenience, we will note Z2j+2−2 = Zj. Hence, Bj writes

Bj(f) =

∫

S2

( ∑

η∈Zj

ληMj(x, η)Mj(η, y)dz
)
f(y)dy

=
∑

η∈Zj

√
ληMj(x, η)

∫

S2

√
ληMj(η, y)f(y)dy

The functions ψj,η =
√
ληMj(., η), are called needlets. Furthermore, it

can be prooved that the cubature points η and weights λη can be chosen
so that the two following conditions are verified,

c−122j ≤ card(Zj) ≤ c22j and c−12−2j ≤ λη ≤ c2−2j (2.6)

with a constant c > 0

2.2 Besov spaces

Properties of needlets

By construction, needlets are well localized in frequence (C∞, compactly
supported). A crucial result proved by Narcowich et al. [21] shows that
they are furthermore near exponentially localized in space.

Theorem 2.3. Let j ≥ 0, η ∈ Zj. For all M > 0, there exists CM > 0
such that

∀x ∈ S2, |ψj,η(x)| ≤
CM2j

(1 + 2jd(x, η))M
(2.7)

where d(x, y) = arccos(〈x, y〉) is the geodesic distance on the sphere.
To illustrate this point, we represented two needlets of level j = 2, 3 on
figure 1. The following properties are all consequences of this localization
property.
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Figure 1: A Spherical representation of two needlets (level j = 2, 3 from left to right)
centered around the point (0,0,1). The darkened zones correspond to the regions where
the needlet is high.

Proposition 2.4. For all p ≥ 1 (with the convention 1/∞ = 0), there
exists cp, Cp,Dp > 0 such that

cp2
j( 1

2
− 1

p
) ≤ ‖ψj,η‖p ≤ Cp2

j( 1
2
− 1

p
) (2.8)

Proposition 2.5. For all p ∈ [1,+∞], there exists a constant Cp such
that for all f ∈ Lp(S2),

‖Bj(f)‖p ≤ Cp
∥∥(|λη |‖ψj,η‖p

)
η∈Zj

∥∥
ℓp

(2.9)

Moreover,
∥∥(|λη|‖ψj,η‖p

)
η∈Zj

∥∥
ℓp

≤ ‖f‖p (2.10)

Construction of Besov spaces

Besov spaces on the sphere naturally generalize the usual approximation
properties of regular functions, all the while being simply characterized
with the help of needlets. A complete description, and the proofs of the
results claimed in this part can be found in Narcowich et al. [20] or Kerky-
acharian and Picard [15]. Let f : S2 7→ R be a measurable function and
let Ek,π (π ≥ 1) be the distance of f to Pk with respect to ‖.‖Lπ , that is

Ek,π = inf
P∈Pk

‖f − P‖Lπ

Theorem 2.6. Let 0 < s < ∞, 1 ≤ p < ∞ and 0 < r ≤ ∞.Let f ∈ Lπ.
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The following statements are equivalent and define the Besov space Bs
π,r.

(∑

k≥0

krsEk,π(f)
r
)1/r

<∞ (2.11)

(∑

j≥0

2jrsE2j ,π(f)
r
)1/r

<∞ (2.12)

∃ ξj ∈ ℓq(N), ‖Bjf‖π = ξj2
−js (2.13)

∃ ξj ∈ ℓq(N),
( ∑

η∈Zj

|βj,η|π‖ψj,η‖ππ
)1/π

= ξj2
−js (2.14)

Bs
π,q is a Banach space, associated with the norm

‖f‖Bs
π,r

= ‖2j(s+2( 1
2
− 1

π
))(

∑

η∈Zj

|βj,η|π)1/π‖ℓr

Besov spaces satisfy the following includings, all of which derive from
Hölder’s inequality.

Proposition 2.7. Besov embeddings. Let s > 0, 1 ≤ p, π, r ≤ ∞

• Bs
π,r ⊂ Bs

p,r if π ≥ p.

• Bs
π,r ⊂ B

s−2( 1
π
− 1

p
)

p,r if π < p and s− 2( 1π − 1
p) > 0

• Bs
π,r ⊂ C0(S2) if s > 2

π , where C0(S2) is the set of continuous func-
tions on S2.

3 Estimation procedure

We turn to the presentation of our procedure of Blind Deconvolution
using Needlets (BND) and derive rates of convergence for generic Lp

losses on Besov spaces. A natural idea would be to take needlets as test
functions in equation 1.4 since they represent f efficiently. Unfortunately,
the ensuing Galerkin matrix

(
〈Kψj,η,ψh,α〉

)
j≥0,η∈Zj ,h≥0,α∈Zh

has many

non-zero entries, due to the fact that the frequency levels of ψj,η and

ψh,α overlap if |j − h| ≤ 1. The choice of the functions Y l
m is far more

indicate, moreover the ensuing matricesK l enter naturally in the needlets
decomposition of gε since, with the use of Parseval’s formula, we have

〈gε,ψj,η〉 =
∑

l∈Lj

〈K lf l + εẆ
l
,ψlj,η〉

11



Before entering into details in the procedure, we need to precise the blur-
ring effect of K with the introduction of a constant ν called degree of
ill-posedness (DIP) :

Assumption 3.1 (Spectral behaviour of K). There exists ν ≥ 0,
Q1(K), Q2(K) ≥ 0 such that, for all l ∈ N∗,

Q1l
ν ≤ ‖(K l)−1‖op ≤ Q2l

ν (3.1)

We note Kν(Q1, Q2) the set of operators satisfying this assumption.

