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Abstract

This paper concerns the stability of analytical and numerical solutions of nonlinear
stochastic delay differential equations (SDDEs). We derive sufficient conditions for
the stability, contractivity and asymptotic contractivity in mean square of the solu-
tions for nonlinear SDDEs. The results provide a unified theoretical treatment for
SDDEs with constant delay and variable delay (including bounded and unbounded
variable delays). Then the stability, contractivity and asymptotic contractivity in
mean square are investigated for the backward Euler method. It is shown that the
backward Euler method preserves the properties of the underlying SDDEs. The
main results obtained in this work are different from those of Razumikhin-type the-
orems. Indeed, our results hold without the necessity of constructing of finding an
appropriate Lyapunov functional.
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1 Introduction

Many physical, engineering and economic processes can be modeled by stochastic differ-
ential equations (SDEs). The rate of change of such a system depends only on its present
state and some noisy input. However, in many practical situations the rate of change
of the state depends not only on the present but also on the past states of the system.
Stochastic functional differential equations (SFDEs) give a mathematical formulation for
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such system. For more details on SFDEs, we refer to [11, 12, 13] and the references
therein.

SFDEs also can be regarded as a generalization of deterministic functional differen-
tial equations when stochastic effects are taken into account. For deterministic Volterra
functional differential equations (VFDEs) in Banach spaces, Li [8] discussed the stability,
contractivity and asymptotic stability of the solutions. In [8], the author introduced a
so-called 1

n -perturbed problem and constructed an auxiliary function Q(t) for the corre-
sponding study. The 1

n -perturbed problem can be used to deal with a wide variety of delay
arguments and the auxiliary function Q(t) is the crux to establish the main results in [8].
The work [8] provides a unified framework for stability analysis of nonlinear stiff problems
in ordinary differential equations, delay differential equations, integro-differential equa-
tions and VFDEs of other types. The theory in [8] was further extended to nonlinear
Volterra neutral functional differential equations (VNFDEs) [17]. Moreover, in [18], it is
proved that the implicit Euler method preserves the stability of VFDEs and VNFDEs.

It is natural to ask whether the solutions of SFDEs possess similar properties to those
presented in [8] and which methods can reproduce the properties. Due to the unique
features of stochastic calculus, the numerical analyses of SFDEs significantly differ from
those developed for the numerical analyses of their deterministic counterparts. In the
literature, much attention on numerical stability has been focused on a special class
of SFDEs, namely, stochastic delay differential equations (SDDEs); see [1, 10, 16, 19,
20, 21]. The results mainly concern the mean-square stability, asymptotic stability and
exponential mean-square stability for SDDEs with bounded lags. Very recently, Fan,
Song and Liu [3] discussed the mean-square stability of semi-implicit Euler methods
for linear stochastic pantograph equations. Far less is known for long-run behavior of
nonlinear SDDEs with unbounded lags. Moreover, to our best knowledge, there is no
work on the contractivity analysis of numerical methods for SDDEs. Our aims in this
paper are to investigate the stability and contractivity of nonlinear SDDEs with bounded
and unbounded lags and to study the numerical preservation of those the properties. The
main results of this paper could be summarized as follows.

(i) Sufficient conditions for the stability, contractivity and asymptotic contractivity in
mean square of the solutions for nonlinear SDDEs are derived. The results provide
a unified theoretical treatment for SDDEs with constant delay and variable delay
(including bounded and unbounded variable delays). Applicability of the theory is
illustrated by linear and nonlinear SDDEs with a wide variety of delay arguments
such as constant delays, piecewise constant arguments, proportional delays and so
on. The theorems established in this paper work for some SDDEs to which the
existing theories cannot be applied. Our main results of analytic solutions can be
regarded as a generalization of those in [8] restricted in finite-dimensional Hilbert
spaces and finitely many delays to the stochastic version.

(ii) It is proved that the backward Euler method preserves the stability, contractiv-
ity and asymptotic contractivity in mean square of the underlying systems. In
particular, Theorem 4.2 and Theorem 4.4 show that the backward Euler method
preserves the contractivity and asymptotic contractivity without any constraint on
the numerical stepsize.

We point out that the main theorems in the present paper are different from the
Razumikhin-type theorems established in [1, 11]. Our theorems can be directly applied
to establish the stability without the necessity of constructing and finding an appropriate
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Lyapunov functional, as required by the Razumikhin-type theorems. In this sense, our
theorems are more convenient for stability analysis than the Razumikhin-type theorems.

The rest of the paper is organized as follows. In section 2, we introduce some notations
and assumptions, which will be used throughout the rest of the paper. In section 3, some
criteria for the stability, contractivity and asymptotic contractivity in mean square of
solutions for nonlinear SDDEs are established. The main results obtained in this section
are applied to SDDEs with bounded and unbounded lags, respectively. In section 4,
sufficient conditions for the stability, contractivity and asymptotic contractivity in mean
square for the backward Euler method are derived. Stability of analytical and numerical
solutions of SDDEs with several delays is discussed in section 5.

2 Stochastic delay differential equations

Let (Ω,F , {Ft}t≥a,P) be a complete probability space with a filtration {Ft}t≥a satisfying
the usual conditions (i.e., it is right continuous and Fa contains all the P-null sets). Let
w(t) = (w1(t), ..., wm(t))T be anm-dimensional Wiener process defined on the probability
space. Let 〈·〉 be inner product in C

d and | · | corresponding norm. In this paper, | · |
also denotes the trace norm (F-norm) in C

d×m. Also, C([t1, t2];C
d) is used to represent

the family of continuous mappings ψ from [t1, t2] to C
d. Let p > 2 and denote by

Lp
Ft
([t1, t2];C

d) the family of Ft -measurable C([t1, t2];C
d)-valued random variables ψ =

{ψ(u) : t1 ≤ u ≤ t2} such that ‖ψ‖p
E
= supt1≤u≤t2 E|ψ(u)|

p <∞. E denotes mathematical
expectation with respect to P.

Consider the following initial value problems of SDDEs in the sense of Itô

{

dx(t) = f(t, x(t), x(t− τ(t)))dt+ g(t, x(t), x(t − τ(t)))dw(t), t ∈ [a, b], (.a)

x(t) = ξ(t), t ∈ [a− τ0, a], ξ ∈ Lp
Fa

([a− τ0, a];C
d), (.b)

where a, b, τ0 are constants with −∞ < a < b < +∞ and τ0 ≥ 0, τ(t) ≥ 0, inf
a≤t≤b

(t−τ(t)) ≥

a−τ0, f : [a, b]×C
d×C

d → C
d, g : [a, b]×C

d×C
d → C

d×m are given continuous mappings.
We assume that the drift coefficient f and the diffusion coefficient g satisfy the following
conditions.

For each R > 0 there exists a constant CR, depending only on R, such that
(.)

|f(t, x1, y)− f(t, x2, y)| ≤ CR|x1 − x2|, |x1| ∨ |x2| ∨ |y| ≤ R,

ℜ〈x1 − x2, f(t, x1, y)− f(t, x2, y)〉 ≤ α(t)|x1 − x2|
2, (.)

|f(t, x, y1)− f(t, x, y2)| ≤ β(t)|y1 − y2|, (.)

|g(t, x1, y1)− g(t, x2, y2)| ≤ γ1(t)|x1 − x2|+ γ2(t)|y1 − y2|, (.)

for all t ∈ [a, b], x, x1, x2, y, y1, y2 ∈ C
d, where ℜa denotes the real part of the complex

number a. Here α(t), β(t), γ1(t) and γ2(t) are continuous real-valued functions. We
introduce the following notations

µ
(0)
1 = inf

a≤t≤b
τ(t) ≥ 0, µ

(0)
2 (t1, t2) = inf

t1≤t≤t2
(t− τ(t)) ≥ a− τ0,

∀t1, t2 : a ≤ t1 ≤ t2 ≤ b.

For convenience, we denote by SD(α, β, γ1, γ2) the all problems (.) which satisfy the
conditions (.)-(.). Such problems will be introduced in the next section (see Example
3.16 and Example 3.20).
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In order to deal with a wide variety of delay arguments, we introduce the so-called
1
n -perturbed problem of (.), which was first introduced by Li [8] for VFDEs. We call
the initial value problem

{

dx(t) = f(t, x(t), x(n,t)(t− τ(t)))dt+ g(t, x(t), x(n,t)(t− τ(t)))dw(t), t ∈ [a, b], (.a)

x(t) = ξ(t), t ∈ [a− τ0, a], ξ ∈ Lp
Fa

([a− τ0, a];C
d), (.b)

an 1
n -perturbed problem of the problem (.), where

x(n,t)(t− τ(t)) =

{

x(t− τ(t)), τ(t) ≥ 1
n ,

x(t− 1
n), τ(t) < 1

n .
(.)

