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The yrast states of even even vibrational and transitional nuclei are inter-

preted as a rotating condensate of interacting d-bosons. The corresponding
semi-classical tidal wave concept is used for microscopic calculations of ener-

gies and E2 transition probabilities. The strong octupole correlations in the
light rare earth and actinide nuclides are interpreted as rotation-induced con-

densation of interacting f-bosons.
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1. Cross-over between symmetries

In a macroscopic system the transition between distinct symmetries in-

duced by the change of an external control parameter appears as a phase

transition. Fig. 1 schematically illustrates the quantum phase transition

between the superconducting (gauge symmetry broken) and normal phases

of a type I superconductor. In a small mesoscopic system, as the nucleus,

the phase transition is not sharp, instead there is a cross-over region. Start-

ing from the symmetry conserving side, vibrations dynamically violate the

symmetry, which become increasingly soft and anharmonic. Starting from

the other side, symmetry restoring phenomena, as rotation and tunneling,

increasingly lift the degeneracies induced be the broken symmetry. In the

case of nuclei, the control parameters are proton and neutron numbers Z,

N , and the angular momentum I. The symmetries are the ones of the

nuclear mean field. The symmetries of the rotating mean field and the en-

suing degeneracies have been discussed in Ref.1 In this talk, I will discuss

the cross-over between conserved and broken rotational symmetry, as an

example for a continuos symmetry, and the cross-over between conserved

and broken reflection symmetry, as an example for a discrete symmetry.
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Fig. 1. Quantum phase transition in a
macroscopic system. Example: Type I su-
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Fig. 2. Appearance of an extended cross-

over region in a mesoscopic system

2. Condensation of aligned quadrupole phonons-tidal waves

If the nuclear mean field is spherical, the yrast line is generated by sub-

sequent excitations of particles and holes, where angular momentum is in-

creased by alignment of their spins. The spacing between the yrast levels

is irregular, reflecting the single particle energies. If the mean field is de-

formed, its energy does not depend on its orientation in space, because

the Hamiltonian is rotational invariant. This spontaneously broken sym-

metry is restored by the appearance of rotational states, which represent

superpositions of the symmetry broken (oriented) states. The stronger the

orientation (order parameter), which is measured by the E2 transition mo-

ment, the more rotational (E = I(I + 1)/2J ) the yrast line, and the larger

the moment of inertia J . Fig. 3 demonstrates that there is a gradual de-

velopment from an irregular yrast sequence for the semi-magic N = 82

Nd-isotope to the rotational sequence of the open shell N = 94 isotope.

In the center of the crossing-over around N = 86 the yrast energies in-

crease approximately linearly over an extended range of I, which is the

expected soft vibrational sequence. The yrast line is generated by stacking

quadrupole phonons, which align their spins (d-bosons). In other words,

there is a condensation of d-bosons. Semi-classically, such a condensate of

aligned quadrupole phonons represents a quadrupole wave that travels with

the angular velocity ω = Ω2/2 over the spherical nuclear surface, where Ω2

is the frequency of the quadrupole vibration. The name ”tidal wave” has

been suggested2 because of its similarity with tidal waves on the ocean.

The surface of a tidal wave moves with the constant angular velocity

ω as the one of a rotor. However there is a difference. The energy and the
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Fig. 3. Yrast energies of the Nd-isotopes.
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Fig. 4. Moments of inertia of the yrast

states of the Ru-isotopes

angular momentum increase with the amplitude of the harmonic tidal wave

wave, whereas the frequency stays constant. The energy and the angular

momentum of the rigid rotor increase with the angular frequency while

the shape remains unchanged. The difference is manifest by the moment

of inertia J (I) = I/ω, which is proportional to I for the tidal wave and

constant for the rotor. Fig. 4 shows the experimental function J (I) =

2I/(E(I) − E(I − 2)) the Ru-isotopes. The experiment lies between the

limiting cases of a harmonic vibrator (tidal wave) and a rigid rotor. As

expected, there is a gradual transition from the vibrational behavior for

N = 54 (center of the cross-over) to rotational one for N = 64 (broken

symmetry).

