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ANALYTICITY FOR SOME DEGENERATE EVOLUTION

EQUATIONS DEFINED ON DOMAINS WITH CORNERS

ANGELA A. ALBANESE, ELISABETTA M. MANGINO

Abstract. We study the analyticity of the semigroups generated by some classes
of degenerate second order differential operators in the space of continuous function
on a domain with corners. These semigroups arise from the theory of dynamics of
populations.

1. Introduction

In this paper we deal with the class of degenerate second order elliptic differential
operators

L = Γ(x)
d∑

i=1

[γi(xi)xi∂
2
xi

+ bi(x)∂xi
], x ∈ Qd = [0,M ]d, (1.1)

where M > 0, Γ, bi and γi, for i = 1, . . . , d, are continuous functions on Qd and on
[0,M ] respectively and b = (b1, . . . , bd) is an inward pointing drift. The operator (1.1)
arises in the theory of Fleming–Viot processes, namely measure–valued processes that
can be viewed as diffusion approximations of empirical processes associated with some
classes of discrete time Markov chains in population genetics. We refer to [21, 22, 25]
for more details on the topic. Recent applications of Fleming-Viot processes to the
study of the volatility-stabilized markets can be found in [32]. From the analytic point
of view, the interest in the operator (1.1) relies on the fact that it is of degenerate
type and its domain presents edges and corners, hence, the classical techniques for the
study of (parabolic) elliptic operators on smooth domains cannot be applied.

In the one-dimensional case, the study of such type of degenerate (parabolic) el-
liptic problems on C([0, 1]) started in the fifties with the papers by Feller [23, 24],
where it is pointed out that the behaviour on the boundary of the diffusion process
associated with the degenerate operator constitutes one of its main characteristics.
The subsequent work of Clément and Timmermans [15] clarified which conditions on
the coefficients of the operator (1.1) guarantee the generation of a C0–semigroup in
C([0, 1]). The problem of the regularity of the generated semigroup in C([0, 1]) has
been considered by several authors, [6, 10, 9, 29, 2]. In particular, Metafune [29] es-
tablished the analyticity of the semigroup under suitable conditions on the coefficients
of the operator, obtaining, among other results, the analyticity of the semigroup gen-
erated by x(1− x)D2 on C([0, 1]), which was a problem left open for a long time. We
refer to [11] for a survey on this topic.

Key words and phrases. Degenerate elliptic second order operator, domain with corners, analytic
C0–semigroup, space of continuous functions.
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The latter result was extended to the multidimensional case in [4], where the authors
proved the analyticity of the semigroup generated by the operator

Au(x) =
1

2

d∑

i,j=1

xi(δij − xj)∂
2
xixj

u(x)

on C(Sd), where Sd is the d-dimensional canonical simplex. On this topic we refer
to the papers [1, 2, 3, 4, 14, 12, 20, 33, 34, 35, 36] and the references quoted therein
(in particular, see the introduction of [4] for a brief survey of the main results on this
operator).

In [13] Cerrai and Clément established Schauder estimates for (1.1) under suitable
Hölder continuity hypothesis on its coefficients. Analogous estimates, but with differ-
ent tecniques, where established in [8] (see also [7]) for the same operator defined on
the orthant R

d
+ and in [18, 19] for similar operators defined on domains with corners.

The aim of this paper is to present some results about generation, sectoriality and
gradient estimates for the resolvent of a suitable realization of (1.1) in C(Qd). To
this end, we start with the analysis in the particular case that the functions bi are
costant and Γ = 1, first in the one-dimensional case and then, via a tensor product
argument, in the multi-dimensional setting. Much attention is paid to the costants
appearing in the analyticity and gradient estimates, showing their uniformity for bi
belonging to an interval [0, B]. These results strongly rely on estimates proved in
[5]. As a consequence, we can treat the case of non-costant drift with a perturbation
argument under the assumption that there exists δ > 0 and C > 0 such that, for every
i = 1, . . . , d and x, x′ ∈ Qd with xi < δ and x′i = 0, we have

|bi(x)− bi(x
′)| ≤ C

√
xi,

Finally we treat the case that Γ is not a costant function, by applying a "freezing co-
efficients" proof. An important role in this argument will be played by the uniformity
of the costants in the resolvent estimates.

As a by-product of the previous results we obtain analogous results for the operator

Γ(x)

d∑

i=1

[γi(xi)xi(1− xi)∂
2
xi

+ bi(x)∂xi
], x ∈ [0, 1]d.

This will be the starting point for a forthcoming paper on the analyticity of Fleming-
Viot type operators defined on the canonical simplex.

1.1. Notation. The function spaces considered in this paper consist of complex–
valued functions.

Let K ⊆ R
d be a compact set. For n ∈ N we denote by Cn(K) the space of all

n–times continuously differentiable functions u on K such that limx→x0
Dαu(x) exists

and is finite for all |α| ≤ n and x0 ∈ ∂K. In particular, C(K) denotes the space of
all continuous functions u on K. The norm on C(K) is the supremum norm and is
denoted by ‖ ‖∞. The norm ‖ ‖n,∞ on Cn(K) is defined by ‖u‖n,∞ =

∑
|α|≤n ‖Dαu‖∞.

Moreover, we denote by C([0,∞]) the Banach space of continuous functions on
[0,∞[ converging at infinity, endowed with the supremum norm || · ||∞. Analogously,
for every n ∈ N, Cn([0,∞]) stands for the space of functions u ∈ C([0,∞]) with
derivatives up to order n that have finite limits at ∞. Finally Cn

c ([0,∞[) denotes the
subspace of Cn([0,∞[) of functions with compact support and C0([0,∞[) denotes the
space of continuous functions on [0,∞[ vanishing at ∞.
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For easy reading, in some cases we will adopt the notation ‖ϕ(x)u‖∞ to still denote
supx∈K |ϕ(x)u(x)|.

For other undefined notation and results on the theory of semigroups we refer to
[17, 28, 31].

In the present paper we will use some results about injective tensor products of
Banach spaces. We refer to [26, 27, 37, 30] for definitions and basic results in this
topic and for related applications.

2. Auxiliary Results

2.1. The one–dimensional case. Let M,B ∈ R with M,B > 0 and let γ ∈
C([0,M ]) be a strictly positive function. Set γ0 := minx∈[0,M ] γ(x) > 0. Let b ∈ [0, B]
and consider the one–dimensional second order differential operator

Lγ,bu(x) = γ(x)xu′′(x) + bu′(x), x ∈ [0,M ]. (2.1)

According to [29, Proposition 3.1] (see also [11]), we define the domain of Lγ,b in the
following way: u ∈ D(Lγ,b) if, and only if, u ∈ C([0,M ])∩C2(]0,M ]), u′(M) = 0 and

lim
x→0+

Lγ,bu(x) = 0 if b = 0, (2.2)

u ∈ C1([0, δ]) and lim
x→0+

xu′′(x) = 0 if b > 0. (2.3)

It is known from [29, 10, 11, 15] that the operator Lγ,b with domain D(Lγ,b) generates
a bounded analytic C0–semigroup (T (t))t≥0 of positive contractions and angle π/2 on
C([0,M ]).

We are here interested in proving estimates for the norm of the resolvent operators
of Lγ,b and of their gradient with constants which depend only on B. In order to do
this we need the following fact.

Remark 2.1. Let B, γ0 > 0. For every b ∈ [0, B] and γ ∈ R, γ ≥ γ0 consider the
one–dimensional second order differential operator

Gγ,bu(x) = γu′′(x) + bu′(x), x ∈ [0,∞), (2.4)

with domain D := {u ∈ C2([0,∞]) : u′(0) = 0} and γ ≥ γ0, b ∈ [0, B]. It is well
known that the operator (Gγ,b,D) generates a bounded analytic semigroup of angle
π/2 in C([0,∞]), see, e.g., [17, Theorem VI.4.3]. In particular, (Gγ,b,D) satisfies the
following properties:

There exists c1, c2, R > 0 depending only on B and on γ0 such that, for every λ ∈ C

with Reλ > R and u ∈ C([0,∞]),

‖R(λ,Gγ,b)‖ ≤ c1
|λ| (2.5)

‖(R(λ,Gγ,b)u)′‖∞ ≤ c2√
|λ|

‖u‖∞. (2.6)

The proof is as follows.
Set G := G1,0. Then, for every λ = |λ|eiθ 6∈ (−∞, 0] with |θ| < π, we have

R(λ,G)u =
1

2µ

∫ ∞

0
e−µ|x−s|u(s) ds+ ce−µx, u ∈ C([0,∞]), (2.7)
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where µ2 = λ with Reµ > 0 and c = 1
2µ

∫∞
0 e−µsu(s) ds, see, e.g., [17, Theorem VI.4.3,

Theorem 4.2]. So, from (2.7) it follows that

‖R(λ,G)‖ ≤ 3

2|λ| cos(θ/2) (2.8)

‖(R(λ,G)u)′‖∞ ≤ 1√
|λ| cos(θ/2)

‖u‖∞, (2.9)

for every λ = |λ|eiθ 6∈ (−∞, 0] with |θ| < π and u ∈ C([0,∞]).
We now consider the operator Gγ,0 with γ ≥ γ0 and observe that

R(λ,Gγ,0) = γ−1R(λ/γ,G), λ ∈ C \ (−∞, 0].

This equality implies via (2.8) and (2.9) that

‖R(λ,Gγ,0)‖ ≤ γ−1 3

2|λ/γ| cos(θ/2) =
3

2|λ| cos(θ/2) (2.10)

‖(R(λ,Gγ,0)u)′‖∞ ≤ γ−1 1√
|λ|/γ cos(θ/2)

‖u‖∞ (2.11)

≤ 1√
γ0|λ| cos(θ/2)

‖u‖∞,

for every λ = |λ|eiθ 6∈ (−∞, 0] with |θ| < π and u ∈ C([0,∞]).
If we set Hbu = bu′ for b ∈ [0, B] and u ∈ C1([0,∞]), then by (2.11) we obtain, for

every λ = |λ|eiθ 6∈ (−∞, 0] with |θ| < π and u ∈ C([0,∞]), that

‖HbR(λ,Gγ,0)u‖∞ ≤ B√
γ0|λ| cos(θ/2)

‖u‖∞. (2.12)

By (2.12), for every λ = |λ|eiθ with |θ| < π/2 and |λ| > R = 8B2/γ0 and b ∈ [0, B], the
operator HbR(λ,Gγ,0) has norm < 1/2 and so the operator Sb(λ) := I−HbR(λ,Gγ,0)
is invertible with inverse

(Sb(λ))
−1 =

∞∑

n=1

[HbR(λ,Gγ,0)]n (2.13)

so that ‖(Sb(λ))−1‖ ≤ 2. This estimate, combined with the identity λ − Gγ,b =
λ − Gγ,0 − Hb = [I − HbR(λ,Gγ,0)](λ − Gγ,0) implies, for every λ = |λ|eiθ with
|θ| < π/2 and |λ| > R = 8B2/γ0 and b ∈ [0, B], that