Assumption 3.1 actually states that even if K is L2 continuous, its
inverse is not bounded and hence not computable in a satisfying way, but
the weaker assumption that K : W−ν/2 → Wν/2 is continuous holds (see
[22]).
Let us now give an intuition of the procedure. Decomposing the inner
product 〈Kf ,ψj,η〉, j ≥ 0, η ∈ Zj on every space Hl, l ≥ 0 via Parseval’s
formula, coupled to Proposition 1.1 entails

〈f ,ψj,η〉 =
∑

l∈Lj

〈(K l)−1(Kf )l,ψlj,η〉

Hence a first natural estimator of 〈f ,ψj,η〉 would be

β̃j,η =
∑

l∈Lj

〈(K l
δ)

−1glε,ψ
l
j,η〉

Remark that the elements ψlj,η, l ∈ Lj are easily computable thanks to
the identity

〈ψj,η, Y l
m〉 = b(

l

2j
)Y l
m(η) for all l ∈ Lj, |m| ≤ l

However, the presence of noises on both the signal and opera-
tor requires an additional treatment. This is realized through a
preliminary processing Top(K

l) of Kl and a secondary treatment

Tsig
( ∑

l∈Lj

〈
(
Top(K

l)
)−1
glε,ψ

l
j,η〉

)
of the resulting estimator.

3.1 Main procedure

Suppose that Assumption 3.1 holds. Define J , the maximal resolution
level, such that

2J = λ⌊
(
ε
√

| log ε|
)−1 ∧

(
δ
√

| log δ|
)−2⌋ (3.2)
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for a positive parameter λ. For j ∈ N, define

lj = min{l ∈ Lj, ‖Top
(
K l

)−1‖ 6= 0}
(with the convention min ∅ = +∞), and, for positive constants κ and
τsig, τop,

Ol,δ = κ
√
2l+ 1δ

√
| log δ| (3.3)

Sj(δ, ε) =

{
‖Top(Klj )−1‖op

(
τsigε

√
| log ε| ∨ τop2−j/2δ

√
| log δ|

)
if lj <∞

+∞ if lj = +∞
(3.4)

Define also the ensuing regularizing procedures Tsig and Top, inspired
from [6] and [16], defined by

∀g ∈ L2(S2), Tsig(g) =
J∑

j=0

∑

η∈Zj

〈g,ψj,η〉1{|〈g,ψj,η〉|>Sj(δ,ε)}ψj,η

∀K ∈ L2(SO3), Top(K) =
2J+1∑

l=0

Kl1{‖(Kl)−1‖≤O−1
l,δ }

The estimator f̃ of f is defined by

f̃ = Tsig

((
Top(Kδ)

)−1
gε

)

=
∑

j≤J

∑

η∈Zj

β̂j,η1{|β̂j,η |>Sj(δ,ε)}ψj,η

where we noted β̂j,η
∆
=

2j+1∑

l=2j−1

〈(K l
δ)

−11{‖(Kl
δ)

−1‖≤O−1
l,δ }g

l
ε,ψ

l
j,η〉.

Theorem 3.2. Let π ≥ 1, s > 2
π , r ≥ 1 and M > 0. Let ν ≥ 0, let

Q1 ≥ Q2 > 0. Then for sufficiently large κ and τ , for all p ∈ [1,+∞[,

sup
f∈Bs

π,r(M),K∈Kν(Q1,Q2)

E ‖f̃ − f‖pp .(| log ε|)p−1(ε
√
| log ε|)pµ(2)

∨ (| log δ|)p−1(δ
√

| log δ|)pµ(1)
(3.5)

where . means inequality up to a multiplicative constant depending only
on p, s, π, r,M, ν,Q1, Q2, λ, κ, τsig and τop, and where the exponents µ(d)
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are defined for d ∈ N by

µ(d) =





s
s+ν+ d

2

if s > (ν + d
2)(

p
π − 1)

or s = (ν + d
2)(

p
π − 1) and r ≤ π

s−2/π+2/p

s−2/π+ν+ d
2

if 2
π < s < (ν + d

2)(
p
π − 1)

Theorem 3.3. Under the same hypothesis as in Theorem 3.2,

sup
f∈Bs

π,r(M),K∈Kν(Q1,Q2)

E ‖f̃ − f‖∞ .
√

| log ε|(ε
√
| log ε|)µ′(2)

∨
√

| log δ|(δ
√

| log δ|)µ′(1)
(3.6)

where the exponents µ′(d) are defined by

µ′(d) =
s− 2/π

s− 2/π + ν + d
2

An explanation of the shape of the thresholding procedure is necessary
here. The term ‖Top(K lj )−1‖op is meant to replace the classical term 2jν

(see [16]). Indeed, Lemmas 4.1 and 4.2 show that with high probability,
this term behaves as 2jν . The procedure BND is hence adaptive for a
wide range of Lp losses and over a wide range of function and operator
spaces, with respect to s, π, r,Q1, Q2, and ν.
What can we say about the case where ν is already known or infered?
First, in that case, we can directly replace ‖Top(K lj )−1‖op by 2jν in the
threshold level 3.4. Secondly, the lower bound in Assumption 3.1 becomes
unnecessary (i.e. we can set Q2 = 0) and the class of operators for which
the rates of Theorems 3.2 and 3.3 are available hence becomes wider.
Finally, we can use a sharper maximal level