The interpretation of the near-equidistant yrast sequences as d-boson

condensation implies that the reduced transition probability B(E2, I →
I − 2) should approximately linearly increase with I. The recent lifetime

measurements by A. D. Ayangeakaa et al.,3 have confirmed the expected

increase in 102Pd up to the seven-boson yrast state case. The results are

displayed in Fig. 5. The B(E2) values increase with I in the same way

as the moment of inertia, such that their ratio B(E2)/J is independent

of I within the experimental uncertainties. This clearly demonstrates that

the yrast line is generated by stacking d-bosons or, using the semi-classical

interpretation, by increasing the amplitude of the tidal wave.

Fig. 5 shows that the yrast line of 102Pd classifies as an anharmonic

tidal wave. The moment of inertia is a nearly linear function of I indicated

by the line IB (interacting bosons). It deviates from the harmonic limit

FB (free bosons) by the small offset at I = 0, which is a measure of the
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Fig. 5. The moment of inertia J (left) and the B(E2, I → I−2) transition probabilities

(right) of the yrast states of 102Pd. The dashed line FB (free bosons) shows the limit
of harmonic bosons. The dashed line IB (interacting bosons) illustrates the near linear

trend of the interacting bosons.

anharmonicity. The B(E2) values behave in the same way, such that the

ratio B(E2)/J is constant. The Liquid Drop Model4 suggests that both

BE(2) and J are ∝ β2, which implies that their ratio is I-independent. The

offset at I = 0 indicates that the ground state must have some deformation

due to fluctuations that are larger than the zero point fluctuations of the

harmonic vibrator. In classical terms, the tidal wave starts with a small

deformation, which increases along the yrast line. In quantum language, the

condensate of interacting bosons rotates like a condensate of free aligned

d-bosons to which a small fraction of non-aligned d-bosons is added.

The tidal wave has a static deformed shape in the co-rotating frame of

reference. This has lead to the microscopic description suggested by Frauen-

dorf, Gu, and Sun,2 which is based on the rotating mean field. We used

the SCTAC (shell correction tilted axis cranking) version5 of the Cranking

Model, which calculates the energy for a given expectation value of the an-

gular momentum operator equal to I by means of the micro-macro method

using a deformed Woods-Saxon potential. The energy is minimized with re-

spect to the deformation parameters β and γ. a Fig. 6 shows that in the case

of 102Pd, the function J (I) is very well reproduced. The calculated B(E2)

values show the characteristic increase with I. They fluctuate stronger than

the experimental values, which is most likely due to the neglected zero point

fluctuations of the shape. Note that there are no free parameters adjusted

to the experiment. We applied the same method to the even-even nuclides

with 44 ≤ Z ≤ 48 and 56 ≤ N ≤ 66.2 Deformed solutions were found for

aThere are certain technical problems finding the cranking solution in the near-
vibrational regime, which are discussed in Ref.2
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Fig. 6. The moment of inertia J (left) and the B(E2, I → I−2) transition probabilities

(right) of the yrast states of 102Pd compared with the microscopic calculations, which are
obtained by minimizing the SCTAC energy (standard LDM, WS potential, and paring)

with respect to the deformation parameters β and γ.

I ≥ 2 even when the solution was spherical for I = 0. These calculations

describe the collective yrast states rather well. They also describe the intru-

sion of the aligned h11/2 two quasi neutron states into the yrast line, which

causes the back bending phenomenon seen in most of the studied nuclei.

3. Condensation of aligned octupole phonons

So far I have discussed quadrupole deformation, which is reflection sym-

metric, and the case that the angular momentum is perpendicular to one of

the reflection planes. This symmetry implies that the collective sequences

(vibrational or rotational bands) have a definite parity and I increases in

steps of 2, i. e. I = α+2n, where α is the signature quantum number of the

intrinsic state. If the deformed nuclear shape breaks reflection symmetry

such that it still contains two reflection planes and the angular momentum

is perpendicular to one of them, then the bands are composed of states

with alternating parity, the sequence of which is determined by the simplex

quantum number s of the intrinsic state, such that π = s exp(−iπI).4 Fig.

