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ABSTRACT. We prove that if the probabilistic zeta functidty (s) of a finitely generated
profinite groupG is rational and all but finitely many nonabelian compositiactors ofG
are groups of Lie type in a fixed characteristic or sporadigps groups, theds contains
only finitely many maximal subgroups.

1. INTRODUCTION

Let G be a finitely generated profinite group. &shas only finitely many open sub-
groups of a given index, for any € N we may define the integer, (G) asa,(G) =
>y a(H), where the sum is over all open subgroupof G with |G : H| = n. Here
ue(H) denotes the Mdbius function of the poset of open subgrofips which is defined
by recursion as followsua(G) = 1 andug(H) = =Y 5 g ta(K) if H < G. Then
we associate t6' a formal Dirichlet serie®; (s), defined as

an(G)
P = —
() = 3
neN
Hall in [9] showed that ifG is a finite group and is a positive integer, theR () is
equal to the probability thatrandom elements af generat&r or in other words

Pa(t) = Probg(t) :== |Q|g ET”,

whereQ(t) is the set of generatingtuples inG. In [13] Mann conjectured thal;(s)
has a similar probabilistic meaning for a wide class of pitdfigroups. More precisely
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defineProbg(t) = u(Qa(t)), wherew is the normalised Haar measure uniquely defined
on the profinite grou® andQ (t) is the set of generatingtuples inG (in the topological
sense) and say thatis positively finitely generated if there exists a positimtegert such
thatProbg (t) > 0. Mann conjectured that if7 is positively finitely generated, theP (s)
converges in some right half-plane aRd(t) = Probg(t), whent € N is large enough.
The second author proved in [12] that this conjecture isifrdéis a profinite group with
polynomial subgroup growth. But even when the convergesic®i ensured, the formal
Dirichlet seriesP(s) encodes information about the lattice generated by the mmlxi
subgroups ofF and combinatorial properties of the probabilistic seqedig (G)} reflect
aspects of the structure @f. For example in [4] it is proved that a finitely generated
profinite groupG is prosolvable if and only if the sequenée,,(G)} is multiplicative.
Notice that if H is an open subgroup @ andug(H) # 0, thenH is an intersection of
maximal subgroups ofr. This implies in particular that i& contains only finitely many
maximal subgroups (i.e. if the Frattini subgroiiat G' of G' has finite index inG), then
there are only finitely many open subgroupsof G with uo(H) # 0 and consequently
an(G) = 0 for all but finitely manyn € N (i.e. Pg(s) is a finite Dirichlet series). A
natural question is whether the converse is true. An affisrmainswer has been given
in the case of prosolvable groups [6]. Really a strongerlrdsids: if G is a finitely
generated prosolvable group, thBa(s) is rational (i.e.Ps(s) = A(s)/B(s) with A(s)
and B(s) finite Dirichlet series) if and only it7/ Frat G is a finite group. This has been
generalized in [7] to the finitely generated profinite growpth the property that all but
finitely many factors in a composition series are eitheriahebr alternating groups. In
this paper we prove two other results of the same nature.

Theorem 1. LetG be a finitely generated profinite group. Assume that therst exprime
p and a normal open subgroup of G such that the nonabelian composition factors\of
are simple groups of Lie type over fields of characterigti®henPg (s) is rational if and
only if G/Frat(G) is a finite group.

Theorem 2. Let G be a finitely generated profinite group. Assume that therst®xd
normal open subgroupv of G such that the nonabelian composition factorsNofare
sporadic simple groups. Thdp;(s) is rational if and only ifG /Frat(G) is a finite group.

In particular, ifG contains a normal open subgrodpall of whose nonabelian composi-
tion factors are isomorphic, then we may apply the main ta@an [6] if V is prosolvable,
the main theorem in [7] ifV has a composition factor of alternating type, Theorem/¥ if
has a composition factor of Lie type and Theorem 2 if a sparsidiple groups appears as
a composition factor off and deduce the following corollary.

Corollary. LetG be a finitely generated profinite group. Assume that therst®xi nor-
mal open subgroupV of G such that the nonabelian composition factorsofare all
isomorphic. TherPg (s) is rational if and only ifG /Frat(G) is a finite group.