R(λ,Gγ,b) = R(λ,Gγ,0)(Sb(λ))
−1. (2.14)

So, by (2.10), (2.11) and (2.14) we obtain, for every λ = |λ|eiθ with |θ| < π/2,
|λ| > R = 8B2/γ0, u ∈ C([0,∞]) and b ∈ [0, B], that

‖R(λ,Gγ,b)‖ ≤ 3

|λ| cos(θ/2) (2.15)

‖(R(λ,Gγ,b)u)′‖∞ ≤ 2√
γ0|λ| cos(θ/2)

‖u‖∞. (2.16)

�

Proposition 2.2. Let B,M > 0 and let γ ∈ C([0,M ]) be a strictly positive function
with γ0 := minx∈[0,M ] γ(x). Then, for every b ∈ [0, B], the following properties hold.
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(1) There exist d0 = d0(B, γ), R = R(B, γ) > 0 such that, for every u ∈ C([0,M ])
and for every λ ∈ C with Reλ > R, we have

||R(λ,Lγ,b)u||∞ ≤ d0
||u||∞
|λ| , (2.17)

||
√
x(R(λ,Lγ,b)u)′||∞ ≤ d0

||u||∞√
|λ|

. (2.18)

Moreover, limx→0+
√
x(R(λ,Lγ,b)u)′(x) = 0. In particular,

√
x(R(λ,Lγ,b)u)′

extends continuously to [0,M ].
(2) If (T (t))t≥0 is the semigroup generated by (Lγ,b,D(Lγ,b)), then there exist K =

K(B, γ), α = α(B, γ) > 0 such that, for every u ∈ C([0,M ]), we have

||tLγ,bT (t)|| ≤ Keαt, t ≥ 0 (2.19)

||
√
x(T (t)u)′||∞ ≤ Keαt√

t
||u||∞, 0 < t < R−1, (2.20)

||
√
x(T (t)u)′||∞ ≤ Keαt||u||∞, t ≥ R−1, (2.21)

where R is the same constant which appears in part (1).
Moreover, limx→0+

√
x(T (t)u)′(x) = 0 if t > 0. In particular,

√
x(T (t)u)′

extends continuously to [0,M ] if t > 0.

Proof. W.l.o.g. we may assume M = 1.
(1) For each n ∈ N and i ∈ {1, . . . , n − 1} set Iin =

[
i−1
n , i+1

n

]
and let {ϕi

n}n−1
i=1 ⊂

C∞(R) such that
∑n−1

i=1 (ϕ
i
n)

2 ≡ 1 on [0, 1], supp(ϕi
n) ⊂

[
i−1
n , i+1

n

]
for i = 2, . . . , n− 2,

supp(ϕ1
n) ⊂

]
−∞, 2n

]
and supp(ϕn−1

n ) ⊂
[
n−2
n ,∞

[
. Observe that if v =

∑n−1
i=1 viϕ

i
n

with vi ∈ C([0, 1]) for i = 1, . . . , n, then

||v||∞ ≤ 3 sup
i=1,...,n−1

||vi||∞. (2.22)

For every i ∈ {1, . . . , n− 2} we consider the operators

Li
nu = γ

(
i

n

)
xu′′(x) + bu′(x), u ∈ D(Li

n),

with domain D(Li
n) defined as follows: if b = 0

D(Li
n) = {u ∈ C([0,∞]) ∩ C2(]0,∞[) | lim

x→0+
Li
nu(x) = 0; lim

x→+∞
Li
nu(x) = 0},

if b > 0

D(Li
n) = {u ∈ C1([0,∞[)∩C2(]0,∞[)∩C([0,∞]) | lim

x→0+
xu′′(x) = 0, lim

x→+∞
Li
nu(x) = 0}.

For i = n− 1 we consider the operator

Ln−1
n u = γ

(
n− 1

n

)
u′′(x) + bu′(x), u ∈ D(Ln−1

n ),

with domain
D(Ln−1

n ) = {u ∈ C2([−∞, 1]) | u′(1) = 0}.
By [5, Corollary 4.2] and Remark 2.1, there exists d1 = d1(B, γ0) > 0, R = R(B, γ0) >
0 such that, for every λ ∈ C with Reλ > R, we have

||R(λ,Li
n)|| ≤

d1
|λ| , n ∈ N, i = 1, . . . , n− 1. (2.23)



6 A.A. Albanese, E. M. Mangino

Fix λ ∈ C, with Reλ > R. For each n ∈ N let Sn(λ) : C([0, 1]) → C([0, 1]) be the
operator defined by

Sn(λ)f =

n−1∑

i=1

ϕi
nR(λ,L

i
n)(ϕ

i
nf), f ∈ C([0, 1]).

By (2.22) and (2.23) we get, for every n ∈ N, that

||Sn(λ)f ||∞ ≤ 3 sup
i=1,...,n−1

||R(λ,Li
n)(ϕ

i
nf)|| ≤

3d1
|λ| ||f ||∞, f ∈ C([0, 1]).

Since R(λ,Li
n)(ϕ

i
nf) ∈ D(Li

n) for every i = 1, . . . , n − 1 and f ∈ C([0, 1]), ϕn−1
n ≡ 0

and ϕn−1
n ≡ 1 in an neighbourhood of 0 and in an neighbourhood of 1 respectively, we

have ϕi
nR(λ,L

i
n)(ϕ

i
nf) ∈ D(Lγ,b) and so we can consider (λ−Lγ,b)(Sn(λ)f) for every

f ∈ C([0, 1]). In particular, a straightforward calculation gives

(λ− Lγ,b)(Sn(λ)f) = f +

n−1∑

i=1

ϕi
n(L

i
n − Lγ,b)R(λ,Li

n)(ϕ
i
nf)

−
n−1∑

i=1

Lγ,b(ϕi
n)R(λ,L

i
n)(ϕ

i
nf)− 2γ(x)

n−1∑

i=1

(ϕi
n)

′x(R(λ,Li
n)(ϕ

i
nf))

′

= f + Cn
1 (λ)f + Cn

2 (λ)f +Cn
3 (λ)f, f ∈ C([0, 1]), n ∈ N.

Applying again (2.22) and (2.23) we obtain

||Cn
2 (λ)f ||∞ ≤ 3||f ||∞

d1
|λ| sup

i=1,...,n−1
||Lγ,b(ϕi

n)||∞, f ∈ C([0, 1]), n ∈ N. (2.24)

On the other hand, by [5, Proposition 5.1(2)], Remark 2.1 and (2.22), there exists
d2 = d2(B, γ0) > 0 such that

||Cn
3 (λ)f ||∞ ≤ 3d2||γ||∞ sup

i=1,...,n−1
||(ϕi

n)
′||∞

||f ||∞√
|λ|

, f ∈ C([0, 1]), n ∈ N. (2.25)

In order to estimate ||Cn
1 (λ)||, we observe, for every n ∈ N, that

ϕi
n(L

i
n − Lγ,b)R(λ,Li

n)(ϕ
i
nf) =

=

{
ϕi
n

[
γ
(
i
n

)
− γ(x)

]
x(R(λ,Li

n)(ϕ
i
nf))

′′(x) if i = 1, . . . , n− 2,
ϕn−1
n

[
γ
(
n−1
n

)
− γ(x)x

]
(R(λ,Ln−1

n )(ϕn−1
n f))′′(x) if i = n− 1.

Fixed ε > 0, we now choose δ > 0 so that |γ(x) − γ(y)| < ε if |x − y| < δ and that
|γ(x) − γ(y)| + Γ0|1 − x| < ε if x, y ∈ [1 − δ, 1], where Γ0 := maxx∈[0,1] γ(x). If we

take n ∈ N such that 2
n < δ, then we have that |γ(x) − γ( i

n)| < ε if x ∈ Iin and

i ∈ {1, . . . , n − 2} and that |γ
(
n−1
n

)
− γ(x)x| < ε if x ∈ In−1

n . So, it follows from [5,
Proposition 5.1(2)], Remark 2.1 and (2.22) that

||Cn
1 (λ)f ||∞ ≤ 3ε

1

γ0

(
1 + d1 +B

d1
|λ|

)
||f ||∞, f ∈ C([0, 1]). (2.26)

Therefore, combining (2.24), (2.25) and (2.26), we obtain

||Cn
1 (λ)||+ ||Cn

2 (λ)||+ ||Cn
3 (λ)|| ≤

d1
|λ| sup

i=1,...,n−1
||Lγ,b(ϕi

n)||∞ +

+3d2||γ||∞ sup
i=1,...,n−1

||(ϕi
n)

′||∞
1√
|λ|

+ 3ε
1

γ0

(
1 + d1 +B

d1
|λ|

)
.
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Now, let ε > 0 be small enough that 3ε1+d1
γ0

< 1/4 and R′ > R such that

d1
|λ| sup

i=1,...,n−1
||L(ϕi

n)||∞ + 3d2||γ||∞ sup
i=1,...,n−1

||(ϕi
n)

′||∞
1√
|λ|

+B
d1
|λ| <

1

4

for every λ ∈ C \ [0,+∞) with |λ| ≥ R′ (in particular, with Reλ > R′). So, R′ =
R′(γ0, B). Since

‖Cn
1 (λ) + Cn

2 (λ) + Cn
3 (λ)‖ < 1/2,

the operator B(λ) = (λ − Lγ,b)Sn(λ) is invertible in C([0, 1]) with ‖(B(λ))−1‖ ≤ 2.
So, for every λ ∈ C with Reλ > R′, we have R(λ,Lγ,b) = Sn(λ)B(λ)−1 and

‖R(λ,Lγ,b)‖ ≤ 6d1
|λ| . (2.27)

Fixed λ ∈ C with Reλ > R′, it follows via [5, Proposition 5.1(2)], Remark 2.1 and
(2.22) that, for every u ∈ C([0, 1]), we have

||
√
x(R(λ,Lγ,b)u)′|| = ||

√
x(Sn(λ)B(λ)−1u)′||

≤ ||
n−1∑

i=1

(ϕi
n)

′R(λ,Li
n)(ϕ

i
nB(λ)−1u)||∞ + ||

n−1∑

i=1

ϕi
n

√
x[R(λ,Li

n)(ϕ
i
nB(λ)−1u)]′||∞

≤
(
18nd1 supi=1,...,n−1 ||(ϕi

n)
′||∞

|λ| +
3nd2 supi=1,...,n−1 ||ϕi

n||∞√
|λ|

)
||u||∞.

