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Cancellativization of dimer models

Charlie Beil, Akira Ishii, Kazushi Ueda

Abstract

We show that any dimer model can be made cancellative without changing the
characteristic polygon.

1 Introduction

A dimer model is a bicolored graph on a real 2-torus T giving a polygon division of T . It
is originally introduced in 1930s as a model in statistical mechanics [FR37], and has been
actively studied since then. See e.g. a review by Kenyon [Ken04] and references therein
for dimer models as statistical mechanical models.

More recently, a new connection between dimer models and quivers has been discovered
by string theorists (cf. e.g. [Ken07]). A dimer model encodes the information of a quiver
Γ with relations, and the resulting path algebra CΓ is a Calabi-Yau algebra of dimension
three in the sense of Ginzburg [Gin06] if and only if CΓ is cancellative (i.e., ab = ac 6= 0
for an arrow a and a pair (b, c) of paths implies b = c, and similarly for ba = ca)
[Bro12, MR10, Dav11]. One can also give a purely combinatorial condition on a dimer
model, called the consistency condition, which is equivalent to the cancellation property
of the path algebra if the dimer model is non-degenerate [IU11, Boc12]. We say that a
dimer model is cancellative if it satisfies one (and hence all) of these equivalent conditions.

With a dimer model, one can associate two convex lattice polygons called the charac-
teristic polygon and the zigzag polygon. Here, a lattice polygon is the convex hull of a finite
lattice points on R2. Although these two polygons are different in general, they coincide
if the dimer model is cancellative [Gul08, IU]. We say that a polygon is non-degenerate if
it has an interior point.

It is easy to make a dimer model cancellative without changing the zigzag polygon:

Theorem 1.1. If the zigzag polygon of a dimer model G is non-degenerate, then one
can remove some edges and nodes from G to obtain another dimer model G′, which is
cancellative with the same zigzag polygon as G.

As a corollary, one obtains the following:

Corollary 1.2. For any dimer model, the zigzag polygon is contained in the characteristic
polygon.

It is more difficult to make a dimer model consistent without changing the character-
istic polygon. The main result in this paper states that this is always possible:
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Theorem 1.3. If the characteristic polygon of a dimer model G is non-degenerate, then
one can remove some edges from G to obtain a cancellative dimer model G′ with the same
characteristic polygon as G.

A dimer model is strongly non-degenerate if every edge is contained in at least one
corner perfect matching. Any dimer model can be made strongly non-degenerate without
changing the characteristic polygon, simply by removing edges not contained in any corner
perfect matching. The proof of Theorem 1.3 also shows the following:

Corollary 1.4. If every corner perfect matching in a strongly non-degenerate dimer model
is multiplicity-free, then the zigzag polygon coincides with the characteristic polygon.

Although cancellativity is a strong condition and there are many examples of non-
cancellative dimer models (see e.g. [DHP10]; in fact, we suspect that almost all dimer
models (in some random graph theoretic sense) are non-cancellative), Theorems 1.1 and
1.3 shows the abundance of cancellative dimer models among all dimer models.

This paper is organized as follows: In Section 2, we recall basic definitions on dimer
models. In Section 3, we recall the definition of a zigzag polygon and prove Theorem 1.1.
In Section 4, we discuss an operation of cancellativization which keeps the characteristic
polygon fixed. We first remove suitable edges from the dimer model G to obtain another
dimer model G′ satisfying the following conditions:

• The characteristic polygon of G′ coincides with that of G.

• For any pair (c1, c2) of adjacent corners of the characteristic polygon of G′, there
are perfect matchings D1 and D2 of G′ such that

(i) the height changes ofD1 and D2 give these corners; h(D1) = c1 and h(D2) = c2,
and

(ii) every connected component of the symmetric difference D1△D2 is a zigzag
path on G′.

Then G′ has sufficiently many zigzag paths to ensure that the zigzag polygon contains
the characteristic polygon. On the other hand, the characteristic polygon always contains
the zigzag polygon by Corollary 1.2, and hence they must coincide. Now one can perform
the operation in Theorem 1.1 and obtain a cancellative dimer model G′′ with the same
characteristic polygon as G.

