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1 IPN, CNRS/IN2P3, Université Paris-Sud 11, 91406 Orsay cedex, France
2 INFN-LNS, Laboratori Nazionali del Sud, 95123 Catania, Italy

Abstract

A full implementation of the Boltzmann-Langevin equation for
fermionic systems is introduced in a transport model for dissipative
collisions among heavy nuclei. Fluctuations are injected in phase space
and not, like in more conventional approaches, as a projection on suit-
able subspaces. The advantage of this model is to be specifically
adapted to describe processes characterised by instabilities, like the
formation of fragments from a hot nuclear system, and by dissipation,
like the transparency in nucleus-nucleus collisions.

1 Fluctuations and bifurcations

Dissipative nucleus-nucleus collisions are a unique probe for the in-medium
nuclear interaction at densities away from saturation and at high nucleon
momenta. In weakly-excited systems, Pauli-blocking factors of final orbitals
largely suppress two-body direct interactions. In a semiclassical framework,
the dynamics of such situation can be appropriately described within a
Vlasov formalism, where the temporal evolution of the one-body distribution
function f(~r, ~p, t) (function of time t, space coordinates ~r and momentum ~p)
in the self-consistent one body field is governed by the effective Hamiltonian
H[f ]. However, for more violent collisions, direct two-body interactions be-
come significant and require to be treated by an additional Boltzmann colli-
sion integral I[f ]. In the Uehling-Uhlenbeck form, this latter is introduced as
a continuous-source term Ī[f ]. Within standard forms of BUU/VUU/BNV
formalisms, the additional use of an ensemble-averaged mean field makes the
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transport model particularly suited for one-body observables (for example
the collective flow, or proton spectra), but suppresses bifurcations.

Bifurcations are however crucial in processes characterised by volume
instabilities, where fluctuations are the seeds of the formation of several
intermediate-mass fragments. A possible approach to this scenario is the
employment of a two-body Hamiltonian, as in Molecular Dynamics [1]. As
an extension of the one-body dynamics, another approach is the introduction
of one more term δI[f ] which produces Langevin fluctuations. The resulting
temporal evolution of the one-body distribution function in a Boltzmann-
Langevin approach is given by

∂t f = {H[f ], f}+ Ī[f ] + δI[f ] . (1)

This latter is the method we follow.
Many approaches to the Boltzmann-Langevin equation in nuclear trans-

port models are projections on one suitable subspace, like the coordinate
space. In this framework, a fluctuating term can be prepared by associating
a Brownian force to a stochastic one-body potential [2] or it can correspond
to kinetic equilibrium fluctuations of a Fermi gas [3]. The disadvantage of
projection methods is that the amplitude of the fluctuation may have to be
adjusted and fluctuations may appear from a specific time on (when equilib-
rium is attained or when entering spinodal conditions), as an amplification
of the most unstable mode.

The approach we follow consists in constructing a stochastic collision
term which includes Boltzmann-Langevin fluctuations in phase space, sup-
plemented by a strict treatment of Pauli-blocking factors, in the framework
of semiclassical test-particle-based transport models.

2 Collision statistics and fragment formation

We construct the Bolzmann-Langevin one body (BLOB) model by using the
same semiclassical isospin-dependent mean-field employed in the Stochastic
Mean Field (SMF) model [2, 4]; this is characterised by an incompressibility
of kinf = 200 MeV (soft) and the potential component of the symmetry
energy is given either by a linear term as a function of the density (asy-
stiff), or by a quadratic term, with negative curvature (asy-soft).

In SMF, the collision term is introduced in the standard Uehling-
Uhlenbeck form and fluctuations are injected in a reduced subspace, agi-
tating the spatial density profile. On the other hand, in BLOB fluctua-
tions are implemented in full phase-space, replacing the collision integral by



the Boltzmann-Langevin approach described in the following. Like in the
method introduced in ref. [5], the collision term of BLOB involves entire nu-
cleons. The test-particle method is used and a number of Ntest test-particles
per nucleon is employed. A ‘nucleon’ is represented by an agglomerate of
Ntest test-particles of identical isospin which share the same volume in co-
ordinate and in momentum space, as shown in fig. 1.

The number of attempted collisions is weighted on the probability of sat-
isfying the mean-free-path condition for the two agglomerates of test parti-
cles in a given interval of time. Such probability is proportional to the mean
density in momentum space, the average relative momentum between the
two clouds and the nucleon-nucleon cross section. This latter is divided by a
factor Ntest in order to keep a correspondence with the Uehling-Uhlenbeck
collision term. In fig. 2, SMF and BLOB are used to simulate the same
system 124Sn+124Sn at 50 AMeV and b = 0. We use here a simplified ver-
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Figure 1: Example of one collision event in BLOB. Two nucleons are represented
by two agglomerates of test-particles A and B which share the same volume in
coordinate spaceR. In the corresponding momentum space P the collision of A and
B originates by rotation (determined by the scattering angle) the destination sites
A′ and B′, where the test-particles are redistributed according to Pauli-blocking
and energy constraints.



