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LIMIT THEOREMS FOR ORTHOGONAL POLYNOMIALS

RELATED TO CIRCULAR ENSEMBLES

J. NAJNUDEL, A. NIKEGHBALI, AND A. ROUAULT

Abstract. For a natural extension of the circular unitary ensemble of order

n, we study as n → ∞ the asymptotic behavior of the sequence of orthogonal
polynomials with respect to the spectral measure. The last term of this se-
quence is the characteristic polynomial. After taking logarithm and rescaling,
we obtain a process indexed by t ∈ [0, 1]. We show that it converges to a
deterministic limit, and we describe the fluctuations and the large deviations.

1. Introduction

In this paper, we study the asymptotic behavior of a triangular array of complex
random variables originating from Random Matrix Theory, and more specifically
from some models of unitary ensembles. Our results can be viewed as an extension
of some earlier works on the characteristic polynomial of unitary matrices. Indeed,
for fixed n, our random variables consist of the sequence of monic orthogonal poly-
nomials with respect to a random measure associated with a random unitary matrix
of size n, when evaluated at the point z = 1, the last term being the characteristic
polynomial of that matrix.

It was already noticed in [3] that the characteristic polynomial of a random
unitary matrix sampled from the Haar measure on U(n), the unitary group of
order n has the same law as a product of independent random variables. In a
previous paper ([5]) we saw that this characteristic polynomial Φn(z) (evaluated at
z = 1) is actually a product of variables

Φn(1) =

n−1∏

j=0

(1− γj)

and we named the independent variables γj the modified Verblunsky coefficients,
referring to the coefficients involved in the Schur recursion for orthogonal polyno-
mials on the unit circle (OPUC), as dubbed by Simon [25]. These variables (for
j < n) have an explicit density in the open unit disc, depending on their rank j.
We proved in [5] that this description stays valid when we change the probability
measure on U(n), by considering the Circular Jacobi Ensemble, that we will define
below. The construction of the deformed Verblunsky coefficients uses the whole
sequence {Φk,n(z), k = 0, . . . , n} of monic orthogonal polynomials with respect to
the spectral measure of the pair (U, e1) where e1 is a fixed vector. We have ([5]
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Prop. 2.2)

Φk,n(1) =

k−1∏

j=0

(1− γj)

It is then natural to study the triangular array {Φk,n(1), k = 0, . . . , n} and in
order to normalize the time for different values of n, one can study the process
{Φ⌊nt⌋,n(1), t ∈ [0, 1]}, where ⌊ ⌋ denotes the integer part, and where, by convention,
Φ0,n(1) = 1.

One can note that Φn,n is the characteristic polynomial of U and that when
U is the chosen according to the Haar measure, the sequence of random variables
(Φn,n(1)) has played a crucial role in the recent interactions between random matrix
theory and number theory (see [14]). It is also worthwhile to note that in [17], Killip
and Stoiciu considered also a stochastic process indexed by t = k/n and related
to the sequence of orthogonal polynomials in the CβE ensemble. In fact they
considered variables which are the complex conjugate of our deformed Verblunsky
coefficients as auxiliary variables in the study of the Prüfer phase (Lemma 2.1 in
[17]). This tool is used again in [15]. Later Ryckman ([23] Section 4) used a version
of the deformed Verblunsky coefficients in the proof of its joint asymptotic laws.

To be more precise and to explain the interest of our approach, we now describe
our model. For n ≥ 1, β > 0 and δ ∈ C such that Re δ > −1/2, we consider a

distribution CJ
(n)
β,δ on the set of probability measures on the unit circle T, supported

by n points. This family of distribution generalizes the Circular Jacobi Ensemble
(the notation CJ comes from this fact), and it can be defined as follows. If the
random measure

µ =

n∑

j=1

πj δeiθj ,

for θj ∈ [0, 2π), has the distribution CJ
(n)
β,δ, then:

• The joint density h
(n)
δ,β of the law of (θ1, . . . , θn), with respect to the Lebesgue

measure on [0, 2π)n, is given by

(1.1) h
(n)
δ,β (θ1, . . . , θn) = c

(n)
δ,β |∆(eiθ1 , . . . , eiθn)|β

n∏

j=1

(1 − e−iθj)δ(1− eiθj)δ,

where c
(n)
δ,β > 0 is a normalization constant.

• The weights (π1, . . . , πn) follow a Dirichlet law of parameter β′ on the sim-
plex π1 + · · ·+ πn = 1, πj > 0, where β′ := β/2 (we conserve this notation
β′ in all the sequel of the paper).

• The tuples (θ1, . . . , θn) and (π1, . . . , πn) are independent.

Besides, when U is an unitary matrix and e1 a cyclic vector for U , then the spectral
measure µ of the pair (U, e1) is defined as the unique (probability) measure on T

such that

〈e1, U je1〉 =
∫

T

zjµ(dz) j ∈ Z .

When δ = 0, it was proved in [16] that the distribution of the spectral measure
of the pair (U, e1) where U is randomly sampled from U(n) according to the Haar

measure and e1 is a fixed vector of Cn, for instance (1, 0, . . . , 0), is precisely CJ
(n)
2,0 .

For δ = 0 and β > 0, these authors found a model of random unitary matrices
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such that the spectral measure has the distribution CJ
(n)
β,0. In [5], we gave a model

corresponding to the case δ 6= 0. All these constructions rely on the theory of
orthogonal polynomials on the unit circle (OPUC) that we recall now.

From the linearly independent family of monomials {1, z, z2, . . . , zn−1} in L2(T, µ),
we construct an orthogonal basis Φ0,n, . . . ,Φn−1,n of monic polynomials by the
Gram-Schmidt procedure. The nth degree polynomial obtained this way is

Φn(z) = Φn,n(z) =

n∏

j=1

(z − eiθj ),

i.e. the characteristic polynomial of U . The Φk’s (k = 0, . . . , n) obey the Szegö (or
Schur) recursion relation:

Φj+1,n(z) = zΦj,n(z)− ᾱjΦ
∗
j,n(z)

where

Φ∗
j,n(z) = zj Φj,n(z̄−1) .

The coefficients αj (j ≥ 0) are called Schur or Verblunsky coefficients and satisfy
the condition α0, · · · , αn−2 ∈ D := {z ∈ C : |z| < 1} and αn−1 ∈ T. There is a
bijection between this set of coefficients and the set of spectral probability measures
ν (Verblunsky’s theorem). We can write the orthogonal polynomials with the help
of a new system of functions built from the Verblunsky coefficients. Setting

yk(z) = z − Φk+1,n(z)

Φk,n(z)
= ᾱk

Φ∗
k,n(z)

Φk,n(z)
, (k = 0, . . . , n− 1) ,

we have y0(z) = ᾱ0 and the following decomposition:

Φk,n(z) =

k−1∏

j=0

(z − yj(z)) , k = 1, . . . , n .

If γj := yj(1), we get

Φk,n(1) =

k−1∏

j=0

(1 − γj) , k = 1, . . . n(1.2)

and in particular

det(I − U) = Φn(1) = Φn,n(1) =

n−1∏

j=0

(1 − γj) .(1.3)

Note that the definition implies |γk| = |αk|, and in particular |γn−1| = 1. In the
sequel, following [5], we refer to the γj ’s as the deformed Verblunsky coefficients.

