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FINITENESS CONDITIONS IN COVERS OF
POINCARE DUALITY SPACES

JONATHAN A. HILLMAN

ABSTRACT. A closed 4-manifold (or, more generally, a finite PDy-
space) has a finitely dominated infinite regular covering space if
and only if either its universal covering space is finitely dominated
or it is finitely covered by the mapping torus of a self homotopy
equivalence of a PD3-complex.

A space X is a Poincaré duality space if it has the homotopy type
of a cell complex which satisfies Poincaré duality with local coefficients
(with respect to some orientation character w : 7 = m(X) — {£1}).
It is finite if the singular chain complex of the universal cover X is chain
homotopy equivalent to a finite free Z[r]-complex. (The PD-space X
is homotopy equivalent to a Poincaré duality complex < it is finitely
dominated < 7 is finitely presentable. See [2].) Closed manifolds
are finite PD-complexes. The more general notion arises naturally in
connection with Poincaré duality groups [4], and in considering covering
spaces of manifolds [T1].

In this note we show that finiteness hypotheses in two theorems
about covering spaces of PD-complexes may be relaxed. Theorem 5
extends a criterion of Stark to all Poincaré duality groups. The main
result is Theorem 6, which characterizes finite P Dy-spaces with finitely
dominated infinite regular covering spaces.

1. SOME LEMMAS

Let X be a PD,-space with fundamental group 7. Let 5;(X;Q) =
dimgH;(X; Q) and BZ@) (X) = dimp () H;(X; N (7)) be the ith rational
Betti number and ith L? Betti number of X, respectively.

Lemma 1. Let X be a PD,-space with fundamental group w. Then
Y6;(X;Q) < oo and Eﬁi(z)(X) < oo. If X is finite then x(X) =
S(-1)6:(X; Q) = £(-1)'87 (X).
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Proof. Since X is a PD,-space and homology commutes with direct
limits of coefficient modules so does cohomology. Therefore the singular
chain complex of X is chain homotopy equivalent over Z[r| to a finite
projective complex P,, by the Brown-Strebel finiteness criterion [3].
Hence H;(X;Q) = H;(Q ®gr Pi) and Hy(X; N (7)) = Hy(N(7) Qg
P,). The first assertion follows immediately. The proof of the L3
Euler characteristic formula for finite complexes given in [12] is entirely
homological, and requires only that C, be chain homotopy equivalent
to a finite free complex. O

If the strong Bass conjecture holds for 7 then the L®-Euler charac-
teristic formula holds even if X is not finite [6].

The following lemma is essentially from [7]. We shall use it in con-
junction with universal coefficient spectral sequences.

Lemma 2. Let G be a group and k be Z or a field, and let A be
a k[G]-module which is free of finite rank m as a k-module. Then
Exty o, (A k[G]) = (HYG; k[G])™ for all q.

Proof. Let (g¢)(a) = g.¢(g ta) for all g € G and ¢ € Homy(A, k[G]).
Let {a;}1<i<m be a basis for A as a free k-module, and define a map
[ Homy (A, k[G]) — K[G]™ by f(¢) = (¢(c), ..., P(a,)) for all ¢ €
Homy (A, k[G]). Then f is an isomorphism of left k[G]-modules. The
lemma now follows, since E:zti[G](A,k[G]) = HY(G; Homi(A, k[G))).
(See Proposition I11.2.2 of [4].) O

Lemma 3. If HY(G;Z[G]) is 0 (respectively, finitely generated as an
abelian group) for all ¢ < qo and B is a Z|G]-module which is finitely
generated as an abelian group then ExtqZ[G}(B,Z[G]) is 0 (respectively,

finitely generated as an abelian group) for all ¢ < qq.