Here the natural number n > 1
τ0

can be arbitrarily given. Without lose of generality, we
always assume τ0 > 0. In fact, in the case of τ0 = 0, we can replace τ0 by some positive
number τ̃0 and define ξ(u) = ξ(a) for u ∈ [a− τ̃0, a].

It is easy to verify that, if problem (.) ∈ SD(α, β, γ1, γ2), then its 1
n -perturbed

problem (.) ∈ SD(α, β, γ1, γ2). It is clear that τ̃(t) = max {τ(t), 1n} is the time-lag
argument of the 1

n -perturbed problem and

µ̃
(0)
1 = inf

a≤t≤b
τ̃(t) ≥

1

n
. (.)

3 Stability analysis of SDDEs

We discuss the following types of stability of SDDEs.

Definition 3.1 The solution of problem (.) is said to be stable in mean square if

E|x(t)− y(t)|2 ≤ C sup
a−τ0≤θ≤a

E|ξ(θ)− η(θ)|2, (.)

where y(t) is the solution of the perturbed problem

{

dy(t) = f(t, y(t), y(t− τ(t)))dt + g(t, y(t), y(t − τ(t)))dw(t), t ∈ [a, b], (.a)

y(t) = η(t), t ∈ [a− τ0, a], η ∈ Lp
Fa

([a− τ0, a];C
d). (.b)

Definition 3.2 The solution of problem (.) is said to be contractive in mean square if
(.) with C ≤ 1 holds.

Definition 3.3 The solution of problem (.) is said to be asymptotically contractive in
mean square if

lim
t→+∞

E|x(t)− y(t)|2 = 0,

for which [a, b] is replaced by [a,+∞) in (.a) and (.a).

Remark 3.4 In the strict sense, (.) with C ≤ 1 means generalized contraction. For
brevity, we simply call the solution is contractive in mean square.

There exist well-known stability definitions in literatures which are closely related to
those presented in this paper, but there are differences among them. The existing notions
of stability include mean-square stability for SDEs, that is, lim

t→+∞
E|x(t)|2 = 0 (cf. [14]);

exponential mean-square contraction of trajectories for SDEs with jumps (cf. [6]). The
contractivity in mean square is weaker than that in [6].
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The continuity of f and g implies that

|f(t, 0, 0)| ≤ C, |g(t, 0, 0)| ≤ C, t ∈ [a, b], (.)

where C only depends on f, g and the interval [a, b]. We note that condition (.) implies
that the diffusion coefficient g satisfies the local Lipschitz condition

|g(t, x1, y1)− g(t, x2, y2)| ≤ CR(|x1 − x2|+ |y1 − y2|),
(.)

t ∈ [a, b], x1, x2, y1, y2 ∈ C
d, |x1| ∨ |x2| ∨ |y1| ∨ |y2| ≤ R.

In fact, we can choose any CR with CR ≥ max{max
a≤t≤b

γ1(t), max
a≤t≤b

γ2(t)}. Using (.), (.)

and (.), we have

ℜ〈x, f(t, x, y)〉 = ℜ
〈

x− 0, f(t, x, y)− f(t, 0, y) + f(t, 0, y)− f(t, 0, 0) + f(t, 0, 0)
〉

≤ α(t)|x|2 + β(t)|x||y|+ C|x| ≤ C1

(

1 + |x|2 + |y|2
)

, (.)

where C1 only depends on C, max
a≤t≤b

α(t) and max
a≤t≤b

β(t). By (.), we have

|g(t, x, y)|2 ≤ 2|g(t, x, y) − g(t, 0, 0)|2 + 2|g(t, 0, 0)|2 ≤ C1

(

1 + |x|2 + |y|2
)

, (.)

where C1 only depends on C, max
a≤t≤b

γ21(t) and max
a≤t≤b

γ22(t).

3.1 Finite interval

In order to prove the main theorems in this section, we prepare the following lemmas.

Lemma 3.5 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Then for each p ≥ 2 there
is C̄ = C̄(p, a, b, α, β, γ1, γ2) such that

E( sup
a≤t≤b

|x(t)|p) ≤ C̄(1 + E( sup
a−τ0≤t≤a

|ξ(t)|p)) = A. (.)

Proof. For every integer k ≥ 1, define the stopping time

ρk = inf{t ∈ [a, b] : sup
a−τ0≤θ≤t

|x(θ)| ≥ k}, (.)

where we use the convention ρk = b if the set is empty in the right-hand side. Clearly,
ρk ↑ b almost surely as k → +∞. Let xk(t) = x(t ∧ ρk). Using the Itô formula, we have
for a ≤ t ≤ b

(

1 + |xk(t)|2
)

p
2
=
(

1 + |ξ(a)|2
)

p
2

+p

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
ℜ〈xk(s), f(s, xk(s), xk(s− τ(s)))〉I[[a,ρk ]](s)ds

+
p

2

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
|g(s, xk(s), xk(s − τ(s)))|2I[[a,ρk]](s)ds

+
p(p− 2)

2

∫ t

a

(

1 + |xk(s)|2
)

p−4
2
|(xk(s))T g(s, xk(s), xk(s− τ(s)))|2I[[a,ρk]](s)ds

+p

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
ℜ〈xk(s), g(s, xk(s), xk(s− τ(s)))〉I[[a,ρk ]](s)dw(s),

5



by (.) and (.), and hence

(

1 + |xk(t)|2
)

p
2

≤ 2
p−2
2

(

1 + |ξ(a)|p
)

+ 2pC1

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
(

1 + sup
s−τ(s)≤u≤s

|xk(u)|2
)

ds

+pC1

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
(

1 + sup
s−τ(s)≤u≤s

|xk(u)|2
)

ds

+p(p− 2)C1

∫ t

a

(

1 + |xk(s)|2
)

p−4
2
|xk(s)|2

(

1 + sup
s−τ(s)≤u≤s

|xk(u)|2
)

ds

+p

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
ℜ〈xk(s), g(s, xk(s), xk(s− τ(s)))〉I[[a,ρk ]](s)dw(s)

≤ 2
p−2
2

(

1 + |ξ(a)|p
)

+ p(p+ 1)C1

∫ t

a

(

1 + sup
s−τ(s)≤u≤s

|xk(u)|2
)

p

2
ds

+p

∫ t

a

(

1 + |xk(s)|2
)

p−2
2
ℜ〈xk(s), g(s, xk(s), xk(s− τ(s)))〉I[[a,ρk ]](s)dw(s),

which yields

E sup
a≤s≤t

(1 + |xk(s)|2)
p

2

≤ 2
p−2
2

(

1 + E sup
a−τ0≤s≤a

|ξ(s)|p
)

+ C2E

∫ t

a

(

1 + sup
a−τ0≤u≤s

|xk(u)|2
)

p

2
ds

+pE
(

sup
a≤s≤t

∫ s

a
(1 + |xk(u)|2)

p−2
2 ℜ〈xk(u), g(u, xk(u), xk(u− τ(u)))〉I[[a,ρk ]](u)dw(u)

)

.

Applying the Burkholder-Davis-Gundy inequality to the third term on the right-hand
side of the above inequality, we obtain the bound

pE
(

sup
a≤s≤t

∫ s

a
(1 + |xk(u)|2)

p−2
2 ℜ〈xk(u), g(u, xk(u), xk(u− τ(u)))〉I[[a,ρk ]](u)dw(u)

)

≤ CpE

(

∫ t

a
(1 + |xk(u)|2)p−2|xk(u)|2|g(u, xk(u), xk(u− τ(u)))|2du

)
1
2

≤ CpE

(

sup
a≤u≤t

(1 + |xk(u)|2)
p

2

∫ t

a
(1 + |xk(u)|2)

p−4
2 |xk(u)|2|g(u, xk(u), xk(u− τ(u)))|2du

)
1
2

≤
1

2
E sup

a≤u≤t
(1 + |xk(u)|2)

p

2 +
C2
p

2
2C1E

∫ t

a

(

1 + sup
a−τ0≤s≤u

|xk(s)|2
)

p

2
du.