In [5], it is proven that for µ following the distribution CJ
(n)
β,δ, the coefficients

(γj)0≤j≤n−1 are independent (note that in general it is not true for the classical
Verblunsky coefficients, except if δ = 0) and their distributions are explicitly com-

putable. More precisely, for r > 0 and δ ∈ C such that r + 2Re δ + 1 > 0, let g
(δ)
r

be the density on the unit disc D proportional to
(
1− |z|2

)r−1
(1− z)δ̄(1− z̄)δ

and let λ(δ) be the density on the unit circle U proportional to

(1 − z)δ̄(1− z̄)δ .
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Then, for j < n− 1, γj has density g
(δ)
β′(n−j−1) and γn−1 has density λ(δ). Note that

the law of γn−1 does not depend on n and β. The values of the normalization con-
stants can be easily deduced from the computation of integrals which are collected
in the appendix of the present paper.

Let us now explain why we choose to focus on the value at 1 of the character-
istic polynomial (in addition to its major role in the number theory connections
mentioned earlier). Note that in the case δ = 0 (which corresponds to the classi-
cal Circular Jacobi Ensemble, and in particular the Circular Unitary Ensemble for
β = 2), the law of Φn(z) does not depend on z ∈ T, since the distribution of the
eigenvalues of U is invariant by rotation. On the other hand, for δ 6= 0, the point 1
plays an important role since it is a singularity of the potential. It is then classical
to study the behavior of Φn(1) in the large n asymptotics (see for example [14],
[12], [15], [23]). Notice that all these authors consider the case δ = 0.

Our extension to a study of the array {Φk,n(1), k ≤ n} has its own interest as a
study of characteristic polynomials. It comes from the following remark. From a
measure µ carried by n points, one can also define a n×n unitary matrix Un, called
GGT by Simon [26] section 10, and which is the matrix of the linear application h
on L2(T, µ) given by h(f)(z) = zf(z), taken in a basis of orthonormal polynomials
with respect to µ. If 1 ≤ k ≤ n, one can denote by Gk(Un) the k × k topleft
submatrix of U (which is not unitary in general). Then it is known (see for example
Forrester [10] Prop. 2.8.2, or Simon [26] proof of Prop. 3.1) that one has for all
k ∈ {1, 2, . . . , n}:

Φk,n(1) = det(Ik −Gk(Un))(1.4)

For other aspects of this model see [6].
Most of the results we will obtain on the process {Φ⌊nt⌋,n(1), t ∈ [0, 1]} will in

fact concern its logarithm. Note that even when Φk,n(1) 6= 0, its complex logarithm
is not obvious to define rigorously, since its imaginary part is a priori given only
modulo 2π. However, there is a natural way to deal with this issue, which is
described in the appendix. One can then fully justify the following formula:

(1.5) logΦk,n(1) =

k−1∑

j=0

log(1− γj),

when Φk,n(1) 6= 1, which occurs almost surely under CJ
(n)
β,δ.

We study asymptotic properties of this determinant as n→ ∞ under essentially
two regimes:

• First regime: δ is fixed and Re δ > −1/2 (hence, this regime includes the case
δ = 0).

• Second regime: δ = β′dn with Red > 0.
Some of the results proved here were already announced in [4]. When β = 1, 2, 4,

the independence of the random variables Φk+1,n/Φk,n k = 0, . . . , n − 1 and the
identification of their distributions are strongly related to the results of Neretin
([18] Corollary 2.1). In that framework, they can be carried easily on models of
matrix balls via his Proposition 2.3. Actually our results may be extended to all
models where a remarkable separation of variables occur (see [19]). More precisely
the paper is organized as follows.

In Section 2 we study the variables logΦ⌊nt⌋,n(1) for both regimes and prove
that their expectations converge to some explicit deterministic function of t, and
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then we study the fluctuations of (logΦ⌊nt⌋,n(1)) as a stochastic process on the

space of càdlàg R
2-valued functions. It appears that in the first regime, one has

to distinguish between the case 0 < t < 1 and t = 1; at t = 1 some transition is
occuring since the normalization is changed. Indeed, anticipating the notation of
next section where we write logΦ⌊nt⌋,n(1) − E logΦ⌊nt⌋,n(1) = ξn(t) + iηn(t) and

ζn(t) =

(
ξn(t)
ηn(t)

)
, we shall prove that in the first regime, {ζn(t); t < 1} converges

to some explicit Gaussian diffusion {ζ0d(t); t < 1} while ζn(1)/
√
n converges to a

Gaussian random variable which is independent of the diffusion {ζ0d(t); t < 1}. In
the second regime, {ζn(t); 0 ≤ t ≤ 1} converges to some explicit Gaussian diffusion
and there is no normalization to perform.

Section 3 is devoted to the establishing Large Deviation Principle (LDP) for the
distributions of the real and imaginary parts of logΦ⌊nt⌋,n(1) as a two dimensional
random vector with values in the Skorokhod space endowed with the weak topology.
We focus our study in the first regime on the case δ = 0. Again in the first
regime the case t = 1 is playing a special role and is not included. From the
contraction principle we are then able to deduce LDP for the marginals at fixed time.
Our approach is standard: we first compute the normalized cumulant generating
function, compute its limit as well as its dual transform, and end with exponential
tightness.

In Section 4 we discuss the connections between the results of Section 3 and
existing results on the LDP for the empirical spectral distribution for the circular
Jacobi ensemble.

Section 5 gathers in appendix some properties of remarkable functions and den-
sities used in the proofs, in particular the Gamma function Γ and the Digamma
function Ψ. For z ∈ C\R−, we take the notation:

ℓ(z) := log Γ(z) ; Ψ(z) =
Γ′(z)

Γ(z)
.

The determination of the logarithm in ℓ is chosen in the unique way such that ℓ is
holomorphic on C\R− and real on R∗

+.
All along the paper, we use the entropy function J defined by :

(1.6) J (u) =





u logu− u+ 1 if u > 0

1 if u = 0

+∞ if u < 0

and its primitive

F (t) =

∫ t

0

J (u) du =
t2

2
log t− 3t2

4
+ t, (t ≥ 0) .(1.7)

When the arguments of J or of F are complex, we choose the principal determina-
tion of the logarithm.

2. Convergence and fluctuations

Let, for Red > 0 and 0 < t ≤ 1,

Fd(t) = log(1 + 2Red)− log(1 + d̄)− log(1 − t+ 2Red) + log(1− t+ d̄)

(2.1)

Ed(t) = J (1 + 2Red)− J (1 + 2Red− t)− J (1 + d̄) + J (1 + d̄− t) .
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In this section, we are interested in the process

ζn(t) =

(
ξn(t)
ηn(t)

)

where we have written

logΦ⌊nt⌋,n(1)− E logΦ⌊nt⌋,n(1) = ξn(t) + iηn(t) .

As a consequence of the result just below, E logΦ⌊nt⌋,n(1) is finite, and then ζn(t)
is well-defined.

2.1. Convergence to a deterministic limit.

Theorem 2.1. (1) In the first regime, i.e. for fixed δ, and for n going to
infinity,

E logΦn(1) =
δ

β′
log n+ C + o(1)(2.2)

where C is a constant, and for 0 < t < 1,

E log Φ⌊nt⌋,n(1) = − δ

β′
log(1 − t) + o(1) .(2.3)

(2) In the second regime, i.e. δ = β′dn, and for 0 < t ≤ 1, we have

lim
n→∞

(
E logΦ⌊nt⌋,n(1)− nEd

(⌊nt⌋
n

))
=

(
1

2
− 1

β

)
Fd(t) ,(2.4)

uniformly in t.
(3) In the first regime, we have

lim
n→∞

1

logn
Cov ζn(1) =

1

β
I2,(2.5)

where I2 denotes the 2× 2 identity matrix, and for 0 < t < 1,

lim
n→∞

Cov ζn(t) =

∫ t

0

Z0
sds,(2.6)

where

Z0
t :=

1

β(1 − t)
I2.

