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Abstract

In this paper, we are concerned with the boundedness of all the solutions for a kind of sec-
ond order differential equations with p-Laplacian and an oscillating term (φp(x

′))′+aφp(x
+)−

bφp(x
−) = Gx(x, t) + f(t), wherex+ = max(x, 0),x− = max(−x, 0),φp(s) = |s|p−2s,p ≥ 2,

a and b are positive constants (a 6= b) ,the perturbation f(t) ∈ C23(R/2πpZ), the oscillat-

ing term G ∈ C21(R × R/2πpZ),where πp = 2π(p−1)
1

p

p sin π

p

, and G(x, t) satisfies |Di
xD

j
tG(x, t)| ≤

C, 0 ≤ i+ j ≤ 21, and |Dj
t Ĝ| ≤ C, 0 ≤ j ≤ 21 for some C > 0, where Ĝ is some function

satisfying ∂Ĝ
∂x

= G.
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1 Introduction

One of the most studied semilinear Duffing’s equations is

x′′ + ax+ − bx− = f(x, t), (1.1)
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where x+ = max(x, 0), x− = max(−x, 0), f(x, t) is a smooth 2π-periodic function on t, a and
b are positive constants (a 6= b).

If f(x, t) depends only on t, the equation (1.1) becomes

x′′ + ax+ − bx− = f(t), f(t+ 2π) = f(t), (1.2)

which had been studied by Fucik [6] and Dancer [3] in their investigations of boundary value
problems associated to equations with “jumping nonlinearities”. For recent developments, we
refer to [7, 8, 11] and references therein.

In 1996, Ortega [20] proved the Lagrangian stability for the equation

x′′ + ax+ − bx− = 1 + γh(t) (1.3)

if |γ| is sufficiently small and h ∈ C4(S1).
On the other hand, when 1√

a
+ 1√

b
∈ Q, Alonso and Ortega [2] proved that there is a 2π-

periodic function f(t) such that all the solutions of Eq. (1.2) with large initial conditions are
unbounded. Moreover for such a f(t), Eq. (1.2) has periodic solutions.

In 1999, Liu [16] removed the smallness assumption on |γ| in Eq. (1.3) when 1√
a
+ 1√

b
∈ Q

and obtained the same result.
For the more general equation

x′′ + ax+ − bx− + φ(x) = e(t) (1.4)

Wang [23] and Wang [24] considered the Lagrangian stability when the perturbation φ(x) is
bounded.And Yuan [25] investigated the existence of quasiperiodic solutions and Lagrangian
stability when φ(x) is unbounded.

Fabry and Mawhin [5] investigated the equation

x′′ + ax+ − bx− = f(x) + g(x) + e(t) (1.5)

under some appropriate conditions, they get the boundedness of all solutions.

Yang [27] considered more complicated nonlinear equation with p-Laplacian operator

((φp(x
′))′ + (p− 1)[aφp(x

+)− bφp(x
−)] + f(x) + g(x) = e(t). (1.6)

Using Moser’s small twist theorem, he proved that all the solutions are bounded,when 1

a
1
p
+

1

b
1
p
= 2m

n
, m,n ∈ N, the perturbation f(x) and the oscillating term g are bounded. For the case

when 1

a
1
p
+ 1

b
1
p
= 2ω−1, where ω ∈ R+\Q, the perturbation f(x) is bounded, Yang [26] studied

the following equation

(φp(x
′))′ + aφp(x

+)− bφp(x
−) + f(x) = e(t). (1.7)

and came to the conclusion that every solution of the equation is bounded.
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In 2004, Liu [17] studied equation

(φp(x
′))′ + aφp(x

+)− bφp(x
−) = f(x, t), f(x, t+ 2π) = f(x, t) (1.8)

where p > 1, for the cases when
πp

a
1
p
+

πp

b
1
p
= 2π

n
and f ∈ C(7,6)(R× R/2πZ) and satisfies that

(i) the following limits exists uniformly in t

lim
x→∞

f(x, t) = f±(t)

(ii) the following limits exists uniformly in t

lim
x→∞

xm
∂m+n

∂xm∂tn
f(x, t) = f±,m,n(t)

for (n,m) = (0, 6), (7, 0) and (7, 6). Moveover, f±,m,n(t) ≡ 0 for m = 6, n = 0, 7. He comes to
the conclusion that all solutions are bounded and the existence of quasi-periodic solutions.

In 2012,Jiao,Piao and Wang [9] considered the bounededness of equations

x′′ + ω2x+ φ(x) = Gx(x, t) + f(t), (1.9)

and
x′′ + ax+ − bx− = Gx(x, t) + f(t). (1.10)

Inspired by the above references, we are going to study the boundedness of all solutions for
the more general equation

(φp(x
′))′ + aφp(x

+)− bφp(x
−) = Gx(x, t) + f(t) (1.11)

Our main results are as follows:

Theorem 1 Assume f(t) ∈ C23(R/2πpZ), G ∈ C21(R× R/2πpZ),and G(x, t) satisfies

|Di
xD

j
tG(x, t)| ≤ C, 0 ≤ i+ j ≤ 21 (1.12)

and
|Dj

t Ĝ| ≤ C, 0 ≤ j ≤ 21 (1.13)

for some C > 0, where Ĝ is some function satisfying ∂Ĝ
∂x

= G,and ω = 1
2(

1

a
1
p
+ 1

b
1
p
), and

ω ∈ R+\Q satisfy the Diophantine condition:

|mω + n| ≥
γ

|m|τ
, ∀ (m,n) 6= (0, 0) ∈ Z

2, (1.14)

where 1 < τ < 2, γ > 0, and [f ] = 1
2πp

∫ 2πp

0 f(t)dt 6= 0, where πp = 2π(p−1)
1
p

p sin π
p

. Then equation

(1.11) possesses Lagrange stability, i.e. if x(t) is any solution of equation (1.11), then it exists
for all t ∈ R and supt∈R(|x(t)| + |ẋ(t)|) < ∞.
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Remark 1.1 In the above, γ can be any positive number. Thus our statement holds true for ω
of full measure.