Consequently,

E sup
a≤s≤t

(1 + |xk(s)|2)
p

2 ≤ 2
p

2 (1 + E sup
a−τ0≤s≤a

|ξ(s)|p) + C3E

∫ t

a

(

1 + sup
a−τ0≤s≤u

|xk(s)|2
)

p

2
du

= 2
p

2 (1 + E sup
a−τ0≤s≤a

|ξ(s)|p) + C3E

∫ t

a
sup

a−τ0≤s≤u

(

1 + |xk(s)|2
)

p

2
du.

Further, we notice that

E sup
a−τ0≤s≤t

(1 + |xk(s)|2)
p

2 ≤ E sup
a−τ0≤s≤a

(1 + |ξ(s)|2)
p

2 + E sup
a≤s≤t

(1 + |xk(s)|2)
p

2

≤ 2
p−2
2 (1 + E sup

a−τ0≤s≤a
|ξ(s)|p) + E sup

a≤s≤t
(1 + |xk(s)|2)

p

2 .
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Therefore,

E sup
a−τ0≤s≤t

(1 + |xk(s)|2)
p

2 ≤
3

2
2

p

2 (1 + E sup
a−τ0≤s≤a

|ξ(s)|p) + C3

∫ t

a
E sup

a−τ0≤s≤u

(

1 + |xk(s)|2
)

p

2
du.

Now the Gronwall’s inequality yields that

E( sup
a−τ0≤s≤t

|xk(s)|p) ≤ E( sup
a−τ0≤s≤t

(1 + |xk(s)|2)
p

2 ) ≤
3

2
2

p

2 (1 + E sup
a−τ0≤s≤a

|ξ(s)|p)eC3(t−a).

Letting k → +∞ and applying the Fatou’s lemma, we obtain the desired result.

Lemma 3.6 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Then there exists a unique
solution x(t) to equation (.).

Proof. Using (.), (.), (.), (.) and (.), we are able to complete the proof along
the lines of the ones for Theorem 5.2.7 and Theorem 2.3.5 in [11].

Lemma 3.7 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Then we have

lim
v→0

sup
|t−s|=v

E|x(t)− x(s)|2 = 0, a ≤ s, t ≤ b. (.)

Proof. The proof is mainly based on the techniques employed in the proof of Theorem
2.2 in [5]. Integrating (.) gives for a ≤ s < t ≤ b

x(t)− x(s) =

∫ t

s
f(u, x(u), x(u− τ(u)))du +

∫ t

s
g(u, x(u), x(u − τ(u)))dw(u). (.)

Let e(s, t) = x(t)− x(s),

ρR = inf{t ∈ [a, b] : sup
a−τ0≤θ≤t

|x(θ)| ≥ R},

where ρR = b if the set is empty in the right-hand side. Using the Young inequality: for
r−1 + q−1 = 1

ab ≤
δ

r
ar +

1

qδq/r
bq, ∀a, b, δ > 0

and letting r = p
2 , q =

p
p−2 , we thus have for any δ > 0

E(|e(s, t)|2) = E(|e(s, t)|2I{ρR≥b}) + E(|e(s, t)|2I{ρR<b})
(.)

≤ E(|e(s, t)|2I{ρR≥b}) +
2δ

p
E(|e(s, t)|p) +

1− 2
p

δ2/(p−2)
P(ρR < b),

where p > 2. It follows from (.) that

P(ρR < b) = E

(

I{ρR<b}
|x(ρR)|

p

Rp

)

≤
1

Rp
E( sup

a≤t≤b
|x(t)|p) ≤

A

Rp
, (.)

E(|e(s, t)|p) ≤ 2p−1
E( sup

a≤s≤b
|x(s)|p + sup

a≤t≤b
|x(t)|p)) ≤ 2pA. (.)

We then have

E(|e(s, t)|2) ≤ E(|e(s, t)|2I{ρR≥b}) +
2p+1δA

p
+

(p− 2)A

pδ2/(p−2)Rp
. (.)

7



Further, using the Hölder’s inequality and the Itô isometry, we obtain

E(|e(s, t)|2I{ρR≥b})

= E

(
∣

∣

∣

∫ t

s
f(u, x(u), x(u − τ(u)))du +

∫ t

s
g(u, x(u), x(u − τ(u)))dw(u)

∣

∣

∣

2
I{ρR≥b}

)

≤ 2E
((

|

∫ t

s
f(u, x(u), x(u − τ(u)))du|2 + |

∫ t

s
g(u, x(u), x(u − τ(u)))dw(u)|2

)

I{ρR≥b}

)

≤ 2(t− s)E
(

I{ρR≥b}

∫ t

s
|f(u, x(u), x(u − τ(u)))|2du

)

+ 2E

∫ t

s
|g(u, x(u), x(u − τ(u)))|2du

≤ 2(t− s)E
(

I{ρR≥b}

∫ t

s
|f(u, x(u), x(u − τ(u)))− f(u, 0, 0) + f(u, 0, 0)|2du

)

+2E

∫ t

s
|g(u, x(u), x(u − τ(u)))|2du.

By (.), (.), (.), (.) and Lemma 3.5, we have

E(|e(s, t)|2I{ρR≥b})

≤ 8C2
R(t− s)

∫ t

s

(

E|x(u)|2 + E|x(u− τ(u))|2
)

du+ 4(t− s)E

∫ t

s
|f(u, 0, 0)|2du

+2C1

∫ t

s

(

1 + E|x(u)|2 + E|x(u− τ(u))|2
)

du ≤ C4(t− s),

where C4 is independent of s and t. A combination of this expression and (.) leads to

E(|e(s, t)|2) ≤ C4(t− s) +
2p+1δA

p
+

(p − 2)A

pδ2/(p−2)Rp
. (.)

Therefore, for any given ǫ > 0, we can choose δ and R such that

2p+1δA

p
<

1

3
ǫ,

(p− 2)A

pδ2/(p−2)Rp
<

1

3
ǫ, (.)

and then choose t− s sufficiently small such that C4(t− s) < 1
3ǫ. Hence, we have

lim
v→0

sup
|t−s|=v

E(|x(t)− x(s)|2) = lim
v→0

sup
|t−s|=v

E(|e(s, t)|2) = 0.

The proof is complete.

Lemma 3.8 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Then for any t1, t2 : a ≤
t1 ≤ t2 ≤ b,

E|x(t2)− y(t2)|
2 ≤ e

∫ t2
t1

σ(t)dt
E|x(t1)− y(t1)|

2

+
∫ t2
t1
̺(s)e

∫ t2
s

σ(u)duds sup
µ
(0)
2 (t1,t2)≤θ≤t2−µ

(0)
1

E|x(θ)− y(θ)|2, (.)

where y(t) is the solution of the perturbed problem (.), and σ(t), ̺(t) are defined by

σ(t) = 2α(t) + β(t) + γ1(t)γ2(t) + γ21(t),
̺(t) = β(t) + γ1(t)γ2(t) + γ22(t).

(.)
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Proof. Let

V (t, x(t)) = p(t)(|x(t)|2 + δq(t)), t1 ≤ t ≤ t2, (.)

where

p(t) = e−
∫ t

a
σ(u)du, q(t) = −(p(t))−1

∫ t

a
̺(u)p(u)du, (.)

δ is a constant to be determined. Then we have p′(t) = −σ(t)p(t), (p(t)q(t))′ = −p(t)̺(t).
By (.),(.) and the Itô formula, one can derive that, for a ≤ t1 ≤ t2 ≤ b,

EV (t2, x(t2)− y(t2)) = EV (t1, x(t1)− y(t1))

+

∫ t2

t1

{

− σ(t)p(t)E|x(t)− y(t)|2 − δp(t)̺(t)

+ 2p(t)Eℜ〈x(t)− y(t), f(t, x(t), x(t − τ(t))) − f(t, y(t), y(t− τ(t)))〉

+p(t)E|g(t, x(t), x(t − τ(t)))− g(t, y(t), y(t − τ(t)))|2
}

dt

≤ EV (t1, x(t1)− y(t1)) +

∫ t2

t1

{

− σ(t)p(t)E|x(t) − y(t)|2 − δp(t)̺(t)

+2p(t)Eℜ〈x(t)− y(t), f(t, x(t), x(t − τ(t)))− f(t, y(t), x(t− τ(t)))〉

+ 2p(t)Eℜ〈x(t)− y(t), f(t, y(t), x(t − τ(t))) − f(t, y(t), y(t− τ(t)))〉

+p(t)E|g(t, x(t), x(t − τ(t)))− g(t, y(t), y(t − τ(t)))|2
}

dt.