Acknowledgment. This project has been initiated while C. B. and K. U. was attend-
ing the workshop ‘Linking representation theory, singularity theory and non-commutative
algebraic geometry ’ at Banff International Research Station, whose hospitality is grate-
fully acknowledged. This research is supported by Grant-in-Aid for Scientific Research
(No.18540034) and Grant-in-Aid for Young Scientists (No.24740043).

2 Dimer models and quivers

Let T = R2/Z2 be a real two-torus equipped with an orientation. A bicolored graph on T
consists of
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• a finite set B ⊂ T of black nodes,

• a finite set W ⊂ T of white nodes, and

• a finite set E of edges, consisting of embedded closed intervals e on T such that one
boundary of e belongs to B and the other boundary belongs to W . We assume that
two edges intersect only at the boundaries.

A face of a graph is a connected component of T \∪e∈Ee. The set of faces will be denoted
by F . A bicolored graph G on T is called a dimer model if G contains no univalent node
and every face f ∈ F is simply-connected.

A quiver consists of

• a set V of vertices,

• a set A of arrows, and

• two maps s, t : A → V from A to V .

For an arrow a ∈ A, the vertices s(a) and t(a) are said to be the source and the target of
a respectively. A path on a quiver is an ordered set of arrows (an, an−1, . . . , a1) such that
s(ai+1) = t(ai) for i = 1, . . . , n− 1. We also allow for a path of length zero, starting and
ending at the same vertex. The path algebra CQ of a quiver Q = (V,A, s, t) is the algebra
spanned by the set of paths as a vector space, and the multiplication is defined by the
concatenation of paths;

(bm, . . . , b1) · (an, . . . , a1) =

{
(bm, . . . , b1, an, . . . , a1) s(b1) = t(an),

0 otherwise.

A quiver with relations is a pair of a quiver and a two-sided ideal I of its path algebra.
For a quiver Γ = (Q, I) with relations, its path algebra CΓ is defined as the quotient
algebra CQ/I. Two paths a and b are said to be equivalent if they give the same element
in CΓ.

A dimer model (B,W,E) encodes the information of a quiver Γ = (V,A, s, t, I) with
relations in the following way: The set V of vertices is the set of connected components of
the complement T \ (

⋃
e∈E e), and the set A of arrows is the set E of edges of the graph.

The directions of the arrows are determined by the colors of the nodes of the graph, so
that the white node w ∈ W is on the right of the arrow. In other words, the quiver is
the dual graph of the dimer model equipped with an orientation given by rotating the
white-to-black flow on the edges of the dimer model by minus 90 degrees. The relations of
the quiver are described as follows: For an arrow a ∈ A, there exist two paths p+(a) and
p−(a) from t(a) to s(a), the former going around the white node connected to a ∈ E = A
clockwise and the latter going around the black node connected to a counterclockwise.
Then the ideal I of the path algebra is generated by p+(a)− p−(a) for all a ∈ A.

A perfect matching on a dimer model G = (B,W,E) is a subset D of E such that for
any node v ∈ B ∪ W , there is a unique edge e ∈ D connected to v. A dimer model is
non-degenerate if for any edge e ∈ E, there is a perfect matching D such that e ∈ D.

A dimer model G = (B,W,E) gives a chain complex

0 → ZF → ZE → ZB⊔W → 0
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computing the homology of T . The orientation on a face comes from the standard orien-
tation of T = R2/Z2, and the orientation on an edge is such that ∂e = w−b, where w and
b are the white and the black node adjacent to the edge e. A perfect matching D ⊂ E
gives a 1-chain

∑
e∈D e ∈ ZE in this complex, which will often be written as D by abuse

of notation. By the definition of a perfect matching, the difference of 1-chains associated
with a pair (D,D′) of perfect matchings is a 1-cycle, whose class in H1(T ;Z) will be
denoted by [D −D′]. This class is equivalent to the class [D△D′] of a 1-cycle supported
on the symmetric difference D△D′ = (D ∪D′) \ (D ∩D′). We have D△D′ = −D′△D as
1-cycles, although the underlying sets are identical.

