FINITENESS CONDITIONS IN COVERS OF POINCARÉ DUALITY SPACES

JONATHAN A. HILLMAN

ABSTRACT. A closed 4-manifold (or, more generally, a finite PD_4 -space) has a finitely dominated infinite regular covering space if and only if either its universal covering space is finitely dominated or it is finitely covered by the mapping torus of a self homotopy equivalence of a PD_3 -complex.

A space X is a Poincaré duality space if it has the homotopy type of a cell complex which satisfies Poincaré duality with local coefficients (with respect to some orientation character $w : \pi = \pi_1(X) \rightarrow \{\pm 1\}$). It is finite if the singular chain complex of the universal cover \widetilde{X} is chain homotopy equivalent to a finite free $\mathbb{Z}[\pi]$ -complex. (The *PD*-space X is homotopy equivalent to a Poincaré duality complex \Leftrightarrow it is finitely dominated $\Leftrightarrow \pi$ is finitely presentable. See [2].) Closed manifolds are finite *PD*-complexes. The more general notion arises naturally in connection with Poincaré duality groups [4], and in considering covering spaces of manifolds [11].

In this note we show that finiteness hypotheses in two theorems about covering spaces of PD-complexes may be relaxed. Theorem 5 extends a criterion of Stark to all Poincaré duality groups. The main result is Theorem 6, which characterizes finite PD_4 -spaces with finitely dominated infinite regular covering spaces.

1. Some lemmas

Let X be a PD_n -space with fundamental group π . Let $\beta_i(X; \mathbb{Q}) = \dim_{\mathbb{Q}} H_i(X; \mathbb{Q})$ and $\beta_i^{(2)}(X) = \dim_{\mathcal{N}(\pi)} H_i(X; \mathcal{N}(\pi))$ be the *i*th rational Betti number and *i*th L^2 Betti number of X, respectively.

Lemma 1. Let X be a PD_n -space with fundamental group π . Then $\Sigma\beta_i(X;\mathbb{Q}) < \infty$ and $\Sigma\beta_i^{(2)}(X) < \infty$. If X is finite then $\chi(X) = \Sigma(-1)^i\beta_i(X;\mathbb{Q}) = \Sigma(-1)^i\beta_i^{(2)}(X)$.

¹⁹⁹¹ Mathematics Subject Classification. 57P10.

Key words and phrases. 4-dimensional, finitely dominated, PD-group, PD-space.

Proof. Since X is a PD_n -space and homology commutes with direct limits of coefficient modules so does cohomology. Therefore the singular chain complex of \widetilde{X} is chain homotopy equivalent over $\mathbb{Z}[\pi]$ to a finite projective complex P_* , by the Brown-Strebel finiteness criterion [3]. Hence $H_i(X; \mathbb{Q}) = H_i(\mathbb{Q} \otimes_{\mathbb{Z}[\pi]} P_*)$ and $H_i(X; \mathcal{N}(\pi)) = H_i(\mathcal{N}(\pi) \otimes_{\mathbb{Z}[\pi]} P_*)$. The first assertion follows immediately. The proof of the L^2 -Euler characteristic formula for finite complexes given in [12] is entirely homological, and requires only that C_* be chain homotopy equivalent to a finite free complex.

If the strong Bass conjecture holds for π then the $L^{(2)}$ -Euler characteristic formula holds even if X is not finite [6].

The following lemma is essentially from [7]. We shall use it in conjunction with universal coefficient spectral sequences.

Lemma 2. Let G be a group and k be \mathbb{Z} or a field, and let A be a k[G]-module which is free of finite rank m as a k-module. Then $Ext^q_{k[G]}(A, k[G]) \cong (H^q(G; k[G]))^m$ for all q.