The idea of the proof is the following. In [3, 5] it is provedathP(s) can be written
as formal product;(s) = [], Pi(s) of finite Dirichlet series associated with the non-
Frattini factors in a chief series @f. On the other hand/ Frat(G) is finite if and only
if a chief series of7 contains only finitely many non-Frattini factors. So thetgy is to
prove that the produdt], P;(s) cannot be rational if it involves infinitely many nontrivial
factors. A consequence of the Skolem-Mahler-Lech Theorsa Proposition 2.2) can
help us in this task. However Proposition 2.2 concerns itefiproduct of finite Dirichlet
series involving only one nontrivial summand, but only timé& Dirichlet series associated
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to the abelian chief factors @f have this property, while in general the finite ser&és)
are quite complicated. So we need to produce suitable “sapproximationsP;(s) of
the seriesP;(s), in such a way that the rationality of their product is preser the tool to
achieve such approximation is a slight modification of a ltedteady employed in [7] for
a similar purpose (see Proposition 2.3). This requires igatelanalysis of the subgroup
structure of the almost simple groups of Lie type, based itiqudar on the properties of
the parabolic subgroups, and some information on the masuigroups of the sporadic
simple groups.

2. INFINITE PRODUCTS OF FORMALDIRICHLET SERIES

Let R be the ring of formal Dirichlet series with integer coeffitie. We will say that
F(s) € R is rational if there exist two finite Dirichlet serie$(s), B(s) with F(s) =
A(s)/B(s).

For every setr of prime numbers, we consider the ring endomorphisfR afefined by:

an a¥

F = e 0 frnd n

§)=2 2o =3 &
neN neN

wherea}, = 0 if n is divisible by some prime € =, a} = a,, otherwise. We will use the

following remark:

Remark 2.1. For every setr of prime numbers, iF'(s) is rational thenF™(s) is rational.
The following result is a consequence of the Skolem-Mah&sth Theorem:

Proposition 2.2. [6, Proposition 3.2] Letl C N and letq, r;, ¢; be positive integers for

eachi € I. Assume that

(i) foreveryn € N, the sef{i € I | r; dividesn} is finite;
(i) there exists a priméesuch thatt does not divide; for anyi € I.

If the product
ro =11 (1- 5)

iel
is rational, then! is finite.

The following slight modification of Proposition 4.3 in [7&n be proved exactly in the
same way and will play a significant role in our arguments.

Proposition 2.3. Let F'(s) be a product of finite Dirichlet serie$;(s), indexed over a
subset/ of N:
b;
F(s) = | | Fi(s), whereF(s) = » —=
(s) g (s), whereF;(s) % ~

Letq be a prime and\ the set of positive integers divisible by Assume that there exists
a positive integerv and a set{r; };<; of positive integers such thatif € A andb; ,, # 0
thenn is anr;-th power of some integer ang,(n) = ar; (Wherevy(n) is the g-adic

valuation ofn). Define
w =min{z € N | vy(x) = a andb; ;- # 0 for somei € I}.
If F(s) is rational, then the product

ro=I (0 5)

icl

is also rational.
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3. PRELIMINARIES AND NOTATIONS

Let G be a finitely generated profinite group and{€t; },cn be a fixed countable de-
scending series of open normal subgroups with the propeatyd; = G, NjenG; = 1
andG;/G;41 is a chief factor ofG/G; 1 for eachi € N. In particular, for eachi € N,
there exist a simple grouf and a positive integet; such thatz; /G, 1 = S;*. Moreover,
as described in [5], for eache N, a finite Dirichlet series

bi,n
(3.1) Pi(s) =) —
neN
is associated with the chief factéf; /G, ; andP;(s) can be written as an infinite formal
product of the finite Dirichlet serieB;(s):

(3.2) Pa(s) = [[ Pis).
ieN

Moreover, this factorization is independent of the choiteloef series (see [3, 5]) and
P;(s) = 1 unless7; /G, 41 is a non-Frattini chief factor ofr.

We recall some properties of the seri@gs). If .S; is cyclic of orderp;, thenP;(s) =
1 —¢;i/(p;*)°, wherec; is the number of complements 6% /G,11 in G/G, 1. Itis more
difficult to compute the serieB;(s) whensS; is a non-abelian simple group. In that case
an important role is played by the grodp = G/Cs(G;/Gi+1). This is a monolithic
primitive group and its unique minimal normal subgroup @®rphic toG; /Gi11 = S; .