Let 〈−,−〉 : H1(T ;Z)⊗H1(T ;Z) → Z be the intersection pairing. The Poincaré dual
of [D△D′] ∈ H1(T ;Z) is written as h(D,D′) ∈ H1(T ;Z), and called the height change of
D with respect to the reference matching D′;

h(D,D′)(C) = 〈C, [D△D′]〉 , ∀C ∈ H1(T ;Z).

We often suppress the reference matching from the notation and write h(D) = h(D,D′).
We will use the isomorphism H1(T ;Z) ∼= Z2 coming from the identification T = R2/Z2

to think of a height change as an element of Z2; h(D) = (hx(D), hy(D)) ∈ Z2. The
characteristic polynomial of G is the generating function

Z(x, y) =
∑

D∈Perf(G)

xhx(D)yhy(D)

for the height change, which is a Laurent polynomial in two variables. Its Newton polygon

Conv{(hx(D), hy(D)) ∈ Z2 | D is a perfect matching}

is called the characteristic polygon. One clearly has h(D,D′′) = h(D,D′)− h(D′′, D′), so
that the characteristic polygon will be translated if one changes the reference matching.
A perfect matching D is said to be a corner perfect matching if the height change h(D)
is at a corner of the characteristic polygon. The multiplicity of a perfect matching D is
the number of perfect matchings whose height change is the same as D.

A perfect matching D can be considered as a set of walls which block some of the
arrows. A path p on the quiver is said to be allowed by D if p does not contain any arrow
contained in D ⊂ E = A.

With a perfect matching, one can associate a representation of the quiver with dimen-
sion vector (1, . . . , 1) by sending any allowed path to 1 and other paths to 0. One can
easily check that this satisfies the relation of the quiver. A perfect matching is said to be
simple if the associated quiver representation is simple, i.e., has no non-trivial subrepre-
sentation. This is equivalent to the condition that there is an allowed path starting and
ending at any given pair of vertices.

The main theorem of [IU08] states that when a dimer model is non-degenerate, then
the moduli space Mθ of θ-stable representations of CΓ of dimension vector (1, . . . , 1) is
a smooth toric Calabi-Yau 3-fold for a generic stability parameter θ in the sense of King
[Kin94]. A toric divisor in Mθ gives a perfect matching so that the stabilizer group of
the divisor is determined by the height change of the perfect matching.

Although the following results are stated in [IU, Proposition 8.2] for cancellative dimer
models, the proof works for any non-degenerate dimer model.

4



Proposition 2.1. The following hold for a non-degenerate dimer model:

(i) A perfect matching D is simple if and only if it is multiplicity-free.

(ii) A multiplicity-free perfect matching is a corner perfect matching.

The dimer model G1 in Figure 2.1 shows that the converse to Proposition 2.1.(ii) does
not hold in general. The corresponding quiver is shown in Figure 2.2. The set of perfect
matchings and the characteristic polygon are shown in Figures 2.3 and 2.4 respectively,
where the perfect matching D1 is chosen as the reference matching. This example also
shows that one cannot obtain a cancellative dimer model with the same characteristic
polygon simply by removing all arrows not contained in any simple matchings; if we
perform this operation on the dimer model G1, then the resulting dimer model G2 shown
in Figure 2.5 has a smaller characteristic polygon, which coincides with the convex hull
of height changes of simple perfect matchings.

Figure 2.1: The dimer model G1 Figure 2.2: The quiver Γ1

(a) h(D1) = (0, 0) (b) h(D2) = (−1, 0) (c) h(D3) = (−1,−1)

(d) h(D4) = (0,−1) (e) h(D5) = (0,−1) (f) h(D6) = (0,−1)

Figure 2.3: Perfect matchings on G1

3 Zigzag polygon and cancellativity

A zigzag path is a path on a dimer model which makes a maximum turn to the right on
a white node and to the left on a black node. Note that it is not a path on a quiver.
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D1D2

D3 D4, D5, D6

Figure 2.4: The characteristic polygon Figure 2.5: The union of simple matchings

We assume that a zigzag path does not have an endpoint, so that we can regard a zigzag
path as a sequence (ei)i∈Z of edges ei parameterized by i ∈ Z, up to translations of i. The
homology class [z] of a zigzag path considered as an element of Z2 will be called its slope.