2J = λ⌊
(
ε
√

| log ε|
) −1

ν+1 ∧
(
δ
√

| log δ|
) −1

ν+1/2 ⌋
which will lead to the same rates of convergence, while avoiding unneces-
sary calculations. This is a non negligible gain, since needlets are costly
with regard to computation time.
Although we chose to work in a white noise model for the convenience
of calculations, the algorithm and ensuing results should be easily tran-
scriptible to the density estimation framework, in which one observes
direct realizations (θ1X1, ..., θnXn) of θX and a noisy version Kδ of K.
More generally, the presence of a blockwise-SVD decomposition combined
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with properties of the ensuing needlets frame similar to Part 2 ensure the
applicabilty of the scheme with adapted convergence rates. This includes
in particular the corresponding one dimensionnal problem (equivalent to
deconvolution in a periodic setting), where the rates improve on those of
Cavalier and Raimondo [4] and Hoffmann and Reiß [14]. Another practi-
cally relevant example concerns the operators defined on Sd, d ≥ 1 via

Kf(ξ) =

∫

Sd
ϕ(〈ξ, ω〉)f(ω)dω

and ϕ is a bounded integrable function on [−1, 1]. In this case, as shown by
the Funk-Hecke theorem (see [11]), spherical harmonics realize a SVD of
K. On the other hand, the construction of needlets generalizes naturally
to Sd ([21]), and the rates derived hence change to

(| log ε|)p−1(ε
√

| log ε|)µ(d) ∨ (| log δ|)p−1(δ
√

| log δ|)µ(0)

This sheds a light on the role of the dimensional factors obtained in the
rates, the term µ(d) accounting for the dimension of the underlying space
while the term µ(0) concerns the efficiency of the set of functions chosen
for the Galerkin projection, via the size of the blocks obtained.
The speed of convergence gives an explicit interplay between δ and ε,
including the possible case where δ ≫ ε. If δ = 0, the rates coincide
with the results of Kerkyacharian et al. [16] (actually, the algorithms
themselves are nearly identical), which are optimal in the minimax sense
(up to a log factor, see Willer [27] for a sketch of proof). The two regions
s ≥ (ν + 1)( pπ − 1) and s < (ν + 1)( pπ − 1) are classic in non parametric
estimation and respectively refered to as the regular case and the sparse
case.
The optimality (in a minimax sense) of the procedure is beyond the scope
of this paper. We don’t know if the δ-rate is minimax in general, though
it is trivially the case if the ε-term dominates the δ-term in theorems 3.2
and 3.3. Let us point out that Delattre et al. [6] attained a faster (and
optimal) rate in the particular case where p = π = r = 2. However, the
corresponding framework was more restrictive since it (crucially) requires
the set of inequalities

‖K l‖ . l−ν and ‖
(
Kl

)−1‖ . lν (3.7)

, which unilaterally entail Assumption 3.1. Secondly, the procedure de-
veloped therein relies strongly on the conveniency of spherical harmonics
to represent both the operator and the signal sparsely, and isn’t directly
transcriptible in the present setting without additional restrictions on the
behaviour of K (a direct transcription of the algorithm actually shows
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very poor practical performances).

3.2 Practical study

We present the practical numerical performances of BND and com-
pare it to the Blind Blockwise Deconvolution algorithm (BBD) of
Delattre et al. [6]. The sets of cubature points in the simulations
that follow have been taken from the web site of R. Womersley
http://web.maths.unsw.edu.au/~rsw. We proceed with the following
choices of parameters :
Data: the target density f is given by

f(ω) = exp(−2 ∗ ‖ω − ω1‖ℓ1(R3))/c

with ω1 = (0, 1, 0) and c = 0.6729. Concerning the operatorK, we choose
it among the class of Rosenthal laws on SO3. These distributions find
their origins in random walks on groups (see [24]). K is said to follow a
Rosenthal distribution of parameters α ∈]0;π] and ν > 0 on SO3 if, for
l ≥ 0, |m| ≤ l, we have

K l
m,n =

( sin((l + 1/2)α)

(2l + 1) sin(α/2)

)ν
1{m=n}

A Rosenthal law hence provides a concrete example of operator with DIP
ν ≥ 0. We will take α = π and ν = 1.
Tuning parameters: we set λ = 1 in 3.2. The concrete choice of ade-
quate thresholding constants κ and τ is a complex issue. Our practical
choices will be based on the following remark, inspired from Donoho and
Johnstone [7]: in the case of direct estimation on real line, the universal
threshold which is both efficient and simple to implement, takes the form
2
√

| log ε|. A consistent interpretation is to consider that this threshold
should kill any pure noise signal. We will adapt this reasoning to the case
of interest.
Choice of κ : we use as a benchmark the case whereK l is the null matrix
of M2l+1(R) for l ≥ 1 (this corresponds to the case where the law of θ
is uniform over SO3). Given δ large enough, the smallest value κδ such
that , in the Fourier basis, the number of remaining levels l ≤ 10 is zero,
is hence retained. The results are reported in table 1 and give κ = 0.8.
Choice of τsig and τop: It is clear that the role of τsig and τop is to control

the influence of the signal (resp. the operator) error. To chose τsig (resp.
τop), we therefore chose εsig > δsig > 0 (resp. δop > εop > 0) large enough.
Following Kerkyacharian et al. [16], we use the uniform density u on S2
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κ 0.3 0.4 0.5 0.6 0.7 0.8

Nrop 10 9 9 8 2 0

Table 1: Chosing of κ. Nrop is the average number, computed on a base of N = 10
realizations, of levels l ≤ 10 such that Top(Kδ)

l 6= 0. We have δ = 10−3.

τsig 0.5 0.6 0.7 0.8 0.9

j = 0 3 0 3 0 0

j = 1 10 6 0 0 0

j = 2 20 9 2 1 0

j = 3 94 22 8 4 0

τop 0.1 0.2

j = 0 0 0

j = 1 0 0

j = 2 4 0

j = 3 127 0

Table 2: Chosing of τ . For (δsig , εsig) = (εop, δop) = (10−4, 10−3) and each value of
τ , we computed 10 times the described procedure and reported the average number of
remaining needlet coefficients at level j.

as a benchmark. We have 〈u,ψj,η〉 = 0 for j ≥ 1, η ∈ Zj, consequently
the observations 〈gεsig ,ψj,η〉, j ≥ 0 are pure noise. We hence simulate
Kδsig and, integrating the precedently computed value of κ, apply the
procedure for increasing values of τsig (resp. τop) until all the computed
coefficients 〈ũ,ψj,η〉 are killed for j ≤ 3. The results are reported in table
2 and give τsig = 0.9, τop = 0.2.