sion of the SMF model, where fluctuations in the phase-space mapping are
generated by the use of a finite number of test particles, Ntest, in the numer-
ical resolution of Eq. 1. Then, the amplitude of fluctuations injected in the
dynamics scales with 1/Ntest. Several events were simulated so that several
trajectories could be drown for the evolution of the number of attempted
and effective collisions. Mean trajectory could be deduced as the average of
the bundle of all the simulated trajectories, this is shown on the left panel;
the right panel shows one single trajectory per type of calculation so as to
appreciate the amplitude of the fluctuation. The evolution of the number of
collisions as a function of time is a probe of the reaction mechanism. This
number increases during the initial stage of the collision, which is a phase
of compression. A stage of dilution follows, characterised by a drop of the
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Figure 2: SMF and BLOB compared for the same system 124Sn+124Sn at 50 AMeV
and b = 0. Left. Mean value of the evolution of the number of collisions extracted
from a bundle of trajectories. Right. Amplitude of the fluctuations shown by the
evolution of the number of collisions for single events.



number of collisions. The trend then reaches a minimum and inverses sign-
ing the beginning of the process of fragment formation, characterised by an
initial increase of the number of collisions and a successive stabilisation and
levelling off due to the separation of the fragments. This figure shows that,
as expected, the number of attempted collisions per test particle averaged
over a statistics of dynamical trajectories should not differ in the present
formalism with respect to a conventional BUU approach when the initial
rising side of the spectrum is considered. On the other hand, the amplitude
of the fluctuation marks the difference between the two models. In cor-
respondence with the phase of dilution (around 80-120 fm/c), fluctuations
characterise not only the statistics of collisions but also the kinematics. The
simulation was repeated for Nt = 40 and Nt = 100. The incomplete treat-
ment of fluctuations used in SMF results in establishing a dependence of
the collision statistics on the numerical parameter Nt. When Nt is reduced
in SMF the fragment formation is anticipated, the dynamics becomes more
explosive, and the fragment multiplicity increases. All these effects are even
further enhanced when moving from SMF with Nt = 40 to BLOB, but in
the latter case the dependence on Nt disappears, as expected, because in
BLOB a fluctuation-source term, corresponding to the Boltzmann-Langevin
collision integral, has been implemented.

Like in the approach followed in ref. [6], the effective-collision probability
is weighted on the blocking factors of the destination sites, taking into ac-
count the full extension of the initial distributions. In BLOB, distributions
are adapted to the occupation profile by the use of a numerical optimisation
procedure. This latter converges first to the appropriate extension of the
scattered regions (by expanding initial and final sites in momentum space)
and then converges to the appropriate test-particle final distribution by re-
organising the scattered test particles according to packets which can be
modulated in shape; the principle of this method is shown in fig. 1. Due
to the inclusion of blocking factors in the collision probability, the number
of effective collisions drops to smaller values with respect to the number
of attempted collisions. The evolution of the effective-collision number is
not expected to be identical for SMF and BLOB calculations; the number
is reduced with respect to the attempted-collision spectrum, keeping the
shape mostly unchanged, but the effective collisions result more penalised
by the Pauli blocking treatment in BLOB then in SMF. On the one hand,
this difference comes from the fact that the Pauli blocking is applied to the
scattering of test-particle couples in SMF, while in BLOB it is applied to
extended distributions of test particles. On the other hand, it is important
to remark that in BLOB the number of effective collisions is reduced with



respect to SMF but in this latter case collisions are more efficient in pro-
ducing phase-space fluctuations. Moreover, in the BLOB calculation the
fluctuation is not gradually amplified (the SMF approach results in ampli-
fying the most unstable mode) but it presents large and correct amplitudes
since the initial instants: this favours the early appearing of bifurcations
and explains the earlier fragment formation and the larger kinetic energy
of the fragments. As a further outcome, a larger variety of exit-channel
configurations are expected.

In fig. 3, like in fig. 2, SMF and BLOB are again used to simulate the
system 124Sn+124Sn at 50 AMeV and b = 0. In full agreement with the
analysis of the collision statistics and the properties of fragments, we find
larger fragment kinetic energies for the BLOB simulation. The fragment
configuration is more isotropic in the BLOB simulation, this could be due
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Figure 3: First and second rows. SMF and BLOB compared for the same system
124Sn+124Sn at 50 AMeV and b = 0. Nt = 100 is used. Third row. Two different
exit channels for the same system 124Sn+124Sn at 30 AMeV and b = 0, calculated
with BLOB.



to a larger transparency. A similar comparison was done between SMF and
AMD in ref. [7].

Another calculation is shown in fig. 3 for the less excited system
124Sn+124Sn at 30 AMeV, close to the threshold between fusion and frag-
mentation. This analysis has the purpose of studying the effect of bifurca-
tion. In the present example we find that in the SMF calculation one tra-
jectory prevails (leading to fusion), while in the BLOB calculation a more
complete phase-space sampling allows to access a variety of exit-channel
configurations (from fusion to fragmentation).

3 Conclusions

The differences between BLOB and SMF appear in the statistics of collisions
as well as in the kinematics.

In this context, the study of a new strategy to solve the Boltzmann-
Langevin equation is presented. As an extension of the Bauer-Bertsch ap-
proach, in the framework of semiclassical test-particle-based transport mod-
els, fluctuations of correct amplitude are introduced in phase space through a
stochastic collision term. The resulting fluctuations have so large amplitude
to induce bifurcations in the dynamical paths of the one-body phase-space
density and they correlate over smaller volumes with respect to previous
forms of the collision integral. In prospective, this strategy is promising
for the improvement of transport models for nuclear collisions and for the
implementation of isovector effects in the collision dynamics.
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