If n # |S;|™, then the coefficient; ,, in (3.1) depends only of;; more precisely we have
bin = Z por; (H).
\L1H|:n
L;=Hsoc(L;)

It is not easy to compute these coefficiebits even forn # |S;|". Some help comes
from the knowledge of the subgroudfy of AutS; induced by the conjugation action of the
normalizer inL; of a composition factor of the sock™ (note thatX; is an almost simple
group with socle isomorphic t6;). More precisely, given an almost simple gralipwith
socleS, we can consider the following finite Dirichlet series:

(3.3) nys(s)zzc’ﬁ(), wherec,(X) = > pux(H).
! g

Lemma 3.1. [10, Theorem 5]. LetS; be a nonabelian simple group and letbe a set of
primes containing at least one divisor|&f;|. If n is not divisible by S;| andb; ,, # 0, then
there existsn € N withn = m" andb; ,, = ¢,,,(X;) - m"i~1. This implies

Pr(s) = P3. s, (ris —r +1).

We will give now a description of the finite Dirichlet serin‘?é({’;(s) whens is a simple
group of Lie type over a field of characterisjicand X is an almost simple group with
socleS. We follow the notations from [1]. Recall that a simple graflie type S is the
subgroupA’” of fixed points under a Frobenius m&pof a connected reductive algebraic
groupA defined over an algebraically closed field of characterjstic0. In particular,S is
defined over a fiel&K = I, of characteristip. As explained in [1, 3.4] a Dynkin diagram
can be associated to the simple graiiand to the corresponding Lie algebra; moreover
(see [1, 13.3]) to the map, a symmetryp on the Dynkin diagram ofA” is associated
(p is trivial in the untwisted case). Ldt:= {04, -, Ok} be the set of the-orbits on
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the nodes of the Dynkin diagram. For every subset I, let J* := U;c;0; be ap-
stable subset of the set of nodes of the Dynkin diagram andnatyeassociate af-stable
parabolic subgrou@’; of S with J*. As described in [1, Chapter 9], we may associate
to J a polynomialTyy, («) with the property thafw, (¢) = |Ps|. More precisely, in the
notations of [1, 9.41Tw, (z) = 3, ¢y, (). We have that:

Theorem 3.2. [14, Theorem 17] LefS be a simple group of Lie type defined over a field
K = IF, of characteristicpy and X an almost simple group with socte Then

P{p} )l Z 1)l (TW,((q)))l_s_

JCI
In particular, if X does not contain non-trivial graph automorphisms, then

PYL(s) = P (s)
For later use we need to recall definitions and results coimgZsigmondy primes.

Definition 3.3. Letn € Nwithn > 1. A prime numbep is called aprimitive prime divisor
ofa™ — 1 if it dividesa™ — 1 but it does not divide® — 1 for any integerl <e <n — 1.

The following theorem is due to K. Zsigmondy [15]:

Theorem 3.4(Zsigmondy’s Theorem)Leta andn be integers greater than 1. There exists
a primitive prime divisor ofi” — 1 except exactly in the following cases:

(1) n=2,a=2°—1,wheres > 2.

(2) n=26,a=2.

Observe that there may be more than one primitive primealiviga™ — 1; we denote
by (a, n) the set of these primes.

Letp be a primey a prime distinct fronp andm an integer which is not a power pf
We define:

¢p(r) =min{z € N| z > 1 andp® = 1 mod r},
Cp(m) = max{(y(r) | r prime,r # p,r|m}.

The value of,,(S) := (,(|S|) whens is a simple group of Lie type ové, andq = p/ is
giveninin[11, Table 5.2.C].

Proposition 3.5. Let X be an almost simple group with soddewhereS is a simple group
of Lie type defined over a field of characterigticAssume thag,(S) > 1 and{,(S) > 6
if p=2. Letr € (p, (,(S)). Consider the Dirichlet series

[e’e} an
PY(s) =Y ==
n=1
(@) If a,, # 0 thenr dividesn. More preciselyp, (n) = v, (p»5) — 1).
(b) If m > ¢,(S) and a primitive prime divisor g™ — 1 dividesn, thena,, = 0.
(c) If nis the smallest positive integer such tha 1 anda,, # 0, thena,, < 0.

