
ar
X

iv
:1

30
1.

75
77

v2
  [

he
p-

th
] 

 3
1 

Ju
l 2

01
3

IFUP-TH 2012/21

Renormalization Of Gauge Theories

Without Cohomology

Damiano Anselmi

Dipartimento di Fisica “Enrico Fermi”, Università di Pisa,

and INFN, Sezione di Pisa,

Largo B. Pontecorvo 3, I-56127 Pisa, Italy

damiano.anselmi@df.unipi.it

Abstract

We investigate the renormalization of gauge theories without assuming cohomological properties. We

define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step

and automatically extends the classical action till it contains sufficiently many independent parameters

to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction

is then generalized to the master functional and the field-covariant proper formalism for gauge theories.

Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The

extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution

of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem.
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1 Introduction

When a gauge theory is power-counting renormalizable, studying its renormalization is not a

difficult task, because the terms contained in the classical action and the counterterms are finitely

many, and usually a small number, and it is possible to write down all of them and work out

their transformation properties explicitly. When, however, composite fields of higher dimensions

are turned on, infinitely many others must be included. If the theory is not power-counting

renormalizable, like quantum gravity, we have to deal with infinitely many terms in any case.

In these situations, cohomological properties can simplify several tasks, because they allow us

to classify terms and counterterms into gauge-invariant ones, gauge-trivial ones, and gauge non-

invariant ones. This classification is useful to prove that divergences can be subtracted redefining

the ingredients of the classical action, that is to say parameters, fields and sources, or prove that

it is possible to extend the classical action so that divergences can be subtracted that way. A

natural question arises whether cohomological properties are essential for the renormalization of

gauge theories or not. In this paper we prove that they are not.

The only assumption we make is that the theory is manifestly free of gauge anomalies (global

symmetries are instead allowed to be anomalous), which means that there must exist a regulariza-

tion such that the classical action Sc satisfies the Batalin-Vilkovisky master equation (Sc, Sc) = 0

[1] exactly at the regularized level. Without using or assuming cohomological properties we

show that it is always possible to extend Sc, preserving the master equation, till the extended

Sc contains enough independent parameters to subtract all divergences by means of parameter-

redefinitions and canonical transformations. A classical action with these properties is called

parameter-complete. In our approach it is renormalization itself that guides us through the appro-

priate Sc-extensions, till parameter-completion is achieved. Among the other things, parameter-

completion is necessary to have renormalization-group (RG) invariance.

We do not assume that the gauge algerba closes off shell, nor that the number of indepen-

dent parameters necessary to renormalize divergences is finite. The search for theories that are

renormalizable with a finite number of independent parameters, and do not obey known power-

counting criteria, is out of the purposes of this paper. Nevertheless, we do believe that the

formalism developed here will help organize that search in a more convenient way.

We can illustrate the basic idea of our extension algorithm in a simple case that involves no

gauge symmetries. Consider the massless ϕ6-theory

Sscal(ϕ, λ6µ
2ε) =

1

2

∫

(∂µϕ)(∂
µϕ)− λ6µ

2ε

∫

ϕ6

6!
,

in four dimensions, using the dimensional-regularization technique. The coupling λ6 has dimension

−2 and ε = 4 −D, D being the continued dimension. RG invariance is apparent if we hide the

parameter µ inside the bare coupling λ6B = λ6µ
2ε. Now we calculate the one-loop divergences and
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subtract them just as they come. In the minimal subtraction scheme the one-loop renormalized

action reads

S1-loop
scal (ϕ, λ6µ

2ε, µ−ε
~/ε) = Sscal −

35~λ26µ
3ε

(4π)2ε

∫

ϕ8

8!
, (1.1)

which is clearly not RG invariant. The reason is that it misses an independent parameter for

the new vertex ϕ8. However, it does depend on a new quantity, which is µ−ε
~/ε. Therefore it

is sufficient to replace ~/ε with a new dimensionless parameter λ′8, and define the extended RG

invariant classical action

S
(1)
scal(ϕ,m, λ6µ

2ε, λ′8µ
−ε) =

1

2

∫

(∂µϕ)(∂
µϕ)− λ6µ

2ε

∫

ϕ6

6!
− 35λ26λ

′
8µ

3ε

(4π)2

∫

ϕ8

8!
, (1.2)

with λ′8B = λ′8µ
−ε at the tree level. The divergence contained in (1.1) can now be reabsorbed into

a renormalization of λ′8, which reads at one loop

λ′8B = µ−ε

(

λ′8 +
~

ε

)

. (1.3)

This is not the end of the story, however, not even at one loop. For example, the classical action

S
(1)
scal generates one-loop counterterms ∼ ϕ10. Thus we need to iterate the procedure, introduce a

new parameter λ′10, and proceed like this indefinitely.

In this simple example what we have done is redundant. On the other hand, when gauge

symmetries are present and cohomological theorems do not help us, extending the classical action

preserving the master equation is not so straightforward. Nevertheless, we can use the strategy

just sketched and let renormalization build the extended classical action by itself. Observe that

the parametrization we obtain from this kind of procedure is a bit unusual. Indeed, the vertex ϕ8

in (1.2) in not just multiplied by some parameter λ8, but by a complicated product of parameters.

Here we can just replace the coefficient of ϕ8/8! with −λ8µ3ε, but in the most general case we

cannot assume that a nice parametrization exists. This forces us to work with the unusual one.

The perturbative expansion is also organized in an unusual, but consistent way. If take λ6 ∼ g4

and λ′8 ∼ 1/g2, with g ≪ 1, the parameter λ′8 is large, but it always appears inside combinations

that are altogether small. The running predicted by (1.3) is also consistent, since β′8 = ~ is turned

into βg ∼ ~g3.

Switching to gauge theories, the results of this paper prove that all divergences generated

by renormalization fit into suitable gauge-invariant extensions of the action. The price is that

the gauge symmetry itself may be extended, or modified in a non-trivial way, because there is

no guarantee that after the extension procedure the final gauge symmetry will be equivalent to

the starting one. At the same time, our results do not prove that all gauge-invariant terms we

can construct fit into extensions of the action. In other words, if we can construct some gauge-

invariant terms that do not fit into an extended action, renormalization will never be able to
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generate them as counterterms. Furthermore, the parameter-complete action we obtain may not

be the most general extended action. It is just the minimally extended action that can reabsorb

all divergences into parameter-redefinitions and canonical transformations.

We emphasize the main issue, here. The master equation (Sc, Sc) = 0 is quadratic in the action

Sc, thus the compatibility of gauge symmetry and renormalization is encoded in a quadratic

problem. Instead, cohomological problems are linear in Sc. When we assume cohomological

properties we in practice assume that the quadratic problem can be reduced to a linear one,

which makes life much easier. It is nice to know that if cohomological properties do not hold,

or are not assumed to hold, we can still build the action we need, even if the problem cannot

be linearized and at every step the subtraction algorithm becomes more and more involved. The

procedure we outline is conceptually simple, but rather involved at the practical level. At this

stage, its most important applications appear to be theoretical.

Cohomological properties provide a purely algebraic classification and have no strict relation

with the renormalization algorithm. Typically, they ensure that all gauge-invariant terms we

can construct, even those that renormalization cannot generate as counterterms, can be included

extending the classical action. From the algebraic point of view, cohomological theorems can

be more general than our results. That kind of generality, however, may be unnecessary for the

purposes of renormalization. At the same time, our construction is more general in a different

direction, because it also works when cohomological theorems do not hold or are unavailable.

The classical action Sc we start from can be any particular local solution of the master equa-

tion. Then we use the properties of renormalization to build the parameter-complete local exten-

sion S⊂. The extension map

Sc → S⊂ (1.4)

is also a powerful machine to prove the existence of new solutions of the master equation, even

when we are unable to write them down explicitly.

In the last part of the paper we generalize our results to the master functional defined in

ref. [2] and the field-covariant proper formalism for gauge theories. The master functional Ω

satisfies the proper master equation ⌊Ω,Ω⌋ = 0, where the squared antiparentheses are obtained

generalizing the Batalin-Vilkovisky antiparentheses to the sector made of composite fields and

their gauge transformations. The proper formalism allows us to express all local perturbative

field redefinitions and changes of gauge-fixing as “proper” canonical transformations (see section

6 for details), and interpret them as true changes of variables in the functional integral, instead

of simple replacements of integrands.

The generalization of the results of this paper to theories that are not manifestly free of gauge

anomalies is left to a separate investigation.

