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ABSTRACT. We prove that if the probabilistic zeta functionPG(s) of a finitely generated
profinite groupG is rational and all but finitely many nonabelian compositionfactors ofG
are groups of Lie type in a fixed characteristic or sporadic simple groups, thenG contains
only finitely many maximal subgroups.

1. INTRODUCTION

Let G be a finitely generated profinite group. AsG has only finitely many open sub-
groups of a given index, for anyn ∈ N we may define the integeran(G) asan(G) =
∑

H µG(H), where the sum is over all open subgroupsH of G with |G : H | = n. Here
µG(H) denotes the Möbius function of the poset of open subgroups of G, which is defined
by recursion as follows:µG(G) = 1 andµG(H) = −

∑

H<K µG(K) if H < G. Then
we associate toG a formal Dirichlet seriesPG(s), defined as

PG(s) =
∑

n∈N

an(G)

ns
.

Hall in [9] showed that ifG is a finite group andt is a positive integer, thenPG(t) is
equal to the probability thatt random elements ofG generateG or in other words

PG(t) = ProbG(t) :=
|ΩG(t)|

|Gt|
,

whereΩG(t) is the set of generatingt-tuples inG. In [13] Mann conjectured thatPG(s)
has a similar probabilistic meaning for a wide class of profinite groups. More precisely
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2 RATIONAL PROBABILISTIC ZETA FUNCTION

defineProbG(t) = µ(ΩG(t)), whereµ is the normalised Haar measure uniquely defined
on the profinite groupGt andΩG(t) is the set of generatingt-tuples inG (in the topological
sense) and say thatG is positively finitely generated if there exists a positive integert such
thatProbG(t) > 0. Mann conjectured that ifG is positively finitely generated, thenPG(s)
converges in some right half-plane andPG(t) = ProbG(t), whent ∈ N is large enough.
The second author proved in [12] that this conjecture is trueif G is a profinite group with
polynomial subgroup growth. But even when the convergence is not ensured, the formal
Dirichlet seriesPG(s) encodes information about the lattice generated by the maximal
subgroups ofG and combinatorial properties of the probabilistic sequence{an(G)} reflect
aspects of the structure ofG. For example in [4] it is proved that a finitely generated
profinite groupG is prosolvable if and only if the sequence{an(G)} is multiplicative.
Notice that ifH is an open subgroup ofG andµG(H) 6= 0, thenH is an intersection of
maximal subgroups ofG. This implies in particular that ifG contains only finitely many
maximal subgroups (i.e. if the Frattini subgroupFratG of G has finite index inG), then
there are only finitely many open subgroupsH of G with µG(H) 6= 0 and consequently
an(G) = 0 for all but finitely manyn ∈ N (i.e. PG(s) is a finite Dirichlet series). A
natural question is whether the converse is true. An affirmative answer has been given
in the case of prosolvable groups [6]. Really a stronger result holds: if G is a finitely
generated prosolvable group, thenPG(s) is rational (i.e.PG(s) = A(s)/B(s) with A(s)
andB(s) finite Dirichlet series) if and only ifG/FratG is a finite group. This has been
generalized in [7] to the finitely generated profinite groupswith the property that all but
finitely many factors in a composition series are either abelian or alternating groups. In
this paper we prove two other results of the same nature.

Theorem 1. LetG be a finitely generated profinite group. Assume that there exist a prime
p and a normal open subgroupN ofG such that the nonabelian composition factors ofN
are simple groups of Lie type over fields of characteristicp. ThenPG(s) is rational if and
only if G/Frat(G) is a finite group.

Theorem 2. Let G be a finitely generated profinite group. Assume that there exists a
normal open subgroupN of G such that the nonabelian composition factors ofN are
sporadic simple groups. ThenPG(s) is rational if and only ifG/Frat(G) is a finite group.

In particular, ifG contains a normal open subgroupN all of whose nonabelian composi-
tion factors are isomorphic, then we may apply the main theorem in [6] if N is prosolvable,
the main theorem in [7] ifN has a composition factor of alternating type, Theorem 1 ifN
has a composition factor of Lie type and Theorem 2 if a sporadic simple groups appears as
a composition factor ofG and deduce the following corollary.

Corollary. LetG be a finitely generated profinite group. Assume that there exists a nor-
mal open subgroupN of G such that the nonabelian composition factors ofN are all
isomorphic. ThenPG(s) is rational if and only ifG/Frat(G) is a finite group.

The idea of the proof is the following. In [3, 5] it is proved thatPG(s) can be written
as formal productPG(s) =

∏

i Pi(s) of finite Dirichlet series associated with the non-
Frattini factors in a chief series ofG. On the other handG/Frat(G) is finite if and only
if a chief series ofG contains only finitely many non-Frattini factors. So the strategy is to
prove that the product

∏

i Pi(s) cannot be rational if it involves infinitely many nontrivial
factors. A consequence of the Skolem-Mahler-Lech Theorem (see Proposition 2.2) can
help us in this task. However Proposition 2.2 concerns infinite product of finite Dirichlet
series involving only one nontrivial summand, but only the finite Dirichlet series associated
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to the abelian chief factors ofG have this property, while in general the finite seriesPi(s)
are quite complicated. So we need to produce suitable “short” approximationsP ∗

i (s) of
the seriesPi(s), in such a way that the rationality of their product is preserved: the tool to
achieve such approximation is a slight modification of a result already employed in [7] for
a similar purpose (see Proposition 2.3). This requires a delicate analysis of the subgroup
structure of the almost simple groups of Lie type, based in particular on the properties of
the parabolic subgroups, and some information on the maximal subgroups of the sporadic
simple groups.