Proof. The difficult part of this proposition is (a). We use Theorei&nd the description
of the polynomialsly (t) and Ty, (t) given in [1, Section 9.4, Section 14.2] and in [14,
Section 3] (see in particular Table 1). It turns out that i p/, thenf divides,(S) and
for eachJ C I, the polynomiallyy, (t) can be written as a product of suitable cyclotomic
polynomials®,(t) with u < (,(S)/f. Moreover®. sy, f(t) appears with multiplic-
ity exactly 1 in the factorization ofy (¢) and does not divid&yy, (¢) if J # I. This
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means that if- € (p, (,(S)) and.J # I, thenv, (Tw (q)/Tw, (7)) = v+ (P¢,(sy,5 () =
v, (pr®) — 1). Now (b) follows from the fact that ifn > (,(S) then no prime divisor
of p™ — 1 divides|S|. Finally (c) follows from the fact that by the way in which, is
definited, the minimality of» implies that the subgroupd involved in the definition of
a, are maximal, thug.x (H) = —1 anda,, < 0. O

Combining the previous proposition with Lemma 3.1, we aftai

Corollary 3.6. Assume tha+;/G;+1 = S]" is a chief factors of7, whereS; is a simple
group of Lie type defined over a field of characterigticAssume that,(S;) > 1 and
Cp(Si) > 6ifp=2.1f 7 € (p,(,(S5;)), then we have:
@ If b, # 0 and(n,p) = 1, thenr dividesn. More precisely,v.(n) = r; -
UT(pCP(Si) — 1)
(b) If m > ¢,(S) and a primitive prime divisor gi"™ — 1 dividesn, thenb; ,, = 0.
(c) If nis the smallest positive integer 1 such that(n,p) = 1 andb;,, # 0, then
bi,n < 0.

4. PROOFS OFTHEOREM 1 AND THEOREM 2

We start now the proofs of our main results. We assume(hiata finitely generated
profinite groupG with the property thatP; (s) = >, a,/n® is rational. As described
in Section 3,Pz(s) can be written as a formal infinite product of finite Dirichietries
Pi(s) = > ,en bin/n® corresponding to the factots; /G, of a chief series oy Let
J be the set of indicessuch thatG; /G4 1 is a non-Frattini chief factor. Sincg,(s) = 1
if ¢ ¢ J, we have

Pg(s) = [ Pi(s)-
jedJ

ForC(s) = > o2, cn/n® € R, we definer(C(s)) to be the set of the primesfor
which there exists at least one multipleof ¢ with ¢,, # 0. Notice that ifC(s)B(s) =
A(s), thenm(C(s)) C w(A(s)) Un(B(s)). In particular if C(s) is rational thenr(C/(s))
is finite. LetS be the set of the finite simple groups that are isomorphic tonaposition
factor of some non-Frattini chief factor 6f. The first step in the proofs of Theorem 1 and
2 is to show thasS is finite. The proof of this claim requires the following résu

Lemma 4.1([7, Lemma 3.1]) Let G be a finitely generated profinite group and lebe
a prime withq ¢ m(Pg(s)). ThenG has no maximal subgroup of index a powegofn
particular if ¢ divides the order of a non-Frattini chief factor 6f, then this factor is not a

g-group.
Let 7(G) be the set of the primaswith the properties thaff contains at least an open

subgroupH whose index is divisible by. Obviouslyw(Pg(s)) C 7(G). By [7, Lemma

3.2] and the classification of the finite simple groufss finite if and only if7(G) is finite.

Lemma 4.2. If G satisfies the hypotheses of either Theorem 1 or TheoremrRthbesets
S andn(G) are finite.

Proof. SincePs(s) is rational, we have that(Pg (s)) is finite. Therefore, it follows from
Lemma 4.1 tha$ contains only finitely many abelian groupsdfsatisfies the hypotheses
of Theorem 2, then a non abelian grougsiis either one of the 26 sporadic simple groups
or is isomorphic to a composition factor of the finite gra@pN. In any case we have
only finitely many possibilities. Consider now the case wiigsatisfies the hypothesis
of Theorem 1 and assume by contradiction t8as infinite. This is possible only if the
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subsetS* of the simple groups i that are of Lie type over a field of characteristics
infinite. In particular, the se = {¢,(S) | S € §*} isinfinite (see [11, Table 5.2C]). Let

I:={jeJ|S; €8}, Als) =[] Pi(s) and B(s) := [ P(s).
i€l igl

Notice thatm(B(s)) € Uges\s- 7(5) is a finite set. Sincé’z(s) = A(s)B(s) and
m(Pgs(s)) is finite, if follows that the setr(A(s)) is finite. According with Theorem 3.4,
if m is large enough (for examplesif > 6) then the setp, m) is non empty. We can find
a positive integern € Q such that(p, m) #  but (p,m) N 7(A(s)) = 0. Notice that if
m # u then(p,m) N (p,u) = . Let T, be the set of the positive integetssuch that
there exists € (p, m) dividing » but no prime in(p, u) dividesn if « > m. Notice that if
bin # 0,then(,(S;) = mifand only ifn € T,,,. Set

r:=min{r; | S; € §* and(,(S;) = m},
I":={iel]|r;,=randS; € S},
B :=min{n >1|n €T, andb;, # 0 forsomei € I"*}.