Remark 1.2 In Liu[17], it is required that f satisfies the limit condition, which is not satisfied
by the function G in our situation. Thus our situation is more general.

The main idea is as follows: By means of transformation theory the original system outside
of a large disc D = {(x, x′) ∈ R2 : x2 + x′2 ≤ r2} in (x, x′)-plane is transformed into a pertur-
bation of an integrable Hamiltonian system. The Poincaré map of the transformed system is
closed to a so-called twist map in R2\D. Then Moser’s twist theorem guarantees the existence
of arbitrarily large invariant curves diffeomorphic to circles and surrounding the origin in the
(x, x′)-plane. Every such curve is the base of a time-periodic and flow-invariant cylinder in the
extended phase space (x, x′, t) ∈ R2 ×R, which confines the solutions in the interior and which
leads to a bound of these solutions.

The remain part of this paper is organized as follows. In section 2, we introduce action-angle
variables and exchange the role of time and angle variables. In section 3, we construct canonical
transformations such that the new Hamiltonian system is closed to an integrable one. In section
4, we will prove the Theorem 1 by Moser’s twist theorem.

Throughout this paper, F (x) =
∫ x

0 f(s)ds, F (0) = 0, c and C are some positive constants
without concerning their quantity.

2 Some Canonical transformations

In this section, we will state some technical lemmas which will be used in the proof of Theorem
1. Throughout this section, we assume the hypotheses of Theorem 1 hold.

2.1 Action-angle variables

Borrowing the idea from Liu [17] and Yang [26],we introduce a new variables y as y = −ϕp(ωx),
let q be the conjugate exponent of p : p−1 + q−1 = 1. Then (1.11) is changed into the form

x′ = −ω−1ϕq(y), y
′ = ω−1[a1ϕp(x

+)− b1ϕp(x
−)]− ωp−1[Gx(x, t) + f(t)] (2.1)

where a = ω−pa1, b = ω−pb1 and a1, b1 satisfy

a
− 1

p

1 + b
− 1

p

1 = 2, (2.2)

which is a planar non-autonomous Hamiltonian system

x′ = −
∂H

∂y
(x, y, t), y′ =

∂H

∂y
(x, y, t) (2.3)
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where

H(x, y, t) =
ω−1

q
|y|q +

ω−1

p
(a1|x

+|p + b1|x
−|p)− ωp−1[G(x, t) + f(t)x].

Let C(t) = sinp t be the solution of the following initial value problem

(ϕp(C
′(t)))′ + ϕp(C(t)) = 0, C(0) = 0, C ′(0) = 1. (2.4)

Then it follows from [16] that C(t) = sinp(t) is a 2πp-period C2 odd function with sinp(πp− t) =
sinp(t), for t ∈ [0,

πp

2 ] and sinp(2πp − t) = − sinp(t), for t ∈ [πp, 2πp]. Moreover for t ∈ (0,
πp

2 ),

C(t) > 0, C ′(t) > 0, and C : [0,
πp

2 ] → [0, (p − 1)
1

p ] can be implicitly given by

∫ sinp t

0

ds

(1− sp

p−1)
1

p

= t.

Lemma 2.1 For p ≥ 2 and for any (x0, y0) ∈ R2, t0 ∈ R, the solution

z(t) = (x(t, t0, x0, y0), y(t, t0, x0, y0))

of (2.1) satisfying the initial condition z(t0) = (x0, y0) is unique and exists on the whole t-axis.

The proof of uniqueness can be obtained similarly as the proof of Proposition 2 in [17], the global
existence result can be proved similarly as Lemma 3.1 in [10]. Consider an auxiliary equation

(φp(x
′))′ + a1φp(x

+)− b1φp(x
−) = 0

Let v(t) be the solution with initial condition: (v(0), v′(0)) = ((p − 1)
1

p , 0). Setting φp(v
′) = u,

then (v, u) is a solution of the following planar system:

x′ = φq(y), y′ = −a1φp(x
+) + b1φp(x

−)

where q = p/(p− 1) > 1. It is not difficult to prove that:
(i) q−1|u|q + p−1(a1|v

+|p + b1|v
−|p) ≡ a1

q
;

(ii) v(t) and u(t) are 2πp-periodic functions.
(iii)v(t) can be given by

v(t) =















sinp(a
1

p

1 t+
πp

2 ), 0 ≤ t ≤ πp

2a
1
p
1

,

−(a1
b1
)
1

p sinp b1
1

p (t− πp

2a
1
p
1

),
πp

2a
1
p
1

< t ≤ πp.
(2.5)

v(2πp − t) = v(t), t ∈ [πp, 2πp]. (2.6)
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Lemma 2.2 Let Ip =
∫

πp
2

0 sinp tdt. Then

Ip =
(p− 1)

2

p

p
B(

2

p
, 1−

1

p
),

where B(r, s) =
∫ 1
0 tr−1(1− t)s−1dt for r > 0, s > 0.