Let k be the number of zigzag paths. Fix a zigzag path z1, and let {zi}
k
i=1 be the set

of zigzag paths, so that their slopes ([zi])
k
i=1 are cyclically ordered starting from [z1]. Note

that some of the slopes may coincide in general. Define another sequence (wi)
r
i=1 in Z2

by w0 = 0 and
wi+1 = wi + [zi+1]

′, i = 0, . . . , k − 1,

where [zi+1]
′ is obtained from [zi+1] by rotating 90 degrees counter-clockwise. Note that

one has wr = 0 since every edge is contained in exactly two zigzag paths with different
directions and hence the homology classes of the zigzag paths add up to zero. The convex
hull of (wi)

r
i=1 is called the zigzag polygon.

Now we recall the definition of the consistency condition for dimer models:

Definition 3.1 ([IU, Definition 5.2]). A dimer model is said to be consistent if

• there is no homologically trivial zigzag path,

• no zigzag path on the universal cover has a self-intersection, and

• no pair of zigzag paths on the universal cover intersect each other in the same
direction more than once.

See [IU11, Boc12] for more on consistency conditions for dimer models. The consis-
tency condition is equivalent to cancellativity:

Theorem 3.2 ([IU11, Theorem 1.1], [Boc12, Theorem 6.2]). A non-degenerate dimer
model is consistent if and only if the path algebra of the associated quiver with relations
is cancellative.

The characteristic polygon and the zigzag polygon coincides for cancellative dimer
models:

Theorem 3.3 ([Gul08, Theorem 3.3], cf. also [IU, Corollary 8.3]). For a consistent dimer
model, the characteristic polygon ∆ coincides with the zigzag polygon up to translation.

Now we prove Theorem 1.1:
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Proof of Theorem 1.1. If some zigzag path on the universal cover has a self-intersection,
then by removing all the edges at the self-intersection, one obtains another bicolored graph
on T 2 with the same zigzag polygon as the original dimer model. Figure 3.1 shows an
example of this operation. If there is a connected component of the resulting graph which
is contained in a simply-connected domain in T 2, then one can remove this connected
component without changing the zigzag polygon. By removing all such components,
one obtains a dimer model which has no zigzag path on the universal cover with a self-
intersection.

(a) A self-intersection (b) Removing edges

Figure 3.1: A self-intersecting zigzag path on the universal cover

If there is a homologically trivial zigzag path z, then there are two cases; either there
is at least one edge inside the zigzag path z, or there is no such edge. If there is an edge
inside the zigzag path, take any zigzag path w which intersects z. Then z and w intersect
in the same direction more than once, and one can remove edges at the intersections to
obtain another dimer model. If there are no edge inside the zigzag path z, then every
other node in z is divalent, and one can remove all these divalent nodes and contract all
other nodes to a single node. Figure 3.2 shows an example of these operations.

(a) A homologically-trivial
zigzag path

(b) Removing edges (c) Removing edges and
contracting nodes

Figure 3.2: Homologically trivial zigzag paths

If there is a pair of zigzag paths on the universal cover which intersect each other
more than once in the same direction, choose any such pair of zigzag paths and remove
the edges at a pair of consecutive intersections of this pair of zigzag paths. The resulting
graph on the torus T has the same set of slopes of zigzag paths, and the non-degeneracy
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of the zigzag polygon implies that this graph is still a dimer model (i.e., there are no
univalent node and all the faces are simply-connected).

One can iterate these operations finitely many times until the dimer model becomes
cancellative.