Throughout this paper we use the dimensional-regularization technique and the minimal sub-
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traction scheme. Nevertheless, once the action is extended to contain enough independent param-

eters, it is possible to switch to an arbitrary scheme making finite redefinitions of those parameters.

From now on we switch to the Euclidean notation.

The paper is organized as follows. In section 2 we briefly recall how the renormalization algo-

rithm works when cohomological properties hold or are assumed to hold. In section 3 we formulate

the completion algorithm induced by renormalization. At this stage, we introduce redundant pa-

rameters so that all divergences can be subtracted by means of parameter-redefinitions, without

involving canonical transformations. In section 4 we study the perturbative expansion and discuss

consistent truncations that allow us to work with the desired precision with a finite number of

terms and a finite number of operations. In section 5 we extend the completion algorithm to in-

clude both canonical transformations and parameter-redefinitions. In section 6 we generalize the

construction to the master functional and the field-covariant proper formalism for gauge theories.

In section 7 we collect a few remarks to point out some interesting features of our construction. In

section 8 we comment on the search for the most general solution of the master equation, obtained

extending the starting classical action. We show that in general this strategy does not allow us

to achieve our goals. Section 9 contains our conclusions.

Before starting our investigation we recall a few definitions and facts that will be useful

throughout the paper. The antiparentheses of two functionals X and Y of the fields Φ and the

sources K coupled to the Φ-gauge transformations are

(X,Y ) =

∫
(

δrX

δΦA

δlY

δKA
− δrX

δKA

δlY

δΦA

)

.

If S denotes the classical action, the generating functionals Z and W are defined by

Z(J,K) =

∫

[dΦ] exp

(

−S(Φ,K) +

∫

ΦAJA

)

= expW (J,K), (1.5)

while Γ(Φ,K) is the Legendre transform of W with respect to J . A general theorem says that Γ

satisfies the identity

(Γ,Γ) = 〈(S, S)〉. (1.6)

This formula can be proved making a change of variables Φ → Φ+ξ(S,Φ) in the functional integral

(1.5), where ξ is a constant anticommuting parameter. In particular, (S, S) = 0 implies (Γ,Γ) = 0.

Finally, in dimensional regularization the functional integration measure [dΦ] is invariant under

arbitrary perturbative changes of field variables.

2 Renormalization with cohomology

In this section we briefly review how renormalization proceeds when suitable cohomological prop-

erties hold, specified in formulas (2.2) and (2.3) below. To make the presentation simpler, here
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we also assume that the gauge algebra closes off shell, so there exists a choice of variables such

that Sc has the form

Sc(Φ,K) = S(Φ)−
∫

RA(Φ)KA, (2.1)

where RA(Φ) is the symmetry transformation of the field ΦA . As said, we use the dimensional-

regularization technique and the minimal subtraction scheme, and the starting classical action Sc

must satisfy the master equation (Sc, Sc) = 0 exactly at the regularized level. Among the other

things, minimal subtraction scheme means that Sc does not contain evanescent terms equal to the

product of finite local terms times some powers of ε = 4 −D. Indeed, if terms of this type were

present we would not be able to extract the divergent parts (of master equations, see below) in

an efficient way, since finite local contributions could originate from products between divergent

and evanescent terms.

For example, in pure non-Abelian Yang-Mills theory we have ΦA = (Aa
µ, C

a, C̄a, Ba), where

Aa
µ are the gauge fields, Ca and C̄a are the Fadeev-Popov ghosts and antighosts, respectively,

and Ba are the Lagrange multipliers for the gauge-fixing. We write the sources as KA =

(Kµ
a ,Ka

C ,K
a
C̄
,Ka

B). The classical action is

Sc(Φ,K) =

∫
(

1

4
F a 2
µν − λ

2
(Ba)2 +Ba∂ ·Aa − C̄a∂µDµC

a

)

−
∫

DµC
aKa

µ +
g

2

∫

fabcCbCcKa
C −

∫

BaKa
C̄
,

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν is the field strength, DµC

a = ∂µC
a + gfabcAb

µC
c is the

covariant derivative of the ghosts and fabc are the structure constants of the Lie algebra. The

theory is power-counting renormalizable, hence its renormalization is straightforward. However,

we can imagine to consider a more general class of theories, obtained adding gauge invariant

composite fields of arbitrary dimensions, such as (F a 2
µν )n with n > 1, multiplied by new coupling

costants. Then to renormalize the theory we can either apply the method recalled in this section,

which uses cohomological properties, or follow the strategy developed in the next sections.

Call Sn the action renormalized up to n loops, with S0 = Sc. By assumption, Sn has the form

Sc+poles in ε. Assume, by induction, that Sn also satisfies the master equation (Sn, Sn) = 0

exactly at the regularized level. Then (1.6) tells us that the n-loop renormalized Γ-functional

Γn satisfies the master equation (Γn,Γn) = 0. Call Γ
(n+1)
ndiv the (n + 1)-loop divergent part of Γn.

By the theorem of locality of counterterms, Γ
(n+1)
ndiv is a local functional. Then the (n + 1)-loop

divergent part of the master equation (Γn,Γn) = 0 gives the cohomological problem

(Sc,Γ
(n+1)
ndiv ) = 0. (2.2)

The cohomological assumption we make now is that the most general solution of this problem

has the form

Γ
(n+1)
ndiv (Φ,K) = G(Φ) + (Sc, χ), (2.3)
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where G(Φ) and χ(Φ,K) are local functionals. The main meaning of (2.3) is that the possibly

non-trivial part G depends only on the fields Φ. Theorems that ensure (2.3) have been proved

both for Yang-Mills theory and gravity, for local composite fields and local functionals of arbitrary

ghost numbers [3].

Often we can characterize G(Φ) even more precisely. Assuming that the set of fields ΦA is made

of the physical fields φ, the ghosts C, plus the gauge-trivial subsystem C̄-B made of antighosts

C̄ and Lagrange multipliers B, then it is possible to further decompose G(Φ) as

G(Φ) = G′(φ) + (Sc, χ
′), (2.4)

where G′(φ) and χ′(Φ,K) are also local functionals. This formula shows that the cohomologically

non-trivial solutions G′(φ) are just the gauge-invariant terms constructed with the physical fields

φ and their derivatives.

Assumption (2.3), instead of (2.4), is actually sufficient for the arguments that follow. Let

{Gi(Φ)} denote a basis for the non-trivial solutions G(Φ) appearing in (2.3). Extend the action Sc

of (2.1) replacing S(Φ) with a linear combination S′(Φ) of all Gi(Φ)s, multiplied by independent

parameters λi:

S′
c(Φ,K) = S′(Φ)−

∫

RA(Φ)KA, S′(Φ) =
∑

i

λiGi(Φ). (2.5)

Since (Sc,Gi) = 0 and (Gi,Gj) = 0 the extended action S′
c(Φ,K) still solves the master equation

(S′
c, S

′
c) = 0. From now on we drop the primes in S′

c and S′ and assume that Sc is the extended

action.

Now, by assumption (2.3) we can decompose Γ
(n+1)
ndiv as

Γ
(n+1)
ndiv =

∑

i

(∆n+1λi)Gi(Φ) + (Sc, χn+1),

where ∆n+1λi are constants and χn+1 is a local functional. The divergences Gi(Φ) are subtracted

redefining the parameters λi as λ′i = λi − ∆n+1λi, while the cohomologically trivial divergences

(Sc, χn+1) are subtracted by means of the canonical transformation generated by

Fn+1(Φ,K
′) =

∫

ΦAK ′
A − χn+1(Φ,K

′).

Indeed,

Φ′A = ΦA − δχn+1

δKA
, K ′

A = KA +
δχn+1

δΦA
, Sn(Φ

′,K ′) = Sn(Φ,K)− (Sc, χn+1),

plus higher orders, therefore the action

Sn+1(Φ,K, λ) ≡ Sn(Φ
′,K ′, λ′)
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is such that

Sn+1(Φ,K, λ) = Sn(Φ,K, λ) −
∑

i

(∆n+1λi)Gi(Φ)− (Sc, χn+1) = Sn(Φ,K, λ) − Γ
(n+1)
ndiv

plus higher orders. Clearly, Sn+1 is the (n + 1)-loop renormalized action, because the functional

Γn+1 is equal to Γn − Γ
(n+1)
ndiv plus higher orders. Finally, Sn+1 also satisfies the master equa-

tion (Sn+1, Sn+1) = 0, since canonical transformations and parameter-redefinitions preserve the

antiparentheses. Thus, the inductive hypotheses are promoted to the order n+1. Iterating the ar-

gument, we find that S∞ is the renormalized action to all orders and satisfies the master equation

(S∞, S∞) = 0.