By Corollary 3.6, ifi € I andb; g # 0, then(,(S;) = m, r; = r andb; g < 0. Hence the
coefficientcg of 1/5° in A(s) is

cg = Z bi_ﬂ: Zbi’ﬁ < 0.

iel,r=r; S

On the other hand, again by Corollary 3.6, all the primegpinn) divide 3. But then
(p,m) C w(A(s)), which is a contradiction. So we have proved tais finite. By [7,
Lemma 3.2], if follows thatr(G) is also finite. O

The previous result allows us to employ the following:

Proposition 4.3. Let G be a finitely generated profinite group and assume tH&t) is
finite. For eachn, there are only finitely many non-Frattini factors in a chéefries whose
composition length is at most Moreover there exists a primesuch that no non-Frattini
chief factor ofG has composition length divisible by

Proof. Sincern(G) is finite, the setS of the composition factors aff is also finite and
therefore there exists € N such thatS| < u for eachS € S. Now assume by con-
tradiction that a chief series @ contains infinitely many non-Frattini chief factors of
composition length at most. Let X/Y be one of them: sinc& /Y is non-Frattini there
exists a proper supplemeft/Y of X/Y in G/Y. Clearly|G : H| < |X/Y| < ™. In
this way we construct infinitely many subgroups of index astad, which is not possible
since a finitely generated profinite group contains onlydlgimany subgroups of a given
index. The second part of the statement is [7, Corollary.5.2] O

For a simple grouy € S, letls = {j € J | S; = S}. Our aim is to prove that,
under the hypotheses of Theorem 1 and &5 a finite set. We have already proved tl5at
is finite, so it suffices to prove thdy is finite for eachS € S. First we consider the case
whenSs is abelian.

Lemma 4.4. Assume that: is a finitely generated profinite group such thB8t(s) is
rational and=(G) is finite. Then for any prime, if S has a subgroup with index a power
of ¢, thenIs is finite. In particular if S is cyclic, then/g is finite.
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Proof. LetS, be the set of the non abelian simple groupsS itontaining a proper subgroup
of g-power index. A theorem proved by Guralnick [8] implies tifai’ € S, then there
exists a unique positive intege(T") with the property thal” contains a subgroup of index
¢*(™). Consider the set of all the primes different frong. By Lemma 3.1, there exist
positive integers; and nonnegative integedis such that

(4.1) Pas) =[] <1_ G ) T (11 (1-#)

qms
i€ls TS, \jElr

SinceS is finite, the se{«(T) | T € S, } is finite. Moreover, by Proposition 4.3, there
is a prime numbet such that no element in

{ri|ieIsH J{a(D)r; | T € S;andj € Iy}

is divisible byt. SincePq (s) is rational,PZ(s) is also rational. But then, by Proposition
2.2, the number of nontrivial factors in the product at trghtiside of equation (4.1) is
finite. In particular/g is a finite set. O

Proof of Theorem 1Let 7 be the set of the almost simple grouissuch that there exist
infinitely many: € J with X; = X and let/ = {i € J | X; € T}. The hypotheses of
Theorem 1 combined with Lemma 4.4 implies that [ is finite. We have to prove that

is finite; this is equivalent to show that= (). But then, in order to complete our proof, it
suffices to prove the following claim.

(x) Foreveryn € N, I, = {i € I | (,(S;) = n} = 0.

Assume that the claim is false and tetbe the smallest integer such that the kgt£ ().
SinceJ \ I is finite andPg(s) = [],c, Pi(s) is rational, alsq [, ; Pi(s) is rational. In
particular, the following series is rational:

Qs) =P (s).
iel

We distinguish three different cases:

LD m=1p=2"-1,t>2;

(2) m <5,p=2;

(3) all the other possibilities.
Assume tha{(1) occurs. By [11, Table 5.2.C] if,(S) = 1, thenS = PSLy(p). In
particularS has a subgroup of index a power of 2 aldland consequentls ) is finite by
Lemma4.4.