We compare the performances of BBD (with parameters taken from
[6]) and BND for δ ∈ {3.10−3, 10−3, 10−4}, ε ∈ {10−3, 10−4}. We per-
form the algorithm and run a Monte Carlo method over N = 20 simula-
tions in order to determine the mean squared error and mean L∞ error,

δ ε
E‖f̃ − f‖2 E‖f̃ − f‖∞

BBD BND BBD BND

3.10−3 10−3 0.2214 0.1018 0.3877 0.3457

10−4 0.1691 0.1606 0.2155 0.3377

10−3 10−3 0.2202 0.1268 0.3846 0.2268

10−4 0.0834 0.0595 0.1926 0.1572

10−4 10−3 0.2231 0.1257 0.3925 0.2237

10−4 0.0824 0.0584 0.1924 0.1568

Table 3: Average normalized L2 and L∞ loss of BBD and BND.
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each of whom is approximated by the discrete equivalents calculated from
a uniform grid of 4096 points on S2 at each step. Results are reported in
table 3 and confirm the shape of the obtained rates: BND clearly outper-
forms BBD in every situation except when the operator noise is highly
predominant ((δ, ε) = (3.10−3, 10−4)). This was expectable since K also
verifies 3.7 so that the rates of [6] are available.
For particular realizations of gε and Kδ, we plot in figure 2 : the original
shape of the density, and the results of the different algorithms in the
form of spherical views seen ’from above’. The figures show the better
adaptivity of BND to the ’spiky’ shape of the target density.

4 Proof of theorems 3.2 and 3.3

Preliminary lemmas

We first establish deviation bounds on the variables |β̂j,η − βj,η| which
will be useful further. We begin by the following lemma which concerns

the deviations of ‖Ḃl‖op. A reference is Davidson and Szarek [5].

Lemma 4.1. There exists β0 and c0 independent from l ∈ N such that

∀t ≥ β0, P((2l + 1)−1/2‖Ḃl‖op > t) ≤ exp(−c0t(2l + 1)2)

A simple corrolary is the following majoration of the moments of ‖Ḃl‖op
E[‖Ḃl‖pop] . lp/2

Lemma 4.2. We introduce further the event {‖δḂl‖op ≤ al} with

al = ρOl,δ for some 0 < ρ < 1
2 . On Al

∆
= {‖(Kδ,l)

−1‖op ≤ O−1
l,δ } and

{‖δḂl‖op ≤ al}, since al satisfies O−1
l,δ al = ρ < 1

2 , by a usual Neumann
series argument (see Delattre et al. [6]),

‖(K l
δ)

−1‖op ≤
ρ

1− ρ
‖(K l)−1‖op

and ‖(K l)−1‖op ≤ (1− ρ)−1‖(K l
δ)

−1‖op

Lemma 4.3. Let Sj(δ, ε) = τ2jν
(
ε
√

| log ε| ∨ 2−j/2δ
√

| log δ|
)
with τ =

τsiq ∨ τop. In the setting of Theorem 3.2, for all j ≤ J, η ∈ Zj, for all
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(a) Target Density

(b) BBD, ε = 10−3 (c) BND, ε = 10−3

(d) BBD, ε = 10−4 (e) BND, ε = 10−4

Figure 2: Spherical view from above of the results of the two algorithms with noise
level δ = 10−3
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p ≥ 1

P(|β̂j,η − βj,η| > Sj(δ, ε)) . εκ
2 ∨ δκ2 (4.1)

E[|β̂j,η − βj,η|p] . (ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|p1{j≥j0} (4.2)

E[ sup
η∈Zj

|β̂j,η − βj,η|p] . (j + 1)p
[
(ε2jν)p ∨ (δ2j(ν−1/2))p

]
∨ |βj,η|p1{j≥j0}

(4.3)

where 2j0 ∼ δ−
2

2ν+1 .

Proof of Lemma 4.3. All inequalities can be derived from the study of
P(|β̂j,η − βj,η| > t) in each case. Recoursing to the identity

(K l
δ)

−1(K lf l + εẆ
l
)− f l = −δ(K l

δ)
−1Ḃ

l
f l + (K l

δ)
−1εẆ

l
(4.4)

which holds for every l ∈ N, and using Parseval’s formula, we decompose

β̂j,η − βj,η =
∑

l∈Lj

[
〈(K l

δ)
−1gε − f l,ψl

j,η〉1{Al}
− 〈f l,ψl

j,η〉1{Ac
l}
]

=
∑

l∈Lj

〈−δ(Kl
δ)

−11{Al}
Ḃ

l
f l,ψl

j,η〉+
∑

l∈Lj

〈(K l
δ)

−11{Al}
εẆ

l
,ψl

j,η〉

−
∑

l∈Lj

〈f l,ψl
j,η〉1{Ac

l}

∆
=I + II + III

So we have to study the deviation bounds of these three terms. Term I
can be decomposed as

I = −
∑

l∈Lj

〈δ(K l
δ)

−1Ḃ
l
f l,ψlj,η〉1{Al}

(
1{

‖δḂ
l
‖op<al

} + 1{
‖δḂ

l
‖op>al

}
)

= IV + V

In order to treat the term IV , we introduce the operator

Qj =
∑

l∈Lj

(K l
δ)