In ref. [2] the derivation just recalled was extended to the master functional and the field-

covariant proper formalism for gauge theories. It was also shown that when the cohomological

assumption (2.3) holds, then it generalizes to an analogous cohomological property for the proper

formalism.

3 Parameter-completion without cohomology

From now on we do not assume that the gauge algebra closes off shell, nor that the symmetry

satisfies particular cohomological properties, such as (2.3) and its generalizations. The only as-

sumption we retain is that the theory is manifestly free of gauge anomalies, namely Sc satisfies

the master equation

(Sc, Sc) = 0 (3.1)

exactly at the regularized level. We show that renormalization itself allows us to extend the clas-

sical action Sc preserving the master equation till the extended Sc becomes parameter-complete.

We present our arguments in two steps. In this section, i) we introduce enough redundant

parameters so that all redefinitions of fields and sources can actually be traded for redefinitions

of the redundant parameters. In section 5, ii) we remove those ad hoc parameters and take full

advantage of the possibility to make canonical transformations. Option i) is a formal trick for

intermediate derivations. Option ii) is the right way to go to determine if our theory belongs

to some special class with respect to its renormalizability properties, for example it is finite, or

renormalizable with a finite number of parameters.

Raw renormalization algorithm

Before deriving our main results, we need to recall a “raw” renormalization algorithm [4], where

divergences are subtracted just as they come, without checking whether they can be reabsorbed

into parameter- and/or field-source-redefinitions. This construction allows us to define a map that

is crucial to build the extension map (1.4).
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As before, call Sn and Γn the action and the Γ-functional renormalized up to n loops, with

S0 = Sc. We allow the starting action Sc to be an expansion in ~, although we still call it “classical

action”. Later we will appreciate why it is useful to have an ~-dependent Sc. We denote the ~ → 0

limit of Sc(λ, ~) with S̄0. Since we use the minimal subtraction scheme, Sn = Sc+poles and Sc

does not contain evanescent terms equal to powers of ε times finite local terms.

We inductively assume that Sn satisfies the master equation up to higher orders, namely

(Sn, Sn) = O(~n+1). (3.2)

Applying the theorem (1.6) we get the identity

(Γn,Γn) = 〈(Sn, Sn)〉. (3.3)

Using (3.2), formula (3.3) gives (Γn,Γn) = O(~n+1). Now, (Sn, Sn) is a local functional, and

〈(Sn, Sn)〉 is the functional that collects the one-particle irreducible correlations functions con-

taining one insertion of (Sn, Sn). Because of (3.2), the O(~n+1)-contributions to 〈(Sn, Sn)〉 coincide

with the O(~n+1)-contributions to (Sn, Sn). Moreover, since Sn = Sc+poles and (Sc, Sc) = 0, we

know that (Sn, Sn) =poles.

Call Γ
(n+1)
ndiv the order-(n+1) divergent part of Γn. By the theorem of locality of counterterms,

Γ
(n+1)
ndiv is a local functional. By the observations just made, if we take the order-(n+1) divergent

part of (3.3), we get

(S̄0,Γ
(n+1)
ndiv ) =

1

2
(Sn, Sn) + O(~n+2). (3.4)

Now we define

Sn+1 = Sn − Γ
(n+1)
ndiv . (3.5)

Clearly, Sn+1 is the (n + 1)-loop renormalized action, since Γn+1 = Γn − Γ
(n+1)
ndiv + O(~n+2).

Moreover, we still have Sn+1 = Sc+poles, and, using (3.4) and (3.5),

(Sn+1, Sn+1) = O(~n+2),

which promotes the inductive assumption to n+1 loops. Iterating the argument, we can construct

the renormalized action S∞ and the renormalized functional Γ∞, and prove that both satisfy their

master equations exactly.

Let us study S∞ more closely. In dimensional regularization the L-loop divergences are mul-

tiplied by
~
L

εn
, 1 6 n 6 L. (3.6)

Thus, while Sc depends on λ and ~, S∞ depends on one additional quantity, which is ~/ε, and

the new dependence is (order-by-order) polynomial. Given a solution Sc of the master equation,

the map

Sc(λ, ~) → S∞(λ, ~/ε, ~) (3.7)

9



builds an extended solution S∞ of the master equation, such that the functional Γ∞ associated

with S∞ is convergent. Since S∞ = Sc+poles, we have S∞(λ, 0, ~) = Sc(λ, ~). We discover that

renormalization knows how to automatically extend the solutions of the master equation. This

piece of information is crucial for the arguments of this paper.

From the physical point of view, the raw subtraction algorithm is not the final answer to the

problem of renormalization, because when divergences are subtracted just as they come, instead of

by means of field-, parameter- and source-redefinitions, renormalization-group invariance is lost.

We cannot define a bare action, because the renormalized action S∞ does not contain enough

independent constants to define all bare parameters we need. To have RG invariance we must

extend the classical action introducing new independent parameters where appropriate.

Parameter-extension maps

For the moment we adopt the option i) mentioned above and view renormalization as a redef-

inition of parameters only, with no field/source redefinitions. We prove that the classical action

always admits an extension that satisfies the master equation and contains enough independent

parameters to subtract all divergences by means of parameter-redefinitions. The basic argument

is that in case it is not so, we can use renormalization to build an extended solution containing at

least one additional independent parameter. Iterating this procedure indefinitely, we end up with

a parameter-complete action, namely an action that can reabsorb its own divergences redefining

its own parameters.

We learned from (3.7) that renormalization generates a new perturbatively local solution S∞

of the master equation that depends on one quantity (~/ε) not contained in Sc. Turning ~/ε

into an independent parameter λ′ we obtain the parameter-extension map (often abbreviated to

extension map)

Sc(λ, ~) → S∞(λ, λ′, ~), (3.8)

from a classical solution Sc(λ, ~) to the master equation, depending on certain parameters λ, to

an extended classical solution S∞(λ, λ′, ~), which can (polynomially) depend on one additional

parameter λ′. We say that S∞(λ, λ′, ~) is the parameter extension of Sc(λ, ~).

Now, construct an extension chain {S(0), S(1), S(2) · · · } of classical actions, all of which are

solutions of the master equation, where S(0) is the starting classical action Sc(λ, ~), and S(i),

i > 0, is the parameter extension of S(i−1). Denote the parameters contained in S(i) with λ(i).

We have {λ(i)} ⊂ {λ(i+1)}. Writing {λ(i+1)} ≡ {λ(i), λ′(i)}, we also have S(i+1)(λ(i+1), ~)
∣

∣

λ′(i)=0
=

S(i)(λ(i), ~).

If there exists an i = I such that the parameter extension of S(I) is stable up to parameter-

redefinitions λ̃, namely such that

S(I+1)(λ(I+1), ~) = S(I)(λ̃(λ(I), λ′(I), ~), ~), (3.9)
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we say that the extension chain closes. Then the action S⊂ ≡ S(I) is parameter-complete. Indeed,

by construction if we replace the parameter λ′(I) back with ~/ε, formula (3.9) tells us that the

action

S(I+1)(λ(I), ~/ε, ~) = S(I)(λ̃(λ(I), ~/ε, ~), ~)

is the renormalized action associated with the classical action S(I)(λ(I), ~), therefore SB = S(I) is

the bare action,

λB = λ̃(λ(I), ~/ε, ~)

are the bare couplings and λ(I) are the renormalized couplings.

In power-counting renormalizable theories closure is certainly achieved after a finite number

of steps, because the number of independent parameters cannot exceed the number of monomials

contained in the action. When the theory is not power-counting renormalizable, instead, appro-

priate truncations, discussed in the next section, are necessary to achieve closure with a finite

number of steps.

Reduced parameter-extension map

We can always choose an ~-independent classical action Sc, or we can replace ~ inside Sc with

a new independent parameter and add it to the set of λs. Then S∞(λ, ~/ε, ~) depends on two

parameters more than Sc, so the map (3.8) extends the classical action by two parameters λ′1 and

λ′2, which replace ~/ε and ~, respectively. The extension chain can be constructed as before, and

the parameter-complete action satisfies

S(I+1)(λ(I+1)) = S(I)(λ̃(λ(I), λ′(I))).