2. INFINITE PRODUCTS OF FORMALDIRICHLET SERIES

Let R be the ring of formal Dirichlet series with integer coefficients. We will say that
F (s) ∈ R is rational if there exist two finite Dirichlet seriesA(s), B(s) with F (s) =
A(s)/B(s).

For every setπ of prime numbers, we consider the ring endomorphism ofR defined by:

F (s) =
∑

n∈N

an
ns

7→ Fπ(s) =
∑

n∈N

a∗n
ns

wherea∗n = 0 if n is divisible by some primep ∈ π, a∗n = an otherwise. We will use the
following remark:

Remark 2.1. For every setπ of prime numbers, ifF (s) is rational thenFπ(s) is rational.

The following result is a consequence of the Skolem-Mahler-Lech Theorem:

Proposition 2.2. [6, Proposition 3.2] LetI ⊆ N and letq, ri, ci be positive integers for
eachi ∈ I. Assume that

(i) for everyn ∈ N, the set{i ∈ I | ri dividesn} is finite;
(ii) there exists a primet such thatt does not divideri for anyi ∈ I.

If the product

F (s) =
∏

i∈I

(

1−
ci

(qri)s

)

is rational, thenI is finite.

The following slight modification of Proposition 4.3 in [7] can be proved exactly in the
same way and will play a significant role in our arguments.

Proposition 2.3. Let F (s) be a product of finite Dirichlet seriesFi(s), indexed over a
subsetI ofN:

F (s) =
∏

i∈I

Fi(s), whereFi(s) =
∑

n∈N

bi,n
ns

Let q be a prime andΛ the set of positive integers divisible byq. Assume that there exists
a positive integerα and a set{ri}i∈I of positive integers such that ifn ∈ Λ andbi,n 6= 0
thenn is an ri-th power of some integer andvq(n) = αri (wherevq(n) is the q-adic
valuation ofn). Define

w = min{x ∈ N
∣

∣ vq(x) = α andbi,xri 6= 0 for somei ∈ I}.

If F (s) is rational, then the product

F ∗(s) =
∏

i∈I

(

1 +
bi,wri

(wri)s

)

is also rational.
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3. PRELIMINARIES AND NOTATIONS

Let G be a finitely generated profinite group and let{Gi}i∈N be a fixed countable de-
scending series of open normal subgroups with the property thatG0 = G, ∩i∈NGi = 1
andGi/Gi+1 is a chief factor ofG/Gi+1 for eachi ∈ N. In particular, for eachi ∈ N,
there exist a simple groupSi and a positive integerri such thatGi/Gi+1

∼= Sri
i . Moreover,

as described in [5], for eachi ∈ N, a finite Dirichlet series

(3.1) Pi(s) =
∑

n∈N

bi,n
ns

is associated with the chief factorGi/Gi+1 andPG(s) can be written as an infinite formal
product of the finite Dirichlet seriesPi(s):

(3.2) PG(s) =
∏

i∈N

Pi(s).

Moreover, this factorization is independent of the choice of chief series (see [3, 5]) and
Pi(s) = 1 unlessGi/Gi+1 is a non-Frattini chief factor ofG.

We recall some properties of the seriesPi(s). If Si is cyclic of orderpi, thenPi(s) =
1− ci/(p

ri
i )s, whereci is the number of complements ofGi/Gi+1 in G/Gi+1. It is more

difficult to compute the seriesPi(s) whenSi is a non-abelian simple group. In that case
an important role is played by the groupLi = G/CG(Gi/Gi+1). This is a monolithic
primitive group and its unique minimal normal subgroup is isomorphic toGi/Gi+1

∼= Sri
i .

If n 6= |Si|ri , then the coefficientbi,n in (3.1) depends only onLi; more precisely we have

bi,n =
∑

|Li:H|=n
Li=Hsoc(Li)

µLi
(H).

It is not easy to compute these coefficientsbi,n even forn 6= |Si|ri . Some help comes
from the knowledge of the subgroupXi of AutSi induced by the conjugation action of the
normalizer inLi of a composition factor of the socleSri

i (note thatXi is an almost simple
group with socle isomorphic toSi). More precisely, given an almost simple groupX with
socleS, we can consider the following finite Dirichlet series:

(3.3) PX,S(s) =
∑

n

cn(X)

ns
, wherecn(X) =

∑

|X:H|=n
X=SH

µX(H).

Lemma 3.1. [10, Theorem 5]. LetSi be a nonabelian simple group and letπ be a set of
primes containing at least one divisor of|Si|. If n is not divisible by|Si| andbi,n 6= 0, then
there existsm ∈ N with n = mri andbi,n = cm(Xi) ·mri−1. This implies

P π
i (s) = P π

Xi,Si
(ris− ri + 1).