(4) In the second regime, we have for 0 < t ≤ 1:

lim
n→∞

Cov ζn(t) =

∫ t

0

Zd
s ds(2.7)

where

Zd
t =

1

β′




1

1− t+ 2Re d
−Re

1

2(1− t+ d)
Im

1

2(1− t+ d)

Im
1

2(1− t+ d)
Re

1

2(1− t+ d)


 .(2.8)

(5) In the second regime,

sup
t∈[0,1]

∣∣∣ 1
n
logΦ⌊nt⌋,n(1)− Ed(t)

∣∣∣ −→
n→∞

0(2.9)

in L2, and then in probability.
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Proof. Proof of (1) and (2).
Taking expectations in (5.19) and summing up (5.16), we have, for 1 ≤ m ≤ n,

(2.10)

E log Φm,n(1) =

n∑

k=n−m+1

[
Ψ
(
β′(k − 1) + 1 + δ + δ̄

)
−Ψ

(
β′(k − 1) + 1 + δ̄

)]
.

If in (2.10), we keep only the first two terms from the Abel-Plana formula (5.20),
we get, for m ≤ n− 1, or in the second regime, for m = n large enough,

∫ n

n−m

[
Ψ
(
β′(s− 1) + 1 + δ + δ̄

)
−Ψ

(
β′(s− 1) + 1 + δ̄

)]
ds

+
1

2
Ψ
(
β′(n− 1) + 1 + δ + δ̄

)
− 1

2
Ψ
(
β′(n−m− 1) + 1 + δ + δ̄

)

−1

2
Ψ
(
β′(n− 1) + 1 + δ̄

)
+

1

2
Ψ
(
β′(n−m− 1) + 1 + δ̄

)
.(2.11)

(Note that in the first regime and form = n, we would get the terms Ψ
(
−β′ + 1 + δ̄

)

Ψ
(
−β′ + 1 + δ + δ̄

)
, which are not always well-defined). Integrating Ψ = ℓ′, we get

the following expression:

L := ℓ̃(β′(n− 1) + δ + δ̄)− ℓ̃(β′(n−m− 1) + δ + δ̄)(2.12)

−ℓ̃(β′(n− 1) + δ̄) + ℓ̃(β′(n−m− 1) + δ̄),

where ℓ̃(x) := 1
β′
ℓ(x+1)+ 1

2Ψ(x+1). From the Binet formula we have, for x > −1,

ℓ̃(x) =
1

β′
x log x+

(
1

β
+

1

2

)
log x− x− 1

β′
+ r1(x)(2.13)

where

r1(x) =
1

β′

∫ ∞

0

f(s)[e−sx − e−s] ds+
1

2

∫ ∞

0

e−sx

(
1

2
− sf(s) ds

)
.(2.14)

Now, set

I1(n,m; δ) = I
(
n− 1 +

δ + δ̄

β′

)
− I

(
n−m− 1 +

δ + δ̄

β′

)
(2.15)

−I
(
n− 1 +

δ̄

β′

)
+ I

(
n−m− 1 +

δ̄

β′

)

and

I2(n,m; δ) =

(
1

β
+

1

2

)
J2(n,m; δ)

with

J2(n,m; δ) = log

(
n− 1 +

δ + δ̄

β′

)
− log

(
n−m− 1 +

δ + δ̄

β′

)
(2.16)

− log

(
n− 1 +

δ̄

β′

)
+ log

(
n−m− 1 +

δ̄

β′

)
.

We have:

L = I1(n,m; δ) + I2(n,m, δ) +R ,
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where

R = r1(β
′(n− 1) + δ + δ̄)− r1(β

′(n−m− 1) + δ + δ̄)

−r1(β′(n− 1) + δ̄) + r1(β
′(n−m− 1) + δ̄).

In the sequel, we use several times the trivial estimates (for c fixed and x tending
to infinity)

log(x+ c) = log x+ o(1) ; I(x + c) = I(x) + c logx+ o(1) .(2.17)

Let us set m := ⌊nt⌋, and tn = m/n, and let us suppose that we are in the first
regime. If 0 < t < 1, we have

I1(n,m, δ) =
δ

β′
log

(
n− 1 +

δ̄

β′

)
− δ

β′
log

(
n− ntn − 1 +

δ̄

β′

)
+ o(1)

= − δ

β′
log(1− t) + o(1),

and
J2(n,m, δ) = o(1),

which implies

L = − δ

β′
log(1− t) +R+ o(1).

In the first regime and for t = 1, we have to estimate

E logΦn(1) = E log Φn−1,n(1) + Ψ
(
1 + δ + δ̄

)
−Ψ

(
1 + δ̄

)
.

Since the constant C can be modified, it is equivalent to deal with m = n − 1 or
with m = n. Taking m = n− 1 gives for some constants C1 and C2,

I1(n, n− 1, δ) =
δ

β′
log

(
n− 1 +

δ̄

β′

)
+ I

(
δ + δ̄

β′

)
− I

(
δ̄

β′

)
+ o(1)

=
δ

β′
logn+ C1 + o(1),

J2(n, n− 1, δ) = log

(
δ̄

β′

)
− log

(
δ + δ̄

β′

)
+ o(1) = C2 + o(1),

which implies, for some constant C3,

L =
δ

β′
logn+R+ C3 + o(1).

Let us now assume that we are in the second regime. For n large enough, we check
the following estimates, uniform in t ∈ (0, 1]:

I1(n, ntn, nβ
′d) = nEd(tn)− J2(n, ntn, nβ

′d) + o(1),

and
J2(n, ntn, nβ

′d) = Fd(tn) + o(1),

which implies

L = nEd(tn) +
(
1

β
− 1

2

)
Fd(tn) +R+ o(1).

Hence, (1) and (2) are proven, if we check that in any of the previous situations,
E logΦm,n(1)−L and R tend to a constant when n goes to infinity, that this constant
is zero, except perhaps in the first regime for t = 1, and that the convergence is
uniform in t in the second regime. The first quantity can be expressed in function
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of the last integral term of the Abel-Plana formula, and the second one comes from
the remaining integral term of the Binet formula.

First remaining term: Abel-Plana
We have to prove the convergence of:

∫ ∞

0

g(n−m+ iy)− g(n+ iy)− g(n−m− iy) + g(n− iy)

e2πy − 1
dy,

when n goes to infinity, for

g(z) := Ψ(β′(z − 1) + 1 + δ + δ̄)−Ψ(β′(z − 1) + 1 + δ̄),

the limit being zero, except in the first regime for t = 1. Moreover, in the second
regime, we want to check that the convergence is uniform with respect to t, i.e.
with respect to m ∈ {1, . . . , n}. Note that in the second regime, the function g
depends on n via δ = ndβ′. It is then sufficient to check the following result: for
any sequence (kn)n≥1 of integers such that 1 ≤ kn ≤ n,

∫ ∞

0

g(kn + iy)− g(kn − iy)

e2πy − 1
dy

is well-defined for all n ≥ 1, and tends to zero when n goes to infinity, in any case
and uniformly with respect to the sequence (kn)n≥1 in the second regime, and when
(kn)n≥1 tends to infinity in the first regime. Indeed, we get the desired result by
taking successively kn = n and kn = n−m. Note that in the first regime for t = 1,
we need to take kn = 1 (m = n − 1), which gives an integral independent of n,
possibly different from zero. Now, we have

g(kn ± iy) = Ψ(A′ ± β′iy)−Ψ(A0 + iB0 ± β′iy),

A0, A
′ > 0, B0 ∈ R being given by

A0 + iB0 = β′(kn − 1) + 1 + δ̄

and

A′ = β′(kn − 1) + 1 + δ + δ̄.