−11{Al}
1{

‖δḂ
l
‖op≤al

}Ḃ
l

defined for j ≤ J . Since K and Ḃ are both stable on every space Hl, and
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since 〈ψj,η,ψh,α〉 = 0 if |j − h| > 1,

IV =|〈δQjf,ψj,η〉|
=
∣∣ ∑

h=j−1,j,j+1

α∈Zh

〈δQjψh,α,ψj,η〉〈f,ψh,α〉
∣∣

≤
( ∑

h=j−1,j,j+1

α∈Zh

|〈δQjψh,α,ψj,η〉|π
′) 1

π′
( ∑

h=j−1,j,j+1

α∈Zh

|〈f,ψh,α〉|π
) 1

π 1{π≤2}

+
( ∑

h=j−1,j,j+1

α∈Zh

|〈δQjψh,α,ψj,η〉|π
) 1

π
( ∑

h=j−1,j,j+1

α∈Zh

|〈f,ψh,α〉|π
′) 1

π′ 1{π>2}

where we used Hölder’s inequality with 1
π + 1

π′ = 1. Now, if π ≤ 2, then
π′ ≥ 2 and 2.5 together with Proposition 2.4 entail

( ∑

h=j−1,j,j+1
α∈Zh

|〈δQjψh,α,ψj,η〉|π
′) 1

π′ ≤
( ∑

h=j−1,j,j+1
α∈Zh

|〈δQjψh,α,ψj,η〉|2
) 1

2

≤ ‖δTQjψj,η‖
. δ2j(ν+1/2)

Moreover, since f ∈ Bs
π,r, we have

( ∑

h=j−1,j,j+1
α∈Zh

|〈f,ψh,α〉|π
) 1

π . 2−j(s−
2
π
+1)

If π > 2, a similar argument added with the Besov embedding Bs
π,r ∈

B
s−2( 1

π
− 1

π′ )

π′,r leads to the same bounds. Finally,

P(|IV | > t) ≤ P
(
‖δTQj‖op2−j(s−

2
π
+1) & t

)

≤ P(2−j/2‖P LjḂPLj‖op & tδ−12j(ν−1/2−(s−2/π)))

≤ exp
(
− c0t

222j

222j(ν−
1
2
)

)
1{

t&β02
j(ν− 1

2 )
} (4.5)

where we noted P Lj the orthogonal projector onto
⊕

l∈Lj

Hl and used

Lemma 4.1, Lemma 4.2 together with the fact that s > 2
π . Turning to V ,

a direct application of Lemma 4.1 entails

P(‖δḂl‖op > al) ≤ δc0ρ
2(2l+1)2κ2 (4.6)
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So we have

P(|V | > t) ≤ P(δ
∑

l∈Lj

‖(K l
δ)

−1Ḃ
l‖op‖f l‖‖ψlj,η‖1{Al}

1{
‖δḂ

l
‖op>al

} > t)

≤
∑

l∈Lj

P(‖(K l
δ)

−1Ḃ
l‖op1{Al}

1{
‖δḂ

l
‖op>al

} > t)

.
∑

l∈Lj

P(‖(K l
δ)

−1Ḃ
l‖op1{Al}

> t)1/2 P(‖δḂl‖op > al)1/2

.
∑

l∈Lj

P((2l + 1)−1/2‖Ḃl‖op > tκ log1/2 δ)1/2δc0ρ
2(2l+1)2κ2/2

. δc0ρ
222jκ2/2

∑

l∈Lj

exp(−c0(2l + 1)2t2κ2 log δ/2)

. δc0ρ
222jκ2/2 exp(−c022jt2κ2 log δ/2)

Turning to the term II, we decompose in a similar way

II =
∑

l∈Lj

〈ε(K l
δ)

−1Ẇ
l
,ψlj,η〉1{Al}

(
1{

δ‖Ḃ
l
‖op≤al

} + 1{
δ‖Ḃ

l
‖op>al

}
)

∆
= V I + V II

Conditionning on (Ḃ
l
)l∈Lj

, and applying Lemma 4.2, we derive, for
all t > 0,

P(|V I| > t) = P

(∣∣ ∑

l∈Lj

〈ε(K l
δ)

−1Ẇ
l
,ψlj,η〉1{Al}

1{
δ‖Ḃ

l
‖op≤al

}
∣∣ > t

)

≤ exp
(
− t2

2ε222jν
)

(4.7)

As for V II, employing Cauchy-Scwharz inequality, 4.6, and condition-
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ing on (Ḃ
l
)l∈Lj

, we write

P(|V II| > t) = P(|
∑

l∈Lj

〈ε(K l
δ)

−1Ẇ
l
,ψl

j,η〉1{Al}
1{

δ‖Ḃ
l
‖op>al

}| > t)

≤
∑

l∈Lj

P(|〈ε(K l
δ)

−1Ẇ
l
,ψl

j,η〉1{Al}
1{

δ‖Ḃ
l
‖op>al

}| > t)

≤
∑

l∈Lj

P(|〈ε(K l
δ)

−11{Al}
Ẇ

l
,ψl

j,η〉| > t)1/2 P(δ‖Ḃl‖op > al)
1/2

. exp
(
− t2δ2| log δ|2j

4ε2
)
δc0ρ

222jκ2/2

It remains to treat term III. We claim that

1{Ac
l} ≤ 1{

‖δḂ
l
‖≥Ol,δ

} + 1{‖(Kl)−1‖op≥O
−1
l,δ /2} (4.8)