For example, the dimer model G1 in Figure 2.1 has three zigzag paths as shown in
Figure 3.3. The corresponding zigzag polygon is shown in Figure 3.4. A pair of lifts of
the zigzag path shown in Figure 3.3.3(a) intersects in the same direction twice on the
universal cover as shown in Figure 3.5. Under the operation of ‘cancellativization’ in
Theorem 1.1, the pair of edges at these intersections will be removed, and one obtains the
dimer model shown in Figure 2.5.

Corollary 1.2 is an immediate consequence of Theorem 1.1:

Proof of Corollary 1.2. The operation of cancellativization in the proof of Theorem 1.1
does not change the zigzag polygon, but makes the characteristic polygon smaller in
general. Since characteristic polygon and the zigzag polygon coincide for a cancellative
dimer model, the zigzag polygon is smaller than the characteristic polygon in general.

(a) A zigzag path
with homology class
(1,−1)

(b) A zigzag path
with homology class
(0, 1)

(c) A zigzag path
with homology class
(−1, 0)

Figure 3.3: Zigzag paths on G1

(0, 1)

(1,−1)

(−1, 0)

Figure 3.4: The zigzag polygon of G1 Figure 3.5: Intersections of zigzag paths on
G1

8



Remark 3.4. The dimer model G1 gives an example where one can not obtain a can-
cellative dimer model by the following simple operation:

• Take any generic stability parameter θ and contract all arrows which does not vanish
in any θ-stable representations.

Proof. Note that the height change (0,−1) has multiplicity three. Take a generic stabil-
ity parameter which makes the perfect matching D4 stable. Three other corner perfect
matchings D1, D2 and D3 are simple, so that they are stable for any stability parameter.
Now one can see that every arrow of Q goes to zero in at least one θ-stable representation
of dimension vector (1, . . . , 1).

4 Characteristic polygon and cancellativity

We can always assume that a dimer model is non-degenerate without changing the char-
acteristic polygon:

Proposition 4.1. Let G be a dimer model with a non-degenerate characteristic polygon.
Then one can remove some nodes and edges from G to obtain a non-degenerate dimer
model G′ with the same characteristic polygon as G.

Proof. Let G′′ be the bicolored graph on T whose set E ′′ of edges consists of edges of G
contained in at least one perfect matching of G, and whose set of nodes consists of nodes
of G incident to at least one edge in E ′′. Then G′′ is clearly a non-degenerate graph.
In order to make G′′ into a dimer model, one removes all connected components of G′′

having a simply-connected neighborhood in T . The resulting graph G′ is a dimer model
(i.e. no node is univalent and every connected component of T \G′ is simply-connected)
having the same characteristic polygon as G.

Let G be a non-degenerate dimer model, and consider a pair (D1, D2) of perfect
matchings. Recall from Section 2 that the homology class [D1△D2] is Poincaré dual
to the height change h(D1, D2).

Lemma 4.2. Let D1 and D2 be perfect matchings with v := [D1△D2] 6= 0 ∈ H1(T,Z). If
the homology class of a connected component of D1△D2 is non-zero, it is one of the two
primitive elements in Qv ∩ H1(T,Z). Moreover, if either D1 or D2 is a corner perfect
matching, then it is the primitive element in Q+v ∩H1(T,Z).

Proof. Note that two cycles on a torus can be disjoint only if their homology classes are
proportional to each other. Since D1△D2 is homeomorphic to the disjoint union of copies
of S1, we obtain the first assertion. Assume there is a connected component w of D1△D2

whose homology class is in Q−v. Then we can construct another perfect matching D3

with D1△D3 = w. The height change h(D1) of D1 lies on the line segment connecting
h(D2) and h(D3), so that D1 is not a corner perfect matching. By the same reasoning,
D2 is not a corner perfect matching either.

Fix a pair (D1, D2) of corner perfect matchings whose height changes are adjacent in
the counter-clockwise order.
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Lemma 4.3. For any perfect matching D3 whose height change is not on the line segment
connecting D1 and D2, one has

〈[D1△D2], [D2△D3]〉 > 0,

where 〈−,−〉 denotes the intersection pairing on H1(T,Z).