We will give now a description of the finite Dirichlet seriesP {p}
X,S(s) whenS is a simple

group of Lie type over a field of characteristicp andX is an almost simple group with
socleS. We follow the notations from [1]. Recall that a simple groupof Lie typeS is the
subgroupAF of fixed points under a Frobenius mapF of a connected reductive algebraic
groupA defined over an algebraically closed field of characteristicp > 0. In particular,S is
defined over a fieldK = Fq of characteristicp. As explained in [1, 3.4] a Dynkin diagram
can be associated to the simple groupS and to the corresponding Lie algebra; moreover
(see [1, 13.3]) to the mapF , a symmetryρ on the Dynkin diagram ofAF is associated
(ρ is trivial in the untwisted case). LetI := {O1, · · · ,Ok} be the set of theρ-orbits on
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the nodes of the Dynkin diagram. For every subsetJ ⊆ I, let J∗ := ∪i∈JOi be aρ-
stable subset of the set of nodes of the Dynkin diagram and onemay associate anF -stable
parabolic subgroupPJ of S with J∗. As described in [1, Chapter 9], we may associate
to J a polynomialTWJ

(x) with the property thatTWJ
(q) = |PJ |. More precisely, in the

notations of [1, 9.4],TWJ
(x) =

∑

w∈WJ
xl(w). We have that:

Theorem 3.2. [14, Theorem 17] LetS be a simple group of Lie type defined over a field
K = Fq of characteristicp andX an almost simple group with socleS. Then

P
{p}
X,S(s) = (−1)|I|

∑

J⊆I

(−1)|J|
(

TW (q)

TWJ
(q)

)1−s

.

In particular, if X does not contain non-trivial graph automorphisms, then

P
{p}
X,S(s) = P

{p}
S (s)

For later use we need to recall definitions and results concerning Zsigmondy primes.

Definition 3.3. Letn ∈ Nwithn > 1.A prime numberp is called aprimitive prime divisor
of an − 1 if it dividesan − 1 but it does not divideae − 1 for any integer1 ≤ e ≤ n− 1.

The following theorem is due to K. Zsigmondy [15]:

Theorem 3.4(Zsigmondy’s Theorem). Leta andn be integers greater than 1. There exists
a primitive prime divisor ofan − 1 except exactly in the following cases:

(1) n = 2, a = 2s − 1, wheres ≥ 2.
(2) n = 6, a = 2.

Observe that there may be more than one primitive prime divisor of an − 1; we denote
by 〈a, n〉 the set of these primes.

Let p be a prime,r a prime distinct fromp andm an integer which is not a power ofp.
We define:

ζp(r) = min{z ∈ N | z ≥ 1 andpz ≡ 1 mod r},

ζp(m) = max{ζp(r) | r prime, r 6= p, r|m}.

The value ofζp(S) := ζp(|S|) whenS is a simple group of Lie type overFq andq = pf is
given in in [11, Table 5.2.C].

Proposition 3.5. LetX be an almost simple group with socleS, whereS is a simple group
of Lie type defined over a field of characteristicp. Assume thatζp(S) > 1 andζp(S) > 6
if p = 2. Let τ ∈ 〈p, ζp(S)〉. Consider the Dirichlet series

P
{p}
X,S(s) =

∞
∑

n=1

an
ns

.

(a) If an 6= 0 thenτ dividesn. More precisely,vτ (n) = vτ (p
ζp(S) − 1).

(b) If m > ζp(S) and a primitive prime divisor ofpm − 1 dividesn, thenan = 0.
(c) If n is the smallest positive integer such thatn 6= 1 andan 6= 0, thenan < 0.

Proof. The difficult part of this proposition is (a). We use Theorem 3.2 and the description
of the polynomialsTW (t) andTWJ

(t) given in [1, Section 9.4, Section 14.2] and in [14,
Section 3] (see in particular Table 1). It turns out that ifq = pf , thenf dividesζp(S) and
for eachJ ⊆ I, the polynomialTWJ

(t) can be written as a product of suitable cyclotomic
polynomialsΦu(t) with u ≤ ζp(S)/f . MoreoverΦζp(S)/f (t) appears with multiplic-
ity exactly 1 in the factorization ofTW (t) and does not divideTWJ

(t) if J 6= I. This
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means that ifτ ∈ 〈p, ζp(S)〉 andJ 6= I, thenvτ (TW (q)/TWJ
(q)) = vτ (Φζp(S)/f (p

f )) =

vτ (p
ζp(S) − 1). Now (b) follows from the fact that ifm > ζp(S) then no prime divisor

of pm − 1 divides |S|. Finally (c) follows from the fact that by the way in whichan is
definited, the minimality ofn implies that the subgroupsH involved in the definition of
an are maximal, thusµX(H) = −1 andan < 0. �

Combining the previous proposition with Lemma 3.1, we obtain:

Corollary 3.6. Assume thatGi/Gi+1
∼= Sri

i is a chief factors ofG, whereSi is a simple
group of Lie type defined over a field of characteristicp. Assume thatζp(Si) > 1 and
ζp(Si) > 6 if p = 2. If τ ∈ 〈p, ζp(Si)〉, then we have:

(a) If bi,n 6= 0 and (n, p) = 1, then τ dividesn. More precisely,vτ (n) = ri ·
vτ (p

ζp(Si) − 1).
(b) If m > ζp(S) and a primitive prime divisor ofpm − 1 dividesn, thenbi,n = 0.
(c) If n is the smallest positive integer> 1 such that(n, p) = 1 andbi,n 6= 0, then

bi,n < 0.