If we choose d0 = max{18nd1 supi=1,...,n ||(ϕi
n)

′||∞ + 3nd2 supi=1,...,n−1 ||ϕi
n||∞, 6d1},

then the thesis now follows. We also have

lim
x→0+

√
x(R(λ,Lγ,b)u)′(x) = lim

x→0

√
x

(
n−1∑

i=1

(ϕi
n)

′R(λ,Li
n)(ϕ

i
nB(λ)−1u)+

+
n−1∑

i=1

(ϕi
n)

′R(λ,Li
n)(ϕ

i
nB(λ)−1u)′

)
= 0,

by [5, Propositions 5.1(2) and 5.2] and Remark 2.1.
(2) Since the resolvent operators of Lγ,b satisfy the part (1) of this proposition, we

can apply [28, Proposition 2.1.11] to conclude that, for every λ ∈ C with λ 6= R and
|arg (λ−R)| < π − arctan d0, we have

‖R(λ,Lγ,b)‖ ≤ d̃0
|λ−R| ,

where d̃0 = 2d0(1/(4d
2
0)+1)−1/2. Then there exist K = K(B, γ) > 0 and α = α(B, γ)

such that

||t(Lγ,b − α)T (t)|| ≤ Keαt, t ≥ 0

(see, f.i., [28, Proposition 2.1.1] and also the estimates in the relative proof). Since
(T (t))t≥0 contractive, it follows that

||tLT (t)|| ≤ (K + 1)eαt, t ≥ 0.

Finally, if u ∈ D(Lγ,b), then part (1) of this proposition ensures that, for every λ ∈ R,
λ > R, we have

||
√
xu′||∞ ≤ d0√

λ
||λu− Lγ,bu||∞.
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As the semigroup (T (t))t≥0 is analytic and hence, T (t)f ∈ D(Lγ,b) for every f ∈ C[0, 1]
and t > 0, it follows that

||
√
x(T (t)f)′||∞ ≤ d0√

λ
||λT (t)f − Lγ,bT (t)f ||∞ ≤

(
d0
√
λ+

d0Ke
αt

t
√
λ

)
||f ||∞,

for every f ∈ C[0, 1] and t > 0. So, if we choose λ = t−1 for every t < R−1 and λ = R+
1 for every t ≥ R−1, then we get the assertion. Moreover, limx→0+

√
x(T (t)f(x))′ = 0,

for t > 0. Indeed, this property holds for every u ∈ D(Lγ,b) by part (1) of this
proposition. �

Remark 2.3. Since the operator (Lγ,b,D(Lγ,b)) generates a bounded analytic C0–
semigroup (T (t))t≥0 of positive contractions and angle π/2 on C([0,M ]), for every
θ ∈ (π/2, π) there exists M0 =M0(θ) > 0 such that ‖R(λ,Lγ,b)‖ ≤M0/|λ| for all λ ∈
C \ {0} with |arg(λ)| < θ. Moreover, there exists M1 > 0 such that ‖tLγ,bT (t)‖ ≤M1

for every t ≥ 0. But, the constants M0 and M1 can depend on the functions b and γ.

Corollary 2.4. Let B,M > 0 and let γ ∈ C([0,M ]) be a strictly positive function.
Then there exist ε > 0, C > 0 and D > 0 depending only on B and γ such that, for
every 0 < ε < ε, b ∈ [0,M ] and u ∈ D(Lγ,b), we have

‖
√
xu′‖∞ ≤ C

ε
‖u‖∞ +Dε‖Lγ,bu‖∞.

Proof. Fix u ∈ D(Lγ,b) and λ ∈ C with Reλ > R, where R is the costant which appears
in Proposition 2.2(1). Then there exists v ∈ C([0,M ]) such that R(λ,Lγ,b)v = u and
hence, by Propositon 2.2, we have that

‖
√
xu′‖∞ = ‖

√
x(R(λ,Lγ,b)v)′‖∞ ≤ d0√

|λ|
‖λu− Lγ,bu‖∞

≤ d0

(
√

|λ|‖u‖∞ +
1√
|λ|

‖Lγ,bu‖∞
)
, (2.28)

where d0 depends only on B and γ. Now, the assertion follows from (2.28) and from

Proposition 2.2(1) by choosing ε = R−1 and, for 0 < ε < ε,
√

|λ| = 1/ε. �

Set C2
⋄ ([0,M ]) = {u ∈ C2([0,M ]) : u′(M) = 0}. Then

Proposition 2.5. Let b ≥ 0 and let γ ∈ C([0,M ]) be a strictly positive function.
Then the space C2

⋄ ([0,M ]) is a core for the operator Lγ,b with domain D(Lγ,b) defined
according to (2.2) if b = 0 or to (2.3) if b > 0.

Proof. The assertion follows with the same argument of Proposition 3.1 in [5], with
some minor chages. �

Remark 2.6. The inclusion (D(Lγ,b), ‖ ‖Lγ,b) →֒ C([0,M ]) is compact (here, ‖ ‖Lγ,b

denotes the graph norm), see [29, Theorem 4.1] or [10, Lemma 3.2]. So (Lγ,b,D(Lγ,b))
has compact resolvent, [17, Proposition 4.25]. Since (Lγ,b,D(Lγ,b)) generates a bounded
analytic C0–semigroup (T (t))t≥0 on C([0,M ]) (and hence, a norm continuous C0–
semigroup) and has compact resolvent, (T (t))t≥0 is also compact, [17, Theorem 4.29].
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3. The d-dimensional case with constant drift term

Set Qd = [0,M ]d and, for each i = 1, . . . , d, define ∂(Qd)i := {x ∈ Qd | xi = 0}
and ∂(Qd)i := {x ∈ Qd | xi = M}. Let B > 0 and fix b = (b1, b2, . . . , bd) ∈ [0, B]d

and γ = (γ1, γ2, . . . , γd) ∈ C([0,M ])d, with each γi strictly positive.
For each i ∈ {1, . . . , d} set Lγi,bi = γi(xi)xi∂

2
xi
+bi∂xi

, with domain D(Lγi,bi) defined
according to (2.2) if bi = 0 or to (2.3) if bi > 0.

We know that each operator (Lγi,bi ,D(Lγi,bi)) generates a bounded analytic com-
pact C0-semigroup (Ti(t))t≥0 of positive contractions and of angle π/2 in C([0,M ]).

So, the injective tensor product (T (t))t≥0 = (⊗̂d
ǫ,i=1Ti(t))t≥0 is also a bounded ana-

lytic compact C0-semigroup of positive contractions and of angle π/2 in C([0,M ]d) =
⊗̂d,ǫC([0,M ]), see [30, Proposition, p.23, and p.24], [13, Appendix A] (see also [4,

§2.2]). In particular, the infinitesimal generator (Lγ,b,D(Lγ,b)) of (T (t))t≥0 is the
closure of the operator

Lγ,b =
d∑

i=1

Lγi,bi ⊗
(
⊗j 6=iIxj

)
, (3.1)

with domain ⊗d
i=1D(Lγi,bi), where Ixj

denote the identity map acting in C([0,M ])

with respect to the variable xj . Clearly, for every u ∈ ⊗d
i=1D(Lγi,bi), we have

Lγ,bu(x) =

d∑

i=1

γi(xi)xi∂
2
xi
u+ bi∂xi

u.

Moreover, if we define C2
⋄ (Q

d) = ∩d
i=1{u ∈ C2(Qd) : ∀x ∈ ∂(Qd)i ∂xi

u(x) = 0} (such
a space is a Banach space when endowed with the supremum norm ‖ ‖2,∞), then the
following holds.

Proposition 3.1. Let b = (b1, b2, . . . , bd) ∈ [0,∞[d and γ = (γ1, γ2, . . . , γd), with each
γi a strictly positive continuous function on [0,M ]. Then the space C2

⋄ (Q
d) is a core

for the operator (Lγ,b,D(Lγ,b)).

Proof. By Proposition 2.5 the space C2
⋄ ([0,M ]) is a core for the one–dimensional

operator (Lγi,bi ,D(Lγi,bi)) for every i = 1, . . . , d. So, ⊗d
i=1C

2
⋄ ([0,M ]) is a core for the

operator (Lγ,b,D(Lγ,b)). On the other hand, it is known that ⊗d
i=1C

2
⋄ ([0,M ]) is dense

in C2
⋄ (Q

d) with respect to the C2-norm which is clearly stronger than the graph-norm
of Lγ,b. So, it follows that C2

⋄(Q
d) is a subspace of the domain of the closure of Lγ,b

and is dense therein with respect to the graph norm. �

We now prove that the operator (Lγ,b,D(Lγ,b)) also shares similar gradient esti-
mates with the analogous one–dimensional operator.

Proposition 3.2. Let B > 0 and γ = (γ1, γ2, . . . , γd) ∈ (C([0,M ]))d, with each γi
strictly positive. Then, for every b ∈ [0, B]d, the following properties hold.

(1) There exist K,α, t > 0 depending on B and on γ such that, for every u ∈
C(Qd) and i = 1, . . . , d, we have

||tLγ,bT (t)|| ≤ Keαt, t ≥ 0. (3.2)

||√xi∂xi
(T (t)u)||∞ ≤ Keαt√

t
||u||∞, 0 < t < t. (3.3)

||√xi∂xi
(T (t)u)||∞ ≤ Keαt||u||∞, t ≥ t. (3.4)
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Moreover, for every i ∈ {1, . . . , d} and u ∈ C(Qd),
√
xi∂xi

(T (t)u) ∈ C(Qd)
and

lim
xi→0+

sup
xj∈[0,M ],j∈{1,...,d}\{i}

√
xi∂xi

(T (t)u) = 0. (3.5)

(2) There exist d1, d2, R > 0 depending on B and on γ such that, for every λ ∈ C

with Reλ > R , u ∈ C(Qd) and i = 1, . . . , d, we have

||R(λ,Lγ,b)u||∞ ≤ d1
||u||∞
|λ| , (3.6)

||√xi∂xi
(R(λ,Lγ,b)u)||∞ ≤ d2

||u||∞√
|λ|

. (3.7)

Moreover, for every i ∈ {1, . . . , d} and u ∈ C(Qd),
√
xi∂xi

(R(λ,Lγ,b)u) ∈
C(Qd) and

lim
xi→0+

sup
xj∈[0,M ],j∈{1,...,d}\{i}

√
xi∂xi

(R(λ,Lγ,b)u)(x) = 0. (3.8)

(3) There exist C,D, ε > 0 depending on B and on γ such that, for every 0 < ε <
ε, i = 1, . . . , d and u ∈ D(Lγ,b), we have

‖√xi∂xi
u‖∞ ≤ C

ε
‖u‖∞ +Dε‖Lγ,bu‖∞.

Proof. (1) By Proposition 2.2(2) there exists t,K, α > 0 depending on B and γi such
that the operators

√
xi∂xi

Ti(t), for i = 1, . . . , d, are bounded on C([0,M ]) with norm

less or equal to Keαt/
√
t if 0 < t < t and to Keαt if t ≥ t. Then the operators

√
xi∂xi

T (t) = T1(t)⊗̂ε . . . ⊗̂ε(
√
xi∂xi

Ti(t))⊗̂ε . . . ⊗̂εTd(t), i = 1, . . . , d,

are also bounded on C(Qd) with norm less or equal to Keαt/
√
t if 0 < t < t or to

Keαt if t ≥ t, [26] (see also [13, Appendix A] or [4, §2.2]). So, inequalities (3.3)
and (3.4) are satisfied. In particular, for every u ∈ C(Qd) and i = 1, . . . , d we have√
xi∂xi

T (t)u ∈ C(Qd).