In this situation we can also construct a “reduced” extension map, which can be useful for

some purposes. It is obtained considering S∞(λ, ~/ε, 0), that is to say keeping only the maximal

divergences of the renormalized action S∞(λ, ~/ε, ~). The reduced extension map

Sc(λ) → S∞(λ, λ′1, 0) (3.10)

is much easier to work out, since it is sufficient to compute the one-loop divergent parts generated

by Sc(λ) and then use standard RG techniques to resum the maximal divergences of diagrams

with more loops. Using (3.10) instead of (3.8), we can construct a reduced extension chain and

a reduced parameter-complete action Sr⊂. The downside is that Sr⊂ is parameter-complete only

with respect to the maximal divergences. In some cases the action Sr⊂ may coincide with the

final answer S⊂, because normally new counterterms are generated already at one loop. However,

we have no guarantee that it is so (and it is quite easy to construct examples where it is not so).

A convenient strategy is to first construct the reduced action Sr⊂ and then check whether it is

complete or not. It not, take Sr⊂ as the starting Sc(λ) and build the complete action S⊂ using

(3.8).
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4 Truncations

When we quantize a nonrenormalizable theory, or study composite fields of high dimensions in

any kind of theory, we have to define a consistent perturbative expansion. In particular, we

must truncate the classical action Sc so that the truncated action ScT contains an arbitrarily

large, but finite, number N of terms, sufficient for all practical needs. In the previous section we

constructed the parameter-complete action without paying attention to this issue. Here we show

how to truncate the theory and adapt the construction of the previous section so that it involves

a finite number of operations for each N .

Denote the gauge coupling of minimum dimension with κ. We parametrize the starting clas-

sical action Sc(Φ,K, κ, ζ, ξ) as

Sc(Φ,K, κ, ζ, ξ) =
1

κ2
S′
c(κΦ, κK, ζ, ξ), (4.1)

where ξ are gauge-fixing parameters, ζ are any other parameters and S′
c is polynomial in ζ and

ξ. Moreover, each field Φ has a dominant kinetic term

∼ 1

2

∫

Φ∂nΦΦ (4.2)

normalized to one or multiplied by a dimensionless parameter.

Before proceeding let us explain the meaning of the parametrization (4.1). Consider for

example Yang-Mills theory coupled to Einstein gravity. The Yang-Mills action reads

1

4

∫ √
ggµρgνσF a

µνF
a
ρσ(A, gc), (4.3)

where gc is the gauge coupling. However, the gauge coupling κ of minimum dimension is not gc,

but the Newton constant κN . Thus (4.3) does not agree with (4.1). The right way to parametrize

(4.3) is to define gc ≡ r+κN and rewrite (4.3) as

1

4κ2N

∫ √
ggµρgνσF a

µνF
a
ρσ(κNA, r+).

The action S′
c that we obtain is obviously polynomial in r+.

When a theory contains superrenormalizable terms and massless fields Feynman diagrams usu-

ally have infrared problems. To avoid this, we assume that if superrenormalizable interactions are

present, the fields are equipped with appropriate quadratic terms that cure the infrared behaviors

of diagrams. For scalars and fermions we just need mass terms. For Yang-Mills theories in three

dimensions we need Chern-Simons terms. For higher-derivative gravities in four dimensions, such

as the theories with dominant quadratic terms

1

2κ2N

∫ √
g
(

αRµν(D
2)nRµν + βR(D2)nR

)

(4.4)
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where α and β are dimensionless constants, n > 0 is an integer and D is the covariant derivative,

we need either the Einstein term or the cosmological term. Writing gµν = ḡµν + κNφµν , where

ḡµν is some reference metric, the fluctuation φµν has dimension −n. When n > 0 the Newton

constant κN is a superrenormalizable parameter, so the cosmological constant must be present

anyway, because radiative corrections generate it as a counterterm. Clearly, the theories (4.4) are

not perturbatively unitary.

The gauge-fixing must be parametrized similarly. Let

Scmin(Φ,K, κ, ζ) =
1

κ2
S′
cmin(κΦ, κK, ζ)

denote the minimal solution of the master equation, namely Sc(Φ,K, κ, ζ, ξ) where antighosts C̄,

Lagrange multipliers B and their sources KC̄ , KB are set to zero. The simplest extended solution

of the master equation reads

Scext(Φ,K, κ, ζ) = Scmin(Φ,K, κ, ζ) −
∫

BKC̄ =
1

κ2
S′
cext(κΦ, κK, ζ),

and can be gauge-fixed using a gauge fermion Ψ of the form

Ψ(Φ,K, κ, ξ) =
1

κ2
Ψ′(κΦ, κK, ξ),

where ξ are gauge-fixing parameters and Ψ′ depends polynomially on ξ. The Ψ-contributions that

do gauge-fix are actually contained in Ψ(Φ, 0, κ, ξ), since the K-dependent sector just describes a

change of variables.

If the gauge algebra closes off shell we can choose an Scmin linear inK. Taking aK-independent

Ψ the gauge-fixed solution of the master equation reads

Sc(Φ,K, κ, ζ, ξ) = Scext + (Scext,Ψ) =
1

κ2
S′
c(κΦ, κK, ζ, ξ). (4.5)

For example, in Yang-Mills theory coupled with gravity a typical and simple choice is

Ψ(Φ,K, κ, ξ) =

∫

C̄µ

(

ηâν∂νφâµ + ξGη
âν∂µφâν −

ξ′G
2
Bµ

)

+

∫

C̄ âb̂φâµδ
µ

b̂

+

∫

C̄a

(

∂µAa
µ − ξg

2
Ba

)

, (4.6)

where κφâµ is the quantum fluctuation of the vierbein eâµ around a given background (normally

flat space), C̄ âb̂ and B
âb̂

are the antighosts and Lagrange multipliers of local Lorentz symmetry,

â, b̂, . . . are indices of the Lorentz group and the indices of ∂µ, C̄µ and Bµ are raised and lowered

with the flat metric ηµν .

More generally, if the gauge algebra closes only on shell we have to gauge-fix the theory

defining Sc(Φ,K, κ, ζ, ξ) as the action obtained from Scext applying the canonical transformation

generated by

F (Φ,K ′) =

∫

ΦAK ′
A +Ψ(Φ,K ′, κ, ξ). (4.7)
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Clearly, Sc is parametrized according to the structure (4.1).

Now we can explain how the truncation works. We organize the set of parameters λ = κ, ζ, ξ

into four subsets s̄, s0, s+ and s−. The first subset s̄ contains the masses, the cosmological con-

stant, and in general all parameters that enter the propagator and are not treated perturbatively.

For example, some of them cannot be considered small because they cure infrared problems when

superrenormalizable interactions are present. We express each parameter contained in s̄ as a

dimensionless constant of order one times md, where d is its (non-negative) dimension in units of

mass.

The second set s0 contains the parameters of vanishing dimensions. We write each of them as

a constant of order one times a positive integer power of some σ ≪ 1. Then we have the subset

s+ of parameters that have positive dimensions d+ and are treated perturbatively, such as the

coefficients of superrenormalizable interactions. We write them as constants of order one times

Λ
d+
+ , where Λ+ is some scale. Finally, the forth subset s− contains the parameters of negative

dimensions d−, which we write as constants of order one times Λ
−d−
− , where Λ− is some other

scale. The forth subset may include the coefficients of quadratic terms ∼ φ∂n
′

φφ with n′φ > nφ,

which have to be treated perturbatively, since we have established that the dominant quadratic

terms we perturb around are (4.2).

Feynman diagrams are multiplied by various factors, but their core integrals depend only on

the parameters of the subset s̄ and external momenta. Therefore, if we assume that m and the

overall energy E are of the same order, each field Φ of dimension dΦ contributes to the amplitudes

as a power ∼ EdΦ ∼ mdΦ .

We assume that there exists a range of energies E such that

Λ+ ≪ m ∼ E ≪ Λ− (4.8)

and define the ratio

ρ ∼ E

Λ−
∼ Λ+

E
≪ 1. (4.9)

In perturbatively unitary theories propagating fields have standard dimensions in units of

mass (1 for bosons and 3/2 for fermions, i.e. nΦ = 2 and nΦ = 1, respectively). When the

theory is not perturbatively unitary, like a higher-derivative theory, fields of arbitrarily negative

dimensions may be present. Including these theories is useful to emphasize that our results are

intrinsic properties of gauge symmetry and renormalization, and do not depend on the particular

model we are working with.