In any case, A0 and A′ tend to infinity with n, since in the first regime, kn goes to
infinity, and in the second regime, it is the case for the real part of δ. Moreover,
in the second regime, A and A′ are greater than nβ′

Re d, independently from the
sequence (kn)n≥1. Hence, it is sufficient to check that

∫ ∞

0

Ψ(A+ iB + iC)−Ψ(A+ iB − iC)

e2πC/β′ − 1
dC

is well-defined for A > 0 and B ∈ R, and tends to zero, uniformy in B, for A→ ∞.
From (5.10) we have the following:

−i (Ψ(A+ iB + iC) −Ψ(A+ iB − iC)) = 2C

∞∑

k=0

1

(A+ k + iB)2 + C2
.

To estimate the sum of this series, we first apply the crude estimates |z| ≥ |Im z|
and |z| ≥ |Re z| to the denominator:

|(A+ k + iB)2 + C2| ≥ 2|B||A+ k|
|(A+ k + iB)2 + C2| ≥ |(A+ k)2 −B2 + C2|.
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The first inequality implies, for A+ k ≤ 2|B|,
|(A+ k + iB)2 + C2| ≥ (A+ k)2,

and the second implies, for A+ k > 2|B|,

|(A+ k + iB)2 + C2| ≥ 3

4
(A+ k)2 + C2.

Hence,
∣∣∣∣∣

∞∑

k=0

1

(A+ k + iB)2 + C2

∣∣∣∣∣ ≤
4

3

∞∑

k=0

1

(A+ k)2
≤ 4

3

(
1

A2
+

1

A

)
.

Therefore,
∫ ∞

0

|Ψ(A+ iB + iC)−Ψ(A+ iB − iC)|
e2πC/β′ − 1

dC ≤ 4

3

(
1

A2
+

1

A

)∫ ∞

0

2C

e2πC/β′ − 1
dC,

where the last integral is finite and does not depend on A and B.
Second remaining term: Binet
The terms involved in the expression of R are of the form:

R1(x, y) =

∫ ∞

0

f(s)
[
e−sx − e−sy

]
ds(2.18)

and

R2(x, y) =

∫ ∞

0

(
1

2
− sf(s)

)[
e−sx − e−sy

]
ds,(2.19)

where x = β′(n −m − 1) + α and y = β′(n − 1) + α with successively α = δ + δ̄
and α = δ̄. If t < 1 or if we are in the second regime, the real parts of x and y
tend to infinity with n: moreover, the convergence is uniform in t in the second
regime. Then, as in [22], the dominated convergence theorem allows to conclude
that R1(x, y) and R2(x, y) tend to zero, uniformly in t in the second regime. If
t = 1 and if we are in the first regime, then y tends to infinity and x = α does not
depend on n, which implies that R1(x, y) and R2(x, y) are still converging when n
goes to infinity.

Proof of (3) and (4): Computation of covariances.
By independence of the variables γj , we can sum up variances or covariances

issued from (5.18). We can then prove the announced result in the same way as
(1) and (2), using the Abel-Plana summation and the Binet formula again, with Ψ
replaced by Ψ′: we omit the detail.

Proof of (5): the process (ζn(t))0≤t≤1 is a two-dimensional martingale. Hence,
by Doob’s inequality:

E

[
sup

t∈[0,1]

|ζn(t)|2
]
≤ 4E[|ζn(1)|2] = 4Tr(Cov ζn(1))

−→
n→∞

1

β′

∫ 1

0

dt

1− t+ 2Red
=

1

β′
log

(
1 + 2Red

2Red

)
<∞.

Moreover, by the uniform convergence (2),

sup
t∈[0,1]

∣∣∣∣E log Φ⌊nt⌋,n(1)− nEd
(⌊nt⌋

n

)∣∣∣∣ −→
n→∞

(
1

2
− 1

β

)
sup

t∈[0,1]

|Fd(t)| <∞,
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and one also has

sup
t∈[0,1]

n

∣∣∣∣Ed
(⌊nt⌋

n

)
− Ed(t)

∣∣∣∣ ≤ sup
t∈[0,1]

|E ′
d(t)| <∞.

Combining these estimates gives the following L2 bound:

sup
n≥1

E



(

sup
t∈[0,1]

∣∣logΦ⌊nt⌋,n(1)− nEd(t)
∣∣
)2

 <∞,

which gives (4) after dividing by n2.

2.2. Fluctuations. We now state a theorem about some limiting distributions
related to the process {Φ⌊nt⌋,n(1), t ∈ [0, 1]}. Since it can be shown by adapting
the arguments of Killip and Stoiciu [17] for similar results, we omit the proof of our
theorem, except for the last part.

Let DT and D be the space of càdlàg R2-valued functions on [0, T ] and [0, 1)
respectively, starting from zero. The next theorem is about some limiting distribu-
tions related to the process {ζn(t), t ∈ [0, 1]} or {ζn(t), t < 1}. More precisely let
(Zd

t )
1/2 denote the positive symmetric square root of Zd

t defined in (2.8) and let
Bt be a standard two dimensional Brownian motion.

Theorem 2.2. (1) If δ = β′dn with Red > 0 (second regime), then as n→ ∞
the process {ζn(t) ; t ∈ [0, 1]}n converges in distribution in the Skorokhod
space D1 to the Gaussian diffusion {ζdt ; t ∈ [0, 1]}, solution of the stochas-
tic differential equation:

dζdt = (Zd
t )

1/2dBt .(2.20)

(2) If δ is fixed with Reδ > −1/2 (first regime), then the joint law of the process
{ζn(t) ; t < 1} (with trajectories in the Skorokhod space D) and the variable

Θ :=
logΦn(1)− δ

β′
logn

√
logn

converges, when n goes to infinity, to the joint distribution of {ζ0t ; t < 1}
and N (0;β−1) + i N (0;β−1), the process and the two gaussian variables
being independent.

Notice that the convergence in law of Θ is an extension of the celebrated Keating
and Snaith result [14].

Proof. In order to prove (1), and in (2), the convergence of {ζn(t) ; t < 1} and
Θ, taken separately, we apply a version of the Lindeberg-Lévy-Lyapunov criterion,
available for convergence of processes ([13] Chap. 3c). For t < 1, or in the second
regime, it is enough to prove that

⌊nt⌋−1∑

k=0

E|Ak|4 −→
n→∞

0,(2.21)

where

Ak = log(1− γk)− E[log(1− γk)].



12 J. NAJNUDEL, A. NIKEGHBALI, AND A. ROUAULT

For t = 1 in the first regime, it is sufficient to check:

1

log2 n

n−1∑

k=0

E|Ak|4 −→
n→∞

0.(2.22)

Now,

E|Ak|4 ≤ 8E(ReAk)
4 + 8E(ImAk)

4

≤ 24Var2(Re log(1− γk)) + 24Var2(Re log(1− γk))

+8κ4(Re log(1− γk)) + 8κ4(Im log(1 − γk)),

where κ4 denotes the fourth cumulant. Using the second and fourth order deriva-
tives of the function Λ introduced in the appendix, we see that E|Ak|4 is a linear
combination of terms of the form Ψ′′′(r + 1 + α) and Ψ′(r + 1 + α)Ψ′(r + 1 + α′),
for r = β′(n− k − 1) and α, α′ ∈ {δ, δ̄, δ + δ̄}. Now, by (5.9), for Rex > 0,

Ψ′(x) =
1

x
+O

(
1

(Rex)2

)

and

Ψ′′′(x) =
2

x3
+O

(
1

(Rex)4

)
.