Proof. Let $(g\phi)(a) = g.\phi(g^{-1}a)$ for all $g \in G$ and $\phi \in Hom_k(A, k[G])$. Let $\{\alpha_i\}_{1 \leq i \leq m}$ be a basis for A as a free k-module, and define a map $f : Hom_k(A, k[G]) \to k[G]^m$ by $f(\phi) = (\phi(\alpha_1), \ldots, \phi(\alpha_m))$ for all $\phi \in Hom_k(A, k[G])$. Then f is an isomorphism of left k[G]-modules. The lemma now follows, since $Ext^q_{k[G]}(A, k[G]) \cong H^q(G; Hom_k(A, k[G]))$. (See Proposition III.2.2 of [4].)

Lemma 3. If $H^q(G; \mathbb{Z}[G])$ is 0 (respectively, finitely generated as an abelian group) for all $q \leq q_0$ and B is a $\mathbb{Z}[G]$ -module which is finitely generated as an abelian group then $Ext^q_{\mathbb{Z}[G]}(B, \mathbb{Z}[G])$ is 0 (respectively, finitely generated as an abelian group) for all $q \leq q_0$.

Proof. Let T be the \mathbb{Z} -torsion submodule of B, and let H be the kernel of the action of G on T. Then T is a finite $\mathbb{Z}[G/H]$ -module, and so is a quotient of a finitely generated free $\mathbb{Z}[G/H]$ -module A. Let A_1 be the kernel of the projection from A to T. Clearly A and A_1 are $\mathbb{Z}[G]$ modules which are free of (the same) finite rank as abelian groups. We now apply the long exact sequence of $Ext^*_{\mathbb{Z}[G]}(-,\mathbb{Z}[G])$ together with Lemma 2 to the short exact sequences

$$0 \to A_1 \to A \to T \to 0$$

and

$$0 \to T \to B \to B/T \to 0.$$

2

2. VIRTUAL POINCARÉ DUALITY GROUPS

Stark has shown that a finitely presentable group G of finite virtual cohomological dimension is a virtual Poincaré duality group if and only if it is the fundamental group of a closed PL manifold M whose universal cover \widetilde{M} is homotopy finite [13]. The main step in showing the sufficiency of the latter condition involves showing first that G is of type vFP, and is established in [14]. If G_1 is an FP subgroup of finite index in G then $B = K(G_1, 1)$ is finitely dominated. Hence on applying the Gottlieb-Quinn Theorem to the fibration $\widetilde{M} \to M_1 \to B$ of the associated covering space M_1 it follows that \widetilde{M} and B are Poincaré duality complexes. In particular, G_1 is a Poincaré duality group.

There are however Poincaré duality groups in every dimension $n \ge 4$ which are not finitely presentable. We shall give an analogue of Stark's sufficiency result for such groups, using an algebraic criterion instead of the Gottlieb-Quinn Theorem. In the next two results we shall assume that M is a PD_n -space with fundamental group π , M_{ν} is the covering space associated to a normal subgroup ν of π , $G = \pi/\nu$ and k is \mathbb{Z} or a field.

Lemma 4. Suppose that $H_p(M_{\nu}; k)$ is finitely generated for all $p \leq [n/2]$. Then $H_p(M_{\nu}; k)$ is finitely generated for all p if and only if $H^q(G; k[G])$ is finitely generated as a k-module for $q \leq [(n-1)/2]$, and then $H^q(G; k[G])$ is finitely generated as a k-module for all q. If $H^s(G; k[G]) = 0$ for s < q then $H_{n-s}(M_{\nu}; k) = 0$ for s < q and $H_{n-q}(M_{\nu}; k) \cong H^q(G; k[G])$.

Proof. Let $E_2^{pq} = Ext_{k[G]}^q(H_p(M; k[G]), k[G]) \Rightarrow H^{p+q}(M; k[G])$ be the Universal Coefficient spectral sequence for the equivariant cohomology of M. Then $E_2^{pq} = Ext_{k[G]}^q(H_p(M_\nu; k), k[G])$, while $H^{p+q}(M; k[G]) \cong$ $H_{n-p-q}(M_\nu; k)$, by Poincaré duality for M.