From the expression of v(t) in (2.5), we obtain

∫

πp

2a

1
p
1

0
v(t)dt =

Ip

a
1

p

1

, (2.7)

∫ πp

πp

2a

1
p
1

v(t)dt = −
a

1

p

1 Ip

b
2

p

1

. (2.8)

This method has been used in [8].
We introduce the action and angle variables via the solution (v(t), u(t)) as follows.

x = d
1

p r
1

p v(θ), y = d
1

q r
1

q u(θ)

where d = pa−1
1 . This transformation is called a generalized symplectic transformation as its

Jacobian is 1. Under this transformation, the system (2.1) is changed to

θ′ =
∂h

∂r
(r, θ, t), r′ = −

∂h

∂θ
(r, θ, t) (2.9)

with the Hamiltonian function

h(r, θ, t) = ω−1r − f1(r, θ, t) − ωp−1d
1

p r
1

p v(θ)f(t) (2.10)

where f1(r, θ, t) = ωp−1G(d
1

p r
1

p v(θ), t).

For any function f(·, θ), we denote by [f ](·) the average value of f(·, θ) over Sp , R/2πpZ,
that is,

[f ](·) :=
1

2πp

∫ 2πp

0
f(·, θ)dθ.

For the above function f1(r, θ, t) in (2.10) we have

Lemma 2.3 The following conclusion holds true:

|Di
rD

j
t f1(r, θ, t)| ≤ C · r−

i
q , 0 ≤ i+ j ≤ 21. (2.11)
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Proof. The proof of this lemma can get directly from the definition of f1 and the conditions in
Theorem 1.
The following technique lemma will be used to refine the estimates on [f1](r, t).

Lemma 2.4 Assume f ∈ C1(R/2πpZ), G(x, t) ∈ C1(R1 × R/2πpZ) and G′
x(x, t) = g(x, t). Sup-

pose there are two positive constants Ḡ and ḡ such that |G(x, t)| ≤ Ḡ, |g(x, t)| ≤ ḡ for any (x, t).

Let A(r, θ) ∈ C2(R1 × R/2πpZ) be of the form A(r, θ) = (r + h(r, θ))
1

p with

h,
∂h

∂θ
,
∂2h

∂θ2
= O(r

1

p ) (2.12)

for r ≫ 1.
Then for any constant δ0 ∈ (0, 1

10) it holds that

∣

∣

∣

∣

∫ 2πp

0
f(θ)g(Av(θ), t)dθ

∣

∣

∣

∣

≤ C · r−δ0 , r ≫ 1, (2.13)

where C depends only on Ḡ, ḡ and ‖f‖C0 .

Proof. Let [0, 2πp] = I1
⋃

I2, where I1 = [0, r−2δ0 ]
⋃

[πp − r−2δ0 , πp + r−2δ0 ]
⋃

[2πp − r−2δ0 , 2πp]
and I2 = [r−2δ0 , πp − r−2δ0 ]

⋃

[πp + r−2δ0 , 2πp − r−2δ0 ]. Then

∫ 2π

0
f(θ)g(Av(θ), t)dθ =

∫

I1

f(θ)g(Av(θ), t)dθ +

∫

I2

f(θ)g(Av(θ), t)dθ.

Obviously, |I1| ≤ C ·r−2δ0 , where | · | denotes the Lesbegue measure. Then from the boundedness
of g(x, t), it is easy to see that

∣

∣

∣

∣

∫

I1

f(θ)g(Av(θ), t)dθ

∣

∣

∣

∣

≤ C · r−2δ0 .

To estimate the integral on I2, we first estimate the integral on the interval I21 = [r−2δ0 , πp −
r−2δ0 ].

Consider Dθ(Av(θ)) = A′
θv(θ)−Av′(θ). From (2.12), it holds that |Av′(θ)| ≥ c · r

1

p
−2δ0 and

A′
θ · v(θ) = O(1) for θ ∈ I21, which implies

|Dθ(Av(θ))| ≥ c · r
1

p
−2δ0 . (2.14)

Similarly from the definition of A and the condition (2.12), we have

D2
θ(Av(θ)) = D2

θA · v(θ) + 2DθA · v′(θ) +Av′′(θ) = O(r
1

p ). (2.15)

By direct computation, we have

Dθ(f(θ)(Dθ(Av(θ)))
−1) = f ′ · (Dθ(Av(θ)))

−1 + f · (Dθ(Av(θ)))
−2 · (−D2

θ(Av(θ))).
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Thus from (2.14) and (2.15), we obtain the estimate

|Dθ(f(θ)(Dθ(Av(θ)))
−1)| ≤ C · r4δ−

1

p . (2.16)

By integration by parts, we have that

∫

I21
f(θ)g(Av(θ), t)dθ =

∫

I21
f(θ)(Dθ(Av(θ)))

−1dG(Av(θ), t)

= (Dθ(Av(θ)))
−1f(θ)G(Av(θ), t)|

πp−r−2δ0

r−2δ0
−

∫

I21
G(Av(θ), t)Dθ(f(θ)Dθ((Av(θ)))

−1)dθ.

From (2.14) and (2.16) , for θ ∈ I21 it holds that

∣

∣(Dθ(Av(θ)))
−1f(θ)G(Av(θ), t)|θ=r−2δ0

∣

∣ ,
∣

∣

∣
(Dθ(Av(θ)))

−1f(θ)G(Av(θ), t)|θ=πp−r−2δ0

∣

∣

∣
≤ C·r4δ0−

1

p

and
∣

∣G(Av(θ), t) ·Dθ(f(θ)Dθ((Av(θ)))
−1)

∣

∣ ≤ C · r4δ0−
1

p .