Moreover, again by Proposition 2.2(2) we have that ‖tLγi,biTi(t)‖ ≤ Keαt for every
t ≥ 0. Then, via (3.1) the linear operators

tLγ,bT (t) =

d∑

i=1

tLγi,biTi(t)⊗ (⊗j 6=iTj(t))

are bounded on ⊗d
i=1C([0,M ]) with norm less or equal to dKeαt for every t ≥ 0. So,

(3.2) is satisfied on ⊗d
i=1C([0,M ]). By the density of ⊗d

i=1C([0,M ]) in C(Qd) and
the continuity of the linear operators tLγ,bT (t) in C(Qd) (recall that (T (t))t≥0 is an
analytic C0–semigroup in C(Qd)) it follows that (3.2) is satisfied.

Finally, if u ∈ ⊗d
i=1C([0,M ]), then (3.5) is clearly satisfied by Proposition 2.2(2).

The density of ⊗d
i=1C([0,M ]) in C(Qd) and the continuity of the linear operators√

xi∂xi
T (t) in C(Qd) imply that (3.5) is valid for every u ∈ C(Qd).

(2) By [28, Proposition 2.1.1] and (3.2) there exists d1 = d1(B, γ) > 0 such that,
for every λ ∈ C, with Reλ > α and u ∈ C(Qd), we have

||R(λ,Lγ,b)u||∞ ≤ d1
||u||∞
|λ− α| .
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It follows, for every λ ∈ C with Reλ > 2α and u ∈ C(Qd), that

||R(λ,Lγ,b)u||∞ ≤ 2d1
||u||∞
|λ| ,

i.e., (3.6) is satisfied.
Now, by (3.3) and (3.4) we can derivate under the sign of integral and so we obtain,

for every η > α, u ∈ C(Qd), x ∈ Qd and i = 1, . . . , d, that

√
xi∂xi

(∫ +∞

0
e−ηtT (t)udt

)
=

∫ ∞

0
e−ηt√xi∂xi

(T (t)u)dt,

and hence, that

√
xi∂xi

(R(λ,Lγ,b)u) =

∫ ∞

0
e−ηt√xi∂xi

(T (t)u)dt. (3.9)

By (3.3) and (3.4) it follows from (3.9) that
√
xi∂xi

(R(λ,Lγ,b)u) ∈ C(Qd). Moreover,
by applying Lebesgue domination theorem and (3.5) in (3.9) we deduce that (3.8) is
valid.

The proof of (3.7) follows, with minor changes, as in the proof of [4, Propositions
2.1(3)].

(3) It follows as in the proof of Corollary 2.4. �

4. Main Results

We are here first concerned with the following d–dimensional second order elliptic
differential operator

L = Γ(x)

d∑

i=1

[γi(xi)xi∂
2
xi

+ bi(x)∂xi
], x ∈ Qd = [0,M ]d, (4.1)

where M > 0, Γ, bi and γi, for i = 1, . . . , d, are continuous functions on Qd and on
[0,M ] respectively. We assume that

Hypotheses 4.1. The coefficients Γ, γi and bi, for i = 1, . . . , d, are continuous
functions satisfying the following conditions.

(i) The functions Γ and γi, for i = 1, . . . , d, are strictly positive on Qd and on
[0,M ] respectively.

(ii) Let b(x) = (b1(x), . . . , bd(x)) for x ∈ Qd. Then 〈b(x), ν(x)〉 ≥ 0 for every
x ∈ ∂Qd

0, where ∂Qd
0 = ∪d

i=1{x ∈ Qd : xi = 0} and ν denotes the unit inward
normal at ∂Qd.

In the sequel we denote by L0 the operator defined according to (4.1) with b(x) = 0
and Γ(x) = 1 for x ∈ Qd. Moreover, for each i = 1, . . . , d, we denote by Si : C(Qd) →
C(∂(Qd)i) (by Si : C(Qd) → C(∂(Qd)i), resp.) the usual restriction map defined by
setting (Siu)(x) = u(x) for x ∈ ∂(Qd)i ((Siu)(x) = u(x) for x ∈ ∂(Qd)i, resp.),
where the sets ∂(Qd)i and ∂(Qd)i are defined as in §3. It is easy to verify that
Si(C

k(Qd)) ⊆ Ck(∂(Qd
0)i) (that Si(Ck(Qd)) ⊆ Ck(∂(Qd)i), resp.) for every k ∈ N0.

Lemma 4.2. Suppose Hypotheses 4.1 are fulfilled. If u ∈ C2
⋄ (Q

d) and x0 ∈ Qd is a
point where u achieves its minimum, then

L0u(x0) ≥ 0, 〈b(x0),∇u(x0)〉 ≥ 0. (4.2)
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Proof. To prove (4.2) we proceed by induction on the space dimension d. Suppose
d = 1. If x0 ∈ (0,M), then (4.2) is clearly satisfied. Otherwise, if x0 = 0 then we have
L0u(0) = 0. Moreover, as u′(0) is necessarily non negative and b(0) ≥ 0 by Hypothesis
4.1(ii), we have b(0)u′(0) ≥ 0. Finally, if x0 = M then u′(M) = 0. This implies that
u′′(M) ≥ 0. Otherwise, u′(M) = 0 and u′′(M) < 0 ensures that u′ > 0 in (1 − r, 1)
for some r > 0 and hence, x0 = M cannot be a point of minimum. So, also in this
case we have L0u(M) ≥ 0 and b(M)u′(M) = 0.

Next, suppose that (4.2) holds for some d − 1 ≥ 1. If x0 ∈
◦

Qd, then (4.2) is
clearly satisfied. Otherwise, if x0 ∈ ∂Qd, then either x0,i = 0 or x0,i = M for some
i ∈ {1, . . . , d}.

Suppose x0 ∈ ∂(Qd)i. By Hypothesis 4.1(ii) we have bi(x) ≥ 0 for x ∈ ∂(Qd)i. On
the other hand, as x0 ∈ ∂(Qd)i is a minimum point for u, t0 = 0 is a minimum point
for the function ϕ : [0,M ] → R defined by ϕ(t) := u(x0+ tei) for t ∈ [0,M ] and hence,
∂xi
u(x0) = ϕ′(0) ≥ 0. So, bi(x0)∂xi

u(x0) ≥ 0. This implies that

〈b(x0),∇u(x0)〉 = bi(x0)∂xi
u(x0) +

d∑

j=1,j 6=i

bj(x0)∂xj
u(x0)

≥
d∑

j=1,j 6=i

bj(x0)∂xj
u(x0). (4.3)

On the other hand, if we set bi = (bj)
d
j=1,j 6=i then we have

d∑

j=1,j 6=i

bj(x)∂xj
u(x) =

d∑

j=1,j 6=i

bj(x)∂xj
(Siu)(x) = 〈bi(x),∇(Siu)(x)〉, x ∈ ∂(Qd)i.

This, together with (4.3), implies that

〈b(x0),∇u(x0)〉 ≥ 〈bi(x0),∇(Siu)(x0)〉. (4.4)

Moreover, for every x ∈ ∂(Qd)i we have

L0u(x) =

d∑

j=1,j 6=i

γj(x)xj∂
2
xj
u(x) = (L0)|∂(Qd)i(Siu)(x). (4.5)

Next, we observe that Siu ∈ C2
⋄ (∂(Q

d)i). Also, the operator (L0)|∂(Qd)i and the vector

bi satisfy the same hypotheses of this lemma on ∂(Qd)i and x0 is a minimum point
for Siu on ∂(Qd)i. So, we may apply the inductive hypothesis to conclude that

(L0)|∂(Qd)i(Siu)(x0) ≥ 0, 〈bi(x0),∇(Siu)(x0)〉 ≥ 0.

By (4.4) and (4.5) this implies that

L0u(x0) ≥ 0, 〈b(x0),∇u(x0)〉 ≥ 0,

and hence, the proof of the first part is complete.
Suppose that x0 ∈ ∂(Qd)i. Then ∂xi

u(x0) = 0 and hence, ∂2xi
u(x0) ≥ 0 as it is easy

to prove argumenting as above when d = 1. It follows that

〈b(x0),∇u(x0)〉 =
d∑

j=1,j 6=i

bj(x0)∂xj
u(x0) = 〈bi(x0),∇(Siu)(x0)〉, (4.6)
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and

L0u(x0) =

d∑

j=1

γj(x0)xj∂
2
xj
u(x0) ≥

d∑

j=1,j 6=i

γj(x0)xj∂
2
xj
u(x0) = (L0)|∂(Qd)i(S

iu)(x0).

(4.7)
Now, we observe that Siu ∈ C2

⋄ (∂(Q
d)i). Also, the operator (L0)|∂(Qd)i and the vector

bi satisfy the same hypotheses of this lemma on ∂(Qd)i and x0 is a minimum point
for Siu on ∂(Qd)i. So, we may apply the inductive hypothesis to conclude that

(L0)|∂(Qd)i(S
iu)(x0) ≥ 0, 〈bi(x0),∇(Siu)(x0)〉 ≥ 0.

By (4.6) and (4.7) this implies that

L0u(x0) ≥ 0, 〈b(x0),∇u(x0)〉 ≥ 0.

Hence, the proof is complete. �

As an immediate consequence of Lemma 4.2 we obtain that the operator (L,C2
⋄ (Q

d))
satisfies the following maximum principle.

Corollary 4.3. Suppose Hypotheses 4.1 are fulfilled. If u ∈ C2
⋄ (Q

d) satisfies the
following inequality

λu(x)− Lu(x) ≥ 0, x ∈ Qd, (4.8)

for some λ > 0, then u(x) ≥ 0 for every x ∈ Qd.
In particular, the operator (L,C2

⋄ (Q
d)) is dissipative and closable in C(Qd), with

dissipative closure.

Proof. Suppose that u ∈ C2
⋄ (Q

d) is such that (4.8) holds but, u(x) < 0 for some
x ∈ Qd. Let u(x0) = minx∈Qd u(x). Then u(x0) ≤ u(x) < 0. So, by (4.2) we have
L0u(x0) ≥ 0 and 〈b(x0),∇u(x0)〉 ≥ 0. This implies that Lu(x0) = Γ(x0)[L0u(x0) +
〈b(x0),∇u(x0)〉] ≥ 0 and hence,

λu(x0)− Lu(x0) ≤ λu(x0) < 0;

this is a contradiction. So, the first part of corollary follows.
Fix u ∈ C2

⋄ (Q
d). By Lemma 4.2 we may assume that 0 < u(x0) = ‖u‖∞ for some

x0 ∈ Qd. So, again by Lemma 4.2 we have

‖µu‖∞ = µu(x0) ≤ µu(x0)− Lu(x0) ≤ ‖(µ − L)u‖∞
for every µ > 0. This means that the operator (L,C2

⋄ (Q
d)) is dissipative.