Hence, all the terms involved in the expression of E|Ak|4 are dominated by (n−k)−2,
and they are dominated by n−2 in the second regime or for t < 1. Hence,

⌊nt⌋−1∑

k=0

E|Ak|4

is dominated by 1/n, except in the first regime for t = 1, in which case it is bounded.
This shows the desired results (2.21) and (2.22).

In order to prove the convergence of the joint distribution in (2), we can follow
the scheme of [22] p.209. We take 0 < t0 < t1 < 1. From the above results,

logΦ⌊nt1⌋,n(1)√
logn

→ 0(2.23)

in probability, so that

logΦn(1)− logΦ⌊nt1⌋,n(1)− δ
β′

logn
√
logn

→ N (0;β−1) + iN (0;β−1),

the two gaussian variables being independent. Now, for n large enough,

logΦn(1)− logΦ⌊nt1⌋,n(1) =

n−1∑

k=⌊nt1⌋

(1 − γk),

is independent of {ζn(t) ; t ≤ t0}, which is function of (γk)k<nt0 (recall that the
variables γk are independent). Since, {ζn(t) ; t ≤ t0} tends in law to {ζ0t ; t ≤ t0}
(as a process with trajectories in Dt0), we deduce that

(
{ζn(t) ; t ≤ t0};

logΦn(1)− logΦ⌊nt1⌋,n(1)− δ
β′

logn
√
logn

)
,

tends in law to (
{ζ0t ; t ≤ t0};N (0;β−1) + iN (0;β−1)

)
,
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{ζ0t ; t ≤ t0} being independent of N (0;β−1) + iN (0;β−1). Using again (2.23), we
deduce that (

{ζn(t) ; t ≤ t0};
logΦn(1)− δ

β′
logn

√
logn

)

has the same limiting distribution. Taking t0 → 1 gives part (2) of the theorem.

3. Large deviations

3.1. Notation and main statements. Throughout this section, we use the stan-
dard notation of [7]. In particular we write LDP for Large Deviation Principle. We
say that a sequence (Pn)n∈N of probability measures on a Polish space X satisfies a
LDP with speed an (going to infinity with n) and rate function I iff I : X → [0,∞]
is lower semicontinuous and if

For every open set O ⊂ X, lim inf
n

1

an
logPn(O) ≥ − inf

O
I ,

For every closed set F ⊂ X, lim inf
n

1

an
logPn(F ) ≥ − inf

F
I .

The rate function is good if its level sets are compact. Moreover, ifXn are X random
variables distributed according to Pn, we say that the sequence (Xn) satisfies the
LDP if the sequence (Pn) satisfies the LDP.

The reader may have some interest in consulting [8] and mainly [22] where a
similar method is used for a different model.

For T ≤ 1, let MT stand for the space of signed measures on [0, T ] and let M<

be the subspace of M1 consisting of measures whose support is a compact subset of
[0, 1). We endow D ×D with the weak topology σ(D ×D,M< ×M<). So, D ×D
is the projective limit of the family, indexed by T < 1, of the topological spaces
(DT ×DT , σ(DT ×DT ,MT ×MT )).

Let Vℓ (resp. Vr) be the space of left (resp. right) continuous R-valued functions
with bounded variations. We put a superscript T to specify the functions on [0, T ].
There is a bijective correspondence between V T

r and MT :
- for any v ∈ V T

r , there exists a unique µ ∈ MT such that v = µ([0, ·]); we denote
it by v̇ ,

- for any µ ∈ MT , v = µ([0, ·]) is in V T
r .

For v ∈ D, let v̇ = v̇a + v̇s be the Lebesgue decomposition of the measure v̇ in
absolutely continuous and singular parts with respect to the (vectorial) Lebesgue
measure. The measure v̇a can then be identified with its density.

Now, for ξ, η ∈ R, let us define:

Ha(ξ, η) := −ξ − log(2 cosη − eξ) ,(3.1)

if |η| < π/2 and 2 cosη − eξ > 0, and Ha(ξ, η) = ∞ otherwise. For ϕ, ψ ∈ Vr and
T ≤ 1, let us denote:

(3.2) H0(T, ϕ, ψ) :=





∫ T

0
(1 − τ)Ha(ϕ̇a(τ), ψ̇a(τ)) dτ +

∫ T

0
(1 − τ)d(−ϕ̇s)(τ)

if ψ̇s = 0 and − ϕ̇s is a positive measure ,

+∞ otherwise.

Theorem 3.1. (1) For every T < 1, the sequence

{n−1
(
Re logΦ⌊nt⌋,n(1), Im logΦ⌊nt⌋,n(1)

)
; t ∈ [0, T ]}
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under the CβE(n) measure (i.e. first regime and δ = 0) satisfies in (DT ×
DT , σ(DT×DT ,MT×MT )) the LDP with speed β′n2 with good rate function
H0(T, ϕ, ψ).

(2) For Re d > 0 and T ≤ 1, the sequence

{n−1
(
Re logΦ⌊nt⌋,n(1), Im logΦ⌊nt⌋,n(1)

)
t ∈ [0, T ]}

under the CJ
(n)
β,β′dn measure (second regime) satisfies in (DT ×DT , σ(DT ×

DT ,MT ×MT )) the LDP with speed β′n2 with good rate function

Hd(T, ϕ, ψ) = H0(T, ϕ, ψ)− 2(Re d)ϕ(T )− 2(Im d)ψ(T )− Cd(T )(3.3)

with

Cd(T ) = F (1 + d)− F (1− T + d) + F (1 + d̄)− F (1− T + d̄)

−F (1 + 2Re d) + F (1− T + 2Re d)− F (1) + F (1 − T ) .

We give now a result on the marginal at time T fixed. It is obtained by applying
the contraction principle to the mapping

(ϕ, ψ) 7→ (ϕ(T ), ψ(T )) .

In all the sequel of the paper, we consider either the CβE(n) ensemble (first regime

for δ = 0), or the CJ
(n)
β,β′dn ensemble for Red > 0 (second regime). In the first case,

we put d = 0.

Theorem 3.2. When (Re d > 0, T ≤ 1) or (d = 0, T < 1), the sequence

{n−1
(
Re logΦ⌊nT⌋(1), Im logΦ⌊nT⌋(1)

)
}n

satisfies the LDP in R2 with speed β′n2 with good rate function

hd(T, ξ, η) = inf{Hd(T, ϕ, ψ) | ϕ(T ) = ξ, ψ(T ) = η} .(3.4)

In particular (cf. (3.3))

hd(T, ξ, η) = h0(T, ξ, η)− 2(Re d)ξ − 2(Im d)η − Cd(T ),(3.5)

which allows to compute easily hd when h0 is known.

For the two coordinates, separately, we have the following known result, which
comes from formula (C.5) in [12].

Theorem 3.3. Assume d = 0 and β = 2.

(1) The sequence {n−1
Re logΦn(1)}n satisfies the LDP in R with speed n2 and

rate function given by the dual (Legendre) of the function:

s 7→ (1 + s)2

2
log(1 + s)−

(
1 +

s

2

)2
log
(
1 +

s

2

)
− s2

4
log (2s)

for s ≥ 0, and by ∞ for s < 0. It vanishes for negative values of the
argument, and it is infinite beyond log 2.