In case (3), it follows by Theorem 3.4 thas, t) # @ for everyt > m; we setr =
Uism (0, 1). In case (2),(p,t) # 0 whenevert > 6 and we setr = J,.4(p,t). The
Dirichlet seriesH (s) = Q™ (s) is rational. By Corollary 3.6, if € I, andr € (p,t), then
PP} (s) = 1;in particularP7 (s) = 1 wheneverp, t) C . This implies

[Lics, PP (s) in case (3)
H(s) = 1 icr, PP (s) incase(2).

%
m<lu<h

Assume that cas€3) occurs and let € (p,m). By Lemma 3.1 and Corollary 3.6, if
i € Iy, (p,y) =1 andb, , # 0, theny = 2™ andv, (z) = v, (p™ — 1). Let

w =min{z € N | v, () = v, (p™ — 1) andb, ,~ # 0 for somei € I,,,}.
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By Corollary 3.6, for eachi € I,,, if b; ,~ # 0thenb; ,,~ < 0. Moreover ifb; ,,~ # 0
andX; = X;, thenb; ,~ # 0, so the setS,,, = {i € I, | biwr # 0} is infinite.
Applying Proposition 2.3, we obtain a rational product

bi w™i .
H*(s) = H (1 + = ) , whereb; ,,~s < 0foralli € X,,.

w’I‘T',S
1E€EX M
By Propositions 2.2 and 4.37*(s) is a finite product, i.eX,,, is finite, which is a contra-
diction.

Finally assume that ca$®) occurs. 1f(,(S) < 5, thenS is one of the following groups:
PSLs(2),Us(2), PSps(2), PO (2), PSL3(4), SLs(2), PSLy(2), PSL3(2). The explicit
description of the Dirichlet serieB){fg(s) whenS < X < Aut(S) andS is one of the
simple groups in the previous list is included in the Appendlotice in particular that if

i€ A=, 5 Im thenm(P*} (s)) C {3,7,5,31}. First consider
Az ={i e A|31en(PP(s)}
and let
min{z € N | zis odd vs; () = 1 andb; ,~ # 0 for somei € A}
= min{zx € N|zisoddwvs(z) =1andb; ,~ # 0for somei € Asq}.

w

Note that ifi € Az; andn is minimal with the properties that is odd,b; .~ # 0 and
vs1(n) = 1, thend, ,~ < 0 (see Appendix). So ib; ,~ # 0 thenb; ,~ < 0; moreover,
by applying Proposition 2.3, we obtain a rational product

biwri biwri :
H*(s) = H (1+ —— ) = H <1+ : ), whereb; ,,~ < 0foralli € As;.

wri wTiS
i€A i€A31

By Propositions 2.2 and 4.3, the sk}, = {i € A3 | b~ # 0} is finite, but this
implies thatAsz; = 0. Indeed ifA3; # 0 then there exists at least one indewith

i € Aj,, moreover by assumption there are infinitely magmyith X; = X, and all of them
belong toA%,. SinceAs; = 0, if i € A, thenS; is isomorphic to one of the following:
Us(2), PSps(2), P (2), PSL3(4), PSL4(2), PSL3(2). It follows from Appendix, that

if i € A, zis odd andb; ,~ # 0, thenvz(x) < 1. But then, we may repeat the same

argument as above and consider= {i e A | 7 € w(Q{Q}(s))} and
w :=min{zx € N | zis odd v7(z) = 1 andb; ,~ # 0 for somei € A7}.

Arguing as before we deduce th&t = ). We can see from Appendix that this implies
S; =2 Uy(2) foralli € A and

3r;
10 =TT (1- 35 )

i€A
Again, by Propositions 2.2 and 4.8,is finite and consequently = (. O

Proof of Theorem 2Let 7 be the set of the almost simple groufissuch thatsocX is
a sporadic simple groups and there exist infinitely many J with X; = X and let
I={ieJ| X, €T} Asinthe case of Theorem 1, we have to prove that (). For an
almost simple grougX, letQ2(X) be the set of the odd integers € N such that

e X contains at least one subgrolipsuch thatX = YsocX and|X : Y| = m;
e if X =YsocX and|X : Y| =m, thenY is a maximal subgroup iX.
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Note that ifm € Q(X), X = YsocX and|X : Y| = m, thenux(Y) = —1: in particular
em/(X) < 0. Combined with Lemma 3.1, this implies thatif € Q(X;) thenb; ,,~ < 0.
CertainlyQ(X) is not empty and its smallest element is the smallest indéX) of a
supplement ofocX in X containing a Sylow 2-subgroup d€. When S = socX is a
sporadic simple group, the value of(X') can be read from [2], where, for each of these
groups, the list of the maximal subgroups and their indicesgaven; the precise values
are given in Table 1. In few cases we need to know anotherenigdX) in (X), given
in Table 2. For a fixed primg, letA, ={i€ I |p € 77(]31.{2} (s)}-