Similarly, we can have the same estimate for the other parts of I2.
Hence from the fact 0 < δ0 <

1
10 , we obtain (2.7). The proof of this lemma is completed. ⊓⊔

For [f1](r, t), we have the following result:

Corollary 2.1 The following conclusion holds true:

|Di
rD

j
t [f1](r, t)| ≤ C · r−δ1− i

p , 0 ≤ i+ j ≤ 21, (2.17)

where the constant δ1 is in (0, 1
10).

Proof. From the definition of f1, we have [f1](r, t) =
1

2πp

∫ 2πp

0 G(r
1

p v(θ), t)dθ. From (1.12) and

(1.13), we know that G and Ĝ are bounded. Thus for i+ j = 0, (2.17) is deduced from lemma

2.2 where we set f ≡ 1 and A(r, θ) = r
1

p . For i + j ≥ 1, it can be easily seen that ∂i+j

∂ri∂tj
G are

the sum of the term like

∂k+j

∂xk∂tj
G(r

1

p v(θ), t)(r
1

p )(i1) · · · (r
1

p )(ik) · (v(θ))k,

where i1 + · · · ik = i. Thus (2.17) is implied from lemma 2.2 for the function ∂k+j

∂xk∂tj
G(r

1

p v(θ), t)
and (1.12). This ends the proof of the lemma. ⊓⊔
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2.2 Exchange of the roles of time and angle variables

According to Levi [12],the equality

rdθ − hdt = −(hdt− rdθ),

means if we can solve r = r(h, t, θ) from Eq.(2.9) as a function of h, t and θ, then we have

dh

dθ
= −

∂r

∂t
(h, t, θ),

dt

dθ
=

∂r

∂h
(h, t, θ), (2.18)

i.e., Eq.(2.18) is a Hamiltonian system with Hamiltonian function r = r(h, t, θ) and now the
action, angle and time variables are h, t, and θ, respectively.

From Eq.(2.10) and lemmas, it follows that

lim
r→+∞

h

r
= ω−1 > 0

and for r ≫ 1
∂h

∂r
= ω−1 −

∂

∂r
f1(r, θ)−

1

p
f(t)ωp−1d

1

p r
1

p
−1

v(θ) > 0.

By the implicit function theorem, we know that there is a function R = R(h, t, θ) such that

r(h, t, θ) = ωh−R(h, t, θ). (2.19)

Moreover, for h ≫ 1,
|R(h, t, θ)| ≤ ωh/2

and R(h, t, θ) is C19 in h and t.
From (2.10), it holds that

R = ωf1(ωh−R, t, θ)− ωpd
1

p (ωh−R)
1

p v(θ)f(t). (2.20)

The proof of following two lemmas are slightly different to [15], here for the convenience of
readers, we give the proofs of them.

Lemma 2.5 Assume R is defined by (2.20) with |R| ≪ h for h ≫ 1. Then it holds that

|Di
hD

j
tR| ≤ C · hn(i), 0 ≤ i+ j ≤ 21 (2.21)

for h ≫ 1, where n(i) = − i
q
for i ≥ 1 and n(0) = 1

p
.

Proof. (i) i + j = 0. The proof for this case can be easily obtained from lemma 2.3 and the
conditions in the Theorem .
(ii) i+ j = 1. It is clear that for h ≫ 1,

|ω
∂f1
∂r

(ωh−R, t, θ)|+ |
ωp

p
d

1

p (ωh−R)
− 1

q v(θ)f(t)| ≤
1

2
.
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Define

∆(h, t, θ) = 1 + ω
∂f1
∂r

(ωh−R, t, θ)−
ωp

p
d

1

p (ωh−R)
− 1

q v(θ)f(t),

g1 = ω2 ∂f1
∂r

(ωh−R, t, θ)−
ωp+1

p
d

1

p (ωh−R)−
1

q v(θ)f(t),

g2 = −ωpd
1

p (ωh−R)
1

p v(θ)f(t) + ω
∂f1
∂t

(ωh−R, t, θ).

Then it follows that

∆ ·
∂R

∂h
= g1, ∆ ·

∂R

∂t
= g2. (2.22)

From lemma 2.3,p ≥ 2 and the boundedness of f(t), we have |g1| ≤ C ·h−
1

q and |g2| ≤ C ·h
1

p .
Thus the proof for this case is completed.

(iii) i+ j = 2. Lemma 2.3 implies that

|
∂∆

∂t
| ≤ C·h−

1

q , |
∂∆

∂h
| ≤ C·h−

2

q , |
∂g1
∂t

| ≤ C·h−
1

q , |
∂g1
∂h

| ≤ C·h−
2

q , |
∂g2
∂h

| ≤ C·h−
1

q , |
∂g2
∂t

| ≤ C·h
1

p .

From the second equation of (2.22), we obtain

∆
∂2R

∂t2
+

∂∆

∂t
·
∂R

∂t
=

∂g2
∂t

and

∆
∂2R

∂t∂h
+

∂∆

∂h
·
∂R

∂t
=

∂g2
∂h

.

The above inequalities and equations imply that

|
∂2R

∂t2
| ≤ C · h

1

p , |
∂2R

∂h∂t
| ≤ C · h−

1

q .

From the first equation of (2.22), we know that

∆
∂2R

∂h2
+

∂∆

∂h
·
∂R

∂h
=

∂g1
∂h

,

which implies |∂
2R

∂h2 | ≤ C · h−
2

q . Thus we complete the proof for this case.

In general, if
|Di

hD
j
tR| ≤ C · hn(i), 0 ≤ i+ j ≤ m,

then it holds that

|Di
hD

j
t∆| ≤ C · h−

1

q
+n(i)

, |Di
hD

j
t g1| ≤ C · h−

1

q
− i

q , |Di
hD

j
t g2| ≤ C · h−

i
q .