If $H^q(G; k[G])$ is finitely generated for $q \leq [(n-1)/2]$ then E_2^{pq} is finitely generated for all $p+q \leq [(n-1)/2]$, by Lemmas 2 and 3. Hence $H_p(M_\nu; k)$ is finitely generated for all $p \geq n - [(n-1)/2]$, and hence for all p. Conversely, if this holds and $H^s(G; k[G])$ is finitely generated for s < q then E_r^{ps} is finitely generated for all $p \geq 0, r \geq 2$ and s < q. Since $H^q(M; k[G]) \cong H_{n-q}(M_\nu; k)$ is finitely generated as a k-module it follows that $H^q(G; k[G])$ is finitely generated for all q.

The final assertion is an immediate consequence of duality and the universal coefficient spectral sequence. $\hfill \Box$

Theorem 5. If $H_p(M_\nu; k)$ is finitely generated for all p then G is FP_∞ over k and $H^s(G; k[G]) \neq 0$ for some $s \leq n$. If moreover $k = \mathbb{Z}$ and $v.c.d.G < \infty$ then G is virtually a PD_r -group, for some $r \leq n$.

Proof. Let $C_*(\widetilde{M})$ be the equivariant chain complex of the universal covering space \widetilde{M} . Since M is a PD_n -space $C_*(\widetilde{M})$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\pi]$ -complex. Hence $C_*(M_\nu; k) = k[G] \otimes_{\mathbb{Z}[\pi]} C_*(\widetilde{M})$ is chain homotopy equivalent to a finite projective k[G]-complex. The arguments of [14] apply equally well with coefficients k a field (instead of \mathbb{Z}), and thus the hypotheses of Lemma 4 imply that G is FP_∞ over k.

If $v.c.d.G < \infty$ we may assume without loss of generality that $c.d.G < \infty$, and so G is FP. Since $H_q(M_\nu; \mathbb{Z})$) is finitely generated for all q the groups $H^s(G; \mathbb{Z}[G])$ are all finitely generated, and since $H_0(M_\nu; \mathbb{Z}) = \mathbb{Z}$ we must have $H^s(G; \mathbb{Z}[G]) \neq 0$ for some $s \leq n$, by Lemma 4. Then G is a PD_s -group, by Theorem 3 of [7]. \Box

A finitely generated group G is a weak PD_r -group if $H^r(G; \mathbb{Z}[G]) \cong \mathbb{Z}$ and $H^q(G; \mathbb{Z}[G]) = 0$ for $q \neq r$. Theorem 5 complements the main result of [11], in which it is shown that if the $\mathbb{Z}[\nu]$ -chain complex $C_*(\widetilde{M}_{\nu}) = C_*(\widetilde{M})|_{\nu}$ has finite [n/2]-skeleton and G is a weak PD_r group then M_{ν} is a PD_{n-r} -space.

For each $n \geq 2$ and $k \geq \binom{n+1}{2}$ there are weak PD_k -groups which act freely and cocompactly on $S^{2n-1} \times \mathbb{R}^k$, but which are not virtually torsion-free [8]. Thus if $r \geq 6$ weak PD_r -groups need not be virtual PD_r -groups, and so the other conditions in Theorem 5 do not imply that $v.c.d.G < \infty$, in general. Weak PD_1 -groups have two ends, and so are virtually \mathbb{Z} , while FP_2 weak PD_2 -groups are virtual PD_2 -groups [1]. Little is known about the intermediate cases r = 3, 4 or 5. In particular, it is not known whether a group G of type FP_{∞} such that $H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z}$ must be a virtual PD_3 -group. (The fact that local homology manifolds which are homology 2-spheres are standard may be some slight evidence for this being true.)

Stark's argument for realization in the finitely presentable case can be adapted to show that any virtual PD_n -group acts freely on a 1connected homotopy finite complex, with quotient a PD_m -space for some $m \ge n$. However finite presentability is needed in order to obtain a free *cocompact* action on a 1-connected complex. A natural converse to Theorem 5 (analogous to Stark's realization result) might be that every virtual PD group G acts freely and cocompactly on some connected manifold X with $H_q(X;\mathbb{Z})$ finitely generated for all q. It would suffice to show that $G \cong \pi/\nu$ where π is a finitely presentable

4

vPD-group and ν is a normal subgroup such that $H_*(\nu; \mathbb{Z})$ is finitely generated. For there is a closed PL manifold M with $\pi_1(M) \cong \pi$ and \widetilde{M} homotopy finite, by Stark's result. The quotient group G acts freely and cocompactly on M_{ν} , and a spectral sequence argument shows that $H_*(M_{\nu}; \mathbb{Z})$ is finitely generated.

