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FINITENESS CONDITIONS IN COVERS OF

POINCARÉ DUALITY SPACES

JONATHAN A. HILLMAN

Abstract. A closed 4-manifold (or, more generally, a finite PD4-
space) has a finitely dominated infinite regular covering space if
and only if either its universal covering space is finitely dominated
or it is finitely covered by the mapping torus of a self homotopy
equivalence of a PD3-complex.

A space X is a Poincaré duality space if it has the homotopy type
of a cell complex which satisfies Poincaré duality with local coefficients
(with respect to some orientation character w : π = π1(X) → {±1}).

It is finite if the singular chain complex of the universal cover X̃ is chain
homotopy equivalent to a finite free Z[π]-complex. (The PD-space X
is homotopy equivalent to a Poincaré duality complex ⇔ it is finitely
dominated ⇔ π is finitely presentable. See [2].) Closed manifolds
are finite PD-complexes. The more general notion arises naturally in
connection with Poincaré duality groups [4], and in considering covering
spaces of manifolds [11].
In this note we show that finiteness hypotheses in two theorems

about covering spaces of PD-complexes may be relaxed. Theorem 5
extends a criterion of Stark to all Poincaré duality groups. The main
result is Theorem 6, which characterizes finite PD4-spaces with finitely
dominated infinite regular covering spaces.

1. some lemmas

Let X be a PDn-space with fundamental group π. Let βi(X ;Q) =

dimQHi(X ;Q) and β
(2)
i (X) = dimN (π)Hi(X ;N (π)) be the ith rational

Betti number and ith L2 Betti number of X , respectively.

Lemma 1. Let X be a PDn-space with fundamental group π. Then

Σβi(X ;Q) < ∞ and Σβ
(2)
i (X) < ∞. If X is finite then χ(X) =

Σ(−1)iβi(X ;Q) = Σ(−1)iβ
(2)
i (X).
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Proof. Since X is a PDn-space and homology commutes with direct
limits of coefficient modules so does cohomology. Therefore the singular

chain complex of X̃ is chain homotopy equivalent over Z[π] to a finite
projective complex P∗, by the Brown-Strebel finiteness criterion [3].
Hence Hi(X ;Q) = Hi(Q ⊗Z[π] P∗) and Hi(X ;N (π)) = Hi(N (π) ⊗Z[π]

P∗). The first assertion follows immediately. The proof of the L2-
Euler characteristic formula for finite complexes given in [12] is entirely
homological, and requires only that C∗ be chain homotopy equivalent
to a finite free complex. �

If the strong Bass conjecture holds for π then the L(2)-Euler charac-
teristic formula holds even if X is not finite [6].
The following lemma is essentially from [7]. We shall use it in con-

junction with universal coefficient spectral sequences.

Lemma 2. Let G be a group and k be Z or a field, and let A be
a k[G]-module which is free of finite rank m as a k-module. Then
Extq

k[G](A, k[G]) ∼= (Hq(G; k[G]))m for all q.

Proof. Let (gφ)(a) = g.φ(g−1a) for all g ∈ G and φ ∈ Homk(A, k[G]).
Let {αi}1≤i≤m be a basis for A as a free k-module, and define a map
f : Homk(A, k[G]) → k[G]m by f(φ) = (φ(α1), . . . , φ(αm)) for all φ ∈
Homk(A, k[G]). Then f is an isomorphism of left k[G]-modules. The
lemma now follows, since Extq

k[G](A, k[G]) ∼= Hq(G;Homk(A, k[G])).

(See Proposition III.2.2 of [4].) �

Lemma 3. If Hq(G;Z[G]) is 0 (respectively, finitely generated as an
abelian group) for all q ≤ q0 and B is a Z[G]-module which is finitely
generated as an abelian group then Extq

Z[G](B,Z[G]) is 0 (respectively,

finitely generated as an abelian group) for all q ≤ q0.

Proof. Let T be the Z-torsion submodule of B, and let H be the kernel
of the action of G on T . Then T is a finite Z[G/H ]-module, and so is
a quotient of a finitely generated free Z[G/H ]-module A. Let A1 be
the kernel of the projection from A to T . Clearly A and A1 are Z[G]-
modules which are free of (the same) finite rank as abelian groups. We
now apply the long exact sequence of Ext∗

Z[G](−,Z[G]) together with
Lemma 2 to the short exact sequences

0 → A1 → A → T → 0

and
0 → T → B → B/T → 0.