4. PROOFS OFTHEOREM 1 AND THEOREM 2

We start now the proofs of our main results. We assume thatG is a finitely generated
profinite groupG with the property thatPG(s) =

∑

n an/n
s is rational. As described

in Section 3,PG(s) can be written as a formal infinite product of finite Dirichletseries
Pi(s) =

∑

n∈N
bi,n/n

s corresponding to the factorsGi/Gi+1 of a chief series ofG. Let
J be the set of indicesi such thatGi/Gi+1 is a non-Frattini chief factor. SincePi(s) = 1
if i /∈ J, we have

PG(s) =
∏

j∈J

Pj(s).

For C(s) =
∑∞

n=1 cn/n
s ∈ R, we defineπ(C(s)) to be the set of the primesq for

which there exists at least one multiplen of q with cn 6= 0. Notice that ifC(s)B(s) =
A(s), thenπ(C(s)) ⊆ π(A(s))

⋃

π(B(s)). In particular ifC(s) is rational thenπ(C(s))
is finite. LetS be the set of the finite simple groups that are isomorphic to a composition
factor of some non-Frattini chief factor ofG. The first step in the proofs of Theorem 1 and
2 is to show thatS is finite. The proof of this claim requires the following result.

Lemma 4.1([7, Lemma 3.1]). LetG be a finitely generated profinite group and letq be
a prime withq /∈ π(PG(s)). ThenG has no maximal subgroup of index a power ofq. In
particular if q divides the order of a non-Frattini chief factor ofG, then this factor is not a
q-group.

Let π(G) be the set of the primesq with the properties thatG contains at least an open
subgroupH whose index is divisible byq. Obviouslyπ(PG(s)) ⊆ π(G). By [7, Lemma
3.2] and the classification of the finite simple groups,S is finite if and only ifπ(G) is finite.

Lemma 4.2. If G satisfies the hypotheses of either Theorem 1 or Theorem 2, then the sets
S andπ(G) are finite.

Proof. SincePG(s) is rational, we have thatπ(PG(s)) is finite. Therefore, it follows from
Lemma 4.1 thatS contains only finitely many abelian groups. IfG satisfies the hypotheses
of Theorem 2, then a non abelian group inS is either one of the 26 sporadic simple groups
or is isomorphic to a composition factor of the finite groupG/N . In any case we have
only finitely many possibilities. Consider now the case whenG satisfies the hypothesis
of Theorem 1 and assume by contradiction thatS is infinite. This is possible only if the
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subsetS∗ of the simple groups inS that are of Lie type over a field of characteristicp is
infinite. In particular, the setΩ = {ζp(S) | S ∈ S∗} is infinite (see [11, Table 5.2C]). Let

I := {j ∈ J | Sj ∈ S∗}, A(s) :=
∏

i∈I

Pi(s) and B(s) :=
∏

i/∈I

Pi(s).

Notice thatπ(B(s)) ⊆
⋃

S∈S\S∗ π(S) is a finite set. SincePG(s) = A(s)B(s) and
π(PG(s)) is finite, if follows that the setπ(A(s)) is finite. According with Theorem 3.4,
if m is large enough (for example ifm > 6) then the set〈p,m〉 is non empty. We can find
a positive integerm ∈ Ω such that〈p,m〉 6= ∅ but 〈p,m〉 ∩ π(A(s)) = ∅. Notice that if
m 6= u then〈p,m〉 ∩ 〈p, u〉 = ∅. Let Γm be the set of the positive integersn such that
there existsτ ∈ 〈p,m〉 dividingn but no prime in〈p, u〉 dividesn if u > m. Notice that if
bi,n 6= 0, thenζp(Si) = m if and only if n ∈ Γm. Set

r := min{ri | Si ∈ S∗ andζp(Si) = m},

I∗ := {i ∈ I | ri = r andSi ∈ S},

β := min{n > 1 | n ∈ Γm andbi,n 6= 0 for somei ∈ I∗}.

By Corollary 3.6, ifi ∈ I andbi,β 6= 0, thenζp(Si) = m, ri = r andbi,β < 0. Hence the
coefficientcβ of 1/βs in A(s) is

cβ =
∑

i∈I,r=ri

bi,β =
∑

i∈I∗

bi,β < 0.

On the other hand, again by Corollary 3.6, all the primes in〈p,m〉 divide β. But then
〈p,m〉 ⊆ π(A(s)), which is a contradiction. So we have proved thatS is finite. By [7,
Lemma 3.2], if follows thatπ(G) is also finite. �

The previous result allows us to employ the following:

Proposition 4.3. Let G be a finitely generated profinite group and assume thatπ(G) is
finite. For eachn, there are only finitely many non-Frattini factors in a chiefseries whose
composition length is at mostn. Moreover there exists a primet such that no non-Frattini
chief factor ofG has composition length divisible byt.