On the other hand, C2
⋄ (Q

d) is dense in C(Qd). As (L,C2
⋄ (Q

d)) is dissipative with
dense domain, it follows that the operator (L,C2

⋄ (Q
d)) is dissipative and closable in

C(Qd), with dissipative closure. �

Remark 4.4. Let (bi)
d
i=1 ⊆ C(Qd) with bi(x) = 0 for every x ∈ ∂(Qd)i and i =

1, . . . , d. Let B :=
∑d

i=1 bi(x)∂xi
be the first order differential operator with domain

C1
⋄ (Q

d) := ∩d
i=1{u ∈ C1(Qd) : ∀x ∈ ∂(Qd)i ∂xi

u(x) = 0}. Then Bu(x0) = 0 whenever
u ∈ C1

⋄ (Q
d) and x0 ∈ Qd is a point in which u achieves its minimum. The proof of this

fact is along the lines of the one of Lemma 4.2 but simpler. So, via similar arguments
to Corollary 4.3, we may conclude that the operator (B,C1

⋄ (Q
d)) is dissipative and

closable in C(Qd) with dissipative closure.

To show the first main result of this paper we need a further hypothesis.

Hypothesis 4.5. The coefficients bi, for i = 1, . . . , d, satisfy the following condition.
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(iii) There exists δ > 0 and C > 0 such that, for every i = 1, . . . , d and x, x′ ∈ Qd

with xi < δ and x′i = 0, we have

|bi(x)− bi(x
′)| ≤ C

√
xi, (4.9)

Remark 4.6. (a) Hypothesis 4.5 implies, for each i = 1, . . . , d, that the function bi
is constant on the face ∂(Qd)i, namely bi(x) = bi(0) for every x ∈ ∂(Qd)i.

(b) Under Hypothesis 4.5, the continuity of each bi on Qd yields that there exists a
new constant C ′ > 0 such that

|bi(x)− bi(x
′)| ≤ C ′√xi,

for every x, x′ ∈ Qd with x′i = 0 and i = 1, . . . , d.

Theorem 4.7. Suppose that Hypotheses 4.1 and 4.5, with Γ ≡ 1 on Qd, are valid.
Set b = (b1(0), b2(0), . . . , bd(0)), γ = (γ1, γ2, . . . , γd) and denote by (Lγ,b,D(Lγ,b)) the
differential operator with constant drift term defined according to §3. Then the closure
(L,D(L)) of the operator (L,C2

⋄ (Q
d)) satisfies the following properties.

(1) D(Lγ,b) = D(L).
(2) (L,D(L)) generates a bounded analytic C0–semigroup (T (t))t≥0 of positive

contractions in C(Qd) and of angle π/2. The semigroup (T (t))t≥0 is com-
pact.

Proof. (1) We first show that D(Lγ,b) ⊆ D(L). The converse inclusion follows after
proving part (2) of this theorem.

Fix any f ∈ D(Lγ,b). By Proposition 3.1 there exists (fn)n ⊆ C2
⋄ (Q

d) such that
fn → f and Lγ,bfn → Lγ,bf in C(Qd) as n→ ∞. Now, we observe that by Proposition
3.2(3) we have
√
xi|∂xi

(fn(x)−fm(x))| ≤ a‖fn−fm‖∞+b‖Lγ,b(fn−fm)‖∞, i = 1, . . . , d, n, m ∈ N,

for some positive constants a, b. So, for each i ∈ {1, . . . , d}, it follows that (
√
xi∂xi

fn)n
is a Cauchy sequence in C(Qd). On the other hand, Hypothesis 4.5 and Remark 4.6(b)
yield that

|bi(x)−bi(0)||∂xi
(fn(x)−fm(x))| ≤ C

√
xi|∂xi

(fn(x)−fm(x)|, i = 1, . . . , d, n, m ∈ N,

and so ((bi(x) − bi(0))∂xi
fn)n is also a Cauchy sequence in C(Qd). Thus, for each

i = 1, . . . , d, (bi(x)− bi(0))∂xi
fn → gi in C(Qd) as n→ ∞. Since

Lfn = Lγ,bfn +
d∑

i=1

(bi(x)− bi(0))∂xi
fn, n ∈ N, (4.10)

we deduce that Lfn → Lγ,bf +
∑d

i=1 gi =: g in C(Qd) as n → ∞. After observing

that (fn)n ⊆ C2
⋄ (Q

d) ⊆ D(L) with fn → f in C(Qd) as n→ ∞ and that (L,D(L)) is
a closed operator, we conclude that f ∈ D(L) and Lf = g. So, the proof is complete.

(2) Set B :=
∑d

i=1(bi(x) − bi(0))∂xi
. Since the coefficients ci(x) := bi(x) − bi(0),

for i = 1, . . . , d, satisfy the hypotheses in Remark 4.4, i.e., ci(x) = 0 for x ∈ ∂(Qd)i
and i = 1, . . . , d, the operator (B,C1

⋄ (Q
d)) is dissipative and closable in C(Qd) with

dissipative closure. We claim that the closure (B,D(B)) of the operator (B, C1
⋄ (Q

d))
is Lγ,b–bounded with Lγ,b–bound a0 = 0. To show this claim, we first observe that
C2
⋄ (Q

d) ⊆ C1
⋄ (Q

d). On the other hand, by Hypothesis 4.5 and Remark 4.6(b) there
exists C ′ > 0 such that

|bi(x)− bi(0)||∂xi
u(x)| ≤ C ′√xi|∂xi

u(x)|, i = 1, . . . , d, u ∈ C2
⋄ (Q

d).
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So, by applying Proposition 3.2(3) we obtain that, there exist C ′′,D′, ε > 0 such that,
for every 0 < ε < ε, we have

‖Bu‖∞ ≤ D′ε‖Lγ,bu‖∞ +
C ′′

ε
‖u‖∞, u ∈ C2

⋄(Q
d). (4.11)

Since C2
⋄ (Q

d) is a core for (Lγ,b,D(Lγ,b)) (see, Proposition 3.1 or Corollary 4.3), this
inequality remains valid for every u ∈ D(Lγ,b). Indeed, if u ∈ D(Lγ,b), there exists
a sequence (fn)n ⊆ C2

⋄ (Q
d) such that fn → u and Lγ,bfn → Lγ,bu as n → ∞. So,

(fn)n and (Lγ,bfn)n are Cauchy sequences in C(Qd). By (4.11) it follows that (Bfn)n
is also a Cauchy sequence in C(Qd) and so it converges to some g in C(Qd). But
C2
⋄ (Q

d) ⊆ C1
⋄ (Q

d) and the operator (B,D(B)) is closed and hence, u ∈ D(B) and
Bu = g (we point out that this fact proves also that D(Lγ,b) ⊆ D(B)). Finally, by
replacing u with fn in (4.11) and passing to the limit for n→ ∞, it follows that (4.11)
remains valid for such a fixed u in D(Lγ,b). So, for every 0 < ε < ε, we have

‖Bu‖∞ ≤ D′ε‖Lγ,bu‖∞ +
C ′′

ε
‖u‖∞, u ∈ D(Lγ,b). (4.12)

Inequality (4.12) ensures that the operator (B,D(B)) is Lγ,b–bounded with Lγ,b–bound
a0 = 0. Thus, the operator (Lγ,b + B,D(Lγ,b)) is closed and generates a bounded
analytic C0–semigroup (T (t))t≥0 of contractions in C(Qd) and angle π/2, [17, Chap.
III, §2, Lemma 2.4, Theorems 2.7 & 2.10]. The semigroup (T (t))t≥0 is also compact as
(T (t))t≥0 is norm–continuous, being it analytic, and the operator (Lγ,b + B,D(Lγ,b))
has compact resolvent (see the proof of [17, Chap. III, §2, Lemma 2.10]).

Now, we observe that L = Lγ,b + B and D(L) = D(Lγ,b). Indeed, by (4.12) we
obtain, for every 0 < ε < ε and u ∈ D(Lγ,b), that

‖Lγ,bu‖∞ = ‖(Lγ,b+B)u−Bu‖∞ ≤ ‖(Lγ,b+B)u‖∞+εD′‖Lγ,bu‖∞+
C ′′

ε
‖u‖∞. (4.13)

Since D(Lγ,b) ⊆ D(L) by part (1) and hence, L = Lγ,b+B on D(Lγ,b), it follows that

‖Lγ,bu‖∞ ≤ 1

1−D′ε0
‖Lu‖∞ +

C ′′

ε0(1−D′ε0)
‖u‖∞, u ∈ D(Lγ,b), (4.14)

after having taken in (4.13) ε0 small enough to have D′ε0 < 1. Using again the facts
that C2

⋄ (Q
d)(⊆ D(Lγ,b)) is a core for (L,D(L)) by Corollary 4.3 and that the operator

(Lγ,b,D(Lγ,b)) is closed, we deduce from (4.14) that D(L) ⊆ D(Lγ,b). This completes
the proof of part (1) of this theorem and ensures that L = Lγ,b + B.

As D(L) = D(Lγ,b) and hence L = Lγ,b +B, the proof of part (2) is now complete.
We point out that the positivity of the semigroup (T (t))t≥0 follows from Corollary
4.3. �

Thanks to the proof of Theorem 4.7 we are able to show that the operator (L,D(L))
shares further properties of the operator (Lγ,b,D(Lγ,b)). Precisely, we prove estimates
for the norm of the resolvent operators of (L,D(L)) and of their gradient with con-
stants which don’t depend on the function b.

Proposition 4.8. Suppose that Hypotheses 4.1 and 4.5, with Γ ≡ 1 on Qd, are valid
and let B ∈ R with B ≥ maxdi=1 ‖bi‖∞, γ := (γ1, . . . , γd). Then the closure (L,D(L))
of the operator (L,C2

⋄ (Q
d)) satisfies the following properties.
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(1) There exist K,α, t > 0 depending on B and on γ such that, for every u ∈
C(Qd) and i = 1, . . . , d, we have

||tLγ,bT (t)|| ≤ Keαt, t ≥ 0. (4.15)

||√xi∂xi
(T (t)u)||∞ ≤ Keαt√

t
||u||∞, 0 < t < t. (4.16)

||√xi∂xi
(T (t)u)||∞ ≤ Keαt||u||∞, t ≥ t. (4.17)

Moreover, for every i ∈ {1, . . . , d} and u ∈ C(Qd),
√
xi∂xi

(T (t)u) ∈ C(Qd)
and

lim
xi→0+

sup
xj∈[0,M ],j∈{1,...,d}\{i}

√
xi∂xi

(T (t)u) = 0. (4.18)

(2) There exist d1, d2, R > 0 depending on B and on γ such that, for every λ ∈ C

with Reλ > R and for every f ∈ C(Qd), we have

||R(λ,Lγ,b)u||∞ ≤ d1
||u||∞
|λ| , (4.19)

||√xi∂xi
(R(λ,Lγ,b)u)||∞ ≤ d2

||u||∞√
|λ|

. (4.20)

Moreover, for every i ∈ {1, . . . , d} and u ∈ C(Qd),
√
xi∂xi

(R(λ,Lγ,b)u) ∈
C(Qd) and that

lim
xi→0+

sup
xj∈[0,M ],j∈{1,...,d}\{i}

√
xi∂xi

(R(λ,Lγ,b)u)(x) = 0. (4.21)

(3) There exist C,D, ε > 0 depending on B and on γ such that, for every 0 < ε <
ε, i = 1, . . . , d and u ∈ D(Lγ,b), we have

‖√xi∂xi
u‖∞ ≤ C

ε
‖u‖∞ +Dε‖Lγ,bu‖∞.