Using the conditions (.)-(.), we obtain

EV (t2, x(t2)− y(t2)) ≤ EV (t1, x(t1)− y(t1))

+

∫ t2

t1

{

− σ(t)p(t)E|x(t)− y(t)|2 − δp(t)̺(t)

+2p(t)α(t)E|x(t) − y(t)|2 + 2p(t)β(t)E(|x(t)− y(t)||x(t− τ(t))− y(t− τ(t))|)

+ p(t)E
(

γ1(t)|x(t) − y(t)|+ γ2(t)|x(t− τ(t))− y(t− τ(t))|
)2
}

dt

≤ EV (t1, x(t1)− y(t1)) +

∫ t2

t1

{

− σ(t)p(t)E|x(t) − y(t)|2 − δp(t)̺(t)

+2p(t)α(t)E|x(t) − y(t)|2 + p(t)β(t)
(

E|x(t)− y(t)|2 + E|x(t− τ(t)) − y(t− τ(t))|2
)

+ p(t)γ21(t)E|x(t)− y(t)|2 + p(t)γ22(t)E|x(t− τ(t))− y(t− τ(t))|2

+p(t)γ1(t)γ2(t)
(

E|x(t)− y(t)|2 + E|x(t− τ(t))− y(t− τ(t))|2
)

}

dt

≤ EV (t1, x(t1)− y(t1))− δ

∫ t2

t1

p(t)̺(t)dt

+

∫ t2

t1

p(t)
(

− σ(t) + 2α(t) + β(t) + γ21(t) + γ1(t)γ2(t)
)

E|x(t)− y(t)|2dt

+

∫ t2

t1

p(t)
(

β(t) + γ22(t) + γ1(t)γ2(t)
)

E|x(t− τ(t)) − y(t− τ(t))|2dt.
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The substitution of (.) into this gives

EV (t2, x(t2)− y(t2))

≤ EV (t1, x(t1)− y(t1)) +
∫ t2
t1
p(t)β(t)

(

E|x(t− τ(t))− y(t− τ(t))|2 − δ
)

dt

+
∫ t2
t1
p(t)γ22(t)

(

E|x(t− τ(t))− y(t− τ(t))|2 − δ
)

dt

+
∫ t2
t1
p(t)γ1(t)γ2(t)

(

E|x(t− τ(t))− y(t− τ(t))|2 − δ
)

dt.

(.)

Lemma 3.5 implies that E sup
a−τ0≤t≤b

|x(t)|2 < +∞,E sup
a−τ0≤t≤b

|y(t)|2 < +∞. Consequently,

sup
a−τ0≤t≤b

E|x(t)− y(t)|2 < +∞. Let δ = sup
µ
(0)
2 (t1,t2)≤t≤t2−µ

(0)
1

E|x(t)− y(t)|2. It follows from

(.) that

EV (t2, x(t2)− y(t2)) ≤ EV (t1, x(t1)− y(t1)). (.)

The required estimate (.) now follows from (.).

Lemma 3.9 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Then

lim
n→∞

sup
a−τ0≤t≤b

E|x(t)− xn(t)|
2 = 0, (.)

where xn(t) is the solution of the 1
n -perturbed problem (.).

Proof. For any given natural number n > 1
τ0
, we can choose a natural number q

sufficiently large such that µ = (b− a)/q < 1
n . Let

t1 = a+ (i− 1)µ, t2 = a+ iµ, i = 1, 2, · · · , q,

α0 = max
{

max
a≤t≤b

σ(t), 0
}

, β0 = max
a≤t≤b

̺(t), γ0 = max
{

max
a≤t≤b

(σ(t) + ̺(t)), 1
}

,

V (t, x(t)) = p(t)(|x(t)|2 + δq(t)), t1 ≤ t ≤ t2,

where

δ = 2(εn+ sup
a−τ0≤θ≤t1

E|x(θ)−xn(θ)|
2), εn = sup

a≤t≤b
( sup
t− 1

n
≤θ≤t

E|x(θ)−x(t−
1

n
)|2), (.)

p(t) and q(t) are defined by (.), σ(t) and ̺(t) are defined by (.). For t1 ≤ t ≤ t2,
we can obtain the following estimate in the same way as (.)

EV (t, x(t)− xn(t)) ≤ EV (t1, x(t1)− xn(t1))

+
∫ t
t1
p(s)β(s)

(

E|x(s − τ(s))− x
(n,s)
n (s− τ(s))|2 − δ

)

ds

+
∫ t
t1
p(s)γ22(s)

(

E|x(s− τ(s))− x
(n,s)
n (s− τ(s))|2 − δ

)

ds

+
∫ t
t1
p(s)γ1(s)γ2(s)

(

E|x(s− τ(s))− x
(n,s)
n (s − τ(s))|2 − δ

)

ds

≤ EV (t1, x(t1)− xn(t1))

+
(

sup
a≤u≤t

E|x(u− τ(u))− x
(n,u)
n (u− τ(u))|2 − δ

)

∫ t
t1
p(s)̺(s)ds.

(.)

Moreover, by (.) we find that

sup
a≤u≤t

E|x(u− τ(u)) − x(n,u)n (u− τ(u))|2
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= max
{

sup
a≤u≤t

τ(u)≥ 1
n

E|x(u− τ(u))− x(n,u)n (u− τ(u))|2,

sup
a≤u≤t

0≤τ(u)< 1
n

E|x(u− τ(u))− x(n,u)n (u− τ(u))|2
}

≤ max
{

sup
a−τ0≤u≤t− 1

n

E|x(u)− xn(u)|
2, sup

a≤u≤t

(

sup
u− 1

n
≤s≤u

E|x(s)− xn(u−
1

n
)|2
)}

≤ max
{

sup
a−τ0≤u≤t− 1

n

E|x(u)− xn(u)|
2,

sup
a≤u≤t

(

sup
u− 1

n
≤s≤u

E|x(s)− x(u−
1

n
) + x(u−

1

n
)− xn(u−

1

n
)|2
)}

≤ 2max
{

sup
a−τ0≤u≤t− 1

n

E|x(u)− xn(u)|
2, sup

a≤u≤t

(

sup
u− 1

n
≤s≤u

E|x(s)− x(u−
1

n
)|2
)}

≤ 2
{

sup
a−τ0≤u≤t1

E|x(u)− xn(u)|
2 + sup

a≤u≤b

(

sup
u− 1

n
≤s≤u

E|x(s)− x(u−
1

n
)|2
)}

= δ,

where δ is defined by (.). Thus, (.) shows that

EV (t, x(t)− xn(t)) ≤ EV (t1, x(t1)− xn(t1)),

that is,

E|x(t)− xn(t)|
2 ≤ e

∫ t

t1
σ(u)du

E|x(t1)− xn(t1)|
2

+

∫ t

t1

̺(u)e
∫ t

u
σ(s)dsdu

(

εn + sup
a−τ0≤θ≤t1

E|x(θ)− xn(θ)|
2
)

≤
(

e
∫ t

t1
σ(u)du

+

∫ t

t1

̺(u)e
∫ t

u
σ(s)dsdu

)

sup
a−τ0≤θ≤t1

E|x(θ)− xn(θ)|
2 +

(

∫ t

t1

̺(u)e
∫ t

u
σ(s)dsdu

)

εn

=
(

1 +

∫ t

t1

(σ(u) + ̺(u))e
∫ t

u
σ(s)dsdu

)

sup
a−τ0≤θ≤t1

E|x(θ)− xn(θ)|
2 +

(

∫ t

t1

̺(u)e
∫ t

u
σ(s)dsdu

)

εn

≤ (1 + γ0µe
α0(b−a)) sup

a−τ0≤θ≤a+(i−1)µ
E|x(θ)− xn(θ)|

2 + β0µe
α0(b−a)εn

for all t ∈ [a+ (i− 1)µ, a+ iµ], i = 1, 2, · · · , q. Consequently,

sup
a−τ0≤θ≤a+iµ

E|x(θ)− xn(θ)|
2

= max
{

sup
a−τ0≤θ≤a+(i−1)µ

E|x(θ)− xn(θ)|
2, sup

a+(i−1)µ≤θ≤a+iµ
E|x(θ)− xn(θ)|

2
}

≤ (1 + γ0µe
α0(b−a)) sup

a−τ0≤θ≤a+(i−1)µ
E|x(θ)− xn(θ)|

2 + β0µe
α0(b−a)εn

for i = 1, 2, · · · , q. Therefore,

sup
a−τ0≤θ≤b

E|x(θ)− xn(θ)|
2 = sup

a−τ0≤θ≤a+qµ
E|x(θ)− xn(θ)|

2

≤ Cq
µ sup
a−τ0≤θ≤a

E|x(θ)− xn(θ)|
2 +

Cq
µ − 1

γ0µeα0(b−a)
β0µe

α0(b−a)εn (.)