(for a proof, we refer to Delattre et al. [6]). Hence,

|III| ≤|
∑

l∈Lj

〈f l,ψlj,η〉|1{‖δḂ‖≥Ol,δ} + |
∑

l∈Lj

〈f l,ψlj,η〉|1{‖(Kl)−1‖op≥O
−1
l,δ /2}

∆
=V III + IX

As
{‖(K l)−1‖op > O−1

l,δ /2} ⊂ {l > c(δ
√

| log δ|
)− 1

ν+1/2 }
for a constant c depending only on κ and Q2, we derive noting

j0 = ⌊c(δ
√

| log δ|
)− 1

ν+1/2 ⌋ + 1 so that for all j < j0, l ∈ Lj ⇒
1{‖(Kl)−1‖op≥O

−1
l,δ /2} = 0,

P(|IX| > t) ≤ 1{t<|βj,η |}1{j≥j0} (4.9)

Now, a quick application of Lemma 4.1 entails

P
(
‖δḂl‖ ≥ Ol,δ

)
≤ δc0κ

2(2l+1)2
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Hence,

P (|V III| > t) ≤ P
(
|
∑

l∈Lj

〈f l,ψlj,η〉1{‖δḂl
‖≥Ol,δ

}| > t
)

.
∑

l∈Lj

P
(
1{

‖δḂ
l
‖≥Ol,δ

} > t
)

.
∑

l∈Lj

E[1{
‖δḂ

l
‖≥Ol,δ

}1{t≤1}]

.
∑

l∈Lj

P
(
‖δḂl‖ ≥ Ol,δ

)1/2
1{t≤1}

. δc0κ
222j/21{t≤1}

4.1 results directly from the previous deviation inequalities. Inequalities
4.2 and 4.3 are both applications of the well known formula

E[|X|p] =
∫

u>0
pup−1 P(|X| > u)du ≤ p

∫

u>0
up−1

(
1 ∧ P(|X| > u)

)
du

Indeed, noticing that, if one takes κ and τ large enough, the leading
terms in their studies are given by 4.5, 4.7 and 4.9, inequality 4.2 follows
immediatly. As for inequality 4.3, we have

E[ sup
η∈Zj

|β̂j,η − βj,η|p] ≤
∫

u>0
pup−1

(
1 ∧ P( sup

η∈Zj

|β̂j,η − βj,η| > u)
)
du

≤ p

∫

u>0
up−1

(
1 ∧ 22j P(|β̂j,η − βj,η| > u)

)
du

Moreover, considering only the terms 4.5, 4.7 and 4.9, we have

22j P(|β̂j,η − βj,η| > u) .e−
u2

2ε222jν
+2j log 2 + e

− u2

2δ22j(2ν−1)
+2j log 2

+ 22j1{u.δ2j(2ν−1)} + 22j1{
u≤|βj,η |1{j≥j0}

}

which entails 4.3.

4.1 Proof of Theorem 3.2

Proof. We shall only investigate the case where p > π, since for p ≤ π,
we have Bs

π,r ⊂ Bs
p,r. The L

p loss of the procedure can be decomposed as
follows:

E ‖f̃ − f‖pp . E ‖
∑

j≤J

∑

η∈Zj

〈f̃ − f ,ψj,η〉ψj,η‖pp + ‖
∑

j>J

∑

η∈Zj

βj,ηψj,η‖pp
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Since f ∈ Bs
π,r, the second term is bounded by

2
−Jp

(
s−2( 1

π
− 1

p
)
)

It is not difficult to show that
s−2( 1

π
− 1

p
)

x+1 is always larger than µ(x) (see

[16]). Hence µ(ν) ≤ s−2( 1
π
− 1

p
)

ν+1 ≤ s−2( 1π− 1
p) and µ(ν−1/2) ≤ s−2( 1

π
− 1

p
)

ν+1/2 ≤
2
(
s − 2( 1π − 1

p)
)
. To bound the first term, we apply Hölder’s inequality

and 2.5, to write:

E‖
∑

j≤J

∑

η∈Zj

〈f̃ − f ,ψj,η〉ψj,η‖pp

. Jp−1
(∑

j≤J

∑

η∈Zj

E
[
|β̂j,η − βj,η|p1{|β̂j,η |>Sj(δ,ε)}

]
‖ψj,η‖pp

+
∑

j≤J

∑

η∈Zj

E
[
|βj,η|p1{|β̂j,η |≤Sj(δ,ε)}

]
‖ψj,η‖pp

)

∆
= B + S

The first step is to replace Sj(δ, ε) by a quantity explicitly depending

on 2jν , namely Sj(δ, ε). Write hence

B =Jp−1
∑

j≤J

∑

η∈Zj

E

[
|β̂j,η − βj,η|p1{|β̂j,η|>Sj(δ,ε)}1{lj<+∞}

(
1{

‖δḂ
lj ‖≤alj

} + 1{
‖δḂ

lj ‖>alj

}
)]
‖ψj,η‖pp

≤Jp−1
(∑

j≤J

∑

η∈Zj

E

[
|β̂j,η − βj,η|p1{|β̂j,η |>Sj(δ,ε)}

]
‖ψj,η‖pp

+
∑

j≤J

∑

η∈Zj

E

[
|β̂j,η − βj,η|2p

]p/2
δc0ρ

2(22j+1)2κ2/2‖ψj,η‖pp
)

where we applied Lemma 4.2, 4.6 and Cauchy-Schwartz inequality. It is
clear that the second term is negligible for κ large enough. In a similar
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way,

S =Jp−1
∑

j≤J

∑

η∈Zj

E

[
|βj,η|p1{|β̂j,η |≤Sj(δ,ε)}

(
1{lj<+∞} + 1{lj=+∞}

)