Proof. Set b = (b1(0), b2(0), . . . , bd(0)) and denote by (Lγ,b,D(Lγ,b)) and by (B,D(B))
the differential operators already considered in the proof of Theorem 4.7.

We begin showing first part (3). By Proposition 3.2(3) there exist C,D, ε > 0
depending on B and γ such that, for every 0 < ε < ε, i = 1, . . . , d and u ∈ D(L)(=
D(Lγ,b)), we have

‖√xi∂xi
u‖∞ ≤ C

ε
‖u‖∞ +Dε‖Lγ,bu‖∞. (4.22)

If we take in (4.14) Dε0 < 1/2, then from (4.22) and (4.14) it follows, for every
0 < ε < ε, i = 1, . . . , d and u ∈ D(L), that

‖√xi∂xi
u‖∞ ≤ C

ε
‖u‖∞ +Dε‖Lγ,bu‖∞

≤ C

ε
‖u‖∞ +Dε

(
2‖Lu‖∞ +

2C ′′

ε0
‖u‖∞

)

=
C + 2C ′′ε−1

0

ε
‖u‖∞ + 2Dε‖Lu‖∞. (4.23)

This completes the proof of part (3).
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(2) By Proposition 3.2(2) and by (4.11) there exist d1, R > 0 and C ′′,D′, ε > 0 such
that, for every 0 < ε < ε, λ ∈ C with Reλ > R and u ∈ C(Qd), we have

‖BR(λ,Lγ,b)u‖∞ ≤ D′ε‖Lγ,bR(λ,Lγ,b)u‖∞ +
C ′′

ε
‖R(λ,Lγ,b)u‖∞

≤ D′ε‖λR(λ,Lγ,b)u− u‖∞ +
C ′′

ε
‖R(λ,Lγ,b)u‖∞

≤ D′ε(d1 + 1)‖u‖∞ +
C ′′

ε

d1
|λ|‖u‖∞. (4.24)

Now, fix ε0 ∈ (0, ε) such that D′ε(d1 + 1) < 1/4 and choose R′ > R such that
C′′

ε0
d1
|λ| < 1/4 for all λ ∈ C with Reλ > R′. So, from (4.24) it follows, for every λ ∈ C

with Reλ > R′, that ‖BR(λ,Lγ,b)‖ < 1/2. Hence, for every λ ∈ C with Reλ > R′, the
continuous linear operator BR(λ,Lγ,b) is invertible in L(C(Qd)) with inverse given by

R(λ,Lγ,b + B) = R(λ,Lγ,b)
∞∑

n=0

(BR(λ,Lγ,b)), (4.25)

(see [17, Chap. III, §2, Lemma 2.5]). Since L = Lγ,b + B with D(L) = D(Lγ,b) (see
the proof of part (2) of Theorem 4.7), by (4.25) and Proposition 3.2(2) we obtain, for
every λ ∈ C with Reλ > R′ and f ∈ C(Qd), that

‖R(λ,L)f‖ ≤ 2‖R(λ,Lγ,b)‖‖f‖∞ ≤ 2d1
|λ| ‖f‖∞, (4.26)

and that

‖√xi∂xi
(R(λ,L)f)‖ ≤ 2d2√

|λ|
‖f‖∞, i = 1, . . . , d. (4.27)

Moreover, Proposition 3.2(2) and formula (4.25) also imply, for every i = 1, . . . , d, that√
xi∂xi

(R(λ,L)f) ∈ C(Qd) and that limxi→0+ supxj∈[0,M ],j 6=i
√
xi∂xi

(R(λ,L)f)(x) =
0.

(1) Part (1) follows as in the proof of Proposition 2.2(2) taking into account that
the operator (L,D(L)) satisfies part (2) of this proposition and generates a contractive
analytic C0–semigroup in C(Qd). �

Now, we can show that the operator (L,D(L)) with Γ any strictly positive contin-
uous function on Qd also generates an analytic compact C0–semigroup (T (t))t≥0 of
positive contractions in C(Qd). In order to prove this, we state the following lemma
whose proof is straightforward.

Lemma 4.9. For each n ∈ N and i ∈ {1, . . . , n − 1} set Iin =
[
i−1
n , i+1

n

]
and let

{ϕi
n}n−1

i=1 ⊂ C∞(R) such that
∑n−1

i=1 (ϕ
i
n)

2 ≡ 1 on [0, 1], supp(ϕi
n) ⊂

[
i−1
n , i+1

n

]
for

i = 2, . . . , n− 2, supp(ϕ1
n) ⊂

]
−∞, 2n

]
and supp(ϕn−1

n ) ⊂
[
n−2
n ,∞

[
.

For each x ∈ [0, 1]d and i = (i1, . . . , id) ∈ Jd
n = {1, . . . , n− 1}d set

Φi

n(x) =
d∏

h=1

ϕih
n (xh) (4.28)

Then supp(Φi
n) ⊂

∏d
h=1,ih 6∈{1,n−1} I

ih
n ×∏d

h=1,ih=1

]
−∞, 2n

]
×∏d

ih,ih=n−1

[
n−2
n ,∞

[
(in

the suitable order) and
∑

i∈Jd
n
(Φi

n)
2 ≡ 1 on [0, 1]d for every n ∈ N and i ∈ Jd

n.
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Moreover, if v =
∑

i∈Jd
n
Φi
nvi for some {vi}i∈Jd

n
⊂ C(Qd), then there exists J ⊂ Jd

n

such that |J | ≤ 3d and v =
∑

i∈J Φ
i
nvi and hence, ‖v‖∞ ≤ 3d supi∈Jd

n
‖Φi

nvi‖∞.

Theorem 4.10. Under Hypotheses 4.1 and 4.5, the operator (L,D(L)) generates an
analytic compact C0–semigroup (T (t))t≥0 of positive contractions in C(Qd). Moreover,
all the estimates in Proposition 4.8 hold for the operator (L,D(L)).
Proof. Without loss of generality we can suppose M = 1, i.e., Qd = [0, 1]d.

Denote by (L1,D(L1)) the closure of the operator defined according to (4.1) with
Γ ≡ 1 on Qd. Then by Theorem 4.7 (see also Corollary 4.3) (L1,D(L1)) generates
a (bounded analytic compact) C0–semigroup of positive contractions in C(Qd) (and
of angle π/2). Since L = ΓL1 we can apply [16, Theorem 12] to conclude that
(L,D(L1)) generates a C0–semigroup (T (t))t≥0 of positive contractions in C(Qd).
But D(L) = D(L1) and hence, (L,D(L)) generates a C0–semigroup (T (t))t≥0 of
positive contractions in C(Qd). The identities D(L) = D(L1) and L = ΓL1 follow
from the facts that Γ is a strictly positive continuous function on Qd, the operators
(L,D(L1))and (L,D(L)) are closed and that C2

⋄ (Q
d) is a core for both the operators

(L,D(L1)) and (L,D(L)).
We claim that the semigroup (T (t))t≥0 is analytic. To show this thanks to Theorem

4.7 and Proposition 4.8 we can proceed as in the proof of Propositions 2.6 and 2.7 in
[4] and so we indicate here only the main changes.

In the sequel we follow the notation introduced in Lemma 4.9.

For each n ∈ N and i ∈ Jd
n set I in =

∏d
h=1 I

ih
n , fix V i

n ∈ I in and define Γi
n = Γ(V i

n).
Fix n ∈ N. By Proposition 4.8(2), there existsR > 0 depending on maxi=1,...,d ||bi||∞

and on γ1, . . . γd,Γ such that for every λ ∈ C with Reλ > R
Γ0

(Γ0 = minx∈Qd Γ(x) > 0),
we can consider the operators defined by

Ri

n(λ) = (λ− Γi

nL1)
−1

which satisfy

‖Ri

n(λ)‖ = (Γi

n)
−1

∥∥∥∥R
(
λ

Γi
n

,L1

)∥∥∥∥ ≤ d1
Γ0

1

|λ| . (4.29)

On the other hand, for every λ ∈ C with Reλ > R
Γ0

, the following equality holds

L1R
i

n(λ) = (Γi

n)
−1(−I + λRi

n(λ))

and hence, via (4.29) we obtain, for every λ ∈ C with Reλ > R
Γ0

, that

‖L1R
i

n(λ)‖ ≤ (Γi

n)
−1

(
1 +

d1
Γ0

)
≤ Γ0 + d1

Γ2
0

. (4.30)

We now consider the continuous functions {Φi
n}i∈Jd

n
defined according to (4.28) of the

above Lemma 4.9 and define the the approximate resolvents of (L,D(L)) given by

Sn(λ)u =
∑

i∈Jd
n

Φi

nR
i

n(λ)(Φ
i

nu)

for every λ ∈ C with Reλ > R
Γ0

and u ∈ C(Qd). So, by Lemma 4.9 and (4.29) we

obtain, for every λ ∈ C with Reλ > R
Γ0

, that

‖Sn(λ)‖ ≤ 3dd1
Γ0

1

|λ| . (4.31)
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Moreover, for every λ ∈ C with Reλ > R
Γ0

and u ∈ C(Qd), we have

(λ− L)Sn(λ)u = u+
∑

i∈Jd
n

(Γi

n − Γ)Φi

nL1(R
i

n(λ)(Φ
i

nu))

−
∑

i∈Jd
n

L(Φi

n)R
i

n(λ)(Φ
i

nu)− 2Γ
∑

i∈Jd
n

d∑

h=1

γh(xh)xh∂xh
(Ri

n(λ)(Φ
i

nu))∂xh
(Φi

n)

=: (I + Cn
1 (λ) + Cn

2 (λ) +Cn
3 (λ))u. (4.32)

We now fix n such that maxx∈Ii
n
|Γ(x) − Γi

n| < ε0 :=
Γ2
0

4.3d(Γ0+d1)
for all i ∈ Jd

n. Then,

from (4.29), (4.30), Proposition 4.8(2) and Lemma 4.9 it follows, for every λ ∈ C with
Reλ > R

Γ0
and u ∈ C(Qd), that

‖Cn
1 (λ)u‖∞ ≤ 3dε0 max

i∈Jd
n

‖Φi

nL1(R
i

n(λ)(Φ
i

nu))‖∞ ≤ 3dε0
Γ0 + d1

Γ2
0

‖u‖∞ <
1

4
‖u‖∞,

(4.33)

‖Cn
2 (λ)u‖∞ ≤ |Jd

n|max
i∈Jd

n

‖L(Φi

n)‖∞‖Ri

n(λ)(Φ
i

nu)‖∞ ≤ |Jd
n|K1

d1
Γ0

1

|λ| ‖u‖∞, (4.34)

‖Cn
3 (λ)u‖∞ ≤ 2d3d‖Γ‖∞ max

i∈Jd
n
, h∈{1,...,d}

‖γh∂xh
(Φi

n)‖∞‖∂xh
(Ri

n(λ)(Φ
i

nu))‖∞

≤ 2d3dK2
d2√
|λ|

‖u‖∞, (4.35)

where K1 = max
i∈Jd

n
‖L(Φi

n)‖∞ and K2 = ‖Γ‖∞ max
i∈Jd

n
, h∈{1,...,d} ‖γh∂xh

(Φi
n)‖∞.