=
β0
γ0

(Cq
µ − 1)εn,
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where Cµ = 1 + γ0µe
α0(b−a). By Lemma 3.7, we have εn = sup

a≤t≤b
sup

t− 1
n
≤θ≤t

E|x(θ)− x(t −

1
n)|

2 → 0, as n→ ∞. Let n→ ∞ and take into account that

lim
q→∞

Cq
µ = lim

q→∞

(

1 +
γ0(b− a)eα0(b−a)

q

)q

= eγ0(b−a)eα0(b−a)
.

Then (.) leads to the relation (.). The proof is complete.

Theorem 3.10 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Let c = max
a≤t≤b

(2α(t) +

2β(t) + γ21(t) + 2γ1(t)γ2(t) + γ22(t)). Then ∀t ∈ [a, b],

E|x(t)− y(t)|2 ≤ ec(t−a) sup
a−τ0≤θ≤a

E|ξ(θ)− η(θ)|2, if c ≥ 0, (.)

E|x(t)− y(t)|2 ≤ sup
a−τ0≤θ≤a

E|ξ(θ)− η(θ)|2, if c ≤ 0, (.)

where y(t) is the solution of the perturbed problem (.).

The inequalities (.) and (.) mean that problem (.) is stable in mean square
and contractive in mean square, respectively.

Proof. We divide the proof into two cases: µ
(0)
1 > 0 and µ

(0)
1 = 0.

Case A: µ
(0)
1 > 0. In this case, we can obtain the desired result in a similar manner

as in the proof of Theorem 2.1 in [8]. In fact, replacing α(t), β(t), ‖y(t)−z(t)‖ in [8] with
2α(t)+β(t)+γ1(t)γ2(t)+γ

2
1 (t), β(t)+γ1(t)γ2(t)+γ

2
2 (t),E|x(t)−y(t)|

2, respectively, using
Lemma 3.8 and following the proof of Theorem 2.1 in [8], we can obtain either (.) or
(.) immediately.

Case B: µ
(0)
1 = 0. Note that

E|x(t)− y(t)|2 ≤ E(|x(t)− xn(t)|+ |xn(t)− yn(t)|+ |y(t)− yn(t)|)
2

≤ 3
(

E|x(t)− xn(t)|
2 + E|xn(t)− yn(t)|

2 + E|y(t)− yn(t)|
2
)

,

where yn(t) is the solution of

{

dy(t) = f(t, y(t), y(n,t)(t− τ(t)))dt + g(t, y(t), y(n,t)(t− τ(t)))dw(t), t ∈ [a, b], (.a)

y(t) = η(t), t ∈ [a− τ0, a], η ∈ Lp
Fa

([a− τ0, a];C
d), (.b)

which is the 1
n -perturbed problem of (.), and y(n,t)(t− τ(t)) is defined by

y(n,t)(t− τ(t)) =

{

y(t− τ(t)), τ(t) ≥ 1
n ,

y(t− 1
n), τ(t) < 1

n .

It is known that, problem (.) ∈ SD(α, β, γ1, γ2) implies that problem (.) ∈ SD(α, β,

γ1, γ2). It follows from (.) that µ̃
(0)
1 ≥ 1

n > 0. Therefore, by case A, for E|xn(t)−yn(t)|
2,

either (.) holds if c > 0 or (.) holds if c ≤ 0. Letting n → +∞ and using Lemma
3.9, we can obtain the desired estimate of E|x(t)− y(t)|2 in this case.

Corollary 3.11 Under the assumptions of Theorem 3.10. Suppose f(t, 0, 0) = 0 and
g(t, 0, 0) = 0, then ∀t ∈ [a, b],

E|x(t)|2 ≤ ec(t−a) sup
a−τ0≤θ≤a

E|ξ(θ)|2, if c > 0,

E|x(t)|2 ≤ sup
a−τ0≤θ≤a

E|ξ(θ)|2, if c ≤ 0.

12



Lemma 3.12 Suppose problem (.) ∈ SD(α, β, γ1, γ2), and that

2α(t) + β(t) + γ1(t)γ2(t) + γ21(t) ≤ α0 < 0,
β(t)+γ1(t)γ2(t)+γ2

2 (t)

|2α(t)+β(t)+γ1(t)γ2(t)+γ2
1 (t)|

≤ ν < 1,
∀t ∈ [a, b], (.)

where α0 and ν are constants. Then for any given c1, c2, c3 : a ≤ c1 < c2 < c3 ≤ b, we
have

E|x(t)− y(t)|2 ≤
(

ν + (1− ν)eα0(c2−c1)
)

sup
µ
(0)
2 (c1,c3)≤θ≤c2

E|x(θ)− y(θ)|2,

∀t ∈ [c2, c3].

(.)

Proof. We divide the proof into two cases: µ
(0)
1 > 0 and µ

(0)
1 = 0.

Case A: µ
(0)
1 > 0. In this case, replacing α(t), β(t), ‖y(t) − z(t)‖ in [8] with 2α(t) +

β(t)+γ1(t)γ2(t)+γ
2
1(t), β(t)+γ1(t)γ2(t)+γ

2
2(t),E|x(t)−y(t)|

2, respectively, using Lemma
3.8 and following the proof of Lemma 2.3 in [8], we can obtain (.) immediately.

Case B: µ
(0)
1 = 0. In this case, we can obtain the estimate (.) in a similar manner

as in the proof of Case B of Theorem 3.10.

3.2 Infinite interval

Let us now proceed to discuss the equation (.) which satisfies conditions (.)-(.)
but the integration interval [a, b] replaced by [a,+∞). Accordingly, interval [a− τ0, b] is
replaced by [a− τ0,+∞), and the symbol SD(α, β, γ1, γ2) is replaced by SD(α, β, γ1, γ2).

Theorem 3.13 Assume that problem (.) ∈ SD(α, β, γ1, γ2), and

lim
t→+∞

(t− τ(t)) = +∞, sup
a≤t<+∞

(2α(t) + β(t) + γ1(t)γ2(t) + γ21(t)) = α0 < 0,

sup
a≤t<+∞

β(t) + γ1(t)γ2(t) + γ22(t)

|2α(t) + β(t) + γ1(t)γ2(t) + γ21(t)|
= ν < 1.

Then, for any given constant µ > 0, there exists a strictly increased sequence {tk} which
diverges to +∞ as k → +∞, where t0 = a, such that

sup
tk≤t≤tk+1

E|x(t)− y(t)|2 ≤ Ck+1
µ sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2, k = 0, 1, 2, · · · , (.)

where Cµ = ν + (1− ν)eα0µ ∈ (0, 1). Hence,

lim
t→+∞

E|x(t)− y(t)|2 = 0. (.)

Proof. It is obvious that (.) implies (.). So, only the proof of (.) is required.
First we construct a sequence {tk} by induction. Let t0 = a. Suppose that tk is chosen
appropriately, where k ≥ 0. Because lim

t→+∞
(t − τ(t)) = +∞, there exists a M such that

for all t ≥ M , we have t− τ(t) ≥ tk and therefore µ
(0)
2 (M,+∞) ≥ tk. So we can choose

tk+1 =M + µ and have the relation

tk ≤ µ
(0)
2 (tk+1 − µ,+∞) ≤ tk+1 − µ < tk+1. (.)
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Using (.) and Lemma 3.12, we get

sup
tk≤t≤tk+1

E|x(t)− y(t)|2 ≤ (ν + (1− ν)eα0µ) sup
µ
(0)
2 (tk−µ,tk+1)≤t≤tk

E|x(t)− y(t)|2

≤ Cµ sup
tk−1≤t≤tk

E|x(t)− y(t)|2 ≤ . . . ≤ Ck+1
µ sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2.