Consequently, we obtain

|Di
hD

j
tR| ≤ C · hn(i), 0 ≤ i+ j ≤ m+ 1.
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The proof is completed. ⊓⊔

In (2.20), we denote R = −ωpd
1

p (ωh)
1

p v(θ)f(t)−R1(h, t, θ). Then

R1 = ωf1(ωh−R, t, θ)−
1

p

∫ 1

0
ωpd

1

p (ωh− τR)−
1

qRv(θ)f(t)dτ. (2.23)

Then we have the following conclusion:

Lemma 2.6 It holds that

|Di
hD

j
tR1| ≤ C · h−

i
q , 0 ≤ i+ j ≤ 21.

Proof. The lemma is easily followed from the following claim:

Claim

|Di
hD

j
t f1(ωh− τR, t, θ)| ≤ C · h−

i
q ,

|Di
hD

j
t (ωh− τR)

− 1

q d
1

pRv(θ)f(t)| ≤ C · h−
1

q
− i

q

(2.24)

for 0 ≤ i+ j ≤ 21.

Proof of the claim. We only prove the first inequality of (2.24) and the proof for the other
is similar.

(i) i+ j = 0. The proof for this case can be obtained directly from lemma 2.1.
(ii) i > 0, j = 0. We have the following equality:

Di
hf1(ωh− τR, t, θ) =

∑ ∂kf1
∂rk

(u, t, θ) ·
∂i1u

∂hi1
· · ·

∂iku

∂hik

with 0 < k ≤ i, i1, · · · , ik > 0, i1 + · · · ik = i and u = ωh − τR. Assume there are l(≤ k)
numbers in {i1, · · · , ik} which is equal to 1. Then we obtain

|Di
hf1(u, t, θ)| ≤ C · h−

k
q · h−

i1+···ik−l

q ≤ C · h−
i
q .

(iii) i = 0, j > 0. By direct computation, we have

Dj
t f1(ωh− τR, t, θ) =

∑ ∂k+lf1
∂rk∂tl

(u, t, θ) ·
∂j1u

∂tj1
· · ·

∂jku

∂tjk

with 0 ≤ k ≤ j, 0 ≤ l ≤ j, k + l = j, j1, · · · , jk > 0, j1 + · · · jk = k. It follows that

|Dj
t f1(u, t, θ)| ≤ C · h−

k
q · h

k
p ≤ C.

The last step,we get from that p ≥ 2, 1
p
+ 1

q
= 1 ,and 1

p
≤ 1

q
.

(iv) i > 0, j > 0. By direct computation, we have

Di
hD

j
t

∂f1
∂r

(u, θ) =
∑ ∂k1+k2+lf1

∂rk1+k2∂tl
(u, θ) ·

∂i1u

∂hi1
· · ·

∂ik1u

∂hik1
·
∂l1+j1u

∂hl1∂tj1
· · ·

∂lk2+jk2u

∂hlk2∂tjk2
,
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where u = ωh− τR and

0 ≤ k1 ≤ i, 0 ≤ k2 ≤ j, 0 ≤ l ≤ j, k2 + l = j, i1, · · · , ik1 , j1, · · · , jk2 > 0, l1, · · · , lk2 ≥ 0,

i1 + · · · ik1 + l1 + · · ·+ lk2 = i, j1 + · · ·+ jk2 + l = j.

Assume that there are m(≤ k1) numbers in {i1, · · · , ik1} which is equal to 1. Then

|Di
hD

j
t

∂f1
∂r

| ≤ C · h−
k1+k2

q · h−
i1+···+ik1

+l1+···+lk2
−m

q ≤ C · h−
i
q .

This ends the proof of the claim. ⊓⊔

From the definition of R1, we can obtain the following conclusion:

Lemma 2.7 For the function [R1](h, t), we have that

|Di
hD

j
t [R1]| ≤ C · (h−i + h

−δ1− i
q ), 0 ≤ i+ j ≤ 21,

where δ1 ∈ (0, 1
10).

From (2.19), (2.20) , we obtain that the Hamiltonian r(h, t, θ) in (2.19) is of the form:

r = ωh+ ωpd
1

p (ωh)
1

p v(θ)f(t) +R1(h, t, θ). (2.25)

3 More canonical transformations

In this section, we will make some more canonical transformations such that the Poincaré map
of the new system is close to twist map.

Lemma 3.1 There exists a canonical transformation Φ1 of the form:

Φ1 :

{

h = ρ
t = τ + V1(ρ, τ, θ)

where the functions V1 are periodic in τ, θ. Under this transformation, the Hamiltonian system
with Hamiltonian (2.25) is changed into the following one

r̃ = ωρ+ ωpd
1

p (ωρ)
1

p v(θ)[f ] + R̃1(ρ, τ, θ), (3.1)

Moreover, the new perturbation R̃1 satisfies

|
∂i+j

∂ρi∂τ j
R̃1| ≤ C · ρ−

i
q , 0 ≤ i+ j ≤ 21. (3.2)

Moreover, for the function[R̃1](ρ, θ),it holds that

|Di
ρD

j
τ [R̃1]| ≤ C · (ρ−i + ρ

−δ1− i
q ). 0 ≤ i+ j ≤ 21. (3.3)
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Proof. We construct the canonical transformation by means of generating function:

Φ1 : h = ρ, t = τ +
∂S1

∂ρ
(ρ, τ, θ).