7 compares the sequence expected for s = 1 with the experimental yrast

sequences of both parities 220Rn. For I = 10−15 one observes the expected

interleaving of states of opposite parity. However, the π = − sequence is

higher than the π = + sequence for I < 10 , and the π = + sequence

is higher for I > 15. The Figure also shows the two yrast sequences of a

reflection symmetric nucleus that is soft with respect to octupole deforma-

tion. In this case the π = − yrast sequence is generated by exciting an

octupole phonon that aligns its spin of 3 with the total angular momen-

tum (f-boson). Obviously, the low-spin part of the experimental spectrum
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Fig. 7. Octupole vibrations, static octupole deformation as compared to experiment

looks more like the zero and one-phonon bands than the alternating parity

sequence of a static octupole shape. In the remainder, I will suggest that

the known ”octupole deformed” nuclei are situated in the cross-over region

between reflection symmetry and asymmetry, where most of them behave

like soft anharmonic vibrators.

Fig. 8 illustrates the behavior in cross-over region, which I have discussed

in Ref.6 In the left panel it is assumed that the octupole vibrations are har-

monic and decoupled from the reflection symmetric rotor. The octupole

phonons carry 3~ of angular momentum, which aligns with the rotational

axis. Above the critical frequency ωc it becomes energetically favorable to

excite a phonon instead of further increasing the angular velocity of the

rotor, which decreases because the phonon adds 3~ of angular momentum.

This process is repeated, resulting in a rotation-induced condensation of

octupole phonons. Since the octupole phonons have negative parity, the

π = + and π = − yrast sequences change order with their subsequent exci-

tations, which is a hallmark of the condensation. The multi phonon states

decay by E1 transitions. The dipole transition operator arises from coupling

the isovector E3 moment of the phonons with the isocalar E2 moment of

the rotor. As a consequence, only the transitions (n, I)→ (n− 1, I − 1) are

allowed. The transitions (n, I)→ (n+ 1, I − 1) are forbidden, because they
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Fig. 8. Energies of aligned octupole phonon bands. Left: harmonic phonons. Right:

anharmonic, interacting phonons. The phonon number is n.

correspond to a change of rotor angular momentum of 4~, which cannot be

facilitated by the E2 moment.

The phonons strongly interact in the cross-over region, which causes

a repulsion between crossing bands of the same parity. As shown in the

right part of Fig. 8, the sharp crossings of the one-phonon with the zero-

and two-phonon bands remain, because they have opposite parity. However,

the zero- and two-phonon bands mix and repel each other at the avoided

crossing. The same holds for the one- and three-phonon bands. As a con-

sequence, the energy difference S = E− − E+ between between the yrast

sequences of both parities oscillates as function of I. The experimental en-

ergy difference S(I) = E−(I)−(E+(I−1)+E+(I+1)) for 220Ra in Fig. 9 a)

display this characteristic pattern. The one-phonon band crosses the zero-

phonon band before it feels much of the two-phonon band. At the crossing,

S changes sign. When the zero-phonon band encounters the tow-phonon

one, the two states mix and exchange character (avoided crossing). The

level repulsion attenuates the growth of −S, which starts decreasing when

the π = + band has become predominantly the two-phonon state. When

the two-phonon band crosses the one-phonon band, S changes sign again.

Its growth is attenuated and reversed when the avoided crossing between

the one- and three-phonon bands is encountered, the beginning of which

is still visible. The angular momentum functions J±(ω) in Fig. 9 b) reflect

the condensation as follows. The π = − one-phonon band starts with ad-

ditional 3~ relative to the π = + zero-phonon band at the same ω, which

is the expected angular momentum carried by an aligned octupole phonon.

The difference decreases, when the π = + two-phonon band, which carries

additional 6~, starts mixing into the zero-phonon band. The π = − and

π = + bands have equal angular momentum at the frequency of maximal
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tum J(ω) of the π = − and π = + yrast sequences in 220Ra and the Th isotopes. d:

Experimental decay scheme of 220Ra.

mixing. Near the one-two-phonon band crossing at I = 24, where the mix-

ing is small, the angular momentum difference is -3~. Fig. 9 d) shows that

the forbidden E1 transition + → − is indeed missing at low I, where the

one- and zero-phonon bands are still rather pure. At larger I, the transi-

tions +→ − appear because the two-phonon, from which the transition to

the one-phonon band is allowed, starts mixing in.