Proof. Let T be the Z-torsion submodule of B, and let H be the kernel
of the action of G on T'. Then T is a finite Z[G/H]-module, and so is
a quotient of a finitely generated free Z|G/H]-module A. Let A; be
the kernel of the projection from A to 7. Clearly A and A; are Z|G]-
modules which are free of (the same) finite rank as abelian groups. We
now apply the long exact sequence of Ea:tE[G}(—, Z|G]) together with
Lemma 2 to the short exact sequences

0—-A4 —-A—-T—=0

and
0—-T—B— B/T —0.
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2. VIRTUAL POINCARE DUALITY GROUPS

Stark has shown that a finitely presentable group G of finite virtual
cohomological dimension is a virtual Poincaré duality group if and only
if it is the fundamental group of a closed PL manifold M whose uni-
versal cover M is homotopy finite [I3]. The main step in showing the
sufficiency of the latter condition involves showing first that G is of
type vF' P, and is established in [I4]. If G; is an F'P subgroup of finite
index in G then B = K (G, 1) is finitely dominated. Hence on apply-
ing the Gottlieb-Quinn Theorem to the fibration M — M; — B of
the associated covering space M, it follows that M and B are Poincaré
duality complexes. In particular, Gy is a Poincaré duality group.

There are however Poincaré duality groups in every dimension n > 4
which are not finitely presentable. We shall give an analogue of Stark’s
sufficiency result for such groups, using an algebraic criterion instead of
the Gottlieb-Quinn Theorem. In the next two results we shall assume
that M is a PD,-space with fundamental group 7, M, is the covering
space associated to a normal subgroup v of 7, G = 7/v and k is Z or
a field.

Lemma 4. Suppose that H,(M,; k) is finitely generated for all p <
n/2]. Then H,(M,;k) is finitely generated for all p if and only if
HYG; k[G]) is finitely generated as a k-module for ¢ < [(n — 1)/2],
and then HY(G; k[G]) is finitely generated as a k-module for all q. If
H*(G;k[G]) = 0 for s < q then H,_s(M,;k) = 0 for s < q and
H,_o(My; k) = HO(G K[G).

Proof. Let EY? = Eth[G](Hp(M; k[G)), k[G]) = HP*Y(M; k[G]) be the
Universal Coefficient spectral sequence for the equivariant cohomology
of M. Then E3* = Eaty,(H,(M,; k), k[G]), while HP*9(M;k[G]) =
H,_,_,(M,;k), by Poincaré duality for M.

If HY(G;E[G]) is finitely generated for ¢ < [(n — 1)/2] then E%? is
finitely generated for all p+¢ < [(n—1)/2], by Lemmas 2 and 3. Hence
H,(M,; k) is finitely generated for all p > n — [(n — 1)/2], and hence
for all p. Conversely, if this holds and H*(G; k[G]) is finitely generated
for s < q then EP? is finitely generated for all p > 0, » > 2 and s < g.
Since HY(M; k[G]) = H,—,(M,; k) is finitely generated as a k-module
it follows that HY(G; k[G]) is finitely generated as a k-module. Hence
HY(G; k[G]) is finitely generated for all g.

The final assertion is an immediate consequence of duality and the
universal coefficient spectral sequence. O
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Theorem 5. If H,(M,; k) is finitely generated for all p then G is F Py,
over k and H*(G;k|G]) # 0 for some s < n. If moreover k = Z and
v.c.d.G < o0 then G is virtually a PD,-group, for some r < n.

Proof. Let Cy,(M) be the equivariant chain complex of the universal
covering space M. Since M is a PD,-space C,(M) is chain homotopy
equivalent to a finite projective Z[r]-complex. Hence C.(M,;k) =
k[G] @2z Cy(M) is chain homotopy equivalent to a finite projective
k[G]-complex. The arguments of [14] apply equally well with coeffi-
cients k a field (instead of Z), and thus the hypotheses of Lemma 4
imply that G is F'P,, over k.

If v.e.d G < oo we may assume without loss of generality that
c.d.G < oo, and so G is FP. Since H,(M,;7Z)) is finitely generated
for all ¢ the groups H*(G;Z[G]) are all finitely generated, and since
Ho(M,;Z) = Z we must have H*(G;Z[G]) # 0 for some s < n, by
Lemma 4. Then G is a PD,-group, by Theorem 3 of [7]. O

A finitely generated group G is a weak PD,.-group if H"(G; Z|G]) = Z
and HY(G;Z|G]) = 0 for ¢ # r. Theorem 5 complements the main
result of [I1], in which it is shown that if the Z[v]-chain complex

Ci(M,) = C.(M)|, has finite [n/2]-skeleton and G is a weak PD,-
group then M, is a PD,,_,-space.