Under this transformation, the new Hamiltonian function r̃ is of the form

r̃ = ωρ+ ωpd
1

p (ωρ)
1

p v(θ)f(τ +
∂S1

∂ρ
) +R1(ρ, τ +

∂S1

∂ρ
, θ) +

∂S1

∂θ

Let S1 = −
∫ θ

0 ωpd
1

p (ωρ)
1

p v(ϑ)f(t)− [f ]dϑ,then we have

r̃(ρ, τ, θ) = ωρ+ ωpd
1

p (ωρ)
1

p v(θ)[f ] + R̃1(ρ, τ, θ)

where R̃1(ρ, τ, θ) = R1(ρ, τ + ∂S1

∂ρ
, θ) = R1(ρ, τ, θ) +

∫ 1
0

∂R1

∂t
(ρ, τ + s∂S1

∂ρ
, θ)∂S1

∂ρ
ds From 2.6 and

the definition of R̃1, we can get the estimates (3.2) ,(3.3) can get from 2.7 and the definition of
R̃1. ⊓⊔

Lemma 3.2 There exists a canonical transformation Φ2 of the form:

Φ2 :

{

ρ = I
τ = s+ V2(I, θ)

with T̃ (I, θ+2πp) = T̃ (I, θ),such that the system with Hamiltonian (3.1) is transformed into the
form:

∂I

∂θ
= −

∂r̄

∂s
(I, s, θ),

∂s

∂θ
=

∂r̄

∂I
(I, s, θ) (3.4)

with r̄(I, s, θ) = ωI+c∗I
1

p +R̃2(I, s, θ) and c∗ 6= 0, where we use the fact that [f ] 6= 0. Moreover,
the new perturbation R̃2 satisfies

|Di
ID

j
sR̃2)| ≤ C · I−

i
q , 0 ≤ i+ j ≤ 21. (3.5)

Moreover, for the function [R̃2]0(I) = ( 1
2πp

)2
∫ 2πp

0

∫ 2πp

0 R̃2(I, s, θ)dsdθ, it holds that

|Di
I [R̃2]0| ≤ C · (I−i + I−δ1− i

q ), 0 ≤ i ≤ 21. (3.6)

Proof. The proof is similar to [18], but for the convenience of readers we still give a detailed
argument. We shall look for the required transformation Φ2 by means of a generating function
S2(I, s, θ), so that Φ2 is implicitly defined by

Φ2 : ρ = I +
∂

∂s
S2(I, s, θ), τ = s+

∂

∂I
S2(I, s, θ). (3.7)
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Under this transformation, the system is changed into the form:

∂I

∂θ
= −

∂r̄

∂s
(I, s, θ),

∂s

∂θ
=

∂r̄

∂I
(I, s, θ)

the new Hamiltonian function r̄ is of the form

r̄ = ωρ+ ωp+ 1

pd
1

p [f ]ρ
1

p v(θ) + R̃1(ρ, τ, θ) +
∂S2

∂θ

Now we choose

S2 = −

∫ θ

0
ωp+ 1

pd
1

p [f ]ρ
1

p v(ϑ)− c∗ρ
1

pdϑ

where c∗ = ω
p+ 1

pd
1

p [f ] 6= 0. Obviously,S2 does not depend on s and it is 2πp−periodic in θ.
Hence ρ = I. Let

T̃ (I, θ) =
∂S2

∂I
.

Then the canonical transformation Φ2 is of the form

ρ = I, τ = s+ T̃ (I, θ).

Let

R̃2(I, s, θ) = R̃1(ρ, s, θ) +

∫ 1

0

∂R̃1

∂τ
(ρ, s+mT̃ , θ)T̃ dm. (3.8)

From (3.2) in lemma3.1,we can get (3.5) easily, and (3.6) can get from (3.3). The proof of this
lemma is completed. ⊓⊔

For convenience, we denote

r̄ = ωI + r̄1(I) + r̄2(I, s, θ), (3.9)

with r̄1 = c∗I
1

p , r̄2(I, s, θ) = R̃2(I, s, θ), then from the definition of r̄1 ,we can know that, r̄1
satisfying

c · I
1

p
−i ≤ |r̄

(i)
1 (I)| ≤ C · I

1

p
−i
, (3.10)

r̄2 have the same estimate with R̃2 in lemma3.2,i.e.

|Di
ID

j
s r̄2)| ≤ C · I−

i
q , 0 ≤ i+ j ≤ 21. (3.11)

|Di
I [r̄2]0| ≤ C · (I−i + I−δ1− i

q ), 0 ≤ i ≤ 21. (3.12)

The following results are similarity to [9],here for the convenience of readers, we still give the
proof of these lemmas.
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Lemma 3.3 Let 0 < δ1 <
1
10 be a constant. Consider the Hamiltonian

r̄(I, s, θ) = ωI + r̄1(I) + R(I, s, θ), (3.13)

where R satisfies

|Di
ID

j
sR| ≤ C · I−ε− i

q (3.14)

for 0 ≤ i+ j ≤ l with ε ≥ 0.
Then there exists a canonical transformation Φ3 of the form:

Φ3 :

{

I = ̺+ u3(̺, ς, θ)
s = ς + v3(̺, ς, θ)

such that the system with Hamiltonian (3.13) is transformed into the following one

r̂(̺, ς, θ) = ω̺+ r̂1(̺) + R1(̺, ς, θ), (3.15)

where r̂1(̺) = r̄1(̺) + [R]0(̺) with [R]0(̺) = ( 1
2πp

)2
∫ 2πp

0

∫ 2πp

0 R(̺, τ, θ)dτdθ and R1 satisfies

|Di
̺D

j
ςR1| ≤ C · ̺−ε− 1

q
− i

q , 0 ≤ i+ j ≤ l − 3. (3.16)

Proof. We will prove this lemma by means of Principle Integral method instead of Fourier series
method. Let Φ3 be of the following form:

I = ̺+
∂S3

∂τ
(̺, s, θ), ς = s+

∂S3

∂̺
(̺, s, θ),

where the generating function S3(̺, s, θ) satisfies S3(̺, s+2πp, θ) = S3(̺, s, θ+2πp) = S3(̺, s, θ)
and will be determined later.