We note that the constants d1, d2 and R depend only on B (with B any fixed positive
real number greater or equal than maxdi=1 ‖bi‖∞) and on γ = (γ1, . . . , γd) and that
the constants K1 and K2 depend only on B, Γ, γ and on the functions {Φi

n}i∈Jd
n
.

Now, by (4.34) and (4.35) we can choose R′ > max{ R
Γ0
, R} large enough to get

max{‖Cn
2 (λ)‖, ‖Cn

3 (λ)‖} < 1/4 for all λ ∈ C with Reλ > R′. So, ‖Cn
1 (λ) + Cn

2 (λ) +
Cn
3 (λ)‖ < 1/2 via (4.33) for all λ ∈ C with Reλ > R′ (we note that R′ depends on B,

Γ, γ and on the functions {Φi
n}i∈Jd

n
). This inequality, combined r with the equality

(4.32), implies that the operator C(λ) = (λ−L)Sn(λ) is invertible in L(C(Qd)) with
‖(C(λ))−1‖ ≤ 2 for every λ ∈ C with Reλ > R′. Since the operator (L,D(L)) gener-
ates a contractive C0–semigroup in C(Qd) and so the operator (λ−L) is injective for
all λ ∈ C with Reλ > 0, it follows that R(λ,L) = Sn(λ)(C(λ))−1 and that by (4.31)

‖R(λ,L)‖ = ‖Sn(λ)(C(λ))−1‖ ≤ 2d13
d

Γ0

1

|λ| (4.36)

for every λ ∈ C with Reλ > R′. This inequality ensures that the operator (L,D(L))
is sectorial (see [28, Proposition 2.1.11]), i.e., generates an analytic C0–semigroup in
C(Qd). Moreover, the identity R(λ,L) = Sn(λ)(C(λ))−1 implies that the operator
R(λ,L) is compact as Sn(λ) is compact, being Sn(λ) a sum of compact operators

(observe that Ri
n = (Γi

n)
−1R

(
λ
Γi

n

,L1

)
and that (L1,D(L1)) generates an analytic

compact C0–semigroup in C(Qd)). So, the semigroup (T (t))t≥0 is also compact, being
it analytic and so norm continuous with compact resolvents.

We now prove that the estimates (4.19) and (4.20) in Proposition 4.8 are shared by
the operator L.
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By (4.36) the first part of Proposition 4.8(2) is already proved.
Let λ ∈ C with Reλ > R′ and u ∈ D(L) = D(L1). Then there exists v ∈ C(Qd)

such that R(λ,L1)v = u. So, by Proposition 4.8(2), for every i = 1, . . . , d, we have

‖√xi∂xi
u‖∞ = ‖√xi∂xi

(R(λ,L1)v)‖∞ ≤ d2√
|λ|

‖u‖∞ =
d2√
|λ|

‖λu− L1u‖∞. (4.37)

On the other hand, there exists also w ∈ C(Qd) such that R(λ,L)w = u. Then
λu− L1u =

(
1− 1

Γ

)
λu+ 1

Γ(λu− Lu) and hence, by (4.36) we have

‖λu− L1u‖∞ ≤
(

1

Γ0
+ 1

)
|λ|‖u‖∞ +

1

Γ0
‖λu− Lu‖∞

=

(
1

Γ0
+ 1

)
|λ|‖R(λ,L)w‖∞ +

1

Γ0
‖w‖∞

≤ 2d13
d

Γ0

(
1

Γ0
+ 1

)
‖w‖∞ +

1

Γ0
‖w‖∞

≤ K3

(
1

Γ0
+ 1

)
‖w‖∞, (4.38)

with K3 = max
{
1, 2d13

d

Γ0

}
. Combining (4.37) with (4.38) we obtain, for every i =

1, . . . , d, that

‖√xi∂xi
(R(λ,L)w)‖∞ ≤ K3

(
1

Γ0
+ 1

)
d2√
|λ|

‖w‖∞.

Since u is arbitrary and R(λ,L) : C(Qd) → D(L) is bijective (for λ ∈ C with Reλ >
R′), the inequality (4.20) in Proposition 4.8(2) is satisfied. Moreover, the equal-
ity R(λ,L) = Sn(λ)(C(λ))−1 implies, for every u ∈ C(Qd) and i = 1, . . . , d, that√
xi∂xi

(R(λ,L)u) ∈ C(Qd) and that limxi→0+ supxi∈[0,M ], j∈{1,...,d}\{i}
√
xi∂xi

(R(λ,L)u) =
0 via (4.21) . So, Proposition 4.8(2) is valid.

One can prove that the estimates in Proposition 4.8(1),(2) hold for L by arguing
as in the proof of Proposition 4.8. �

We now consider the following second order elliptic differential operator

U = Γ(x)

d∑

i=1

[γi(xi)xi(1− xi)∂
2
xi

+ bi(x)∂xi
], x ∈ Qd, (4.39)

where Γ, bi and γi, for i = 1, . . . , d, are continuous functions on Qd = [0, 1]d and on
[0, 1] respectively. We assume that

Hypotheses 4.11. The coefficients Γ, bi and γi, for i = 1, . . . , d, are continuous
functions satisfying the following conditions.

(i) The functions Γ and γi, for i = 1, . . . , d, are strictly positive on Qd and on
[0, 1] respectively.

(ii) Let b(x) = (b1(x), . . . , bd(x)) for x ∈ Qd. Then 〈b(x), ν(x)〉 ≥ 0 for every
x ∈ ∂Qd, where ν denotes the unit inward normal at ∂Qd.

(iii) There exist δ > 0 and C > 0 such that, for every i = 1, . . . , d and x, x′ ∈ Qd,
we have

|bi(x)− bi(x
′)| ≤ C

√
xi, (4.40)
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if |xi| < δ and x′i = 0; while

|bi(x)− bi(x
′)| ≤ C

√
1− xi, (4.41)

if |1− xi| < δ and x′i = 1.

Proceeding in a similar way as in the proofs of Lemma 4.2 and of Corollary 4.3 (or
see [13]), one shows that Hypotheses 4.11(i)–(ii) imply that a minimum principle holds
for the operator (U,C2(Qd)). Since U1 = 0, it follows that the operator (U,C2(Qd))
is dissipative and hence, (U,C2(Qd)) is closable in C(Qd) with closure (U ,D(U)) a
dissipative operator in C(Qd). Moreover, we have

Theorem 4.12. Under Hypotheses 4.11, the operator (U ,D(U)) generates an analytic
compact C0–semigroup (T (t))t≥0 of positive contractions in C(Qd).

For easy reading the proof of Theorem 4.12 it is useful to introduce some notation
and point out some results.

In the sequel we follow the notation of Lemma 4.9. Let n = 2 and set I
i = I

i
2 and

Φi = Φi
2 for i ∈ Jd

2 = {1, 2}d. For a fixed i ∈ Jd
2 , the set I

i contains a unique vertex
of Qd, i.e., the vertex V i of Qd with (V i)h = 0 if ih = 1 and (V i)h = 1 if ih = 2.
If we denote by ψi : Q

d → Qd the map given by setting ψi(x) = y, for x ∈ Qd, with
yh = xh if ih = 0 and yh = 1− xh if ih = 2. Clearly, ψi is a C∞–diffeomorphism such
that ψi(I

i) = I
i0, where i0 denotes the element of Jd

2 with coordinates all equal to 1.
Moreover, the operator Ψi : C(Qd) → C(Qd) defined by Ψi(u) = u ◦ ψi is a surjective
isometry such that Ψi(C

k(Qd)) = Ck(Qd) for all k ∈ N (also Ψi(C
k(Ii)) = Ck(Ii0)).

In particular, Ψi transforms the operator Ui = U |Ii into the operator Li of type (4.1)
acting on the space C2

⋄ (I
i0). Indeed, we have, for every u ∈ C2

⋄ (I
i0), that

(Ui ◦Ψi)(u) = Γ(x)

d∑

h=1

[γh(xh)xh(1− xh)∂
2
yh
u(ψi(x)) + bh(x)ch∂yhu(ψi(x))],

where ch = 1 if ih = 1 and ch = −1 if ih = 2, and hence

(Ψ−1
i

◦ Ui ◦Ψi)(u)

= Γ(ψ−1
i

(y))

d∑

h=1

[γh((ψ
−1
i

(y))h)yh(1− yh)∂
2
yh
u(y) + bh(ψ

−1
i

(y))ch∂yhu(y)].

Now, we observe that if we set γ̃h(y) = γh((ψ
−1
i

(y))h)(1−yh) and b̃h(y) = bh(ψ
−1
i

(y))ch
for y ∈ I i0 and h = 1, . . . , d, then the functions γ̃h, b̃h are continuous on I i0 and on
[0, 1/2] respectively, and each function γ̃h is strictly positive (as 1/3 ≤ 1− yh ≤ 1 for
every h). Also, by Hypothesis 4.11(iii) we have, for every h = 1, . . . , d and y, y′ ∈ I

i0

with y′h = 0 and |yh| ≤ δ, that

|b̃h(y)− b̃h(y
′)| ≤ C|yh|.

Finally, Hypothesis 4.11(ii) implies that if we set b̃ = (b̃1, . . . , b̃d) then 〈b̃, ν〉 ≥ 0 on

∂Ii00 .
Since Hypotheses 4.1 are fulfilled, we can apply Theorem 4.10 to conclude that

the closure (Li,D(Li)) of the operator (Li, C
2
⋄ (I

i0)) generates an analytic compact
C0–semigroup in C(Ii0) of positive contractions. Moroever, the operator (Li,D(Li))
satisfies Proposition 4.8. So, by similarity the closure (Ui,D(Ui)) of the operator
(Ui, C

2
⋄′(I

i)) (here, u ∈ C2
⋄′(I

i) if u ∈ C2(Ii) and ∂xh
u(x) = 0 if either xh = 2/3 and
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ih = 1 or xh = 1/3 and ih = 2) generates an analytic compact C0–semigroup in
C(Ii) of positive contractions and satisfies the proper analogue of Proposition 4.8. In
particular, the proper analogue of Proposition 4.8(2) turns out to be

(2)’ There exist d1, d2, R > 0 depending only on B (with B any positive real
number ≥ maxdi=1 ‖bi‖∞) and on Γ, γ = (γ1, . . . , γd) such that, for every
λ ∈ C with Reλ > R, h = 1, . . . , d, i ∈ Jd

2 and u ∈ C(Ii), we have

‖R(λ,Ui)‖ ≤ d1
|λ| ,

‖
√
xh(1− xh)∂xh

(R(λ,Ui)u)‖∞ ≤ d2√
|λ|

‖u‖∞.