(2) The sequence {n−1
Im logΦn(1)}n satisfies the LDP in R with speed n2 and

good rate function given by the dual (Legendre) of the function given by

t 7→ t2

8
log

(
1 +

4

t2

)
− 1

2
log

(
1 +

t2

4

)
+ t arctan(t/2) .

It is finite on (−π/2, π/2), and infinite otherwise.
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We now give the precise behavior of the first coordinate, in the particular case
where d is real.

Theorem 3.4. (1) For (d = 0, T < 1), or (d > 0, T ≤ 1), the sequence
{n−1

Re logΦn(T )}n satisfies the LDP in R with speed β′n2 with good
rate function hd(T, ·, 0).

(2) Let ξT := J (T )− 1− J
(
1+T
2

)
+ J

(
1−T
2

)
≤ 0.

(a) If ξ ∈ [ξT , T log 2) the equation

J (1 + γ)− J (1− T + γ)− J
(
1 +

γ

2

)
+ J

(
1− T +

γ

2

)
= ξ(3.6)

has a unique solution γ and we have

h0(T, ξ, 0) = γξ − L0(T, γ, 0)(3.7)

where

L0(T, γ, 0) := F (1 + γ)− F (1− T + γ)− F (1 − T ) + F (1)

−2F
(
1 +

γ

2

)
+ 2F

(
1− T +

γ

2

)
(3.8)

(b) If ξ < ξT , then

h0(T, ξ, 0) = h0(T, ξT , 0) + (1− T )(ξT − ξ) .(3.9)

(c) If ξ ≥ T log 2, then h0(T, ξ, 0) = ∞.
(3) For (d > 0, T ≤ 1) or (d = 0, T < 1), the function ξ 7→ hd(T, ξ, 0) is the

dual function of

γ 7→ Ld(T, γ, 0) := L0(T, γ + 2d, 0)− L0(T, 2d, 0) .

3.2. Proof of Theorem 3.1. We compute the normalized cumulant generating
function, find its limit, perform the dual transform, study the exponential tightness
and eventually prove that the LDP is satisfied.

From (5.12) and (5.13) we see that

CJβ,δ [(1− γ̄j)
z(1 − γj)

z̄]

CJβ,0
[
(1− γ̄j)(z+δ)(1− γj)(z̄+δ̄)

] = cr,δ
cr,0

(3.10)

for every j < n−1 and z such that 2Re(δ+z)) > −1, where r = β′(n− j−1). The
RHS of (3.10) does not depend on z. It should then be clear that we can reduce the
case Red > 0 to the case d = 0. The above shift in the argument of the generating
function provides the linear term −2(Red)ϕ(T )−2(Imd)ψ(T ) in the rate function,
and the RHS of (3.10) gives the constant −Cd(T ).
• First step: The normalized cumulant generating function.

Lemma 3.5. Let T < 1.

(1) Let us assume d = 0.
(a) For every path (x(τ), y(τ))τ∈[0,T ] ∈ V T

ℓ ×V T
ℓ such that x(τ)+1−τ > 0

on [0, T ], set 2z(τ) := x(τ) + iy(τ) and

Λ0(T, x, y) :=(3.11)
∫ T

0

(J (1− τ + x(τ)) − J (1 − τ + z(τ))− J (1− τ + z̄(τ)) + J (1− τ)) dτ .
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Then we have:

(3.12)

lim
n→∞

1

β′n2
logE exp

(
nβ′

Re

[∫ T

0

(x(τ) − iy(τ)) d log Φ⌊nτ⌋(1)

])
= Λ0(T, x, y)

(b) In particular, when x(.) ≡ s and y(.) ≡ t, if we set L0(T, s, t) :=
Λ0(T, x, y) (which generalizes the notation L0(T, γ, 0) introduced in
Theorem 3.4), we have for every s > −(1− T )

L0(T, s, t) = F (1 + s)− F (1− T + s) + F (1)− F (1− T )(3.13)

−F (1 + z) + F (1− T + z)− F (1 + z̄) + F (1− T + z̄)

where 2z = s+ it.
(2) For Re d > 0, the analogues of (3.11) and (3.13) are

(3.14) Λd(T, x, y) = Λ0(T, x+ 2Re d, y + 2Im d)− Λ0(T, 2Re d, 2Im d) ,

and

(3.15) Ld(T, s, t) = L0(T, s+ 2Re d, t+ 2Im d)− L0(T, 2Re d, 2Im d) ,

for s > −(1− T )− 2Re d.

Proof. (1)(a) Let us set x(τ) = y(τ) = z(τ) := 0 for τ > T , and τj := (j + 1)/n for
j = 0, . . . , n− 1. One has:

E exp

(
nβ′

Re

[∫ T

0

(x(τ) − iy(τ)) d logΦ⌊nτ⌋(1)

])

= E exp


nβ′

Re



n−1∑

j=0

(x (τj)− iy(τj)) log(1− γj)






=

n−1∏

j=0

E exp (nβ′
Re [(x(τj)− iy(τj)) log(1− γj)])

and using (5.14), we get:

logE exp

(
nβ′

Re

[∫ T

0

(x(τ) − iy(τ)) d logΦ⌊nτ⌋(1)

])

=
n−1∑

j=0

[ℓ(nβ′(1− τj + x(τj)) + 1) + ℓ(nβ′(1− τj) + 1)

−ℓ(nβ′(1− τj + z(τj)) + 1)− ℓ(nβ′(1 − τj + z̄(τj)) + 1)] .(3.16)

Now, the Binet formula (5.1) yields:

ℓ(u+ 1) = log(u) + log Γ(u) = (u + 1/2) logu− u+ 1 +

∫ ∞

0

f(s)[e−su − e−s]ds .

If we apply four times this formula in order to estimate the term indexed by j < n
in (3.16), the contribution of the term u is 0, the contribution of the term log u is

log(1 − τj) + log(1− τj + x(τj))− log(1 − τj + z(τj))− log(1 − τj + z(τj)) ,
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the contribution of the term u logu is proportional to β′n with coefficient

J (1− τj)− J (1− τj + z(τj))− J (1 − τj + z(τj)) + J (1− τj + x(τj)) ;

dividing by β′n2 and performing Riemann sums gives the integral in (3.11). The
remaining part is a sum of bounded terms which is negligible with respect to n2.

(1)(b) The equality (3.13) is obvious by integration.
(2) To get the expression corresponding to Red > 0 we just use (3.10).

• Second step ; the Legendre duality.

It will be convenient to perform a time-change in (3.11), setting

x(τ) = (1− τ)X(τ) ; y(τ) = (1− τ)Y (τ) ; z(τ) = (1 − τ)Z(τ) .(3.17)

The above expression (3.11)) of Λ0 becomes

Λ0(T, x, y) =

∫ T

0

(1− τ)L(X(τ), Y (τ))dτ(3.18)

where

L(X,Y ) = J (1 +X)− J (1 + Z)− J (1 + Z̄)(3.19)

i.e.

L(X,Y ) = (1 +X) log(1 +X) + Y arctan
Y

2 +X

−
(
1 +

X

2

)
log

[(
1 +

X

2

)2

+
Y 2

4

]
.(3.20)

Looking for the Legendre dual, we see that for |η| < π/2 and eξ < 2 cosη, the
supremum

L⋆(ξ, η) = sup
X,Y

Xξ + Y η − L(X,Y )

is achieved in (X,Y ) satisfying

1 +X√(
1 + X

2

)2
+ Y 2

4

= eξ ,
Y

2 +X
= tan η(3.21)

i.e.