If i € As1, then31 divide |S;| andS; € {J;,Ly, O’'N,BM, M, Th}. Moreover31? does
not divide|.S;| so if n is odd, divisible by 31 and; ,, # 0 thenn = z™ anduvz;(x) = 1.
Letm; = n(S;) if S; = Th, m; = m(S;) otherwise. Sincen; is the smallest odd number
divisible by31 and equal to the index iX; of a supplement of; we get:

w = min{z € N|zisodd,vs;(z) = 1andb; .~ # 0forsomei € I}
= min{z € N|zisodd,vs;(z) = 1 andb; ,~ # 0 for somei € Ag;}
= mln{mz | 1€ Agl}.

But then by Proposition 2.3, the following Dirichlet serigsational:

11 (= G5)

i€A31

We haveb; ,~ < 0if m; = w, b; ,»+ = 0 otherwise. By applying Propositions 2.2 and
4.3, we getthafi € A3y | m; = w} is afinite set, and this impliess; = 0.

Now considerA,3. SinceAs; = 0, if ¢ € Ags thenS; € {Mag, Moy, Coy, Coy, Co;,
Fiz3, Fias'}. We can repeat the argument used to provedARat= . Let m; = n(S;)
if S; = Cop, m; = m(X;) otherwise and letv = min{m,; | ¢ € As3}. By applying
Propositions 2.2 and 4.3, we get tHate As3 | m; = w} is a finite set, and this implies
Aoz = 0.

New we consideA ;. SinceAs; U Ayz = 0, if ¢ € Ayy, thenS; € {My1, My, Moo,
Ji, HS, Suz, McL, HN, Fjg} Letm; = TL(XZ) if S; = Fipg0rS; = Fil24, m; = m(Xl)
otherwise and letv = min{m,; | i € A11}. As before, by applying Propositions 2.2
and 4.3, we get thafi € As3 | m; = w} is a finite set, and this implied;; = 0.
Continuing our procedure, we considey;: if i € Ay, thenS; € {J;, He} and we can
takew = min{m(X;) | < € A1y} and deduce that;; = (). Next we takew = m(Ru) to
proveAsg = () and finally we takev = m(J;) to proveA; = 0. O

APPENDIX. EXCEPTIONAL CASES

In this section, we give explicit formulae f(b?)(zg(s) whenX is an almost simple group
whose socle& is of Lie type over a field of characterisﬁcand@(S) < 5. We use for this
purpose Theorem 3.2 and the description of the polynorfiigiét) andTyy, (¢) given in
[1, Section 9.4, Section 14.2] and in [14, Section 3] (seeairtipular Table 1). Just to see
an example, consider the caSe= PSLy(2). I = {1, 2,3} is the set of the nodes of the
Dynkin diagram. According to [14, Table T}y (2) = (2*—1)(23—1)(22—1) = 32.5.7.
MoreoverTyy, (2) = (22 —1)(22 — 1) = 3-7if J € {{1,2},{2,3}}, Tw,(2) = (2% —
1)(22 —-1)=3%if J = {1,3}, Tw, (2) = (22 — 1) = 3if J is one of the three subsets of
I of cardinality 1,7y, (2) = 1. HenceP{ (s) = 1 — 2(3-5)1=%) — (5. 7)(1=%) 4 3(3.

5.7) 075 —(32.5.7)1-9),
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(i) S =PSLs(2). If X contains a graph automorphism then
P&4(s) = 1-(3%-7-31)079) —(3.5.72.31)7) —(33.7.31)17) ¢
+2(3*-72.31)09) 1 (3% .5.72.31)179) — (3*.5.72.31)179,
If X does not contain graph automorphisms, then
PE4(s) = 1-2(32-7)179 —(32.5.31)179) —2(3.7.31)07)
+3(32-7-31)19) +6(32-5-7-31)%) +(3.5-72.31)1%) —
—4(3%.5.7-31)1%) —6(32.5-72.31)1) 4
+5(3%.5-72.31)07%) —(3%.5.72.31)(1—9),
@iy S= PSL5(2). If X contains a graph automorphism then

PPs(s) = 1—-(3-5-31)079) —(32.7.31)(7) 4 (32.5.7.31)179),
If X does not contain graph automorphisms, then
PE4(s) = 1-2(31)079) —2(5.31)179) 4+ 3(3.5.31)17) 4