Proof. Sinceπ(G) is finite, the setS of the composition factors ofG is also finite and
therefore there existsu ∈ N such that|S| ≤ u for eachS ∈ S. Now assume by con-
tradiction that a chief series ofG contains infinitely many non-Frattini chief factors of
composition length at mostn. LetX/Y be one of them: sinceX/Y is non-Frattini there
exists a proper supplementH/Y of X/Y in G/Y . Clearly |G : H | ≤ |X/Y | ≤ un. In
this way we construct infinitely many subgroups of index at mostun, which is not possible
since a finitely generated profinite group contains only finitely many subgroups of a given
index. The second part of the statement is [7, Corollary 5.2]. �

For a simple groupS ∈ S, let IS = {j ∈ J | Sj
∼= S}. Our aim is to prove that,

under the hypotheses of Theorem 1 and 2,J is a finite set. We have already proved thatS
is finite, so it suffices to prove thatIS is finite for eachS ∈ S. First we consider the case
whenS is abelian.

Lemma 4.4. Assume thatG is a finitely generated profinite group such thatPG(s) is
rational andπ(G) is finite. Then for any primeq, if S has a subgroup with index a power
of q, thenIS is finite. In particular ifS is cyclic, thenIS is finite.
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Proof. LetSq be the set of the non abelian simple groups inS containing a proper subgroup
of q-power index. A theorem proved by Guralnick [8] implies thatif T ∈ Sq then there
exists a unique positive integerα(T ) with the property thatT contains a subgroup of index
qα(T ). Consider the setπ of all the primes different fromq. By Lemma 3.1, there exist
positive integersci and nonnegative integersdi such that

(4.1) P π
G(s) =

∏

i∈IS

(

1−
ci
qris

)

∏

T∈Sq





∏

j∈IT

(

1−
dj

qα(T )rjs

)





SinceS is finite, the set{α(T ) | T ∈ Sq} is finite. Moreover, by Proposition 4.3, there
is a prime numbert such that no element in

{ri | i ∈ IS}
⋃

{α(T )rj | T ∈ Sq andj ∈ IT }

is divisible byt. SincePG(s) is rational,P π
G(s) is also rational. But then, by Proposition

2.2, the number of nontrivial factors in the product at the right side of equation (4.1) is
finite. In particular,IS is a finite set. �

Proof of Theorem 1.Let T be the set of the almost simple groupsX such that there exist
infinitely manyi ∈ J with Xi

∼= X and letI = {i ∈ J | Xi ∈ T }. The hypotheses of
Theorem 1 combined with Lemma 4.4 implies thatJ \ I is finite. We have to prove thatJ
is finite; this is equivalent to show thatI = ∅. But then, in order to complete our proof, it
suffices to prove the following claim.
(∗) For everyn ∈ N, In = {i ∈ I | ζp(Si) = n} = ∅.
Assume that the claim is false and letm be the smallest integer such that the setIm 6= ∅.
SinceJ \ I is finite andPG(s) =

∏

i∈J Pi(s) is rational, also
∏

i∈I Pi(s) is rational. In
particular, the following series is rational:

Q(s) =
∏

i∈I

P
{p}
i (s).

We distinguish three different cases:

(1) m = 1, p = 2t − 1, t ≥ 2;
(2) m ≤ 5, p = 2;
(3) all the other possibilities.

Assume that(1) occurs. By [11, Table 5.2.C] ifζp(S) = 1, thenS ∼= PSL2(p). In
particularS has a subgroup of index a power of 2 andIS (and consequentlyI1) is finite by
Lemma 4.4.

In case (3), it follows by Theorem 3.4 that〈p, t〉 6= ∅ for everyt > m; we setπ =
⋃

t>m〈p, t〉. In case (2),〈p, t〉 6= ∅ whenevert > 6 and we setπ =
⋃

t>6〈p, t〉. The
Dirichlet seriesH(s) = Qπ(s) is rational. By Corollary 3.6, ifi ∈ It andτ ∈ 〈p, t〉, then
P

{τ,p}
i (s) = 1; in particularP π

i (s) = 1 whenever〈p, t〉 ⊆ π. This implies

H(s) =







∏

i∈Im
P

{p}
i (s) in case (3),

∏

i∈Iu
m≤u≤5

P
{2}
i (s) in case (2).

Assume that case(3) occurs and letτ ∈ 〈p,m〉. By Lemma 3.1 and Corollary 3.6, if
i ∈ Im, (p, y) = 1 andbi,y 6= 0, theny = xri andvτ (x) = vτ (p

m − 1). Let

w = min{x ∈ N | vτ (x) = vτ (p
m − 1) andbi,xri 6= 0 for somei ∈ Im}.
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By Corollary 3.6, for eachi ∈ Im, if bi,wri 6= 0 thenbi,wri < 0. Moreover ifbi,wri 6= 0
andXj

∼= Xi, then bj,wrj 6= 0, so the setΣm = {i ∈ Im | bi,wri 6= 0} is infinite.
Applying Proposition 2.3, we obtain a rational product

H∗(s) =
∏

i∈Σm

(

1 +
bi,wri

wris

)

, wherebi,wris < 0 for all i ∈ Σm.