The proof is complete.

Corollary 3.14 Under the same conditions as Theorem 3.13. Furthermore, suppose
that f(t, 0, 0) = 0, g(t, 0, 0) = 0, then

sup
tk≤t≤tk+1

E|x(t)|2 ≤ Ck+1
µ sup

a−τ0≤t≤a
E|ξ(t)|2, k = 0, 1, 2, · · · , (.)

lim
t→+∞

E|x(t)|2 = 0. (.)

Remark 3.15 Li [8] discussed the stability of nonlinear stiff Volterra functional differ-
ential equations in Banach spaces. Theorem 3.10 and Theorem 3.13 can be regarded as
generalizations of Theorem 2.1 and Theorem 2.2 of [8] restricted in finite-dimensional
Hilbert spaces Cd and finitely many delays to the stochastic version, respectively. It should
be pointed out that the drift coefficient f is required to be locally Lipschitz continuous in
this paper, whereas the condition is not required in [8]. It is known that local Lipschitz
continuity is not a strong restriction.

3.3 Examples

System (.) includes the following three classes of SDDEs as special cases

• SDDEs with constant delays: τ(t) ≡ τ .

• Stochastic pantograph equations: t− τ(t) = qt, where 0 < q < 1 is a constant.

• SDDEs with piecewise constant arguments: t − τ(t) = ⌊t − i⌋, where ⌊t⌋ denotes
the largest integer number less than or equal to t, i is a nonnegative integer.

Therefore, Theorem 3.10, Theorem 3.13, Corollary 3.11 and Corollary 3.14 are valid for
the three classes of SDDEs mentioned above.

Example 3.16 Consider the linear SDDEs

dx(t) = (A1(t)x(t) +A2(t)x(t− τ(t)) + F (t))dt
+(B1(t)x(t) +B2(t)x(t− τ(t)) +G(t))dw(t),

(.)

where A1(t), A2(t), B1(t), B2(t) ∈ C
d×d, F (t), G(t) ∈ C

d are continuous with respect to t,
w(t) is an 1-dimensional Wiener process. For the problems (.), it is easy to verify the
conditions (.)-(.) with

α(t) = λ
A∗
1(t)+A1(t)

2
max , β(t) = |A2(t)|, γ1(t) = |B1(t)|, γ2(t) = |B2(t)|,

where λ
A∗
1(t)+A1(t)

2
max denotes the largest eigenvalue of the Hermite matrix

A∗
1(t)+A1(t)

2 .

Applying Theorem 3.10 and Corollary 3.11 to (.), we have the following corollary.
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Corollary 3.17 The solutions of (.) satisfy

E|x(t)− y(t)|2 ≤ ec(t−a) sup
a−τ0≤θ≤a

E|ξ(θ)− η(θ)|2, t ∈ [a, b], if c ≥ 0,

E|x(t)− y(t)|2 ≤ sup
a−τ0≤θ≤a

E|ξ(θ)− η(θ)|2, t ∈ [a, b], if c ≤ 0,

where x(t), y(t) are the solutions of (.) corresponding to the initial functions ξ(t) and
η(t), respectively,

c = max
a≤t≤b

(

2λ
A∗
1(t)+A1(t)

2
max + 2|A2(t)|+ (|B1(t)|+ |B2(t)|)

2
)

.

Furthermore, if F (t) = 0 and G(t) = 0, then the solutions of (.) satisfy

E|x(t)|2 ≤ ec(t−a) sup
a−τ0≤θ≤a

E|ξ(θ)|2, t ∈ [a, b], if c > 0,

E|x(t)|2 ≤ sup
a−τ0≤θ≤a

E|ξ(θ)|2, t ∈ [a, b], if c ≤ 0.

Applying Theorem 3.13 and Corollary 3.14 to (.) leads to the following

Corollary 3.18 If lim
t→+∞

(t− τ(t)) = +∞,

sup
a≤t<+∞

(

2λ
A∗
1(t)+A1(t)

2
max + |A2(t)|+ |B1(t)||B2(t)|+ |B1(t)|

2
)

< 0,

sup
a≤t<+∞

|A2(t)|+|B1(t)||B2(t)|+|B2(t)|2

|2λ
A∗
1(t)+A1(t)

2
max +|A2(t)|+|B1(t)||B2(t)|+|B1(t)|2|

< 1,

then the solutions of (.) satisfy lim
t→+∞

E|x(t) − y(t)|2 = 0. Furthermore, if F (t) = 0

and G(t) = 0, then the solutions of (.) satisfy lim
t→+∞

E|x(t)|2 = 0.

In particular, if d = 1, A1(t), A2(t), B1(t), B2(t) are constants, that is, A1(t) = A1, A2(t) =
A2, B1(t) = B1, B2(t) = B2, then the solutions of (.) satisfy lim

t→+∞
E|x(t)|2 = 0 if

ℜA1 + |A2|+
1

2

(

|B1|+ |B2|
)2

< 0. (.)

Remark 3.19 For linear scalar SDDEs with constant delay and linear scalar stochas-
tic pantograph equations, the condition (.) is stated in [11, 10] and [3], respectively.
Therefore, Corollary 3.14 includes as special cases the related results in [11, 10, 3].

Example 3.20 Consider the nonlinear equation

dx(t) =
(

A1(t)x+A2(t)x
3 +A3(t)

√

x2(t− τ(t)) + 1 + F (t)
)

dt

+
(

B1(t) sin x(t) +B2(t) arctan x(t− τ(t)) +G(t)
)

dw(t),
(.)

where A1(t), A2(t), A3(t), B1(t), B2(t), F (t), G(t) are continuous real-valued functions in
t and A2(t) < 0. It is easy to verify that (.) satisfies the conditions (.)-(.) with

α(t) = A1(t), β(t) = |A3(t)|, γ1(t) = |B1(t)|, γ2(t) = |B2(t)|.
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Applying Theorem 3.10, Corollary 3.11, Theorem 3.13 and Corollary 3.14 to (.), we
can derive the results of the solutions of (.). For the sake of brevity, we do not present
them here.

Remark 3.21 The drift coefficient f of (.) satisfies local Lipschitz condition and one-
sided Lipschitz condition with respect to x but global Lipschitz condition. The stability
analysis in this work is based on the local Lipschitz condition and the one-sided Lipschitz
condition, rather than a more restrictive global Lipschitz condition.

4 Stability of backward Euler method

In this section, we investigate whether numerical methods can reproduce the contractivity
in mean square. For the deterministic differential equations, it is known that the contrac-
tivity of numerical methods is too strong [2, 7]. The existing theories [2, 15] show that
only the backward Euler method and the two-stage Lobatto IIIC method can preserve
the contractivity of nonlinear delay differential equations. Therefore, in the stochastic
setting, we only focus on the backward Euler method instead of other methods.

For simplicity, from now on, we assume that

α(t) ≡ α, β(t) ≡ β, γ1(t) ≡ γ1, γ2(t) ≡ γ2, t ∈ [a, b].

On a finite time interval [a, b], a uniformly partition is defined by

ti = a+ ih, i = 0, 1, . . . , h =
b− a

N
.

The backward Euler method applied to (.) yields










Xn+1 = Xn + hf(tn+1,Xn+1,X
h(tn+1 − τ(tn+1)))

+g(tn,Xn,X
h(tn − τ(tn)))∆wn, n = 0, 1, . . . , N − 1,

(.a)

Xh(t) = πh(t, ξ,X1,X2, . . . ,Xn), a− τ0 ≤ t ≤ tn, (.b)

where πh is an appropriate interpolation operator which approximates to the exact solu-
tion x(t) on the interval [a − τ0, b], Xn is an approximation to the exact solution x(tn),
∆wn = w(tn+1) − w(tn). It is well known that the backward Euler method is conver-
gent with strong order only 1/2 for stochastic differential equations. So, interpolation
operator πh could be chosen as the follows

Xh(t) =

{

1
h [(ti+1 − t)Xi + (t− ti)Xi+1], ti ≤ t ≤ ti+1, i = 0, 1, 2, . . . , N − 1,
ξ(t), a− τ0 ≤ t ≤ a.

(.)