�
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2. virtual poincaré duality groups

Stark has shown that a finitely presentable group G of finite virtual
cohomological dimension is a virtual Poincaré duality group if and only
if it is the fundamental group of a closed PL manifold M whose uni-

versal cover M̃ is homotopy finite [13]. The main step in showing the
sufficiency of the latter condition involves showing first that G is of
type vFP , and is established in [14]. If G1 is an FP subgroup of finite
index in G then B = K(G1, 1) is finitely dominated. Hence on apply-

ing the Gottlieb-Quinn Theorem to the fibration M̃ → M1 → B of

the associated covering space M1 it follows that M̃ and B are Poincaré
duality complexes. In particular, G1 is a Poincaré duality group.
There are however Poincaré duality groups in every dimension n ≥ 4

which are not finitely presentable. We shall give an analogue of Stark’s
sufficiency result for such groups, using an algebraic criterion instead of
the Gottlieb-Quinn Theorem. In the next two results we shall assume
that M is a PDn-space with fundamental group π, Mν is the covering
space associated to a normal subgroup ν of π, G = π/ν and k is Z or
a field.

Lemma 4. Suppose that Hp(Mν ; k) is finitely generated for all p ≤
[n/2]. Then Hp(Mν ; k) is finitely generated for all p if and only if
Hq(G; k[G]) is finitely generated as a k-module for q ≤ [(n − 1)/2],
and then Hq(G; k[G]) is finitely generated as a k-module for all q. If
Hs(G; k[G]) = 0 for s < q then Hn−s(Mν ; k) = 0 for s < q and
Hn−q(Mν ; k) ∼= Hq(G; k[G]).

Proof. Let Epq
2 = Extq

k[G](Hp(M ; k[G]), k[G]) ⇒ Hp+q(M ; k[G]) be the

Universal Coefficient spectral sequence for the equivariant cohomology
of M . Then Epq

2 = Extq
k[G](Hp(Mν ; k), k[G]), while Hp+q(M ; k[G]) ∼=

Hn−p−q(Mν ; k), by Poincaré duality for M .
If Hq(G; k[G]) is finitely generated for q ≤ [(n − 1)/2] then Epq

2 is
finitely generated for all p+q ≤ [(n−1)/2], by Lemmas 2 and 3. Hence
Hp(Mν ; k) is finitely generated for all p ≥ n − [(n − 1)/2], and hence
for all p. Conversely, if this holds and Hs(G; k[G]) is finitely generated
for s < q then Eps

r is finitely generated for all p ≥ 0, r ≥ 2 and s < q.
Since Hq(M ; k[G]) ∼= Hn−q(Mν ; k) is finitely generated as a k-module
it follows that Hq(G; k[G]) is finitely generated as a k-module. Hence
Hq(G; k[G]) is finitely generated for all q.
The final assertion is an immediate consequence of duality and the

universal coefficient spectral sequence. �



4 JONATHAN A. HILLMAN

Theorem 5. If Hp(Mν ; k) is finitely generated for all p then G is FP∞

over k and Hs(G; k[G]) 6= 0 for some s ≤ n. If moreover k = Z and
v.c.d.G < ∞ then G is virtually a PDr-group, for some r ≤ n.

Proof. Let C∗(M̃) be the equivariant chain complex of the universal

covering space M̃ . Since M is a PDn-space C∗(M̃) is chain homotopy
equivalent to a finite projective Z[π]-complex. Hence C∗(Mν ; k) =

k[G] ⊗Z[π] C∗(M̃) is chain homotopy equivalent to a finite projective
k[G]-complex. The arguments of [14] apply equally well with coeffi-
cients k a field (instead of Z), and thus the hypotheses of Lemma 4
imply that G is FP∞ over k.
If v.c.d.G < ∞ we may assume without loss of generality that

c.d.G < ∞, and so G is FP . Since Hq(Mν ;Z)) is finitely generated
for all q the groups Hs(G;Z[G]) are all finitely generated, and since
H0(Mν ;Z) = Z we must have Hs(G;Z[G]) 6= 0 for some s ≤ n, by
Lemma 4. Then G is a PDs-group, by Theorem 3 of [7]. �

A finitely generated groupG is a weak PDr-group ifHr(G;Z[G]) ∼= Z

and Hq(G;Z[G]) = 0 for q 6= r. Theorem 5 complements the main
result of [11], in which it is shown that if the Z[ν]-chain complex

C∗(M̃ν) = C∗(M̃)|ν has finite [n/2]-skeleton and G is a weak PDr-
group then Mν is a PDn−r-space.
For each n ≥ 2 and k ≥