By Propositions 2.2 and 4.3,H∗(s) is a finite product, i.e.Σm is finite, which is a contra-
diction.

Finally assume that case(2) occurs. Ifζp(S) ≤ 5, thenS is one of the following groups:
PSL6(2), U4(2), PSp6(2), PΩ+

8 (2), PSL3(4), SL5(2), PSL4(2), PSL3(2). The explicit

description of the Dirichlet seriesP {2}
X,S(s) whenS ≤ X ≤ Aut(S) andS is one of the

simple groups in the previous list is included in the Appendix. Notice in particular that if
i ∈ Λ =

⋃

m≤5 Im thenπ(P {2}
i (s)) ⊆ {3, 7, 5, 31}. First consider

Λ31 = {i ∈ Λ | 31 ∈ π(P
{2}
i (s))}

and let

w = min{x ∈ N | x is odd, v31(x) = 1 andbi,xri 6= 0 for somei ∈ Λ}

= min{x ∈ N | x is odd, v31(x) = 1 andbi,xri 6= 0 for somei ∈ Λ31}.

Note that ifi ∈ Λ31 andn is minimal with the properties thatn is odd,bi,nri 6= 0 and
v31(n) = 1, thenbi,nri < 0 (see Appendix). So ifbi,wri 6= 0 thenbi,wri < 0; moreover,
by applying Proposition 2.3, we obtain a rational product

H∗(s) =
∏

i∈Λ

(

1 +
bi,wri

wris

)

=
∏

i∈Λ31

(

1 +
bi,wri

wris

)

, wherebi,wri ≤ 0 for all i ∈ Λ31.

By Propositions 2.2 and 4.3, the setΛ∗
31 = {i ∈ Λ31 | bi,wri 6= 0} is finite, but this

implies thatΛ31 = ∅. Indeed ifΛ31 6= ∅ then there exists at least one indexi with
i ∈ Λ∗

31, moreover by assumption there are infinitely manyj with Xj
∼= Xi and all of them

belong toΛ∗
31. SinceΛ31 = ∅, if i ∈ Λ, thenSi is isomorphic to one of the following:

U4(2), PSp6(2), PΩ+
8 (2), PSL3(4), PSL4(2), PSL3(2). It follows from Appendix, that

if i ∈ Λ, x is odd andbi,xri 6= 0, thenv7(x) ≤ 1. But then, we may repeat the same

argument as above and considerΛ7 = {i ∈ Λ | 7 ∈ π(P
{2}
i (s))} and

w := min{x ∈ N | x is odd, v7(x) = 1 andbi,xri 6= 0 for somei ∈ Λ7}.

Arguing as before we deduce thatΛ7 = ∅. We can see from Appendix that this implies
Si

∼= U4(2) for all i ∈ Λ and

H{5}(s) =
∏

i∈Λ

(

1−
33ri

33ris

)

.

Again, by Propositions 2.2 and 4.3,Λ is finite and consequentlyΛ = ∅. �

Proof of Theorem 2.Let T be the set of the almost simple groupsX such thatsocX is
a sporadic simple groups and there exist infinitely manyi ∈ J with Xi

∼= X and let
I = {i ∈ J | Xi ∈ T }. As in the case of Theorem 1, we have to prove thatI = ∅. For an
almost simple groupX , letΩ(X) be the set of the odd integersm ∈ N such that

• X contains at least one subgroupY such thatX = Y socX and|X : Y | = m;
• if X = Y socX and|X : Y | = m, thenY is a maximal subgroup ifX.
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Note that ifm ∈ Ω(X), X = Y socX and|X : Y | = m, thenµX(Y ) = −1: in particular
cm(X) < 0. Combined with Lemma 3.1, this implies that ifm ∈ Ω(Xi) thenbi,mri < 0.
CertainlyΩ(X) is not empty and its smallest element is the smallest indexm(X) of a
supplement ofsocX in X containing a Sylow 2-subgroup ofX. WhenS = socX is a
sporadic simple group, the value ofm(X) can be read from [2], where, for each of these
groups, the list of the maximal subgroups and their indices are given; the precise values
are given in Table 1. In few cases we need to know another integern(X) in Ω(X), given

in Table 2. For a fixed primep, letΛp = {i ∈ I | p ∈ π(P
{2}
i (s))}.

If i ∈ Λ31, then31 divide |Si| andSi ∈ {J4, Ly,O’N,BM,M,Th}. Moreover312 does
not divide|Si| so if n is odd, divisible by 31 andbi,n 6= 0 thenn = xri andv31(x) = 1.
Letmi = n(Si) if Si

∼= Th, mi = m(Si) otherwise. Sincemi is the smallest odd number
divisible by31 and equal to the index inXi of a supplement ofSi we get:

w = min{x ∈ N | x is odd, v31(x) = 1 andbi,xri 6= 0 for somei ∈ I}

= min{x ∈ N | x is odd, v31(x) = 1 andbi,xri 6= 0 for somei ∈ Λ31}

= min{mi | i ∈ Λ31}.

But then by Proposition 2.3, the following Dirichlet seriesis rational:

∏

i∈Λ31

(

1 +
bi,wri

(wri)s

)

.