3. Finitely dominated covering spaces of PD_4 -spaces

Let M be a PD_4 -space with fundamental group π , and suppose that M has a finitely dominated infinite regular covering space M_{ν} . Then $\nu = \pi_1(M_{\nu})$ is finitely presentable and π/ν has one or two ends. In [9] we showed that if π/ν has two ends then M is the mapping torus of a self homotopy equivalence of a PD_3 -complex, while if π/ν has one end and ν is FP_3 then either the universal covering space \widetilde{M} is contractible or homotopy equivalent to S^2 . We shall show here that the hypothesis that ν be FP_3 is redundant if M is a closed 4-manifold, or more generally if M is a finite PD_4 -space.

The results from [9] used in the next theorem were originally formulated in terms of PD_4 -complexes. The arguments given in [9] apply equally well to PD_4 -spaces, since they need only the $L^{(2)}$ -Euler characteristic formula of Lemma 1 above.

Theorem 6. Let M be a finite PD_4 -space with fundamental group π , and let ν be an infinite normal subgroup of π such that $G = \pi/\nu$ has one end and the associated covering space M_{ν} is finitely dominated. Then G is of type FP_{∞} and M is aspherical.

Proof. Let k be \mathbb{Z} or a field. Then G is of type FP_{∞} and $H^q(G; k[G])$ is finitely generated as a k-module for all q, by Lemma 4 and Theorem 5. Moreover $Ext^q_{k[\pi]}(H_p(M_{\nu}; k), k[\pi]) = 0$ for $q \leq 1$ and all p, since G has one end, and so $H_q(M_{\nu}; k) = 0$ for $q \geq 3$. In particular, $H^2(G; \mathbb{Z}[G]) \cong$ $H_2(M_{\nu}; \mathbb{Z})$ is torsion-free, and so is a free abelian group of finite rank.

We may assume that M_{ν} is not acyclic and G is not virtually a PD_2 -group, by Theorem 3.9 of [9]. Therefore $H^2(G; k[G]) = 0$ for all k, by the main result of [1]. Hence $H_2(M_{\nu}; \mathbb{F}_p) = 0$ for all primes p, so $H_1(M_{\nu}; \mathbb{Z})$ is torsion-free and nonzero. Therefore $H^s(G; \mathbb{Z}[G]) = H_{4-s}(M_{\nu}; \mathbb{Z}) = 0$ for s < 3 and $H^3(G; \mathbb{Z}[G]) \cong H_1(M_{\nu}; \mathbb{Z}) = \nu/\nu'$ is a nontrivial finitely generated abelian group. Therefore $\nu/\nu' \cong H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z}$ [7].

Thus we may assume that M_{ν} is an homology circle. Let $\tilde{G} = \pi/\nu'$ and let $t \in \tilde{G}$ represent a generator of the infinite cyclic group ν/ν' . Let M'_{ν} be the covering space associated to the subgroup ν' . Since M_{ν} is finitely dominated a Wang sequence argument shows that $H_q(M'_{\nu}; k)$

is a finitely generated $k[t, t^{-1}]$ -module on which t - 1 acts invertibly, for all q > 0. Then $H_q(M'_{\nu}; \mathbb{F}_p)$ is finitely generated for all primes p and all q > 0. Now $H^s(\tilde{G}; k[\tilde{G}]) = 0$ for all k and all s < 4, by a Lyndon-Hochschild-Serre spectral sequence argument. Therefore $H_q(M'_{\nu}; \mathbb{F}_p) =$ 0 for all primes p and all q > 0, by Lemma 4. Nontrivial finitely generated $\mathbb{Z}[t, t^{-1}]$ -modules have nontrivial finite quotients, and so we may conclude that M'_{ν} is acyclic.