The perturbative expansion is defined as the expansion in powers of ρ and σ. The truncated

actions are obtained neglecting the contributions of orders ρT
′

and σT
′

with T ′ > T , and denoted

with ScT , S∞T , S
(i)
T , S⊂T , and so on. The ScT -master equation must hold within the truncation,

which means (ScT , ScT ) = O(ρT+1)+O(σT+1). The other identities also hold up to O(ρT+1)- and

O(σT+1)-corrections.
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We show that ScT depends on a finite number of parameters and that radiative corrections

are compatible with the truncation. Let us first assume that ScT is ~-independent. A generic

term of ScT has the structure

(κ2)L−1χ∂p(κΦ)nΦ(κK)nK , (4.10)

with L = 0, where nΦ and nK are non-negative integer numbers and χ is a product of parameters

κ, ζ and ξ. The structure (4.10) for L > 0 is the one of counterterms. Indeed, since the action

Sc has an overall factor 1/κ2 and a κ is attached to each field and source, an n-leg vertex has at

least a factor κn−2. Thus a diagram with L loops, I internal legs, E external legs and vjl vertices

with njl = nΦj + nKl legs, where nΦj and nKl are the numbers of Φ- and K-legs, respectively, is

at least multiplied by a factor

κ
∑

jl vjl(njl−2) = (κ2)L−1κE ,

in agreement with (4.10). We have used the identities L − I + V = 1 and
∑

jl vjlnjl = 2I + E.

We also derive an inequality that we need below. Write E = EΦ + EK , where EΦ and EK are

the numbers of external Φ- and K-legs of the diagram. Observing that EK =
∑

jl vjlnKl, we

immediately get

EΦ + EK =
∑

jl

vjl(nΦj + nKl)− 2I = EK +
∑

jl

vjl(nΦj − 2)− 2(L− 1),

whence

nΦj 6 EΦ + 2L. (4.11)

Now, depending on whether the dimension [κ] of κ is positive or negative, we can write

κ ∼ Λ
[κ]
± = m[κ]ρ|[κ]|.

If [κ] = 0 we write κ = σ. The terms (4.10) belonging to the truncation must satisfy

nΦ, nK , 2L 6 2 +
T

|[κ]|e , χρ 6 T + 2|[κ]|e, (4.12)

with e = 1 or 0 for [κ] 6= 0 and [κ] = 0, respectively, while χρ denotes the order of χ.

The bounds (4.12) are sufficient to show that the number of derivatives pmust also be bounded

from above. Indeed, in (4.10) the product χ contributes with a factor Λu
+Λ

−v
− mw for some non-

negative u, v, w, and we must have u+ v 6 T + 2|[κ]|e. Now, given nΦ, nK and L, the dimension

of χ∂p, which is equal to u− v + w + p, is also given, but then the inequalities just found imply

that p must be bounded from above. This proves that the truncation can contain only a finite

number of terms. We denote such number with N(T ).

Let us point out that the (4.12) also implies that the number of counterterms included in the

truncation decreases when the order of radiative corrections increases, and eventually drops to
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zero. Only a finite number of Feynman diagrams contribute within the truncation, because the

number of loops and the number of vertices we can use are both bounded from above.

When ScT depends on ~ we must assume that the parameters, or product of parameters, that

multiply the terms proportional to ~
g have an order ∼ κ2g higher than if they were tree-level. It is

possible to incorporate this assignment in formula (4.10) replacing L with g. Radiative corrections

are also consistent.

Now that we know how to define an appropriately truncated action, we study the extension

map and make sure that it can be implemented with a finite number of steps. There is a caveat,

though. When we make the replacement ~/ε → λ′ we lower the order of the approximation.

Indeed, by formula (4.10), a factor κ2 appears at each loop, so defining the dimensionless constant

κ̃ = κm−[κ] we should consider λ′ as O(1/κ̃2), because it replaces a ~/ε. However, it can be checked

that if we really assume λ′ = O(κ̃−2) then the replacement ~/ε→ λ′ can generate infinitely many

contributions of the same order. To truncate such contributions we must assume λ′ = O(κ̃ω−2),

with ω > 0. At the same time, we must be sure that the radiative corrections to λ′, which are

O(1) (see (1.3)) are smaller than λ′ itself, for which it is sufficient to assume ω < 2. Thus we take

0 < ω < 2.

Because the replacement ~/ε → λ′ lowers the order of the approximation, it is not sufficient

to truncate the action to order T to determine the extended action to order T . Instead, we must

truncate the classical action Sc to some order T0, to determine the first extended action S(1) to

some order T1, so that the second extended action S(2) is determined to some order T2, and so

on, and guarantee that the final extended action S⊂ is determined to the desired order T . We

want to show that this can be done with a finite number of steps. In particular, T0(T ) is finite.

Let us consider a single extension S
(i)
Ti

→ S
(i+1)
Ti+1

. The renormalized action S
(i)
∞Ti

(λ, ~/ε, ~)

contains terms (4.10) multiplied by

(

~

ε

)f

~
g, f + g = L.

When we replace ~/ε with λ′ we obtain objects

~
gm(2−ω)f [κ]κ2g+ωf−2χ∂p(κΦ)nΦ(κK)nK .

We want to determine all terms of this type that fall within the truncation Ti+1. In particular,

they must satisfy

nΦ, nK , ωf + 2g 6 2 +
Ti+1

|[κ]|e , χρ 6 Ti+1 + 2|[κ]|e,

therefore

L = f + g < f +
2

ω
g 6

2

ω
+

Ti+1

ω|[κ]|e .
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Using (4.11) we see that all vertices v participating in the diagrams must satisfy

nΦj 6

(

2 +
Ti+1

|[κ]|e
)(

1 +
2

ω

)

, nKl 6 2 +
Ti+1

|[κ]|e , χ(v)
ρ 6 Ti+1 + 2|[κ]|e, (4.13)

where χ
(v)
ρ is the order of the factor χ(v) appearing in the vertex. As before, given nΦj and nKl,

the number of derivatives pv that can appear in the vertex is also bounded from above, because

a large pv would raise the order of χ(v) arbitrarily. Thus, only a finite number of vertices can

participate in the diagrams that contribute to S
(i+1)
Ti+1

. At this point, we determine Ti(Ti+1) so

that S
(i)
Ti

contains all such vertices.

Recall that the parameter-complete action S⊂T we want to determine contains a finite num-

ber of terms N(T ). Thus the extension chain {S(i)
Ti
(λ(i), ~)} contains at most N(T ) elements,

because each step adds at least one independent parameter, and there cannot be more indepen-

dent parameters than Lagrangian terms. Consequently, T0(T ) is finite, as we wished to prove.

Thus, after a finite number of operations we achieve closure within the truncation and determine

the parameter-complete action S⊂T . That action is equipped with all parameters that are neces-

sary to renormalize divergences by means of parameter-redefinitions, without using cohomological

properties, within the truncation.

Observe that choosing ω small the bounds (4.13) become larger, which means that to determine

the exended action more and more precisely as a function of the new parameters λ′ we must work

harder and harder. These facts emphasize that our extension procedure is mainly a theoretical

tool. On the one side it is conceptually simple, on the other side it appears to be prohibitive

from the practical point of view, unless ad hoc parameter-redefinitions and other tricks are found

case-by-case to reduce the effort.

5 Parameter-completion and canonical transformations

So far we have used the approach i), where the extension algorithm is applied after introducing

redundant parameters to renormalize all kinds of divergences, including those proportional to the

field equations, by means of parameter-redefinitions, instead of using both parameter-redefinitions

and canonical transformations of fields and sources. Now it is relatively easy to explain how to

proceed in the standard approach ii). We understand that we are working with truncated actions

where necessary, although we do not make it explicit all the time.

The parameter-extension map is unchanged. Making the source- and field-dependences ex-

plicit, we write (3.8) as

Sc(Φ,K, λ, ~) → S∞(Φ,K, λ, λ′, ~).

The extension chain {S(0), S(1), S(2) · · · } is obtained taking S(0) as the starting classical action

Sc(λ, ~), and S(i), i > 0, as the parameter extension of S(i−1). It is often convenient to express
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each action S(i) in some specific field- and source-variables, which we denote with Φ(i),K(i). For

example, when the classical action is written in some standard form, we may want to preserve

that form throughout the extension process. This can be obtained updating the field- and source-

variables from {Φ(i−1),K(i−1)} to {Φ(i),K(i)} by means of canonical transformations. A common

option is to choose the “essential” form [5, 6], where the dominant kinetic terms of the field

equations (e.g. ✷φ and ∂/ψ for bosons φ and fermions ψ in perturbatively unitary theories) are

contained only in the dominant kinetic terms of the action (up to total derivatives), and removed

from every other place by means of field redefinitions.