+3(5-7-3)37 —4(3-5-7-31)179 4 (32.5.7-31)179,
(i) S =PSL(2). If X contains a graph automorphism then

P&s(s) = 1-(32-71)19 —(3.5.7)1%) 1 (32.5.7)1-%),
If X does not contain graph automorphisms, then
PE4(s) = 1-2(3-5)172) —(5-7)079) 4+ 3(3.5. 7)1 — (32.5.7)17%),
(iv) S =PSLs(2). If X contains a graph automorphism then
PE4(s) = 1-(3-7)1.
If X does not contain graph automorphisms, then
PE4(s) = 1-2(n1) 4+ (3.7)0-2),

(v) S =PSLs(4). If X contains a graph automorphism then
PE4(s)=1—(3-5-7)179.
If X does not contain graph automorphisms then
PEs(s) =1-2(3 7079 4 (3.5.7)(179),
(vi) S =PSp(2). We have
PE(s) = 1—(32.7)179) —(3%.5)179) —(32.5.7)(1=9) 1.3(3%.5.7)(1 =) —(31.5.7) (1%,
(vii) S =U4(2). We have
PE(s) =1~ (3317 — (3% 5)17%) 4 (3% 5)172),
(viii) S = PQZ(2). We have
PE4(s) = 1-3(32.5)179 —(3.52.7)17%) 1 3(3%. 5%) 1) ¢
+3(3%-52.7)179) —4(31.52. 7)(17%) 4 (3% .52 . 7)(1=9),
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Table 1: Sporadic simple groups

X 1 X] m(X)
Mg 21.3%.5.11 11
Mo 20.3%.5.11 32.5-11
Aut(My2) [ 27-3%-5-11 3%.5-11
Moo 27.32.5.7-11 711
Aut(Map) | 28-3%2.5-7-11 711
Mo 27.3%.5.7-11-23 23
Moy 210.3%.5.7-11-23 3-11-23
N 23.3.5-7-11-19 5-11-19
X 27.3%.52. 7 3257
Aut(k) [28-3%.52.7 32.5.7
X 27.3%.5.17-19 371719
Aut() [28-3°-5.17-19 31.17-19
3 221.3%.5.7-113.23-29-31-37-43 112.29-31-37-43
HS 29.32.5%.7-11 3-53.11
Aut(HS) |[2109.32.5%.7.11 3-5%.11
Suz 213.37.52.7.11-13 3%3.5.7-11-13
Aut(Suz | 2M.37.52.7.11-13 33.5.7-11-13
McL 27.35.5%.7.11 5211
Aut(McL) | 28.35.5%.7.11 5211
Ru 214.33.53.7.13.29 32.53.13-29
He 210.33.52. 7317 5-73-17
Aut(He) |[211.3%.5%.73.17 3%.52.7%.17
Ly 283750 7. 11-31-37-67 53.31-37-67
ON 29.31.5.73.11-19- 31 32.77.11-19-31
Aut(ON) [210.3%.5.73.11-19- 31 32.77.11-19- 31
Co, 22139577211 - 13- 23 30.5%. 713
Co, 218.35.53.7.11-23 31.57.23
Cos 21037 53.7.11-23 3%.57.11-23
Figo 217.39.52.7.11-13 37-5-13
Aut(Figg) [ 28.37.52.7.11-13 37-5-13
Fia3 218.313.52.7.11-13-17- 23 3t.17-23
Fio, 2213165273 . 11-13-17-23 - 29 313.5.72.13-17-29
Aut(Fiy,) [2%2.316.52.73.11-13-17-29 313.5.7%.13-17-29
HN 211.36.56.7.11-19 3151 7.11-19
Aut(HN) |[28°.35.56.7.11.19 3t.51.7.11-19
Th 215.310.53.72.13.19 - 31 3%.52.7-13-19
BM 24 . 313.56.72.11-13-17-19-23-31-47 [ 37-5%.7-13-17-19- 31 -47
M 2763205976 .112.13%.17-19-23-29 [ 3™.5°.7%.11-13%2-17- 19
:31-41-47-59-71 29-31-41-47-59-71
Table 2:n(X)
[ X | n(X)
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Co 34.52.7.11-13-23

Figo 3°.5.7-11-13

Fis, 39.5.11-72-13-17-23-29

Aut(Fiy,) [3%-5-11-7%-13-17-23-29

Th 3%8.52.7.13-19-31
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