Proof. This follows from the fact that [D1△D2] is the Poincare dual of the relative height
change h(D1, D2) and the definition of the characteristic polygon.

Example 4.4. Consider the dimer model G1 given in Section 2. The cycles [D1△D2] and
[D2△D3] are shown in Figures 4.1 and 4.2 respectively, which indeed satisfies

〈[D1△D2], [D2△D3]〉 > 0.

Figure 4.1: The cycle [D1△D2] Figure 4.2: The cycle [D2△D3]

Lemma 4.3 can be rephrased as follows:

Corollary 4.5. If one goes along D1△D2 and count the number of edges in D3 connected
to D1△D2 from the left, then the number of edges of D3 connected to white nodes is larger
than the number of those connected to black nodes. The opposite inequality holds if we
count the number of edges of D3 connected to D1△D2 from the right.

If some connected component c of D1△D2 is homologically trivial, then we can replace
D1 by another perfect matching D′

1 satisfying D1△D′
1 = c. Then one has h(D1) =

h(D′
1) + [c] = h(D′

1). By continuing this process, we may assume that D1△D2 does not
have any homologically trivial components.

Let n be the number of homologically non-trivial connected components of D1△D2.
We label these connected components as {zi}i∈Z/nZ in such a way that zi is right next to
zi−1 on the right as shown in Figure 4.3.

Lemma 4.6. There is a connected component zi with the following property:

• There is no path p consisting of edges of G satisfying the following conditions:

(i) The path p is homeomorphic to the interval [0, 1].

(ii) Every other edge of p belongs to D1 ∩D2.

(iii) The path p connects a white node on zi−1 to a black node on zi.
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zi−1

zi

zi+1

pi

qipi+1

qi−1

qi+1

Figure 4.3: The paths zi, pi and qi

(iv) The edge containing the white node p∩ zi−1 is on the right of zi−1 and the edge
containing the black node p ∩ zi is on the left of zi.

Proof. Note that the condition (ii) implies that p can not cross zj for any j ∈ Z/nZ.
Assume for contradiction that the assertion of Lemma 4.6 is false. Then for each i ∈ Z/nZ,
there is a path pi satisfying the conditions above as shown in Figure 4.3. Let qi be the
part of zi which starts at the black node zi ∩ pi and goes backward (with respect to the
orientation of zi) to the white node zi ∩ pi+1. We can consider the path y =

⋃
i(pi ∪ qi)

which starts at p1 ∩ z0, goes along p1 to p1 ∩ z1, then goes along q1 to p2 ∩ z1, then goes
along p2 to p2 ∩ z2, and so on. Then every other edge of y belongs to D2, so that we can
construct a perfect matching D3 with D2△D3 = y. Then every edge of D3 connected to
D1△D2 from the left is connected to a black node. This contradicts Corollary 4.5, and
Lemma 4.6 is proved.

We say that a path z is zigzag at white nodes if there is no edge of G connected to a
white node on z from the right.

Lemma 4.7. Let zi be a connected component of D1△D2 with the property in Lemma
4.6. Then there are perfect matchings D1 and D2 with the same height changes as D1

and D2 respectively such that

D1△D2 = zi ∪
⋃

j 6=i

zj,

where zi is zigzag at white nodes.

Proof. We may assume i = 0 without loss of generality. Assume that an edge e is con-
nected to a white node w on z0 from the right, and take a perfect matching D containing
e. Note that D1 and D2 coincide on the strip between z0 and z1. The connected compo-
nent q of D△(D1 ∩ D2) containing e forms an arc starting from the white node w and
ends at either z0 or z1. The node at the intersection of q with z0 or z1 other than w must
be a black, and we will call it b. Then the property in Lemma 4.6 implies that b must be
on z0. For one of the two connected components of z0 \ {b, w}, which we will call q′, the
union q ∪ q′ forms a homologically trivial cycle.

Let us first consider the case when q′ goes from w to b along the direction of z0 as
shown in Figure 4.4. Then we can take a perfect matching D′

2 with D2△D′
2 = q ∪ q′.