Since M is a PD_4 -space $C_*(M)$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\pi]$ -complex C_* . Thus $D_* = \mathbb{Z} \otimes_{\mathbb{Z}[\nu']} C_*$ is a finite projective $\mathbb{Z}[\tilde{G}]$ -complex, and is a resolution of \mathbb{Z} . Therefore \tilde{G} is a PD_4 -group. (In particular, we see again that $G = \tilde{G}/(\nu/\nu')$ is FP_{∞} .)

Since ν/ν' is a torsion-free abelian normal subgroup of \tilde{G} the group ring $\mathbb{Z}[\tilde{G}]$ has a flat extension R, obtained by localising with respect to the nonzero elements of $\mathbb{Z}[t, t^{-1}]$, such that $R \otimes_{\mathbb{Z}[\tilde{G}]} \mathbb{Z} = 0$. (See page 23 of [9] and the references there.) Hence $R \otimes_{\mathbb{Z}[\tilde{G}]} D_*$ is a contractible complex of finitely generated projective R-modules.

We may in fact assume that C_* is a finite free $\mathbb{Z}[\pi]$ -complex, since M is a finite PD_4 -space. It follows that $\chi(M) = \chi(R \otimes_{\mathbb{Z}[\tilde{G}]} D_*) = 0$. Since ν is an infinite FP_2 normal subgroup of π and π/ν has one end $\beta_1^{(2)}(\pi) = 0$ and $H^s(\pi; \mathbb{Z}[\pi]) = 0$ for $s \leq 2$. Therefore M is aspherical, by Corollary 3.5.2 of [9].

With this result we may now reformulate Theorem 3.9 of [9] as follows.

Corollary. A finite PD_4 -space M has a finitely dominated infinite regular covering space if and only if either M is aspherical, or $\widetilde{M} \simeq S^2$, or M has a 2-fold cover which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a PD_3 -complex. If M has a finitely dominated regular covering space and is not aspherical it is a PD_4 -complex.

Proof. Only the final sentence needs any comment. If $\widetilde{M} \simeq S^2$ then $\pi_1(M)$ is virtually a PD_2 -group and so is finitely presentable. This is also clear if M has a 2-fold cover which is the mapping torus of a self-homotopy equivalence of a PD_3 -complex. Thus in each case M is a PD_4 -complex.

There are PD_n groups of type FF which are not finitely presentable, for each $n \ge 4$ [5]. The corresponding K(G, 1) spaces are aspherical finite PD_n -spaces which are not PD_n -complexes.

The hypothesis that M be finite is used only in the final paragraph of the proof of Theorem 6, in the appeal to Corollary 3.5.2 of [9] and in the calculation of $\chi(M)$. (If we assumed instead that $v.c.d.G < \infty$ then we could use multiplicativity of the Euler characteristic to show that $\chi(M) = 0$.)

A more substantial issue is that the argument for Theorem 6 does not appear to extend to the case when ν is an ascendant subgroup of π , as considered in [10] (where the FP_3 condition is also used). Is there an argument along the following lines? Let C_* be a finite projective $\mathbb{Z}[\pi]$ -complex with $H_0(C_*) \cong \mathbb{Z}$ and $H_1(C_*) = 0$. Show that $Hom_{\mathbb{Z}[\pi]}(H_2(C_*), \mathbb{Z}[\pi]) = 0$ if $[\pi : \nu] = \infty$ and $C_*|_{\nu}$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\nu]$ -complex. If so, the proofs of Theorem 3.9 of [9] and Theorem 6 of [10] would apply, without needing to assume that ν is FP_3 or that M is finite.

4. PD_4 -complexes with π_3 finitely generated

We conclude with an alternative characterization of PD_4 -complexes as in the Corollary to Theorem 6. Recall that there is a natural exact sequence of left $\mathbb{Z}[\pi]$ -modules

$$H_4(\widetilde{X};\mathbb{Z}) \to \Gamma_W(\Pi) \to \pi_3(X) \to H_3(\widetilde{X};\mathbb{Z}) \to 0,$$

where Γ_W is the quadratic functor of Whitehead and the third homomorphism is the Hurewicz homomorphism.