We havebi,wri < 0 if mi = w, bi,wri = 0 otherwise. By applying Propositions 2.2 and
4.3, we get that{i ∈ Λ31 | mi = w} is a finite set, and this impliesΛ31 = ∅.

Now considerΛ23. SinceΛ31 = ∅, if i ∈ Λ23 thenSi ∈ {M23, M24, Co1, Co2, Co3,
Fi23, Fi24

′}. We can repeat the argument used to proved thatΛ31 = ∅. Let mi = n(Si)
if Si

∼= Co1, mi = m(Xi) otherwise and letw = min{mi | i ∈ Λ23}. By applying
Propositions 2.2 and 4.3, we get that{i ∈ Λ23 | mi = w} is a finite set, and this implies
Λ23 = ∅.

New we considerΛ11. SinceΛ31 ∪ Λ23 = ∅, if i ∈ Λ11, thenSi ∈ {M11, M12, M22,
J1, HS, Suz, McL, HN, Fi22}. Letmi = n(Xi) if Si

∼= Fi22 or Si
∼= Fi′24, mi = m(Xi)

otherwise and letw = min{mi | i ∈ Λ11}. As before, by applying Propositions 2.2
and 4.3, we get that{i ∈ Λ23 | mi = w} is a finite set, and this impliesΛ11 = ∅.
Continuing our procedure, we considerΛ17: if i ∈ Λ17, thenSi ∈ {J3,He} and we can
takew = min{m(Xi) | i ∈ Λ17} and deduce thatΛ17 = ∅. Next we takew = m(Ru) to
proveΛ29 = ∅ and finally we takew = m(J2) to proveΛ7 = ∅. �

APPENDIX: EXCEPTIONAL CASES

In this section, we give explicit formulae forP (2)
X,S(s) whenX is an almost simple group

whose socleS is of Lie type over a field of characteristic2 andζ2(S) ≤ 5. We use for this
purpose Theorem 3.2 and the description of the polynomialsTW (t) andTWJ

(t) given in
[1, Section 9.4, Section 14.2] and in [14, Section 3] (see in particular Table 1). Just to see
an example, consider the caseS = PSL4(2). I = {1, 2, 3} is the set of the nodes of the
Dynkin diagram. According to [14, Table 1]TW (2) = (24−1)(23−1)(22−1) = 32 ·5 ·7.
MoreoverTWJ

(2) = (23 − 1)(22 − 1) = 3 · 7 if J ∈ {{1, 2}, {2, 3}}, TWJ
(2) = (22 −

1)(22 − 1) = 32 if J = {1, 3}, TWJ
(2) = (22 − 1) = 3 if J is one of the three subsets of

I of cardinality 1,TW∅
(2) = 1. HenceP (2)

S (s) = 1 − 2(3 · 5)(1−s) − (5 · 7)(1−s) + 3(3 ·

5 · 7)(1−s) − (32 · 5 · 7)(1−s).
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(i) S = PSL6(2). If X contains a graph automorphism then

P
(2)
X,S(s) = 1− (32 · 7 · 31)(1−s) − (3 · 5 · 72 · 31)(1−s) − (33 · 7 · 31)(1−s) +

+ 2(34 · 72 · 31)(1−s) + (33 · 5 · 72 · 31)(1−s) − (34 · 5 · 72 · 31)(1−s).

If X does not contain graph automorphisms, then

P
(2)
X,S(s) = 1− 2(32 · 7)(1−s) − (32 · 5 · 31)(1−s) − 2(3 · 7 · 31)(1−s) +

+ 3(32 · 7 · 31)(1−s) + 6(32 · 5 · 7 · 31)(1−s) + (3 · 5 · 72 · 31)(1−s) −

− 4(33 · 5 · 7 · 31)(1−s) − 6(32 · 5 · 72 · 31)(1−s) +

+ 5(33 · 5 · 72 · 31)(1−s) − (34 · 5 · 72 · 31)(1−s).

(ii) S = PSL5(2). If X contains a graph automorphism then

P
(2)
X,S(s) = 1− (3 · 5 · 31)(1−s) − (32 · 7 · 31)(1−s) + (32 · 5 · 7 · 31)(1−s).

If X does not contain graph automorphisms, then

P
(2)
X,S(s) = 1− 2(31)(1−s) − 2(5 · 31)(1−s) + 3(3 · 5 · 31)(1−s) +

+ 3(5 · 7 · 31)(1−s) − 4(3 · 5 · 7 · 31)(1−s) + (32 · 5 · 7 · 31)(1−s).

(iii) S = PSL4(2). If X contains a graph automorphism then

P
(2)
X,S(s) = 1− (32 · 7)(1−s) − (3 · 5 · 7)(1−s) + (32 · 5 · 7)(1−s).

If X does not contain graph automorphisms, then

P
(2)
X,S(s) = 1− 2(3 · 5)(1−s) − (5 · 7)(1−s) + 3(3 · 5 · 7)(1−s) − (32 · 5 · 7)(1−s).

(iv) S = PSL3(2). If X contains a graph automorphism then

P
(2)
X,S(s) = 1− (3 · 7)(1−s).