The resulting perfect matching D′
2 has the same height change as D2, and the connected

components of D1△D′
2 are zi (i 6= 0) and z′0 := (z0 \ q

′) ∪ q.
We claim that z′0 also has the property in Lemma 4.6. Assume for contradiction that

there is a path p satisfying the conditions in Lemma 4.6 for z′0 as shown in Figure 4.5.
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z0

z1

q

e

q′w b

Figure 4.4: The edge e and the paths q and
q′

z0

z1

p
z′0

r

Figure 4.5: The paths p, r, and z′0

Let r be the part of q starting from the white node w and goes along z′0 until it meets
the white node at p ∩ z′0. Let further p′ be the path obtained by concatenating r and p.
Then p′ satisfies the conditions in Lemma 4.6 for z0, which is a contradiction. Hence z′0
has the property in Lemma 4.6.

In the case where q′ goes from b to w, we can replace D1 by D′
1 with D1△D′

1 = q ∪ q′.
By the same argument as above, one can show that D′

1△D2 = z′0∪
⋃

i 6=0 zi and z′0 has the
property in Lemma 4.6.

Note that z′0 is ‘closer’ to z1 than z0. If z
′
0 is not zigzag at a white node, then we can

repeat the same operation. Since there are only finitely many edges between z0 and z1,
this process terminates in finitely many steps, and one obtains desired perfect matchings
D1 and D2.

So far, we have shown the existence of a connected component zi in D1△D2 which
is zigzag at white nodes. In Lemma 4.8 below, we show that if zi is not zigzag at a
black node by some edge e of G, then we can remove the edge e without changing the
characteristic polygon.

Lemma 4.8. Assume that zi is zigzag at white nodes. If e is an edge connected to a black
node b on zi from the left of zi, then one can remove e without changing the characteristic
polygon.

Proof. It suffices to show that for any perfect matching D containing e, there is another
perfect matching D′ with the same height change as D not containing e. One may assume
that the height change h(D) of D is not on the line segment between h(D1) and h(D2).

Let y be the connected component of D2△D containing e. If y is homologically trivial,
then take the perfect matching D′ such that D′△D = y. The matching D′ has the same
height change as D and does not contain e. Hence we may assume that y is homologically
non-trivial.

Choose a lift b̃ of the node b to the universal cover R2 → T and let z̃i and ỹ be the
lifts of zi and y containing b̃ respectively. Lemmas 4.2 and 4.3 imply 〈zi, y〉 > 0, so that
ỹ first comes from the right of z̃i, intersects z̃i several times, and goes away to the left of
z̃i. Hence there must be a white node w̃ ∈ z̃i ∩ ỹ such that the direction of ỹ is from w̃ to
b̃. We assume w̃ is the nearest to b̃ in the part of ỹ before b̃. Let b and w be the images
on the torus T of b̃ and w̃ respectively.

First we discuss the case when z̃i goes from w̃ to b̃. Figure 4.6 shows the paths y
and zi on the torus T . When we travel from b along y ⊂ D2△D, the next edge e1 is on
zi ⊂ D1△D2, and the direction of y is opposite to that of zi on that edge. Then the next
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zi

y

e

w be1w1wk

Figure 4.6: The case when z̃i goes from w̃ to b̃

node w1 is a white node on y ∩ zi. Since zi is zigzag at white nodes, the path y cannot
escape to the right of zi, and the next edge e2 in y either goes to the left of zi or on the
path zi.

If y goes to the left of zi, then y must eventually intersect zi again since y is an
embedded circle in T . If e2 is on the path zi, then e2 ∈ D1 ∩D and the next edge e3 on
the path y is in D2. By continuing in this way, one sees that y must be contained in the
simply connected open subset U of T bounded by the parts of y and zi between b and w.
This implies that y is homologically trivial, which contradicts our assumption.

zi

y

e

wb w1 b2 w2

c

e1

Figure 4.7: The case when z̃i goes from w̃ to b̃

Hence the path z̃i goes from b̃ to w̃ as shown in Figure 4.7. Let e1 be the edge in D1

incident to the node b. By the definition of zi, the other node w1 of e1 is on the path zi.
Take the edge e2 in D incident to w1. Since zi is zigzag on white nodes, e2 is either on zi
or goes to the left of zi. If e2 is on zi, then let e3 be the edge in D1 incident to the other
node b2 of e2. If e2 goes to the left of zi, then continue e2 along the connected component
y1 of D2△D containing e2. Then y1 must eventually intersect zi at a black node, which
we will call b2. Let e3 be the edge of D1 incident to b2.