For each n > 2 and k > (";’1) there are weak PD-groups which
act freely and cocompactly on S?"~! x R¥, but which are not virtually
torsion-free [§]. Thus if » > 6 weak PD,-groups need not be virtual
PD,-groups, and so the other conditions in Theorem 5 do not imply
that v.c.d.G < oo, in general. Weak P D;-groups have two ends, and so
are virtually Z, while F'P, weak PDs-groups are virtual P Ds-groups
[1]. Little is known about the intermediate cases r = 3,4 or 5. In
particular, it is not known whether a group G of type F'P,, such that
H3(G;Z|G]) & Z must be a virtual PD3z-group. (The fact that local
homology manifolds which are homology 2-spheres are standard may
be some slight evidence for this being true.)

Stark’s argument for realization in the finitely presentable case can
be adapted to show that any virtual PD,-group acts freely on a 1-
connected homotopy finite complex, with quotient a PD,,-space for
some m > n. However finite presentability is needed in order to obtain
a free cocompact action on a l-connected complex. A natural con-
verse to Theorem 5 (analogous to Stark’s realization result) might be
that every virtual PD group G acts freely and cocompactly on some
connected manifold X with H,(X;Z) finitely generated for all ¢. It
would suffice to show that G = 7/v where 7 is a finitely presentable
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vPD-group and v is a normal subgroup such that H,(v;Z) is finitely
generated. For there is a closed PL manifold M with m; (M) = 7 and

M homotopy finite, by Stark’s result. The quotient group G acts freely
and cocompactly on M,,, and a spectral sequence argument shows that
H.(M,;Z) is finitely generated.

3. FINITELY DOMINATED COVERING SPACES OF P D4-SPACES

Let M be a PD,-space with fundamental group 7, and suppose that
M has a finitely dominated infinite regular covering space M,. Then
v = m(M,) is finitely presentable and 7/v has one or two ends. In
[9] we showed that if 7/v has two ends then M is the mapping torus
of a self homotopy equivalence of a PDs-complex, while if /v has

one end and v is F'P; then either the universal covering space M is
contractible or homotopy equivalent to S?. We shall show here that
the hypothesis that v be F P is redundant if M is a closed 4-manifold,
or more generally if M is a finite P Dj-space.

The results from [9] used in the next theorem were originally formu-
lated in terms of PDj4-complexes. The arguments given in [9] apply
equally well to PD,-spaces, since they need only the L(®)-Euler char-
acteristic formula of Lemma 1 above.

Theorem 6. Let M be a finite PDy-space with fundamental group ,
and let v be an infinite normal subgroup of ™ such that G = /v has

one end and the associated covering space M, is finitely dominated.
Then G is of type F' Py, and M 1is aspherical.

Proof. Let k be Z or a field. Then G is of type F Py, and HY(G; k[G]) is
finitely generated as a k-module for all ¢, by Lemma 4 and Theorem 5.
Moreover Exty (Hy(M,; k), k[r]) = 0 for ¢ <1 and all p, since G has
one end, and so H,(M,; k) = 0 for ¢ > 3. In particular, H*(G; Z|G]) =
Hy(M,;Z) is torsion-free, and so is a free abelian group of finite rank.

We may assume that M, is not acyclic and G is not virtually a
P Dy-group, by Theorem 3.9 of [9]. Therefore H?(G;k[G]) = 0 for all
k, by the main result of [I]. Hence Hy(M,;F,) = 0 for all primes p,
so Hy(M,;Z) is torsion-free and nonzero. Therefore H*(G;Z|G]) =
H, ((M,;Z) = 0 for s < 3 and H3(G;Z|G]) = H,(M,;Z) = v/V

!~

is a nontrivial finitely generated abelian group. Therefore v/v/ =
H3(G;Z|G) = Z [1).