As before, the parameters contained in S(i) are denoted with λ(i), and we have {λ(i)} ⊂
{λ(i+1)} = {λ(i), λ′(i)}. Now we state that the chain closes if there exists an i = I such that

the parameter extension of S(I) is stable in the sense that there exist parameter-redefinitions

λ̃(λ(I), λ′(I), ~) and canonical transformations

Φ̃(Φ,K, λ(I), λ′(I), ~), K̃(Φ,K, λ(I), λ′(I), ~),

such that

S(I+1)(Φ,K, λ(I+1), ~) = S(I)(Φ̃, K̃, λ̃(λ(I), λ′(I), ~), ~). (5.1)

When these operations are combined with the truncations explained above, the extension chain

closes after a finite number of manipulations. The action S⊂ = S(I) is then parameter-complete

within the truncations.

Recapitulating, S(I+1) is the renormalized action and SB = S(I) is the bare action. Indeed,

setting λ′(I) = ~/ε we obtain

S(I+1)(Φ,K, λ(I), ~/ε, ~) = SB(ΦB,KB, λB, ~),

where

ΦB = Φ̃(Φ,K, λ(I), ~/ε, ~), KB = K̃(Φ,K, λ(I), ~/ε, ~), λB = λ̃(λ(I), ~/ε, ~)

are the relations between bare and renormalized fields, sources and parameters.

6 Proper formalism and parameter-completion without cohomol-

ogy

In the usual formalism of quantum field theory, based on the generating functional Γ of one-

particle irreducible diagrams, any time the canonical transformations are nonlinear, or contain

field-dependent source-transformations, they cannot be interpreted as true changes of field vari-

ables in the functional integral, but only as replacements of integrands [5]. To overcome this
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issue, in ref. [5] we developed a field-covariant formalism for quantum field theory and in [7]

we introduced a new generating functional Ω of one-particle irreducible diagrams, called “mas-

ter functional”, that behaves as a scalar under arbitrary perturbative changes of field variables

(namely field redefinitions that can be expressed as local perturbative series around the identity).

The master functional supersedes the functional Γ, which does not transform in a simple way. In

ref. [2] the formalism was generalized to gauge theories.

The set of integrated fields is enlarged from Φ to a set of “proper fields” Φ, N . Similarly, the

set of sources K is enlarged to the “proper sources” K,H. The extra fields N I are associated

with local composite fields OI(Φ), while the extra sources HI are associated with the OI -gauge

transformations. The master functional Ω and its classical action ScN , called “proper action”, are

functionals of the proper fields and the proper sources.

In ref. [2] it was shown that when cohomological properties such as (2.3) hold in the usual

formalism, they can be generalized to the proper formalism and the master functional for gauge

theories. Doing so, a “proper cohomology” emerges, based on the squared antiparentheses

⌊X,Y ⌋ ≡
∫

(

δrX

δΦA

δlY

δKA
+
δrX

δN I

δlY

δHI
− δrX

δKA

δlY

δΦA
− δrX

δHI

δlY

δN I

)

(6.1)

between two functionals X and Y of Φ, K, N and H. The squared antiparentheses satisfy

identities analogous to the ones satisfied by the usual antiparentheses, and can be used to extend

the Batalin-Vilkovisky formalism to the sector of composite fields.

Given a classical action Sc(Φ,K) that satisfies (3.1), it is possible to construct a proper classical

action ScN(Φ,K,N,H) that satisfies the proper master equation

⌊ScN , ScN⌋ = 0 (6.2)

and is such that the extra fields N have “propagator” equal to one, and ScN = Sc at HI = 0,

δlScN/δN
I = 0. The master functional Ω collects the one-particle irreducible diagrams generated

by ScN .

In [2] we used these tools to show that if (2.3) holds then ScN can be extended till it becomes

parameter-complete. In the proper approach a parameter-complete action contains enough inde-

pendent parameters so that all divergences can be removed by means of parameter-redefinitions

and “proper” canonical transformations, which are special source-independent linear transfor-

mations of the proper fields Φ, N , combined with Φ-N -independent source-transformations (see

formula (6.9)).

In the derivation of [2] cohomological properties played a crucial role. On the other hand, in

the previous sections we proved that cohomological properties are not really essential for renor-

malization. In this section we show that this fact remains true in the field-covariant proper ap-

proach and construct a parameter-complete proper action S⊂N without relying on cohomological

assumptions.
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As before, we assume that the starting classical action Sc(λ, ~) satisfies the master equation

(3.1) exactly at the regularized level, which ensures that gauge anomalies are manifestly absent.

Then the proper classical action ScN also satisfies the proper master equation (6.2) at the regu-

larized level (see below for the proof). To make the presentation more understandable, we first

work with gauge algebras that close off shell, and later generalize the results to gauge algebras

that close only on shell.

If the gauge algebra closes off shell we choose Sc(Φ,K) of the form (2.1). Then the starting

proper action is

ScN(Φ,K,N,H) = Sc(Φ,K)−
∫

RI
O(Φ)HI +

1

2

∫

Ñ IAIJÑ
J +

∫

ρvIN
v(Ñ)OI

inv(Φ), (6.3)

where Ñ I = N I − OI(Φ), AIJ and ρvI are constants,

RI
O(Φ) ≡

∫

RA(Φ)
δlO

I

δΦA

are the gauge transformations of the composite fields OI , OI
inv are the gauge-invariant composite

fields and Nv(Ñ) denotes a basis of local monomials, at least quadratic in Ñ , constructed with Ñ

and its derivatives. The functional integral is over both Φ and N , and the “improvement term”

1

2

∫

N IAIJN
J , (6.4)

provides propagators for the fields N . All other quadratic terms coming from the last contribution

to (6.3) must be treated perturbatively with respect to (6.4). It is easy to check that (3.1) indeed

implies (6.2).

The generating functional of Green functions Z and the generating functional of connected

Green functions W are defined from

Z(J,K,L,H) =

∫

[dΦdN ] exp

(

−ScN(Φ,K,N,H) +

∫

ΦAJA +

∫

N ILI

)

= expW (J,K,L,H).

(6.5)

Since the N -propagator is equal to 1, the N -integral can be done exactly in dimensional regular-

ization, and amounts to make the Legendre transform of ScN with respect to N I . Defining

−S̃(Φ,K,L,H) = −ScN(Φ,K,N,H) +

∫

N ILI , LI =
δlScN
δN I

,

we get

S̃ = S(Φ)−
∫

(

RA(Φ)KA +RI
O(Φ)HI

)

− 1

2

∫

LI(Ã
−1)IJLJ −

∫

τvIN
v(L)OI

inv(Φ)−
∫

OILI ,

where the τvIs are parameters equal to ρvI plus perturbative corrections and Ã is the A-transpose.

Thus we have

Z =

∫

[dΦ] exp

(

−S̃(Φ,K,L,H) +

∫

ΦAJA

)

. (6.6)

20



We see that LI play the role of sources coupled to the composite fields OI . Observe that the

equations

LI =
δlScN
δN I

= 0,

which switch composite fields off, are solved by Ñ I = 0. Moreover, the conditions HI =constants

amount to a change of gauge-fixing.

The master functional Ω is defined as the Legendre transform of W with respect to both Φ

and L, while K and H remain inert. We have

Ω(Φ,K,N,H) = −W (J,K,L,H) +

∫

(

ΦAJA +N ILI

)

, (6.7)

with

ΦA =
δrW

δJA
, N I =

δrW

δLI
,

δrW

δKA
= − δrΩ

δKA
,

JA =
δlΩ

δΦA
, LI =

δlΩ

δN I
,

δrW

δHI
= − δrΩ

δHI
. (6.8)

Since no confusion is expected to arise, we use the same names for the proper fields Φ, N inside

both SN and Ω, while strictly speaking the latter are averages of the former: 〈ΦS〉 = ΦΩ, 〈NS〉 =
NΩ. In the Legendre transform (6.7) the improvement term (6.4) must again be treated as

dominant with respect to all other quadratic terms involving the fields N I .