Applying the backward Euler method to the perturbed problem (.) we can obtain the
corresponding scheme







Yn+1 = Yn + hf(tn+1, Yn+1, Y
h(tn+1 − τ(tn+1)))

+g(tn, Yn, Y
h(tn − τ(tn)))∆wn, n = 0, 1, . . . , N − 1,

Y h(t) = πh(t, η, Y1, Y2, . . . , Yn), a− τ0 ≤ t ≤ tn.
(.)

For simplicity, for any given nonnegative integer n, we write

Pn = Xn − Yn, Qn = max{max
1≤i≤n

E|Pi|
2, sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2}, n ≥ 1,

Q0 = sup
a−τ0≤t≤a

E|ξ(t)− η(t)|2.
(.)
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Moreover, for convenience, we introduce notations to denote the values of drift and
diffusion coefficients at specific points.

fxx(n + 1) = f(tn+1,Xn+1,X
h(tn+1 − τ(tn+1))),

f yy(n+ 1) = f(tn+1, Yn+1, Y
h(tn+1 − τ(tn+1))),

f yx(n+ 1) = f(tn+1, Yn+1,X
h(tn+1 − τ(tn+1))),

gxx(n) = g(tn,Xn,X
h(tn − τ(tn))), g

yy(n) = g(tn, Yn, Y
h(tn − τ(tn))).

(.)

Lemma 4.1 Under the conditions (.) and (.), if (α+β)h < 1, the implicit equation
(.a) admits a unique solution.

Proof. Let f̃(z) = f(·, z, zh(·)), then implicit equation (.a) can be rewritten as

z = hf̃(z) + b = hf(·, z, zh(·)) + b, (.)

where z is unknown whereas b and h are known. Inserting the interpolation operator
(.) into (.), we have

z = hf̃(z) + b = hf(·, z, lz + b0) + b, (.)

where 0 ≤ l ≤ 1, l and b0 are also known. It follows from (.), (.) and (.) that

ℜ〈z1 − z2, f̃(z1)− f̃(z2)〉 = ℜ〈z1 − z2, f(·, z1, lz1 + b0)− f(·, z2, lz2 + b0)〉

= ℜ〈z1 − z2, f(·, z1, lz1 + b0)− f(·, z2, lz1 + b0)〉

+ℜ〈z1 − z2, f(·, z2, lz1 + b0)− f(·, z2, lz2 + b0)〉 ≤ α|z1 − z2|
2 + β|z1 − z2|

2.

The assertion follows immediately from Theorem 5.6.1 in [4].

Theorem 4.2 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Let {Xn} and {Yn} be two
sequences of numerical solutions obtained by the backward Euler schemes (.) and (.),
respectively. Write c = 2α+ 2β + γ21 + 2γ1γ2 + γ22 .

(i) If c > 0, for any given c0 ∈ (0, 1), then we have for hc ≤ c0

E|Xn − Yn|
2 ≤ ec̃(tn−a) sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2, n = 1, 2, · · · , N, (.)

where c̃ = c1
h ,

c1 = max

{

1 + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − 2hβ

,
1 + hβ + hγ21 + 2hγ1γ2 + hγ22

1− 2hα− hβ

}

=
1 + hγ21 + 2hγ1γ2 + hγ22

1− 2hα− 2hβ
> 1.

(ii) If c ≤ 0, then we have for any h > 0

E|Xn − Yn|
2 ≤ sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2, n = 1, 2, · · · , N. (.)

Note that (.) and (.) can be regarded as numerical analogs of (.) and (.),
respectively.
Proof. (i) By (.) and (.), we have

Pn+1 − h(fxx(n+ 1)− f yy(n + 1)) = Pn + (gxx(n)− gyy(n))∆wn,
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which yields

|Pn+1|
2 − 2hℜ〈Pn+1, f

xx(n + 1)− f yy(n + 1)〉 + h2|fxx(n+ 1)− f yy(n+ 1)|2

= |Pn|
2 + 2ℜ〈Pn, (g

xx(n)− gyy(n))∆wn〉+ |(gxx(n)− gyy(n))∆wn|
2.

Taking expectation and using (.)-(.) and (.), we get

E|Pn+1|
2 ≤ E|Pn|

2 + 2hEℜ〈Pn+1, f
xx(n+ 1)− f yy(n+ 1)〉+ hE|gxx(n)− gyy(n)|2

≤ E|Pn|
2 + 2hEℜ〈Pn+1, f

xx(n+ 1)− f yx(n+ 1)〉

+2hEℜ〈Pn+1, f
yx(n+ 1)− f yy(n+ 1)〉+ hE|gxx(n)− gyy(n)|2

≤ E|Pn|
2 + 2hαE|Pn+1|

2

+2hβE(|Pn+1||X
h(tn+1 − τ(tn+1))− Y h(tn+1 − τ(tn+1))|)

+hE(γ1|Pn|+ γ2|X
h(tn − τ(tn))− Y h(tn − τ(tn))|)

2

≤ E|Pn|
2 + 2hαE|Pn+1|

2

+hβE|Pn+1|
2 + hβE|Xh(tn+1 − τ(tn+1))− Y h(tn+1 − τ(tn+1))|

2

+h(γ21 + γ1γ2)E|Pn|
2 + h(γ22 + γ1γ2)E|X

h(tn − τ(tn))− Y h(tn − τ(tn))|
2

≤ E|Pn|
2 + 2hαE|Pn+1|

2 + hβE|Pn+1|
2

+hβmax { max
1≤i≤n+1

E|Pi|
2, sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2}

+h(γ21 + γ1γ2)E|Pn|
2 + h(γ22 + γ1γ2)Qn,

(.)
where we used the piecewise linear interpolation (.) and the following inequality

E|(1− δ)Pi + δPi+1|
2 ≤ max{E|Pi|

2,E|Pi+1|
2}, 0 ≤ δ ≤ 1. (.)

It is clear from (.) that

(1− 2hα − hβ)E|Pn+1|
2 ≤ (1 + hγ21 + hγ1γ2)E|Pn|

2

(.)
+hβmax { max

1≤i≤n+1
E|Pi|

2, sup
a−τ0≤t≤a

E|ξ(t)− η(t)|2}+ h(γ22 + γ1γ2)Qn,

We now consider two cases:

(a) max{ max
1≤i≤n+1

E|Pi|
2, sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2} = E|Pn+1|

2,

(b) max{ max
1≤i≤n+1

E|Pi|
2, sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2} 6= E|Pn+1|

2.

In the case of (a), it follows from (.) that

(1− 2hα− 2hβ)E|Pn+1|
2 ≤ (1 + hγ21 + 2hγ1γ2 + hγ22)Qn, (.)

which yields

E|Pn+1|
2 ≤

1 + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − 2hβ

Qn ≤ c1Qn. (.)

In the case of (b), (.) implies that

(1− 2hα− hβ)E|Pn+1|
2 ≤ (1 + hγ21 + hγ1γ2)E|Pn|

2 + hβQn + h(γ22 + γ1γ2)Qn

≤ (1 + hβ + hγ21 + 2hγ1γ2 + hγ22)Qn,

which yields

E|Pn+1|
2 ≤

1 + hβ + hγ21 + 2hγ1γ2 + hγ22
1− 2hα− hβ

Qn ≤ c1Qn. (.)
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To summarize, both in the cases we have shown that E|Pn+1|
2 ≤ c1Qn, which yields

Qn ≤ Qn−1 + E|Pn|
2 ≤ (1 + c1)Qn−1. (.)

By induction, we further obtain

E|Xn − Yn|
2 = E|Pn|

2 ≤ Qn ≤ (1 + c1)Qn−1 ≤ · · · ≤ (1 + c1)
nQ0

≤ ec1nQ0 = ec̃(tn−a) sup
a−τ0≤t≤a

E|ξ(t)− η(t)|2.

(ii) When c ≤ 0, noting that (.), (.) and

1 + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − 2hβ

≤ 1,
1 + hβ + hγ21 + 2hγ1γ2 + hγ22

1− 2hα − hβ
≤ 1,

we have for any h > 0

E|Xn − Yn|
2 ≤ Qn−1 ≤ Qn−2 ≤ · · · ≤ Q0 = sup

a−τ0≤t≤a
E|ξ(t)− η(t)|2. (.)

Therefore we have completed the proof of the theorem.