Then the transformed Hamiltonian is

r̂ = ω(̺+ ∂S3

∂s
) + r̄1(̺+

∂S3

∂s
) + R(̺+ ∂S3

∂s
, s, θ) + ∂S3

∂θ

= ω̺+ r̄1(̺) + [R]0(̺) + ω ∂S3

∂s
+ ∂S3

∂θ
+R+ R1,

where
R = R(̺, s, θ)− [R]0(̺)

and

R1 =

∫ 1

0
r̄′1(̺+ λ

∂S3

∂s
)
∂S3

∂s
dλ+

∫ 1

0

∂R

∂I
(̺+ λ

∂S3

∂s
, s, θ)

∂S3

∂s
dλ. (3.17)

Obviously, it holds that

(
1

2πp
)2
∫ 2πp

0

∫ 2πp

0
R(̺, s, θ)dsdθ = 0. (3.18)
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Now we determine the periodic function S3 by the following equation

ω
∂S3

∂s
(̺, s, θ) +

∂S3

∂θ
(̺, s, θ) +R(̺, s, θ) = 0, (3.19)

whose characteristic equation is

ds

ω
=

dθ

1
=

dS3

−R(̺, s, θ)
.

Obviously, the characteristic equation possesses two independent Principle Integrals as follows:

s− ωθ = c1

and

S3 +

∫ θ

0
R(̺, s− ωθ + ωφ, φ)dφ = c2.

Thus the solution of (3.19) is of the form:

S3(̺, s, θ) = −

∫ θ

0
R(̺, s− ωθ + ωφ, φ)dφ +Ω(̺, s− ωθ) (3.20)

with Ω a differentiable function determined later.
To ensure S3 be 2πp-periodic on s and θ, Ω must be 2πp-periodic on the second variable,

that is Ω(̺, x+2πp) = Ω(̺, x). Then by direct computation, we obtain that S3 is 2ωπp-periodic
on s.

Next we determine Ω by the periodicity of S3 on θ.
Let J(̺, x) = −

∫ 2πp

0 R(̺, x+ ωφ, φ)dφ. Then we have

S3(̺, s, θ + 2πp) = −
∫ θ+2πp

0 R(̺, s− ω(θ + 2πp − φ), φ)dφ +Ω(̺, s− ω(θ + 2πp))

= J(̺, s− ω(θ + 2πP ))−
∫ 2πp+θ

2πp
R(̺, s − ω(θ + 2πp − φ), φ)dφ +Ω(̺, s− ω(θ + 2πp)).

On the other hand, from R(̺, s, φ+ 2πp) = R(̺, s, φ) we have

∫ 2πp+θ

2πp

R(̺, s− ω(θ + 2πp − φ), φ)dφ =

∫ θ

0
R(̺, s− ω(θ − φ), φ)dφ,

which implies that

S3(̺, s, θ+2πp) = J(̺, s−ω(θ+2πp))−

∫ θ

0
R(̺, s−ω(θ−φ), φ)dφ+Ω(̺, s−ω(θ+2πp)). (3.21)

Setting S3(̺, s, θ + 2πp) = S3(̺, s, θ), it follows from (3.20) and (3.21) that

J(̺, s − ω(θ + 2πp)) + Ω(̺, s− ω(θ + 2πp))− Ω(̺, s− ωθ) = 0,
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or equivalently,
J(̺, x) = Ω(̺, x+ x0)− Ω(̺, x), (3.22)

where x = s− ω(θ + 2πp) and x0 = 2ωπp.
From (3.18) and the definition of J , we have
∫ 2πp

0
J(̺, x)dx = −

∫ 2πp

0

∫ 2πp

0
R(̺, x+ ωφ, φ)dxdφ = −

∫ 2ωπp

0

∫ 2πp

0
R(̺, x, φ)dxdφ = 0.

Thus we assume J(̺, x) =
∑

06=k∈Z Jk(̺)e
iλkx and Ω(̺, x) =

∑

06=k∈Z Ωk(̺)e
iλkx,where λ =

π/πp. Then the homological equation (3.22) implies that

Ωk =
Jk

eiλkx0 − 1
, k 6= 0.

The definition of J(̺, x) implies that J(̺, x) is C l on x. Thus it holds that

|Jk| ≤ C · ‖J(·, x)‖Cl · |k|−l, k 6= 0. (3.23)

From the Diophantine condition (1.14), we have that

|eiλkx0 − 1| ≥ 2πγ|k|−τ , k 6= 0. (3.24)

Combining (3.23) and (3.24), we obtain that

|Ωk| ≤ C · ‖J(·, x)‖Cl · |k|τ−l, k 6= 0,

which implies Ω is well-defined and C l−3 on x since 1 < τ < 2.
For the definition of Ω and (3.14), we have that

|Di
̺D

j
xΩ| ≤ C · ̺−ε− i

q , 0 ≤ i+ j ≤ l − 2,

which together with (3.14) and (3.20) implies

|Di
̺D

j
τS3| ≤ C · ̺−ε− i

q , 0 ≤ i+ j ≤ l − 2. (3.25)

Thus we obtain (3.16) from (3.17) and (3.25) and the proof is completed. ⊓⊔
By lemma 3.2 and the repeated use of lemma 3.3, we have the following result.