Thus we may assume that M, is an homology circle. Let G = w/1/
and let t € G represent a generator of the infinite cyclic group v/v.
Let M/ be the covering space associated to the subgroup v/. Since M,
is finitely dominated a Wang sequence argument shows that H,(M); k)
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is a finitely generated k[t,¢!]-module on which ¢ — 1 acts invertibly,
for all ¢ > 0. Then H,(M);F,) is finitely generated for all primes p and
all ¢ > 0. Now H*(G; k[é]) = 0 for all £ and all s < 4, by a Lyndon-
Hochschild-Serre spectral sequence argument. Therefore H,(M,;F,) =
0 for all primes p and all ¢ > 0, by Lemma 4. Nontrivial finitely
generated Z[t, t~']-modules have nontrivial finite quotients, and so we
may conclude that M) is acyclic.

Since M is a PDs-space C,(M) is chain homotopy equivalent to a
finite projective Z[r]-complex C,. Thus D, = Z ®z}, C, is a finite
projective Z[G]-complex, and is a resolution of Z. Therefore G is a
PDy-group. (In particular, we see again that G = G/(v/v') is FPs.)

Since v/V' is a torsion-free abelian normal subgroup of G the group
ring Z[@] has a flat extension R, obtained by localising with respect to
the nonzero elements of Z[t,t~'], such that R ®,s Z = 0. (See page
23 of [9] and the references there.) Hence R ®z 5 D, is a contractible
complex of finitely generated projective R-modules.

We may in fact assume that C, is a finite free Z[r]-complex, since
M is a finite PD,-space. It follows that x(M) = x(R ®za D.) = 0.
Since v is an infinite F'P, normal subgroup of m and 7 /v has one end
BY (1) = 0 and H*(m; Z[r]) = 0 for s < 2. Therefore M is aspherical,
by Corollary 3.5.2 of [9]. O

With this result we may now reformulate Theorem 3.9 of [9] as fol-
lows.

Corollary. A finite PDy-space M has a finitely dominated infinite
reqular covering space if and only if either M is aspherical, or M ~ S?,
or M has a 2-fold cover which is homotopy equivalent to the mapping
torus of a self-homotopy equivalence of a PDs-complex. If M has a
finitely dominated regular covering space and is not aspherical it is a
PD,-complex.

Proof. Only the final sentence needs any comment. If M ~ S? then
w1 (M) is virtually a PDy-group and so is finitely presentable. This
is also clear if M has a 2-fold cover which is the mapping torus of a
self-homotopy equivalence of a PDs-complex. Thus in each case M is
a PDj-complex. 0

There are PD,, groups of type F'F which are not finitely presentable,
for each n > 4 [5]. The corresponding K (G, 1) spaces are aspherical
finite PD,,-spaces which are not PD,-complexes.

The hypothesis that M be finite is used only in the final paragraph
of the proof of Theorem 6, in the appeal to Corollary 3.5.2 of [9] and
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in the calculation of x(M). (If we assumed instead that v.c.d.G < oo
then we could use multiplicativity of the Euler characteristic to show
that x(M) = 0.)

A more substantial issue is that the argument for Theorem 6 does
not appear to extend to the case when v is an ascendant subgroup
of 7, as considered in [I0] (where the F'P; condition is also used). Is
there an argument along the following lines? Let C, be a finite pro-
jective Z[r]-complex with Hy(C\) = Z and H,(C,) = 0. Show that
Homg-(Hy(Cy), Z[r]) = 0 if [m : v] = oo and C.|, is chain homotopy
equivalent to a finite projective Z[v]-complex. If so, the proofs of The-
orem 3.9 of [9] and Theorem 6 of [10] would apply, without needing to
assume that v is F'Ps or that M is finite.

4. PD,~COMPLEXES WITH 73 FINITELY GENERATED

We conclude with an alternative characterization of PD,-complexes
as in the Corollary to Theorem 6. Recall that there is a natural exact
sequence of left Z[r]-modules

Hy(X;Z) — Ty (I) — m3(X) — H3(X;Z) =0,

where I'y is the quadratic functor of Whitehead and the third homo-
morphism is the Hurewicz homomorphism.