X =
eξ − cos η

cos η − 1
2e

ξ
, Y =

sin η

cos η − 1
2e

ξ
.

Note that under the assumption above, X is admissible, i.e. X > −1. One deduces
that (cf. (3.1))

L⋆(ξ, η) = −ξ − log(2 cos η − eξ) = Ha(ξ, η).(3.22)

On the other hand, one can check that L⋆(ξ, η) is infinite if |η| ≥ π/2 or eξ ≥ 2 cosη.
One deduces that there exists a recession function:

(ξ, η) 7→ lim
κ→+∞

κ−1L⋆(κξ, κη) =

{
−ξ if ξ < 0 and η = 0 ,

∞ otherwise .
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This function can be used to obtain the rate functionH0(T, ϕ, ψ) when the measures

ϕ̇s and ψ̇s are not zero. By using the same methods as in [22], one deduces

H0(T, ϕ, ψ) = sup
x(.),y(.)

[∫ T

0

(
x(τ)dϕ̇(τ) + y(τ)dψ̇(τ)

)
− Λ0(T, x(.), y(.))

]

= sup
X(.),Y (.)

∫ T

0

(1− τ)
[
X(τ)dϕ̇(τ) + Y (τ)dψ̇(τ) − L(X(τ), Y (τ)) dτ

]

=

∫ T

0

(1− τ)Ha(ϕ̇a(τ), ψ̇a(τ)) dτ +

∫ T

0

(1− τ)d(−ϕ̇s)(τ) ,

where the second equality comes from (3.17) and (3.18), and where the last equality
comes from [21] Theorem 5.

The value of the constant Cd(T ) is obtained owing to (3.13):

Cd(T ) = −L0(T, 2Red, 2Imd) .

• Third step : exponential tightness.
Exponential tightness is not needed for the second argument since it lives in

[−π/2, π/2]. For the first, we have | log x| ≤ − logx+ 2 log 2 for x ≤ 2, hence:

Pd(
∑

j≤nT−1

| log |1− yj || ≥ na) ≤ Pd(
∑

j≤nT−1

− log(1 − yj) ≥ n(a− 2T log 2)).

Now, for θ < 0 (by Chernov inequality),

Pd(
∑

j≤nT−1

− log(1− yj) ≥ n(a− 2T log 2)) ≤ en
2β′θ(a−2T log 2)

Ed

(
|Φ⌊nT⌋(1)|n

2β′θ
)

so that, taking logarithm and applying (3.13) we get, for θ ∈ (−(1− T )− 2Red, 0)

lim sup
n→∞

(β′n2)−1 logPd(
∑

j≤nT

| log |1− yj| ≥ na) ≤ θ(a− 2T log 2) + Ld(T, θ, 0).

It remains to let a → ∞ to get the exponential tightness. We remark that when
d = 0, the exponential tightness holds only for T < 1.

Remark 3.6. The mean trajectory is obtained when Ha(ϕ̇, ψ̇) ≡ 0 i.e. cos ψ̇ =

cosh ϕ̇ or ϕ̇ = ψ̇ = 0

3.3. Comment on Theorem 3.2. Let us study the variational problem (3.4)
issued from the contraction. Using (3.2) and (3.22), we see that the Euler equation
is

d

dτ

(
(1 − τ)

∂L⋆

∂ϕ̇

)
= 0

d

dτ

(
(1 − τ)

∂L⋆

∂ψ̇

)
= 0 ,(3.23)

and the optimal path is then given by

ϕ̇(τ) =
∂L

∂X

(
γ

1− τ
,

ρ

1− τ

)
, ψ̇(τ) =

∂L

∂Y

(
γ

1− τ
,

ρ

1− τ

)
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i.e.

ϕ̇(τ) = log(1− τ + γ)− 1

2

(
log
(
1− τ +

γ

2

)2
+
ρ2

4

)
,(3.24)

ψ̇(τ) = arctan
ρ

2(1− τ) + γ
.(3.25)

This path will be admissible if there exist γ and ρ such that
∫ T

0

ϕ̇(τ)dτ = ξ ,

∫ T

0

ψ̇(τ)dτ = η .(3.26)

When the path is admissible, we have

Ha(ϕ̇(τ), ψ̇(τ)) = L̂(ϕ̇(τ), ψ̇(τ)) = γ

1− τ
ϕ̇(τ) +

ρ

1− τ
ψ̇(τ) − L

(
γ

1− τ
,

ρ

1− τ

)

and

h0(T, ξ, η) = γξ + ρη −
∫ T

0

(1− τ)L

(
γ

1− τ
,

ρ

1− τ

)
dτ.

3.4. Comment on Theorem 3.4. In the case d = 0, T = 1, [12] proved the
LDP by tackling directly the normalized cumulant generating function. This gives
an incomplete LDP since there is no steepness in 0. They use a Fourier inversion
to take into account the negative side. We see that the function L0(1, s, 0) is the
limiting n.c.g.f. of log |Φn(1)|, computed in [12] Theorem 3.3. Besides, L0(1, 0, t) is
the limiting n.c.g.f. of the argument of Φn(1), computed in [12], Theorem 3.4, and

lim
t→±∞

L0(1, 0, t)

t
= ±π

2
.

3.5. Proof of Theorem 3.4. In the Im d 6= 0 case, or the case where d = 0 and
T < 1, we could also use the scheme described in Section 3.4. We prefer illustrate
the method of contraction, where we will see that the counterpart of the singular
contribution is an affine part. To simplify the exposition, we assume the problem
one-dimensional (consider only the first component) and d > 0.

Since

∂Ld

∂s
(T, s, 0) =

∂L0

∂s
(T, s+ 2d, 0)

= J (1 + s+ 2d)− J (1− T + s+ 2d)

−J (1 +
s

2
+ d) + J (1− T +

s

2
+ d)

and since J (a+ s)− J (b+ s) = (a− b) log s+ o(1) as s→ ∞, we have

lim
s→∞

∂Ld

∂s
(s, 0) = T log 2

which corresponds to the endpoint of the interval allowed for Re logΦn(T ). On the
other side, if d > 0,

lim
s↓−(1−T )−2d

∂Ld

∂s
(T, s, 0) = J (T )− 1− J

(
1 + T

2

)
+ J

(
1− T

2

)
=: ξT .

There is a problem of non-steepness since it is not −∞.
The first coordinate satisfies the LDP with good rate function

ξ 7→ inf{h0(T, ξ, η)|η}
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and from (3.4)

inf{h0(T, ξ, η)|η} = inf{H0(T, ϕ, ψ)|ϕ(T ) = ξ}
From the structure of H0 and Ha, it is clear that this infimum is achieved for
ψ̇(.) = 0 i.e. ρ = 0.

In the case of admissible ϕ, it remains to compute γ. Let us study the mapping
γ 7→ ϕ(T, γ) where ϕ(·, γ) is given by (3.24) with ρ = 0. We follow the lines of
argument of [22] pp. 3216-3218. We have

∂ϕ(T, γ)

∂γ
= log

1 + γ

1− T + γ
− 1

2
log

1 + γ
2

1− T + γ
2

> 0 .(3.27)

The mapping γ 7→ ϕ(T, γ) is then bijective from [−(1− T ),∞) to [ξT , T log 2).
Fixing ξ ∈ (−∞, T log 2], let us look for optimal ϕ. Let γ > −(1 − T ) (playing

the role of a Lagrange multiplier). By the duality property, we have the inequality

(1 − τ)L⋆ (ϕ̇a(τ)) ≥ γϕ̇a(τ) − (1− τ)L

(
γ

1− τ
, 0

)
.