We are now able to show Theorem 4.12.

Proof. By (2)’ above we have, for every i ∈ Jd
2 and λ ∈ C with Reλ > R, that

‖R(λ,Ui)‖ ≤ d1
|λ| . (4.42)

So, for every λC with Reλ > R we can consider the operator S(λ) : C(Qd) → C(Qd)
defined by

S(λ)u =
∑

i∈Jd
2

ΦiR(λ,Ui)(Φ
iu), u ∈ C(Qd). (4.43)

Hence, by (4.42) we have, for every λ ∈ C with Reλ > R, that

‖S(λ)‖ ≤ 2dd1
|λ| . (4.44)

We observe that the previous considerations on the differential operators Ui ensure,
for every i ∈ Jd

2 and u ∈ C(Qd), that

U(ΦiR(λ,Ui)(Φ
iu)) = Ui(Φ

iR(λ,Ui)(Φ
iu)) (4.45)

and, for every u, v ∈ D(Ui), that

Ui(uv) = uUi(v) + vUi(u) + Γ(x)
d∑

h=1

γh(xh)xh(1− xh)∂xh
u∂xh

v. (4.46)

By (4.45) and (4.46) we obtain, for every λ ∈ C with Reλ > R and u ∈ C(Qd), that

(λ− U)S(λ)(u) = λS(λ)(u) −
∑

i∈Jd
2

U(ΦiR(λ,Ui)(Φ
iu))

= λS(λ)(u) −
∑

i∈Jd
2

Ui(Φ
iR(λ,Ui)(Φ

iu))

=
∑

i∈Jd
2

Φi(λ− Ui)R(λ,Ui)(Φ
iu)−

∑

i∈Jd
2

Ui(Φ
i)R(λ,Ui)(Φ

iu)

− Γ(x)
∑

i∈Jd
2

d∑

h=1

γh(xh)xh(1− xh)∂xh
(R(λ,Ui)(Φ

iu))∂xh
Φi

=: (I +B(λ) + C(λ))(u). (4.47)
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By (4.42) we deduce, for every λ ∈ C with Reλ > R and u ∈ C(Qd), that

‖B(λ)u‖∞ ≤ d3
|λ| ‖u‖∞, (4.48)

where d3 = 2dd1 max
i∈Jd

2
‖Ui(Φ

i)‖∞.

Applying again the property (2)’ above we obtain, for every λ ∈ C with Reλ > R
and u ∈ C(Qd), that

‖C(λ)u‖∞ ≤ d4 sup
h=1,...,d, i∈Jd

2

‖xh(1− xh)∂xh
(R(λ,Ui)(Φ

iu))‖∞

≤ d4
d2√
|λ|

sup
h=1,...,d, i∈Jd

2

‖Φiu‖∞

≤ d4
d2√
|λ|

‖u‖∞, (4.49)

where d4 = 2ddM with M = ‖Γ‖∞ max
i∈Jd

2
, h=1,...,d ‖γh∂xh

Φi‖∞ (hence, M depends

only on Γ, γ and on the functions {Φi}
i∈Jd

2
.

By (4.48) and (4.49) we can choose R′ ≥ R such that ‖B(λ) + C(λ)‖ < 1/2 for all
λ ∈ C with Reλ > R′ and hence, the operator D(λ) = (λ − U)S(λ) is invertible in
L(C(Qd)) with ‖((D(λ))−1‖ ≤ 2. So, there exists R(λ,U) = S(λ)(D(λ))−1 and and
satisfies by(4.44)

‖R(λ,U)‖ ≤ 2d+1d1
|λ| (4.50)

whenever λ − U is injective, in particular, for λ > 0 as the operator U is dissipa-
tive (observe that R(λ,U) is also compact as S(λ) is compact). Since (U ,D(U)) is
also densely defined, by Lumer-Phillips theorem this fact ensures that the operator
(U ,D(U)) generates a C0–semigroup (T (t))t≥0 of contractions in C(Qd). So, for every
λ ∈ C with Reλ > R′ we have that R(λ,U) = S(λ)(D(λ))−1 and satisfies inequality
(4.50).

Finally, from (4.50) it follows that the operator (U ,D(U)) is sectorial (see [28,
Proposition 2.1.11]), i.e., generates an analytic C0–semigroup in C(Qd). Since the
semigroup is analytic, hence norm–continuous, and the differential operator (U ,D(U))
has compact resolvent, the semigroup is also compact. �

We end this section with the following result which could be useful for further
developments.

Proposition 4.13. Let B ≥ maxdi=1 ‖bi‖∞. Under Hypotheses 4.11, the operator
(U ,D(U)) satisfies the following properties.

(1) There exist K,α, t > 0 depending on B and on Γ, γ, such that, for every
u ∈ C(Qd) and i = 1, . . . , d, we have

‖tUT (t)‖ ≤ Keαt, t ≥ 0,

‖
√
xi(1− xi)∂xi

(T (t)u)‖∞ ≤ Keαt√
t
‖u‖∞, 0 < t < t,

‖
√
xi(1− xi)∂xi

(T (t)u)‖∞ ≤ Keαt‖u‖∞, t ≥ t.
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Moreover, for every i = 1, . . . , d and u ∈ C(Qd),
√
xi(1− xi)∂xi

(T (t)u) ∈
C(Qd) and

lim
xi→0+,1−

sup
xj∈[0,1], j∈{1,...,d}\{i}

√
xi(1− xi)∂xi

(T (t)u) = 0.

(2) There exist d1, d2, R > 0 depending on B and on Γ, γ, such that, for every
λ ∈ C with Reλ > R, u ∈ C(Qd) and i = 1, . . . , d, we have

‖R(λ,U)u‖∞ ≤ d1
|λ|‖u‖∞,

‖
√
xi(1− xi)∂xi

(R(λ,U)u)‖∞ ≤ d2√
|λ|

‖u‖∞.

Moreover, for every i = 1, . . . , d and u ∈ C(Qd),
√
xi(1− xi)∂xi

(R(λ,U)) ∈
C(Qd) and

lim
xi→0+,1−

sup
xj∈[0,1], j∈{1,...,d}\{i}

√
xi(1− xi)∂xi

(R(λ,U)u) = 0.

(3) There exist ε > 0, C > 0 and D > 0 depending on B and on Γ, γ, such that,
for every 0 < ε < ε, i = 1, . . . , d and u ∈ D(U), we have

‖
√
xi(1− xi)∂xi

u‖∞ ≤ C

ε
‖u‖∞ +Dε‖Uu‖∞.

Proof. The result follows argumenting as in the end of the proof of Theorem 4.10. �

Example 4.14. In the following examples assume that the coefficients Γ and γi, for
i = 1, . . . , d, are strictly positive continuous functions on Qd and on [0, 1] respectively.

(1) Let {ci}di=1 ⊂ C([0, 1]) such that ci(0) = ci(1) = 0 and there exist 0 < δ < 1
and C > 0 such that

|ci(x)| ≤ C
√
x, if 0 ≤ x ≤ δ, and |ci(x)| ≤ C

√
1− x, if 1− δ ≤ x ≤ 1,

for every i = 1, . . . , d. Let {mi}di=1 ⊂ C(Qd−1).
Now, for each i = 1, . . . , d and x ∈ Qd denote xi = (x1, . . . , xi−1, xi+1, . . . , xd)

and set bi(x) = ci(xi)mi(x
i). Then {bi}di=1 ⊂ C(Qd). Moreover, we have, for every

x, x′ ∈ Qd with |xi| ≤ δ and x′i = 0 and i = 1, . . . , d, that

|bi(x)− bi(x
′)| = |ci(xi)mi(x

i)| ≤ C ′√xi,
with C ′ = Cmaxdi=1 ‖mi‖∞. On the other hand, we have, for every x, x′ ∈ Qd with
|1− xi| ≤ δ and x′i = 1 and i = 1, . . . , d, that

|bi(x)− bi(x
′)| = |ci(xi)mi(x

i)| ≤ C ′
√
1− xi.

Finally, it is easy to verify that 〈b, ν〉 ≥ 0 on ∂Qd. So, if we consider the second order
differential operator

U = Γ(x)
d∑

i=1

[γi(xi)xi(1− xi)∂
2
xi

+ bi(x)∂xi
],

with Γ and γi, for i = 1, . . . , d, strictly positive continuous functions on Qd and on
[0, 1] respectively, then the closure (U ,D(U)) of operator (U,C2(Qd)) generates an
analytic compact C0–semigroup in C(Qd) of positive contractions.
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(2) Let {ci}di=1 ⊂ C([0, 1]) such that ci ≥ 0 on [0, 1] and there exist 0 < δ < 1 and
C > 0 such that

|ci(x)−c(0)| ≤ C
√
x, if 0 ≤ x ≤ δ, and |ci(x)−ci(1)| ≤ C

√
1− x, if 1−δ ≤ x ≤ 1,

for every i = 1, . . . , d. Next, for each i = 1, . . . , d and x ∈ Qd set c̃(x) =
∑d

i=1 ci(xi)
and bi(x) = ci(xi) − c̃(x)xi(1 − xi). These type of coefficients was considered in
[33, 34, 12]. Then we have, for every x, x′ ∈ Qd with |xi| ≤ δ and x′i = 0 and
i = 1, . . . , d, that

|bi(x)− bi(x
′)| = |ci(xi)− c̃(x)xi(1− xi)− ci(0)|

≤ |ci(xi)− ci(0)| + |c̃(x)(1 − xi)||xi| ≤ C ′√xi,
with C ′ = C + ‖c̃‖∞.

On the other hand, we have, for every x, x′ ∈ Qd with |1− xi| ≤ δ and x′i = 1 and
i = 1, . . . , d, that

|bi(x)− bi(x
′)| = |ci(xi)− c̃(x)xi(1− xi)− ci(1)|

≤ |ci(xi)− ci(1)| + |c̃(x)xi||1− xi| ≤ C ′
√
1− xi.

Finally, it is easy to verify that 〈b, ν〉 ≥ 0 on ∂Qd. So, if we consider the second order
differential operator

U = Γ(x)

d∑

i=1

[γi(xi)xi(1− xi)∂
2
xi

+ bi(x)∂xi
],

with Γ and γi, for i = 1, . . . , d, strictly positive continuous functions on Qd and on
[0, 1] respectively, then the closure (U ,D(U)) of operator (U,C2(Qd)) generates an
analytic compact C0–semigroup in C(Qd) of positive contractions.
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