By continuing in this way, one can find a path c from b to w which consists of parts
of zi or D2△D. By concatenating y with c, one obtains a homologically trivial path on
G such that every other edge belongs to D. Then the perfect matching D′ such that
D△D′ = y ∪ c has the same height change as D and does not contain e. This concludes
the proof of Lemma 4.8.

Lemma 4.9. Let c1 and c2 be adjacent corners of the characteristic polygon of G. We
can remove some edges from G to obtain a dimer model G′ such that

• the characteristic polygon of G′ coincides with that of G, and

• there are perfect matchings D1 and D2 of G′ such that h(D1) = c1, h(D2) = c2 and
D1△D2 consists of zigzag paths.

Proof. First choose arbitrary perfect matchings with height changes c1 and c2 respectively.
Take a path zi satisfying the property in Lemma 4.6. We may assume i = 0 without loss
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of generality. By Lemma 4.7, we can assume that z0 is zigzag at white nodes by replacing
D1 and D2 if necessary. If z0 is not zigzag at some black node, then one can use Lemma
4.8 to remove the edge e which makes z0 not zigzag at that node. After iterating this
operation finitely many times, we can turn z0 into a zigzag path.

Now the property in Lemma 4.6 holds for z−1, since a path p satisfying the conditions
should be connected to a black node on z0 from the left of z0, which is impossible since
z0 is a zigzag path. Then we can repeat the same process to turn z−1 into a zigzag path.

By successively performing this operation, we can turn all zi into zigzag paths.

Now we can prove Theorem 1.3:

Proof of Theorem 1.3. We can use Lemma 4.9 repeatedly to obtain another dimer model
G′′ such that

• the characteristic polygon of G′′ coincides with that of G, and

• for any pair (c1, c2) of adjacent corners of the characteristic polygon, there are perfect
matchings D1 and D2 of G′′ such that h(D1) = c1, h(D2) = c2 and D1△D2 consists
of zigzag paths.

Zigzag paths constituting D1△D2 for pairs (D1, D2) of adjacent corner perfect matchings
ensure that the zigzag polygon is at least as large as the characteristic polygon. Then
Corollary 1.2 shows that the zigzag polygon and the characteristic polygon of G′′ coincide.
Now we can apply Theorem 1.1 to G′′ to obtain a cancellative dimer model G′, whose
zigzag polygon is the same as that of G′′. Since G′ is cancellative, the characteristic
polygon of G′ coincides with its zigzag polygon, which is the same as the characteristic
polygon of G.

Corollary 1.4 is an immediate consequence of the proof of Theorem 1.3:

Proof of Corollary 1.4. The proof of Lemma 4.7 shows that if the connected component
zi of D1△D2 with the property in Lemma 4.6 is not zigzag at a white node, then at least
one of D1 or D2 has multiplicity. In other words, zi is zigzag at white nodes, if both D1

and D2 are multiplicity-free.
On the other hand, the proof of Lemma 4.8 shows that if a component z of D1△D2

is zigzag at white nodes but not zigzag at a black node by an edge e, then any perfect
matching containing e has a multiplicity. This cannot be the case if the dimer model is
strongly non-degenerate and all the corner perfect matchings are multiplicity-free.

It follows by the argument in Lemma 4.9 that for a strongly non-degenerate dimer
model, the symmetric difference D1△D2 of a pair (D1, D2) of perfect matchings, whose
height changes are adjacent corners of the characteristic polygon, consists of zigzag paths.
This implies that the zigzag polygon is at least as large as (and hence coincides with) the
characteristic polygon, and Corollary 1.4 is proved.
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