(
n+1
2

)
there are weak PDk-groups which

act freely and cocompactly on S2n−1 ×Rk, but which are not virtually
torsion-free [8]. Thus if r ≥ 6 weak PDr-groups need not be virtual
PDr-groups, and so the other conditions in Theorem 5 do not imply
that v.c.d.G < ∞, in general. Weak PD1-groups have two ends, and so
are virtually Z, while FP2 weak PD2-groups are virtual PD2-groups
[1]. Little is known about the intermediate cases r = 3, 4 or 5. In
particular, it is not known whether a group G of type FP∞ such that
H3(G;Z[G]) ∼= Z must be a virtual PD3-group. (The fact that local
homology manifolds which are homology 2-spheres are standard may
be some slight evidence for this being true.)
Stark’s argument for realization in the finitely presentable case can

be adapted to show that any virtual PDn-group acts freely on a 1-
connected homotopy finite complex, with quotient a PDm-space for
some m ≥ n. However finite presentability is needed in order to obtain
a free cocompact action on a 1-connected complex. A natural con-
verse to Theorem 5 (analogous to Stark’s realization result) might be
that every virtual PD group G acts freely and cocompactly on some
connected manifold X with Hq(X ;Z) finitely generated for all q. It
would suffice to show that G ∼= π/ν where π is a finitely presentable



FINITENESS CONDITIONS IN COVERS OF POINCARÉ DUALITY SPACES 5

vPD-group and ν is a normal subgroup such that H∗(ν;Z) is finitely
generated. For there is a closed PL manifold M with π1(M) ∼= π and

M̃ homotopy finite, by Stark’s result. The quotient group G acts freely
and cocompactly on Mν , and a spectral sequence argument shows that
H∗(Mν ;Z) is finitely generated.

3. finitely dominated covering spaces of PD4-spaces

Let M be a PD4-space with fundamental group π, and suppose that
M has a finitely dominated infinite regular covering space Mν . Then
ν = π1(Mν) is finitely presentable and π/ν has one or two ends. In
[9] we showed that if π/ν has two ends then M is the mapping torus
of a self homotopy equivalence of a PD3-complex, while if π/ν has

one end and ν is FP3 then either the universal covering space M̃ is
contractible or homotopy equivalent to S2. We shall show here that
the hypothesis that ν be FP3 is redundant if M is a closed 4-manifold,
or more generally if M is a finite PD4-space.
The results from [9] used in the next theorem were originally formu-

lated in terms of PD4-complexes. The arguments given in [9] apply
equally well to PD4-spaces, since they need only the L(2)-Euler char-
acteristic formula of Lemma 1 above.

Theorem 6. Let M be a finite PD4-space with fundamental group π,
and let ν be an infinite normal subgroup of π such that G = π/ν has
one end and the associated covering space Mν is finitely dominated.
Then G is of type FP∞ and M is aspherical.

Proof. Let k be Z or a field. Then G is of type FP∞ and Hq(G; k[G]) is
finitely generated as a k-module for all q, by Lemma 4 and Theorem 5.
Moreover Extq

k[π](Hp(Mν ; k), k[π]) = 0 for q ≤ 1 and all p, since G has

one end, and so Hq(Mν ; k) = 0 for q ≥ 3. In particular, H2(G;Z[G]) ∼=
H2(Mν ;Z) is torsion-free, and so is a free abelian group of finite rank.
We may assume that Mν is not acyclic and G is not virtually a

PD2-group, by Theorem 3.9 of [9]. Therefore H2(G; k[G]) = 0 for all
k, by the main result of [1]. Hence H2(Mν ;Fp) = 0 for all primes p,
so H1(Mν ;Z) is torsion-free and nonzero. Therefore Hs(G;Z[G]) =
H4−s(Mν ;Z) = 0 for s < 3 and H3(G;Z[G]) ∼= H1(Mν ;Z) = ν/ν ′

is a nontrivial finitely generated abelian group. Therefore ν/ν ′ ∼=
H3(G;Z[G]) ∼= Z [7].

Thus we may assume that Mν is an homology circle. Let G̃ = π/ν ′

and let t ∈ G̃ represent a generator of the infinite cyclic group ν/ν ′.
Let M ′

ν be the covering space associated to the subgroup ν ′. Since Mν

is finitely dominated a Wang sequence argument shows that Hq(M
′
ν ; k)
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is a finitely generated k[t, t−1]-module on which t − 1 acts invertibly,
for all q > 0. Then Hq(M

′
ν ;Fp) is finitely generated for all primes p and

all q > 0. Now Hs(G̃; k[G̃]) = 0 for all k and all s < 4, by a Lyndon-
Hochschild-Serre spectral sequence argument. Therefore Hq(M

′
ν ;Fp) =

0 for all primes p and all q > 0, by Lemma 4. Nontrivial finitely
generated Z[t, t−1]-modules have nontrivial finite quotients, and so we
may conclude that M ′

ν is acyclic.

Since M is a PD4-space C∗(M̃) is chain homotopy equivalent to a
finite projective Z[π]-complex C∗. Thus D∗ = Z ⊗Z[ν′] C∗ is a finite

projective Z[G̃]-complex, and is a resolution of Z. Therefore G̃ is a

PD4-group. (In particular, we see again that G = G̃/(ν/ν ′) is FP∞.)