If X does not contain graph automorphisms, then

P
(2)
X,S(s) = 1− 2(7)(1−s) + (3 · 7)(1−s).

(v) S = PSL3(4). If X contains a graph automorphism then

P
(2)
X,S(s) = 1− (3 · 5 · 7)(1−s).

If X does not contain graph automorphisms then

P
(2)
X,S(s) = 1− 2(3 · 7)(1−s) + (3 · 5 · 7)(1−s).

(vi) S = PSp6(2). We have

P
(2)
X,S(s) = 1−(32·7)(1−s)−(33·5)(1−s)−(32·5·7)(1−s)+3(33·5·7)(1−s)−(34·5·7)(1−s).

(vii) S = U4(2). We have

P
(2)
X,S(s) = 1− (33)(1−s) − (32 · 5)(1−s) + (33 · 5)(1−s).

(viii) S = PΩ+
8 (2). We have

P
(2)
X,S(s) = 1− 3(32 · 5)(1−s) − (3 · 52 · 7)(1−s) + 3(33 · 52)(1−s) +

+ 3(33 · 52 · 7)(1−s) − 4(34 · 52 · 7)(1−s) + (35 · 52 · 7)(1−s).
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Table 1: Sporadic simple groups

X |X | m(X)
M11 24 · 32 · 5 · 11 11
M12 26 · 33 · 5 · 11 32 · 5 · 11
Aut(M12) 27 · 33 · 5 · 11 32 · 5 · 11
M22 27 · 32 · 5 · 7 · 11 7 · 11
Aut(M22) 28 · 32 · 5 · 7 · 11 7 · 11
M23 27 · 32 · 5 · 7 · 11 · 23 23
M24 210 · 33 · 5 · 7 · 11 · 23 3 · 11 · 23
J1 23 · 3 · 5 · 7 · 11 · 19 5 · 11 · 19
J2 27 · 33 · 52 · 7 32 · 5 · 7
Aut(J2) 28 · 33 · 52 · 7 32 · 5 · 7
J3 27 · 35 · 5 · 17 · 19 34 · 17 · 19
Aut(J3) 28 · 35 · 5 · 17 · 19 34 · 17 · 19
J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43 112 · 29 · 31 · 37 · 43
HS 29 · 32 · 53 · 7 · 11 3 · 53 · 11
Aut(HS) 210 · 32 · 53 · 7 · 11 3 · 53 · 11
Suz 213 · 37 · 52 · 7 · 11 · 13 33 · 5 · 7 · 11 · 13
Aut(Suz) 214 · 37 · 52 · 7 · 11 · 13 33 · 5 · 7 · 11 · 13
McL 27 · 36 · 53 · 7 · 11 52 · 11
Aut(McL) 28 · 36 · 53 · 7 · 11 52 · 11
Ru 214 · 33 · 53 · 7 · 13 · 29 32 · 53 · 13 · 29
He 210 · 33 · 52 · 73 · 17 5 · 73 · 17
Aut(He) 211 · 33 · 52 · 73 · 17 32 · 52 · 72 · 17
Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 53 · 31 · 37 · 67
O’N 29 · 34 · 5 · 73 · 11 · 19 · 31 32 · 72 · 11 · 19 · 31
Aut(O’N) 210 · 34 · 5 · 73 · 11 · 19 · 31 32 · 72 · 11 · 19 · 31
Co1 221 · 39 · 54 · 72 · 11 · 13 · 23 36 · 53 · 7 · 13
Co2 218 · 36 · 53 · 7 · 11 · 23 34 · 52 · 23
Co3 210 · 37 · 53 · 7 · 11 · 23 33 · 52 · 11 · 23
Fi22 217 · 39 · 52 · 7 · 11 · 13 37 · 5 · 13
Aut(Fi22) 218 · 39 · 52 · 7 · 11 · 13 37 · 5 · 13
Fi23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23 34 · 17 · 23
Fi′24 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29 313 · 5 · 72 · 13 · 17 · 29
Aut(Fi′24) 222 · 316 · 52 · 73 · 11 · 13 · 17 · 29 313 · 5 · 72 · 13 · 17 · 29
HN 214 · 36 · 56 · 7 · 11 · 19 34 · 54 · 7 · 11 · 19
Aut(HN) 215 · 36 · 56 · 7 · 11 · 19 34 · 54 · 7 · 11 · 19
Th 215 · 310 · 53 · 72 · 13 · 19 · 31 38 · 52 · 7 · 13 · 19
BM 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 37 · 53 · 7 · 13 · 17 · 19 · 31 · 47

M
246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 311 · 55 · 74 · 11 · 132 · 17 · 19·
·31 · 41 · 47 · 59 · 71 ·29 · 31 · 41 · 47 · 59 · 71

Table 2:n(X)

X n(X)
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Co1 34 · 52 · 7 · 11 · 13 · 23
Fi22 35 · 5 · 7 · 11 · 13
Fi′24 39 · 5 · 11 · 72 · 13 · 17 · 23 · 29
Aut(Fi′24) 39 · 5 · 11 · 72 · 13 · 17 · 23 · 29
Th 38 · 52 · 7 · 13 · 19 · 31
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