If the proper classical action ScN satisfies (6.2), then the master functional Ω satisfies the

proper master equation

⌊Ω,Ω⌋ = 0.

The proof [2], which we do not repeat here, follows from the generalization of identity (3.3) to

the proper formalism.

Changes of field variables and changes of gauge-fixings can be easily implemented as “proper”

canonical transformations, namely canonical transformations for the proper fields and sources

with generating functional

F (Φ,K ′, N,H ′) =

∫

(ΦA +N IbAI )K
′
A +

∫

N IzJI (H
′
J − ξJ), (6.9)

where bAI , zJI and ξI are constants, which can be both c-numbers and Grassmann variables. More

explicitly, a proper transformation reads

ΦA ′ =
δF

δK ′
A

= ΦA +N IbAI , KA =
δF

δΦA
= K ′

A,

N I ′ =
δF

δH ′
I

= NJzIJ , HI =
δF

δN I
= zJI (H

′
J − ξJ) + bAI K

′
A. (6.10)
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Let us briefly describe how the field redefinitions contained in (6.10) work. If we write

ΦA ′ = ΦA + OI(Φ)bAI + Ñ IbAI , (6.11)

when we set Ñ I = K = 0, H =constant, to switch off the sectors of composite fields and gauge

transformations, (6.11) becomes ΦA ′ = ΦA+OI(Φ)bAI , which is the expansion of the most general

local perturbative change of field variables. However, the conditions Ñ I = 0 switch off the

composite-field sector only before the transformation. Indeed, due to the term Ñ IbAI in (6.11)

after the transformation the solutions of L′
I = δlS

′
N/δN

I′ = 0 at K = 0, H =constant, are no

longer Ñ I = 0, but some new Ñ I ′ = 0. Working out Ñ I ′ it is found that at Ñ I ′ = K = 0,

H =constant the effective change of variables is corrected by O(b2)-terms and finally reads

ΦA ′ = ΦA + OI(Φ)b̃AI ,

where b̃AI = bAI + O(b2) is some calculable power series in b. More details can be found in refs.

[2, 7].

Now we generalize the arguments of the previous sections to the proper formalism for gauge

theories. The raw renormalization algorithm is immediately generalized replacing the classical

action Sc with the classical proper action ScN , the antiparentheses with the squared antiparen-

theses, the master equation with the proper master equation and the Γ-functional with the master

functional Ω. We do not repeat the derivation here, because it was already given in section 5 of

ref. [2]. Calling SNn and Ωn the proper action and the master functional renormalized up to

n loops (with SN 0 = ScN), we subtract the order-(n + 1) divergent part Ω
(n+1)
ndiv of Ωn (in the

minimal subtraction scheme) and define

SNn+1 = SNn − Ω
(n+1)
ndiv . (6.12)

Iterating this operation we construct the renormalized proper action SN∞ and prove that it

satisfies the master equation

⌊SN∞, SN∞⌋ = 0.

Now, if λ denotes the parameters contained in ScN , the map

ScN (Φ,K,N,H, λ, ~) → SN∞(Φ,K,N,H, λ, ~/ε, ~) (6.13)

sends a solution of the proper master equation into an extended solution. Thus we can define the

parameter-extension map

ScN(Φ,K,N,H, λ, ~) → SN∞(Φ,K,N,H, λ, λ′, ~), (6.14)
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and build an extension chain {S(0)
N , S

(1)
N , S

(2)
N · · · } of proper classical actions, where S

(0)
N = ScN ,

and S
(i)
N , i > 0, is the parameter extension of S

(i−1)
N . We state that the extension chain closes if

there exists an i = I such that

S
(I+1)
N (Φ,K,N,H, λ(I+1), ~) = S

(I)
N (Φ̃, K̃, Ñ, H̃, λ̃(λ(I), λ′(I), ~), ~), (6.15)

where the tilded proper fields and sources are related to the untilded ones by a proper canonical

transformation that depends on λ(I), λ′(I) and ~. Within the truncations, the extension chain

closes after a finite number of operations, and S(I) identifies the parameter-complete proper action

S⊂N .

Although we have assumed that the gauge algebra closes off shell, so far, this assumption did

not enter the key-steps of our arguments. Its main purpose was to let us use the simple and

explicit form (6.3) of the starting proper action ScN . Relaxing the assumption of off-shell closure,

we can start from any classical action Sc(Φ,K) that satisfies (3.1). Then we pick a basis {OI(Φ)}
of local composite fields and make a canonical transformation with generating function

Fc(Φ,K
′) =

∫

ΦAK ′
A −

∫

OI(Φ)HI .

The transformed action reads

S̃c(Φ,K,H) = Sc(Φ,K +

∫

δlO
I

δΦ
HI) (6.16)

and obviously satisfies (S̃c, S̃c) = 0. Define the proper action

ScN (Φ,K,N,H) = S̃c(Φ,K,H) +
1

2

∫

Ñ IAIJÑ
J , (6.17)

where Ñ I = N I − OI . It is easy to prove that ScN satisfies the proper master equation (6.2).

First observe that ⌊S̃c, S̃c⌋ = (S̃c, S̃c) = 0, therefore

⌊ScN , ScN⌋ = ⌊S̃c,
∫

ÑAÑ⌋.

Next, working out the squared antiparentheses explicitly, formulas (6.16) and (6.17) give

⌊S̃c, Ñ I⌋ =
∫

δrS̃c
δKA

δlO
I

δΦA
− δrS̃c
δHI

= 0,

whence ⌊ScN , ScN⌋ = 0 immediately follows.

The generating functionals are defined as in (6.5) and (6.7). Integrating over the extra fields

N we obtain (6.6) with

S̃(Φ,K,H,L) = S̃c(Φ,K,H) − 1

2

∫

LI(Ã
−1)IJLJ −

∫

OILI .
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All other derivations are identical to the ones given before, since the explicit forms of Sc and

ScN play no role in those. Again, we have the parameter-extension map (3.7), which allows

us to construct the extension chain. We define closure by formula (6.15), where the canonical

transformation must be proper. The truncations ensure that the chain closes after a finite number

I of steps. The parameter-complete proper action S⊂N = S(I) can thus be worked out with a finite

number of calculations, and is such that its divergences can be subtracted redefining parameters

and making proper canonical transformations.

7 Remarks

In this section we collect a few observations that can make us better appreciate some properties

of the constructions presented so far.

Every time we extend the solution with the operations described above, we introduce a new

parameter λ′, obtained replacing ~/ε. Since the factors ~/ε multiply powers of other parameters λ

coming from Feynman diagrams, the new parameter λ′ also multiplies various powers of λ. Thus

the extended actions are parametrized in non-standard ways.

Call the coefficient of a Lagrangian monomial constructed with the fields, the sources and their

derivatives, parameter-singlet if it is made of a single parameter. Call it parameter-product if it is

made of a product of parameters, with various (possibly negative) exponents. It may be convenient

to organize the action so that, proceeding order-by-order along with the truncations defined

previously, the first time a new parameter appears it appears as a parameter-singlet. To achieve

this goal, the first time we find a Lagrangian term multiplied by a new independent coefficient

equal to a parameter-product, say λλ′, we redefine that coefficient as a new parameter-singlet α,

and re-express α everywhere else in terms of λ and λ′. If the coefficient is a sum of more parameter-

products, to avoid complicated functions of parameters we call α one parameter-product of the

sum, randomly chosen. When we do these operations, we very likely generate negative powers

of parameters, which makes the new parametrization also non-standard. Ultimately, the original

parametrization S⊂(Φ,K, λ, ~) may be the most convenient one, because at least it guarantees

that all parameters appear polynomially.

Let us emphasize that if we search for the most general solution S❁ of the master equation

(see next section) we get coupled quadratic equations (8.2) that can lead to even more involved

non-standard parametrizations, when cohomological properties do not hold.

Another remark concerns possible modifications of the gauge symmetry. When the gauge

algebra closes off shell and the cohomological property (2.3) holds, the symmetry transformations

are not affected by radiative corrections in any observable way, and the renormalized action is

really equivalent to the starting classical action Sc, extended as shown in (2.5), up to canonical

transformations and parameter-redefinitions. Instead, when (2.3) does not hold there is no ob-
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vious reason why the gauge symmetry should remain the same after renormalization. Radiative

corrections can modify it in a physically observable way. Moreover, even when the starting gauge

symmetry, encoded in Sc, closes off shell, the final one, encoded in S⊂ may close only on shell.