Corollary 4.3 Assume that problem (.) ∈ SD(α, β, γ1, γ2). Let {Xn} be a sequence
of numerical solutions obtained by the backward Euler method (.). Furthermore, if
f(t, 0, 0) = 0, g(t, 0, 0) = 0, and

(i) if c > 0, for any given c0 ∈ (0, 1), then we have for hc ≤ c0

E|Xn|
2 ≤ ec̃(tn−a) sup

a−τ0≤t≤a
E|ξ(t)|2, n = 1, 2, · · · , N ; (.)

(ii) if c ≤ 0, then we have for any h > 0

E|Xn|
2 ≤ sup

a−τ0≤t≤a
E|ξ(t)|2, n = 1, 2, · · · , N. (.)

Theorem 4.4 Assume that problem (.) ∈ SD(α, β, γ1, γ2), and

lim
t→+∞

(t− τ(t)) = +∞, c = 2α + 2β + γ21 + 2γ1γ2 + γ22 < 0. (.)

Let {Xn} and {Yn} be two sequences of numerical solutions obtained by the backward
Euler schemes (.) and (.). Then,

(i) there exists a strictly increased positive integer sequence {nk} which diverges to
+∞ as k → +∞, where n0 = 0, such that for any given h > 0,

max
nk<i≤nk+1

E|Xi − Yi|
2 ≤ ck+1

2 sup
a−τ0≤t≤a

E|ξ(t)− η(t)|2, k = 0, 1, 2, . . . , (.)

where

c2 = max

{

1 + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − 2hβ

,
1 + hβ + hγ21 + 2hγ1γ2 + hγ22

1− 2hα− hβ

}

=
1 + hβ + hγ21 + 2hγ1γ2 + hγ22

1− 2hα− hβ
< 1;

(ii) for any given h > 0,

lim
n→+∞

E|Xn − Yn|
2 = 0. (.)
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Note that (.) and (.) can be regarded as numerical analogs of (.) and (.),
respectively.

Proof. It is obvious that (.) implies (.), and we only need to prove (.). By
(.), we have 2α + β + γ1γ2 + γ21 < 0, (β + γ1γ2 + γ22)/|2α + β + γ1γ2 + γ21 | < 1 and
c2 < 1.

First, as done in [9, 18], we can construct a strictly increased sequence of integers
{nk} which diverges to +∞ as k → +∞, such that

t− τ(t) > tnk+1, ∀t ≥ tnk+1
,

where n0 = 0. In fact, suppose that nk(k ≥ 0) has been chosen appropriately. Then
there exists a constant M > tnk

such that for all t ≥ M we have t − τ(t) > tnk
+ h

since limt→+∞(t− τ(t)) = +∞. If M is a node, we let tnk+1
=M , otherwise there exists

natural number j such that tj < M < tj+1, then we let nk+1 = j + 1 and tnk+1
= tj+1.

Thus we obtain the required sequence {nk} which satisfies

t0 < t1 < · · · < tn1 < tn1+1 < · · · < tn2 · · · < tnk
< · · · .

For nk < n+ 1 ≤ nk+1, by the second inequality of (.) and conditions (.)-(.),
we have

E|Pn+1|
2 ≤ E|Pn|

2 + 2hEℜ〈Pn+1, f
xx(n+ 1)− f yx(n+ 1)〉

+2hEℜ〈Pn+1, f
yx(n+ 1)− f yy(n+ 1)〉+ hE|gxx(n)− gyy(n)|2

≤ E|Pn|
2 + 2hαE|Pn+1|

2 + 2hβE(|Pn+1||X
h(tn+1 − τ(tn+1))− Y h(tn+1 − τ(tn+1))|)

+hE
(

γ1|Pn|+ γ2|X
h(tn − τ(tn))− Y h(tn − τ(tn))|

)2

≤ E|Pn|
2 + 2hαE|Pn+1|

2 + hβE|Pn+1|
2 + hβE|Xh(tn+1 − τ(tn+1))− Y h(tn+1 − τ(tn+1))|

2

+h(γ21 + γ1γ2)E|Pn|
2 + h(γ22 + γ1γ2)E|X

h(tn − τ(tn))− Y h(tn − τ(tn))|
2,

which yields

(1− 2hα − hβ)E|Pn+1|
2

≤ (1 + hγ21 + hγ1γ2)E|Pn|
2 + hβE|Xh(tn+1 − τ(tn+1))− Y h(tn+1 − τ(tn+1))|

2

+h(γ22 + γ1γ2)E|X
h(tn − τ(tn))− Y h(tn − τ(tn))|

2

≤ (1 + hγ21 + hγ1γ2)E|Pn|
2 + hβ max

nk−1<i≤n+1
E|Pi|

2 + h(γ22 + γ1γ2) max
nk−1<i≤n

E|Pi|
2,

where we used the piecewise linear interpolation operator (.) and the inequality (.).
We now consider the following two cases.

If max
nk−1<i≤n+1

E|Pi|
2 = E|Pn+1|

2, we have

E|Pn+1|
2 ≤

1 + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − 2hβ

max
nk−1<i≤n

E|Pi|
2 ≤ c2 max

nk−1<i≤n
E|Pi|

2.

If max
nk−1<i≤n+1

E|Pi|
2 6= E|Pn+1|

2, we have

E|Pn+1|
2 ≤

1 + hβ + hγ21 + 2hγ1γ2 + hγ22
1− 2hα − hβ

max
nk−1<i≤n

E|Pi|
2 ≤ c2 max

nk−1<i≤n
E|Pi|

2.
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In both cases, we have

E|Pn+1|
2 ≤ c2 max

nk−1<i≤n
E|Pi|

2, nk < n+ 1 ≤ nk+1. (.)

(.) with n = nk reduces to E|Pnk+1|
2 ≤ c2 max

nk−1<i≤nk

E|Pi|
2. By induction, we have

max
nk<i≤nk+1

E|Xi − Yi|
2 = max

nk<i≤nk+1

E|Pi|
2 ≤ c2 max

nk−1<i≤nk

E|Pi|
2

≤ · · · ≤ ck+1
2 max

a−τ0≤t≤a
E|ξ(t)− η(t)|2.

The proof is complete.

Corollary 4.5 Under the same assumptions of Theorem 4.4. Let {Xn} be a sequence
of numerical solution obtained by the backward Euler method (.). Furthermore, if
f(t, 0, 0) = 0 and g(t, 0, 0) = 0, then,

(i) there exists a strictly increased positive integer sequence {nk} which diverges to
+∞ as k → +∞, where n0 = 0, such that for any given h > 0,

max
nk<i≤nk+1

E|Xi|
2 ≤ ck+1

2 sup
a−τ0≤t≤a

E|ξ(t)|2, k = 0, 1, 2, . . . .

(ii) for any given h > 0, lim
n→+∞

E|Xn|
2 = 0.

5 SDDEs with several delays

Consider the following SDDEs with several delays






dx(t) = f(t, x(t), x(t− τ1(t)), · · · , x(t− τr(t)))dt
+g(t, x(t), x(t − τ1(t)), · · · , x(t− τr(t)))dw(t), t ≥ a,

x(t) = ξ(t), t ∈ [a− τ0, a],
(.)

where τi(t) ≥ 0, i = 1, 2, · · · , r and max
1≤i≤r

inf
t≥a

(t − τi(t)) ≥ a − τ0. All results given in this

paper can be extended easily to the case of several delays. For the sake of brevity, we do
not present the corresponding results for (.).

6 Conclusions and future work

In this paper, we investigate the stability of analytical and numerical solutions of nonlin-
ear SDDEs. We derive sufficient conditions for the stability, contractivity and asymptotic
contractivity in mean square of the solutions for nonlinear SDDEs. The results provide
a unified theoretical treatment for SDEs, SDDEs with constant delay and variable de-
lay (including bounded and unbounded variable delays). Then, it is proved that the
backward Euler method can preserve the properties of the underlying system. The main
results of analytic solution in this paper can be regarded as a generalization of those in [8]
restricted in finite-dimensional Hilbert spaces and finitely many delays to the stochastic
version. We have encountered problems when we tried to obtain a unified framework for
general SFDEs. It is worth noting that whether the results in [8] can be extended to gen-
eral SFDEs or not. One area for the future work is to give a positive or negative answer
for the question. Neutral stochastic delay differential equation (NSDDE) is more general
than stochastic delay differential equation. It is interesting to investigate whether the
theory of this paper can be extended to NSDDEs and corresponding numerical methods.
It will also be our future work.
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