Corollary 3.1 There exists a canonical transformation Φ4 of the form:

Φ4 :

{

I = ζ + u4(ζ, η, θ)
s = η + v4(ζ, η, θ)

such that the system with Hamiltonian (3.9) is transformed into the following one

r(ζ, η, θ) = ωζ + r1(ζ) + r2(ζ, η, θ), (3.26)

where r1 = r̄1 + [r̄2]0 with r̄1, [r̄2]0 satisfying (3.10), (3.12), and r2 satisfies

|Di
ζD

j
ηr2| ≤ C · ζ−2− i

q (3.27)

for 0 ≤ i+ j ≤ 5.
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4 Proof of theorem 1

In order to apply Moser’s small twist theorem, we need to calculate the pontcareé mapping
of the Hamiltonian system with the Hamiltonian (3.26). So in this section, we first give the
expression of the Poincaré mapping. And then we will use Moser’s small twist theorem to prove
Theorem 1.

From corollary 3.1, it follows that the Hamiltonian system with the Hamiltonian (3.26) is of
the form:

{

dη
dθ

= ω + r
′
1(ζ) +

∂r2
∂ζ

(ζ, η, θ)
dζ
dθ

= −∂r2
∂η

(ζ, η, θ),
(4.1)

where r1(ζ) = r̄1(ζ) + [r̄2]0(ζ) satisfying (3.10) and (3.12), r2(ζ, η, θ) satisfies (3.27).
Thus the Poincaré map of the equation (4.1) is of the form:

P :

{

η(2πp) = 2πpω + η + α(ζ) + F1(ζ, η),
ζ(2πp) = ζ + F2(ζ, η).

(4.2)

where F1(ζ, η) =
∫ 2πp

0
∂r2
∂ζ

(ζ, η, θ)dθ, F2(ζ, η) = −
∫ 2πp

0
∂r2
∂η

(ζ, η, θ)dθ,α(ζ) = r
′
1(ζ), and from the

definition of r1, (3.10), (3.12) and (3.27), we have that

α(ζ) = α1(ζ) + α2(ζ) (4.3)

with
|α

(i)
1 (ζ)| ≥ c · ζ−

1

q
−i
,

|α
(i)
1 (ζ)| ≤ C · ζ−

1

q
−i, |α

(i)
2 (ζ)| ≤ C · ζ−δ1− 1

q
− i

q , 0 ≤ i ≤ 4
(4.4)

and
|Di

ζD
j
ηFk(ζ, η)| ≤ C · ζ−2− i

q , 0 ≤ i+ j ≤ 4, k = 1, 2, (4.5)

where α1(ζ) = r̄′1(ζ),α2(ζ) = [r̄2]
′
0(ζ).

According to (4.4), we can know that the following case is possible, that is, the function α(ζ)
may be not monotone. In order to find a monotone interval for α(ζ), we consider the interval
[2ζ0, 3ζ0] with ζ0 ≫ 1. By (4.3) and (4.4), we have that the set α([94ζ0,

11
4 ζ0]) covers some interval

with length longer than c · ζ
− 1

q

0 . Therefor by Mean Value theorem of Differentials, there exists

some point ζ∗ ∈ [94ζ0,
11
4 ζ0] such that |α′(ζ∗)| ≥ c · ζ

− 1+q
q

0 .

What’s more, (4.4) implies |α′′(ζ)| ≤ C · ζ−
1+q
q

−δ1 . Thus for each ζ ∈ [ζ∗, ζ∗ + ζ0
δ1
q ], we have

|α′(ζ)| ≥ c · ζ0
− 1+q

q . (4.6)

In the next, we give the following scale transformation :

α(ζ)− α(ζ∗) = ζ
− 1+q

q

0 ν, ν ∈ [2, 3]. (4.7)
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Then we have the following Poincaré mapping:

P̃ :

{

η(2πp) = 2πpω + α(ζ∗) + η + ζ
− 1+q

q

0 ν + F̃1(ν, η),

ν(2πp) = ν + F̃2(ν, η),
(4.8)

where

F̃1(ν, η) = F1(ζ(ν), η), F̃2(ν, η) = ζ
1+q
q

0 (α(ζ(ν) + F2(ζ(ν), η)) − α(ζ(ν))) (4.9)

with ζ(ν) determined by (4.7).
From (4.4), (4.6) and (4.7), we see that

|ζ(i)(ν)| ≤ C, 1 ≤ i ≤ 4, (4.10)

which together with (4.5) and (4.9) implies

|Di
νD

j
ηF̃1| ≤ C · ζ−2

0 , |Di
νD

j
ηF̃2| ≤ C · ζ−2

0 , 0 ≤ i+ j ≤ 4. (4.11)

What’s more, the mapping P̃ of the Hamiltonian system (3.26) is time 2πp mapping , so it
is area-preserving. And further it possesses the intersection property in the annulus [2, 3] × Sp,
this is to say, if Γ is an embedded circle in [2, 3] × Sp homotopic to a circle ν = constant, then
P̃ (Γ) ∩ Γ 6= ∅. The proof can be found in [4].

For the mapping P̃ , all the conditions of Moser’s small twist theorem [19] have been verified.
Consequently, if ζ0 ≫ 1, then there exists an invariant curve Γ of P̃ surrounding ν ≡ 1 .
This implies that the Poincaré mapping of the system (3.26) indeed processes invariant curves.
Retracting the sequence of transformations back to the original system, we conclude that there
exist invariant curves of the Poincaré mapping of the original system (1.11). And those curves
surround the origin (x, y) = (0, 0) and at the same time are arbitrarily far from it. This completes
the proof of Theorem 1.
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