We do not have examples of non-trivial parameter extensions induced by renormalization,

since the theories we normally deal with do satisfy (2.3). Nevertheless, to clarify the remark just

made it may be helpful to think of an interacting gauge theory as a parameter extension of its

free-field limit. For example, switching off antighosts C̄ and Lagrange multipliers B, the solution

of the master equation of an Abelian gauge theory is just

SAb =
1

4

∫

(∂µA
a
ν − ∂νA

a
µ)

2 +

∫

Kµ∂µC.

If we assume that the number of photons is appropriate, we can write the action SnAb of non-

Abelian Yang-Mills theory as

SnAb = SAb + ω(A)−
∫

(∆RA)KA,

where

ω(A) = gfabc
∫

(∂µA
a
ν)A

b
µA

c
ν +

g2

4

∫

(fabcAb
µA

c
ν)

2,

−
∫

(∆RA)KA = g

∫
[

Ka
µf

abcAb
µC

c +
1

2
Ka

Cf
abcCbCc

]

.

The first line is a one-parameter extension of the action, while the second line encodes the corre-

sponding extensions of the symmetry transformations.

This observation illustrates what may happen in more involved theories, where new inter-

actions may be created by the extension. In that case the symmetry transformations may be

modified accordingly, to preserve the master equation.

8 Search for the most general solution of the master equation

In the previous sections we proved that a manifestly anomaly-free gauge theory always admits

a parameter-complete classical action S⊂. A related issue that remains to be addressed is the

search for the most general solution S❁ of the master equation. In this section we make some

remarks about this topic and compare the properties of the actions S❁ and S⊂.

Certainly S❁ is parameter-complete, because it includes S⊂. Another way to prove the

parameter-completeness of S❁ is to take S❁ as the classical action and use the raw renormal-

ization algorithm to work out the renormalized action S∞❁. Since S❁ is the most general solution

of the master equation, S∞❁ must be related to S❁ by means of parameter-redefinitions and
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canonical transformations. Observe that both these arguments do not make use of cohomological

properties.

Let us now see how S❁ can be built. Start from any solution Sc(Φ,K, λ) of the master equation

and let {Li(Φ,K, λ)} denote a basis of Lagrangian terms Li constructed with the fields, the sources

and their derivatives. For simplicity, we can take a basis made of monomials. Composite fields OI

can be included also, coupled to external sources LI . The most general extension of the starting

classical action Sc can be parametrized as

S❁(Φ,K, λ, τ) = Sc(Φ,K, λ) + τi∆
i(Φ,K, λ), ∆i =

∫

Li, (8.1)

where the sum over i is understood and the τis are constants. Requiring that S❁ solve the master

equation (S❁, S❁) = 0 we obtain the condition

2τi(Sc,∆
i) + τiτj(∆

i,∆j) = 0

for the constants τ . The objects (∆i,∆j) are local functionals, equal to the integrals of local

composite fields of dimension 5 and ghost number one. Let ∆a
5 denote a basis of such functionals.

Then there exist constants Cij
a such that

(∆i,∆j) = Cij
a ∆a

5,

where the sum over a is understood. Expanding Sc as σi∆
i, where σi are known constants, the

equations we must solve can be written as

(σi + τi)C
ij
a (σj + τj) = 0, σiC

ij
a σj = 0. (8.2)

The latter is a constraint on the σis, following from (Sc, Sc) = 0. Clearly, τi = hσi, where h is an

overall constant, are solutions, but they just give S❁ = (1 + h)Sc.

If we do not assume cohomological properties such as (2.3), the problem remains quadratic.

The coupled quadratic algebraic equations (8.2) can be very difficult to solve, and it is not even

evident how to solve them perturbatively. Thus, the search for S❁ might not be a practically

viable strategy.

If we ignore the difficulties to build S❁ and just assume that S❁ is known, we can investigate

its cohomological properties. Denote the S❁-independent parameters with ρi. Differentiating

(S❁, S❁) = 0 with respect to ρ, we find
(

S❁,
∂S❁
∂ρi

)

= 0. (8.3)

If S❁ depends on ~ what is actually important is the ~ → 0-limit of this equation, which reads
(

S̄0,
∂S̄0
∂ρi

)

= 0, (8.4)
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S̄0 being the ~ → 0-limit of S❁. We see that the ρ-derivatives of S̄0 are solutions of the cohomo-

logical problem (2.2) with Sc replaced by S̄0. However, there is no guarantee that all non-trivial

solutions of that problem are contained in the set {∂S̄0/∂ρi}.
Take S❁ as the starting classical action. As usual, call Sn the action renormalized up to n

loops, with S0 = S❁, and assume that it satisfies the master equation (Sn, Sn) = 0 exactly. Then

the (n+1)-loop divergences Γ
(n+1)
ndiv satisfy the cohomological problem (S̄0,Γ

(n+1)
ndiv ) = 0. If we want

to remove Γ
(n+1)
ndiv redefining the ρs and making canonical transformations, we need to know either

that a) the set {∂S̄0/∂ρi} contains all the non-trivial solutions of the cohomological problem, or

anyway b) it contains the solutions generated by renormalization, namely there exist constants

∆n+1ρi and local functionals χn+1 such that

Γ
(n+1)
ndiv =

∑

i

∆n+1ρi
∂S̄0
∂ρi

+ (S̄0, χn+1).

However, it is not enough to know that S❁ is the most general solution of the master equation

to prove a). In principle, there might be solutions of the cohomological problem that cannot be

embedded into any extension of the classical action. As far as statement b) is concerned, the

parameter-completeness of S❁ proves that it does hold, but, again, this argument does not use

cohomological properties.

To conclude, instead of trying to solve the problem in a purely algebraic way, it is more

convenient to let renormalization build the extended action, as we have done in this paper. Then

we discover that a parameter-complete solution S⊂ always exists and obeys property b) (with S̄0

replaced by the ~ → 0-limit of S⊂), but not necessarily property a). The most general solution S❁

of the master equation is also parameter-complete, and obeys b). The action S❁ may coincide with

S⊂ or be more general than S⊂. In either case, statement a) is not guaranteed to hold. Ultimately,

only cohomological theorems can ensure a property as strong as a), but renormalization does not

need that much.

9 Conclusions

In this paper we have shown that in a manifestly anomaly-free gauge theory it is always pos-

sible to extend the classical action Sc into a parameter-complete action S⊂ that satisfies the

master equation and is able to remove all divergences redefining its own parameters and mak-

ing canonical transformations. The construction was also extended to the master functional and

the field-covariant proper formalism for gauge theories, where renormalization works by means

of parameter-redefinitions and proper canonical transformations. Such canonical transformations

are true changes of variables in functional integrals and generating functionals, rather than mere

replacements of integrands.
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The compatibility between gauge symmetry and renormalization is encoded in an intrinsically

quadratic problem, because the master equation is quadratic in the action. The main virtue of

our algorithm is that it solves the quadratic problem even when it is not possible to reduce it

to a much simpler, linear (cohomological) problem. Cohomological properties can linearize the

quadratic problem, but their proofs must be worked out case-by-case and normally demand a

remarkable effort. Sufficiently powerful cohomological theorems might not hold in the theory we

are insterested in. Even when they hold, we might just not want to use them. It is interesting

to know that, without assuming cohomological properties, whenever gauge anomalies are mani-

festly absent the classical action can be iteratively extended till it becomes parameter-complete.

In other words, quantum field theory, renormalization and renormalization-group invariance are

intrinsically compatible with gauge symmetry.

At the practical level, we start from any classical action Sc(Φ,K). In case we want to work

with the proper formalism and the master functional, we construct the proper action (6.17). Then

we calculate the renormalization of the theory, which allows us to define the maps (3.7) or (6.13).

At this point we discover that renormalization is able to build an extended classical action, which

still satisfies the master equation, but contains a new independent parameter. Taking advantage

of this fact and iterating the extension till it closes, we end up with the parameter-complete

action, S⊂ or SN⊂, which satisfies the master equation and is able to renormalize all divergences

by means of parameter-redefinitions and (proper) canonical transformations. The renormalization

algorithm defined by this procedure is conceptually simpler than any previously known one.

The results of this paper lead us to conjecture that if the theory is potentially plagued with

gauge anomalies, but admits anomaly cancellation at one loop, it is always possible to find a

parameter-complete extension of the classical action such that the functionals Γ and Ω satisfy

their master equations exactly in the physical limit. However, we have to leave the investigation

of this issue to a separate work.
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