The aligned octupole phonon is a wave that runs with the angular veloc-

ity ω3 = Ωoct/3 over the nuclear surface. The rotor rotates with the angular

velocity of ω2. If ω2 = ω3 the two motions combine to the rotation of a re-

flection asymmetric shape (c.f. Fig. 7). The difference ω− − ω+ between

the slopes of the two yrast sequences reflects the difference between the

angular velocities of the octuople wave and the rotor. The interaction be-

tween the octupole phonons, which causes the repulsion between the cross-

ing bands, makes the π = ± yrast sequences more parallel. It tends to lock

the two types of motion to the rotation of a stable reflection asymmetric

shape, which is non-axial (heart-shaped) in contrast to the conventionally

discussed axial octupole deformation (pear-shaped).7 Fig. 9 c) shows S(I)

for the light Th isotopes. The N = 134 and 136 isotopes come closest to

the case of static octupole deformation. Mean field calculations predict the



March 1, 2022 17:34 WSPC - Proceedings Trim Size: 9in x 6in ICFN5

9

Fig. 10. Experimental energy difference S = E−−E+ and angular momentum J(ω) of

the π = − and π = + yrast sequences in the Ba isotopes.

most stable octupole deformation for these neutron numbers.7

The other light actinides behave similar to the Th isotopes. Fig. 10 shows

the Z = 54 Ba isotopes as an example from the lighter mass region of strong

octupole correlations (c.f.7). The cross-over pattern is clearly seen. As far

as studied well enough, the Z = 54, 58, 60, and 62 isotones behave in a

similar way. For Z ≥ 64 or N ≥ 94 the collectivity of the octupole phonons

gets lost. The discussed nuclides with strong octupole correlations are not

good rotors. They are situated in region of the cross-over toward stable

quadrupole deformation, discussed in the preceding section. My discussion

assumed a rotor for simplicity. It applies to the tidal waves as well, provided

they are anharmonic, such that there is an increase of the angular velocity

with I. Then the multi-octupole phonon bands are generated by stacking

aligned quadrupole phonons onto aligned octupole phonons. The rotation-

induced condensation of octupole phonons has been also observed in 240Pu,

which is a good rotor.8

Alternatively, one may interpret the yrast region in terms of a reflection-

asymmetric tidal wave that travels over the nuclear surface. This explains

why our calculations in the framework of reflection symmetric tidal waves

did not well well describe the Z =58 - 62, N = 84 - 90 region. The restora-

tion of parity by tunneling between the shape and its mirror image will

cause the splitting between the two yrast sequences of opposite parity.

However, the repeated interchange of their order is not obvious from this

standpoint. In order to describe the phenomenon in a microscopic way,

one should carry out parity-projected cranking calculations of a non-axial,

reflection-asymmetric mean field, which is rather challenging. In collabo-

ration with F. Dönau, we have started developing a microscopic approach

from the vibrational side. The octupole phonons are described by means
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of the Tamm-Dankoff method in the rotating frame of reference (in oder

to avoid the problems of the RPA near the instability). The interaction

between the phonons is calculated and a diagonalization with in a space of

few phonon excitations will be carried out.

4. Summary

The yrast states of transitional nuclei are interpreted in terms of a rotat-

ing d-boson condensate, which corresponds a tidal wave running over the

nuclear surface. The seven-phonon yrast state has been identified in 102Pd.

The boson interaction generates anharmonicity, which shows up as a con-

stant shift of the B(E2, I → I − 2) value and the moment of inertia J(I)

as functions of the spin. The semi-classical tidal wave concept allowed us

carrying out microscopic calculations based on the Cranking Model, which

reproduce the energies the B(E2) values without adjustable parameters.

All nuclei showing strong octupole correlations are in the cross-over region

between reflection symmetry and asymmetry. The properties of their yrast

states are more adequately described by the excitation of rotational aligned

octupole phonons, which strongly interact, than by a reflection-asymmetric

rotor.
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