Since ν/ν ′ is a torsion-free abelian normal subgroup of G̃ the group
ring Z[G̃] has a flat extension R, obtained by localising with respect to
the nonzero elements of Z[t, t−1], such that R ⊗Z[G̃] Z = 0. (See page

23 of [9] and the references there.) Hence R ⊗Z[G̃] D∗ is a contractible
complex of finitely generated projective R-modules.
We may in fact assume that C∗ is a finite free Z[π]-complex, since

M is a finite PD4-space. It follows that χ(M) = χ(R ⊗Z[G̃] D∗) = 0.

Since ν is an infinite FP2 normal subgroup of π and π/ν has one end

β
(2)
1 (π) = 0 and Hs(π;Z[π]) = 0 for s ≤ 2. Therefore M is aspherical,

by Corollary 3.5.2 of [9]. �

With this result we may now reformulate Theorem 3.9 of [9] as fol-
lows.

Corollary. A finite PD4-space M has a finitely dominated infinite

regular covering space if and only if either M is aspherical, or M̃ ≃ S2,
or M has a 2-fold cover which is homotopy equivalent to the mapping
torus of a self-homotopy equivalence of a PD3-complex. If M has a
finitely dominated regular covering space and is not aspherical it is a
PD4-complex.

Proof. Only the final sentence needs any comment. If M̃ ≃ S2 then
π1(M) is virtually a PD2-group and so is finitely presentable. This
is also clear if M has a 2-fold cover which is the mapping torus of a
self-homotopy equivalence of a PD3-complex. Thus in each case M is
a PD4-complex. �

There are PDn groups of type FF which are not finitely presentable,
for each n ≥ 4 [5]. The corresponding K(G, 1) spaces are aspherical
finite PDn-spaces which are not PDn-complexes.
The hypothesis that M be finite is used only in the final paragraph

of the proof of Theorem 6, in the appeal to Corollary 3.5.2 of [9] and
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in the calculation of χ(M). (If we assumed instead that v.c.d.G < ∞
then we could use multiplicativity of the Euler characteristic to show
that χ(M) = 0.)
A more substantial issue is that the argument for Theorem 6 does

not appear to extend to the case when ν is an ascendant subgroup
of π, as considered in [10] (where the FP3 condition is also used). Is
there an argument along the following lines? Let C∗ be a finite pro-
jective Z[π]-complex with H0(C∗) ∼= Z and H1(C∗) = 0. Show that
HomZ[π](H2(C∗),Z[π]) = 0 if [π : ν] = ∞ and C∗|ν is chain homotopy
equivalent to a finite projective Z[ν]-complex. If so, the proofs of The-
orem 3.9 of [9] and Theorem 6 of [10] would apply, without needing to
assume that ν is FP3 or that M is finite.

4. PD4-complexes with π3 finitely generated

We conclude with an alternative characterization of PD4-complexes
as in the Corollary to Theorem 6. Recall that there is a natural exact
sequence of left Z[π]-modules

H4(X̃ ;Z) → ΓW (Π) → π3(X) → H3(X̃ ;Z) → 0,

where ΓW is the quadratic functor of Whitehead and the third homo-
morphism is the Hurewicz homomorphism.

Theorem 7. Let M be a PD4-complex with infinite fundamental group
π. Then the following are equivalent:

(1) either M is aspherical, or M̃ ∼ S2 or S3;

(2) M̃ is homotopy finite;
(3) π3(M) is finitely generated as an abelian group;
(4) π has finitely many ends and π2(M) is finitely generated as an

abelian group.

Proof. Clearly (1) ⇒ (2) ⇒ (3) and (4). Since π is finitely presentable,
E2Z is torsion free, and so Π = π2(M) is torsion free also. If π3(M) is

finitely generated as an abelian group then H3(M̃ ;Z) and ΓW (Π) are
finitely generated. Hence π has finitely many ends and Π is finitely
generated. Thus (3) ⇒ (4).
If (4) holds then π has one or two ends and Hom(Π;Z[π]) = 0.

Hence E2Z ∼= Π, by the evaluation exact sequence. If π has one end
then either E2Z = Π = 0, in which case M is aspherical, or both are

infinite cyclic, in which case M̃ ≃ S2. If π has two ends we may assume

without loss of generality that π ∼= Z. But then Π = 0 and M̃ ≃ S3.
Thus (4) ⇒ (1). �
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In particular, if π is infinite and either π3(M) = 0 or π has one end
and π2(M) = 0 then M is aspherical. However, if M = #rS1 × S3 for
some r > 1 then π2(M) = 0 but π3(M) is not finitely generated.
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