Theorem 7. Let M be a PDj-complex with infinite fundamental group
w. Then the following are equivalent:

(1) either M is aspherical, or M ~ 5% or S3;
(2) M is homotopy finite;
(8) m3(M) is finitely generated as an abelian group;

(4) ™ has finitely many ends and wo(M) is finitely generated as an
abelian group.

Proof. Clearly (1) = (2) = (3) and (4). Since 7 is finitely presentable,
E?7 is torsion free, and so IT = my(M) is torsion free also. If w3(M) is

finitely generated as an abelian group then Hs(M;Z) and Ty (IT) are
finitely generated. Hence m has finitely many ends and II is finitely
generated. Thus (3) = (4).

If (4) holds then 7 has one or two ends and Hom(IL;Z[rn]) = 0.
Hence E?Z = 11, by the evaluation exact sequence. If 7 has one end
then either E?Z =11 = 0, in which case M is aspherical, or both are
infinite cyclic, in which case M ~ S2. If w has two ends we may assume
without loss of generality that 7 = Z. But then II = 0 and M ~ S3.
Thus (4) = (1). O
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In particular, if 7 is infinite and either 7m3(M) = 0 or m has one end
and my(M) = 0 then M is aspherical. However, if M = #"S! x S3 for
some 7 > 1 then mo (M) = 0 but m3(M) is not finitely generated.

REFERENCES

[1] Bowditch, B.H. Planar groups and the Seifert conjecture,
J. Reine u. Angew. Math. 576 (2004), 11-62.
[2] Browder, W. Poincaré spaces, their normal fibrations and surgery,
Invent. Math. 17 (1971), 191-202.
[3] Brown, K.S. A homological criterion for finiteness,
Commentarii Math. Helvetici 50 (1975), 129-135.
[4] Brown, K.S. Cohomology of Groups,
Graduate Texts in Mathematics 87, Springer-Verlag,
Berlin - Heidelberg - New York (1982).
[5] Davis, M. The cohomology of a Coxeter group with group ring coefficients,
Duke Math. J. 91 (1998), 397-314.
[6] Eckmann, B. Projective and Hilbert modules over groups, and finitely domi-
nated spaces, Comment. Math. Helvetici 71 (1996), 453-462.
[7] Farrell, F.T. Poincaré duality and groups of type FP,
Comment. Math. Helvetici 50 (1975), 187-195.
[8] Farrell, F.T. and Stark, C.W. Cocompact spherical-Euclidean spaceform
groups of infinite VCD, Bull. London Math. Soc. 25 (1993), 189-192.
[9] Hillman, J.A. Four-Manifolds, Geometries and Knots,
GT Monograph vol. 5, Geometry and Topology Publications,
University of Warwick (2002). Revisions 2007 and 2014.
See also  |http://www.maths.usyd.edu.au/u/jonh/ .
[10] Hillman, J.A. Finitely dominated covering spaces of 3- and 4-manifolds,
J. Austral. Math. Soc. 84 (2008), 99-108.
[11] Hillman, J.A. and Kochloukova, D.H. Finiteness conditions and PD,-group
covers of PD,,-complexes, Math. Z. 256 (2007), 45-56.
[12] Liick, W. L2-Invariants: Theory and Applications to Geometry and K - Theory,
Ergebnisse 3. Folge, Bd 44,
Springer-Verlag, Berlin — Heidelberg — New York (2002).
[13] Stark, C.W. A characterization of virtual Poincaré duality groups,
Michigan J. Math. 42 (1995), 99-102.
[14] Stark, C.W. Resolutions modeled on ternary trees,
Pacific J. Math. 173 (1996), 557-569.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW
2006, AUSTRALIA
E-mail address: jonathan.hillman@sydney.edu.au


http://www.maths.usyd.edu.au/u/jonh/

	1. some lemmas
	2. virtual poincaré duality groups
	3. finitely dominated covering spaces of PD4-spaces
	4. PD4-complexes with 3 finitely generated
	References