Theorem 7. Let M be a PD_4 -complex with infinite fundamental group π . Then the following are equivalent:

- (1) either M is aspherical, or $\widetilde{M} \sim S^2$ or S^3 ;
- (2) \widetilde{M} is homotopy finite;
- (3) $\pi_3(M)$ is finitely generated as an abelian group;
- (4) π has finitely many ends and $\pi_2(M)$ is finitely generated as an abelian group.

Proof. Clearly $(1) \Rightarrow (2) \Rightarrow (3)$ and (4). Since π is finitely presentable, $E^2\mathbb{Z}$ is torsion free, and so $\Pi = \pi_2(M)$ is torsion free also. If $\pi_3(M)$ is finitely generated as an abelian group then $H_3(\widetilde{M};\mathbb{Z})$ and $\Gamma_W(\Pi)$ are finitely generated. Hence π has finitely many ends and Π is finitely generated. Thus $(3) \Rightarrow (4)$.

If (4) holds then π has one or two ends and $Hom(\Pi; \mathbb{Z}[\pi]) = 0$. Hence $E^2\mathbb{Z} \cong \Pi$, by the evaluation exact sequence. If π has one end then either $E^2\mathbb{Z} = \Pi = 0$, in which case M is aspherical, or both are infinite cyclic, in which case $\widetilde{M} \simeq S^2$. If π has two ends we may assume without loss of generality that $\pi \cong \mathbb{Z}$. But then $\Pi = 0$ and $\widetilde{M} \simeq S^3$. Thus (4) \Rightarrow (1).

In particular, if π is infinite and either $\pi_3(M) = 0$ or π has one end and $\pi_2(M) = 0$ then M is aspherical. However, if $M = \#^r S^1 \times S^3$ for some r > 1 then $\pi_2(M) = 0$ but $\pi_3(M)$ is not finitely generated.

References

- Bowditch, B.H. Planar groups and the Seifert conjecture, J. Reine u. Angew. Math. 576 (2004), 11–62.
- [2] Browder, W. Poincaré spaces, their normal fibrations and surgery, Invent. Math. 17 (1971), 191–202.
- [3] Brown, K.S. A homological criterion for finiteness, Commentarii Math. Helvetici 50 (1975), 129-135.
- Brown, K.S. Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin - Heidelberg - New York (1982).
- [5] Davis, M. The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 397–314.
- [6] Eckmann, B. Projective and Hilbert modules over groups, and finitely dominated spaces, Comment. Math. Helvetici 71 (1996), 453–462.
- [7] Farrell, F.T. Poincaré duality and groups of type FP, Comment. Math. Helvetici 50 (1975), 187–195.
- [8] Farrell, F.T. and Stark, C.W. Cocompact spherical-Euclidean spaceform groups of infinite VCD, Bull. London Math. Soc. 25 (1993), 189–192.
- [9] Hillman, J.A. Four-Manifolds, Geometries and Knots, GT Monograph vol. 5, Geometry and Topology Publications, University of Warwick (2002). Revisions 2007 and 2014. See also http://www.maths.usyd.edu.au/u/jonh/.
- [10] Hillman, J.A. Finitely dominated covering spaces of 3- and 4-manifolds, J. Austral. Math. Soc. 84 (2008), 99–108.
- [11] Hillman, J.A. and Kochloukova, D.H. Finiteness conditions and PD_r-group covers of PD_n-complexes, Math. Z. 256 (2007), 45–56.
- [12] Lück, W. L²-Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse 3. Folge, Bd 44,
 Springer-Verlag, Berlin – Heidelberg – New York (2002).
- [13] Stark, C.W. A characterization of virtual Poincaré duality groups, Michigan J. Math. 42 (1995), 99–102.
- [14] Stark, C.W. Resolutions modeled on ternary trees, Pacific J. Math. 173 (1996), 557–569.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonathan.hillman@sydney.edu.au