(
1{

‖δḂ
lj ‖≤alj

} + 1{
‖δḂ

lj ‖>alj

}
)]
‖ψj,η‖pp

≤Jp−1
∑

j≤J

∑

η∈Zj

(
E

[
|βj,η|p1{|β̂j,η|≤Sj(δ,ε)}

]
+ |βj,η|p P

(
‖δḂlj‖ > alj

)

+ E
[
|βj,η|p1{lj=+∞}

])
‖ψj,η‖pp

Moreover, thanks to 4.8,

1{lj=+∞} ≤ 1{
Ac

2j

} ≤ 1{
‖δḂ

2j
‖≥O

2j ,δ

} + 1{
‖(K2j )−1‖op≥O

−1

2j,δ
/2

}

It is clear (see the treatment of Term III and 4.6) that the domining
term is

Jp−1
∑

j≤J

∑

η∈Zj

E

[
|βj,η|p1{|β̂j,η |≤Sj(δ,ε)}

]
‖ψj,η‖pp

Hence

E ‖
∑

j≤J

∑

η∈Zj

〈f̃ − f ,ψj,η〉ψj,η‖pp . Jp−1
(
I + II + III + IV

)

with

Bb =
∑

j≤J,η∈Zj

E
[
|β̂j,η − βj,η|p1{|β̂j,η|>Sj(δ,ε)}1{|βj,η|>Sj(δ,ε)/2}

]
‖ψj,η‖pp

Bs =
∑

j≤J,η∈Zj

E
[
|β̂j,η − βj,η|p1{|β̂j,η|>Sj(δ,ε)}1{|βj,η|≤Sj(δ,ε)/2}

]
‖ψj,η‖pp

Sb =
∑

j≤J,η∈Zj

|βj,η|p E
[
1{|β̂j,η|≤Sj(δ,ε)}1{|βj,η |>2Sj(δ,ε)}

]
‖ψj,η‖pp

Ss =
∑

j≤J,η∈Zj

|βj,η|p E
[
1{|β̂j,η|≤Sj(δ,ε)}1{|βj,η |≤2Sj(δ,ε)}

]
‖ψj,η‖pp

We can now treat the terms Bs,Bb, Sb and Ss, applying 2.5, 4.1 and
Cauchy-Schwarz inequality:

Bs ≤ Jp−1
∑

j≤J

∑

η∈Zj

E
[
|β̂j,η − βj,η|p1{|β̂j,η−βj,η |>Sj(δ,ε)/2}

]
‖ψj,η‖pp

≤ Jp−1
∑

j≤J

∑

η∈Zj

E[|β̂j,η − βj,η|2p]1/2 P(|β̂j,η − βj,η| > Sj(δ, ε)/2)
1/2‖ψj,η‖pp

. Jp−1
∑

j≤J

∑

η∈Zj

(
(ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|p1{j≥j0}

)
2jp

(
ετ

2 ∨ δτ2)
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Moreover,

Sb ≤ Jp−1
∑

j≤J

∑

η∈Zj

|βj,η|p P(|β̂j,η − βj,η| > Sj(δ, ε))‖ψj,η‖pp

. Jp−1
(
ετ

2 ∨ δτ2
)

since f ∈ B
s−2(1/π−1/p)
p,r . Hence in both cases the rate of convergence is

smaller than what is claimed for sufficiently large τ . Turning to Bb and
Ss, we write, for all z, z′ ≥ 0,

Bb .Jp−1
∑

j≤J

∑

η∈Zj

E[|β̂j,η − βj,η|p]1{|βj,η|>Sj(δ,ε)/2}‖ψj,η‖p

.
∑

j≤J

∑

η∈Zj

(
(ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|p1{j≥j0}

)
1{|βj,η|>Sj(δ,ε)/2}‖ψj,η‖p

.Jp−1
(
ε
√
| log ε|

)p−z ∑

j≤J

2j[ν(p−z)+p−2]
∑

η∈Zj

|βj,η|z

+ Jp−1
(
δ
√
| log δ|

)p−z′ ∑

j≤J

2j[(ν−1/2)(p−z′)+p−2]
∑

η∈Zj

|βj,η|z
′

+ Jp−12−j0p
(
s−2( 1

π
− 1

p
)
)

and

Ss .Jp−1
∑

j≤J

∑

η∈Zj

|βj,η|z
(
1{

|βj,η |≤2τ2jνε
√

| log ε|
}

+ 1{
|βj,η |≤2τ2j(ν−1/2)δ

√
| log δ|

}
)
‖ψj,η‖pp

.Jp−1
(
ε
√

| log ε|
)p−z∑

j≤J

2j[ν(p−z)+p−2]
∑

η∈Zj

|βj,η|z‖ψj,η‖pp

+ Jp−1
(
δ
√

| log δ|
)p−z′ ∑

j≤J

2j[(ν−1/2)(p−z′)+p−2]
∑

η∈Zj

|βj,η|z
′‖ψj,η‖pp

We already bounded 2
−j0p

(
s−2( 1

π
− 1

p
)
)

∼ δ
p
s−2( 1

π− 1
p )

ν+1/2 , so in both cases
we have the same term to bound. This term can be further writen as
R(ε, ν, z) +R(δ, ν − 1/2, z′) where

R(x, y, z) = Jp−1
(
x
√

| log x|
)p−z∑

j≤J

2j[y(p−z)+p−2]
∑

η∈Zj

|βj,η|z‖ψj,η‖pp

We only give a brief overview of the treatment of R; a detailed one is
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present in Kerkyacharian et al. [16]. First, we split R as follows

R(x, y, z) = Jp−1
[(
x
√
| log x|

)p−z1 ∑

j≤J0

2j[y(p−z1)+p−2]
∑

η∈Zj

|βj,η|z1‖ψj,η‖pp

+
(
x
√
| log x|

)p−z2 ∑

j>J0

2j[y(p−z2)+p−2]
∑

η∈Zj

|βj,η|z2‖ψj,η‖pp
]

where z1, z2, J0 are to determine. Consider first the case where s ≥ (y +

1)( pπ − 1). Note q = p y+1
s+y+1 . Taking z2 = π, z1 = q̃ < q and 2J0

p
q
(y+1) ∼

(x
√

| log x|)−1 entail

R(x, y, J0) . (log x)p−1(x
√

| log x|)p−q

which is the desired bound. Now consider the case where s < (y+1)( pπ−1)

and note q = p y+1−2/p
y+1+s−2/π . Take z1 = π, z2 = q̃ > q and 2

J0
p
q
(y+1−2/p) ∼

(x
√

| log x|)−1. We obtain

R(x, y, J0) . (log ε)p−1(x
√

| log x|)p−q

which ends the proof.

4.2 Proof of Theorem 3.3

Proof. Write similarly

‖f̃ − f‖∞ ≤ E ‖
∑

j≤J

∑

η∈Zj

(
β̂j,η − βj,η

)
ψj,η‖∞ + ‖

∑

j>J

∑

η∈Zj

βj,ηψj,η‖∞

The second term can be handed as before. We decompose the first term
in the following way, using 2.5 for p = ∞, and applying the same sketch
of proof as in theorem 3.2,

E ‖
∑

j≤J

∑

η∈Zj

(
β̂j,η − βj,η

)
ψj,η‖∞ .

∑

j≤J

E sup
η∈Zj

|β̂j,η − βj,η|2j

≤ Bb+Bs+ Sb+ Ss

28



with

Bb =
∑

j≤J

2j E
[
sup
η∈Zj

|β̂j,η − βj,η|1{|β̂j,η |>Sj(δ,ε)}1{|βj,η |>Sj(δ,ε)/2}
]

Bs =
∑

j≤J

2j E
[
sup
η∈Zj

|β̂j,η − βj,η|1{|β̂j,η |>Sj(δ,ε)}1{|βj,η |≤Sj(δ,ε)/2}
]

Sb =
∑

j≤J

2j sup
η∈Zj

|βj,η|E
[
1{|β̂j,η |≤Sj(δ,ε)}1{|βj,η |>2Sj(δ,ε)}

]

Ss =
∑

j≤J

2j sup
η∈Zj

|βj,η|E
[
1{|β̂j,η |≤Sj(δ,ε)}1{|βj,η |≤2Sj(δ,ε)}

]

We have, using inequatlity 4.3,

Bb ≤
∑

j≤J

2j E sup
η∈Zj

|β̂j,η − βj,η|1{|βj,η|>Sj(δ,ε)/2}

≤
∑

j≤J

2j1{∃η∈Zj, |βj,η|≥Sj(δ,ε)/2}2
j E sup

η∈Zj

|β̂j,η − βj,η|

.
∑

j≤J

2j1{∃η∈Zj, |βj,η|≥Sj(δ,ε)/2}(j + 1)
(
ε2jν ∨ δ2j(ν−1/2)

)
∨ |βj,η|1{j≥j0}

. 2J1(ν+1)(J1 + 1)ε+ 2I1(ν+3/2)(I1 + 1)δ +
∑

j≥j0

2j|βj,η|

where J1 is chosen so that, for j ≥ J1, |βj,η| ≤ τε
√

| log ε|2jν/2. We can
take for example (see [16]) J1 verifying, for a certain constant B,

2J1 = B
(
ε
√

| log ε|
)−(s+ν+1−2/π)−1

Similarly, taking

2I1 = C
(
δ
√

| log δ|
)−(s+ν+1/2−2/π)−1

for a certain constant C implies |βj,η| ≤ τδ
√

| log δ|2j(ν−1/2)/2 for all

j ≤ I1. The term
∑

j≥j0

2j |βj,η| is easily treated. This finally leads to the

rate

Bb . | log ε|εµ′(2) ∨ | log δ|δµ′(1)

Ss ≤
∑

j≤J

2j sup
η∈Zj

|βj,η|1{|βj,η |≤2Sj(δ,ε)}

.
[ ∑

j≤J1

2jε
√

| log ε|2jν +
∑

j>J1

2j |βj,η|
]

∨
[ ∑

j≤I1

2jδ
√

| log δ|2j(ν−1/2) +
∑

j>I1

2j |βj,η|
]
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which gives the proper rate of convergence. Turning to Bs and Sb, we
write, using inequalities 4.1 and 4.3

Bs ≤
∑

j≤J

2j E
[
sup
η∈Zj

|β̂j,η − βj,η|1{|β̂j,η−βj,η |>Sj(δ,ε)/2}
]

≤
∑

j≤J

2j E[ sup
η∈Zj

|β̂j,η − βj,η|2]1/2 P(∃η ∈ Zj , |β̂j,η − βj,η| > Sj(δ, ε)/2)
1/2

.
∑

j≤J

2j
[(
j + 1

)(
ε2jν ∨ δ2j(ν−1/2)

)
∨ |βj,η|1{j≥j0}

][
22j(ετ

2 ∨ δτ2

)
]1/2

Now apply inequality 4.1 and the fact that |βj,η| . 2−j to derive

Sb ≤
∑

j≤J

2j E
[
sup
η∈Zj

|βj,η|1{|β̂j,η−βj,η |>Sj(δ,ε)}
]

.
∑

j≤J

22j P
(
|β̂j,η − βj,η| > Sj(δ, ε)

)

.
∑

j≤J

22j(ετ
2 ∨ δτ2)

It is clear that for a well chosen τ these terms are smaller than the an-
nounced rates.
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