Using (3.2) and (3.22) we get, by integration of the above inequality:

H0(T, ϕ, 0) =

∫ T

0

(1 − τ)L⋆(ϕ̇a(τ))dτ +

∫ T

0

(1 − τ)d (−ϕ̇s) (τ)

≥ γϕa(T )−
∫ T

0

(1 − τ)L

(
γ

1− τ
, 0

)
dτ

+

∫ T

0

(1 − τ)d (−ϕ̇s) (τ).

For every ϕ such that ϕ(T ) = ξ, we then have

H0(T, ϕ, 0) ≥ γξ −
∫ T

0

(1− τ)L

(
γ

1− τ
, 0

)
dτ −

∫ T

0

(1 − τ + γ)dϕ̇s(τ)

≥ γξ −
∫ T

0

(1− τ)L

(
γ

1− τ
, 0

)
dτ.(3.28)

We can now distinguish three cases:
• If ξ ∈ [ξT , T log 2), we choose the path vξ absolutely continuous and such that

v̇ξ(τ) = log(1− τ + γξ)− log

(
1− τ +

γξ

2

)
,

where γξ is uniquely determined by the condition vξ(T ) = ξ. This path saturates
the infimum and the expression of the action integral is clear.

• If ξ < ξT , set ε = ξT − ξ. Plugging γ = −(1 − T ) in (3.28) yields for v such
that v(T ) = ξ:

H0(T, v, 0) ≥ −(1− T )ξ −
∫ T

0

(1− τ)L

(−(1− T )

1− τ
, 0

)
= (1− T )ε+ h0(T, ξT , 0)

and this lower bound is achieved for the measure ṽ = vξT (τ)dτ − εδT , since

Ha(v
ξT ) = h0(T, ξT , 0) ,

∫ T

0

(1− τ)ε dδT (τ) = (1− T )ε .
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• If ξ = T log 2, make ξ = T log 2 in (3.28). We get, for all γ > −(1− T ),

h0(T, T log 2, 0) ≥ γT log 2−
∫ T

0

(1− τ)L

(
γ

1− τ
, 0

)
dτ.(3.29)

When γ → ∞, the integral is F (1+ γ)−F (1− T + γ) +F (1)−F (1− T )− 2F (1+
γ/2) + 2F (1 − T + γ/2) which tends to −∞ as −T log γ, so that finally, the RHS
(3.29) tends to ∞ and we conclude h0(T, T log 2, 0) = ∞.

4. Connection with the spectral method

It can be interesting to connect the results of the previous section to the results
obtained by looking directly at the empirical spectral distribution of the ensembles
which are considered. This point of view is also discussed in [12].

The LDP for the empirical spectral distribution of the unitary ensemble is given
in [11]. The rate function is the Voiculescu’s logarithmic entropy:

I(µ) = −ΣT(µ) := −
∫ ∫

T×T

log |z − z′| dµ(z)dµ(z′).(4.1)

The circular Jacobi unitary ensemble yields also a LDP given in [5]. The rate
function is

Id(µ) = −ΣT(µ) +

∫

T

Qd(z)dµ(z) + B(d) ,(4.2)

where

(4.3) Qd(e
iθ) := −2(Red) log

(
2 sin

θ

2

)
− (Imd)(θ − π) (θ ∈ (0, 2π)) .

and

B(d) =

∫ 1

0

[(x+ 2Red) log(x+ 2Red)− 2Re [(x+ d) log(x + d)]] dx

+

∫ 1

0

x log dx .(4.4)

(Notice that there was a mistake in [5], fixed in the arXiv version). With our
notation, it yields:

B(d) = F (1 + 2Red)− F (2Red)− 2ReF (1 + d) + 2ReF (d) + F (1) .

If the mapping µ ∈ M1(T) 7→
∫
log(1− z)dµ(z) were continuous, we would have

by contraction:

hd(1, ξ, η) = inf{Id(µ) | µ ∈ M1(T) :

∫

T

log(1− z) dµ(z) = ξ + iη} .(4.5)

We conjecture that this formula holds nevertheless, and we prove it in the one-
dimensional case.

Proposition 4.1. With the notation of Section 3, we have, for d > 0 and for every
ξ ∈ [0, log 2)

hd(1, ξ, 0) = inf{Id(µ) |
∫

T

log |1− z| dµ(z) = ξ} .(4.6)

We use the following interesting result.
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Proposition 4.2. We have

inf{−ΣT(µ) | µ ∈ M1(T) :

∫

T

log |1− z| dµ(z) = ξ} = −ΣT(µa)(4.7)

where

• the measure µa ∈ M1(T) is defined by

(4.8) dµa(z) = (1 + a)

√
sin2

(
θ/2
)
− sin2(θa/2)

2π sin(θ/2)
1(θa,2π−θa)(θ) dθ

where z = eiθ, θ ∈ [0, 2π] and θa ∈ (0, π) is such that sin θa/2 = a
1+a .

• a is the unique solution of
∫

T

log |1− z| dµa(z) = ξ.

Moreover, ∫

T

arg(1 − z) dµa(z) = 0 .

The two propositions mean that to get the non standard mean value ξ for the
logarithm of the determinant, the most probable way is to force the random operator
to get an empirical spectral distribution close to µa.

Proof of Proposition 4.1 given Proposition 4.2. Let us first suppose that the Propo-
sition 4.1 is true for d = 0. One deduces, from this assumption and the definition
(4.2) of Id:

inf{Id(µ) | µ ∈ M1(T) :

∫
log |1− z|dµ(z) = ξ}

= inf{−ΣT(µ) | µ ∈ M1(T) :

∫
log |1− z|dµ(z) = ξ}+B(d) − 2dξ

= h0(1, ξ, 0) +B(d)− 2dξ = hd(1, ξ, 0),

the last equality coming from (3.5) and the fact that B(d) = −Cd(1). Hence, it is
sufficient to prove Proposition 4.1 for d = 0.

The RHS of (4.6) is −ΣT(µa) and it remains to prove that it fits with the value

h0(1, ξ, 0) = γξ − F (1 + γ) + F (γ)− F (1) + 2F
(
1 +

γ

2

)
− 2F

(γ
2

)

where in view of Theorem 3.4 (2), γ is the solution of (3.6) i.e.

J (1 + γ)− J (γ)− J
(
1 +

γ

2

)
+ J

(γ
2

)
= ξ .(4.9)

Applying [5] formula (5.25) in the special case d = a (real and positive), we see that,
since the corresponding rate function vanishes for the limiting empirical measure
µa,

ΣT(µa) =

∫

T

Qa(ζ) dµa(ζ) +B(a) ,(4.10)

where Qa(ζ) = −2a log |1− ζ|. Let us now compute:

(4.11) I :=
2π

1 + a

∫

T

log |1− ζ| dµa(ζ) .
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We have, by definition of µa in (4.8),

I =

∫ 2π−θa

θa

log(2 sin(θ/2))

√
sin2(θ/2)− sin2(θa/2)

sin(θ/2)
dθ

= 2

∫ π

θa

log(2 sin(θ/2))

√
sin2(θ/2)− sin2(θa/2)

sin(θ/2)
dθ ,(4.12)

for θa ∈ [0, π] and sin(θa/2) = a/(1+ a). The first change of variables u = sin(θ/2)
gives

dθ =
2du

cos(θ/2)
=

2du√
1− u2

,

and then

I = 4

∫ 1

a/(1+a)

log(2u)

√
u2 − [a/(1 + a)]2

1− u2
du

u
.

The second change of variable

v =

√
u2 − [a/(1 + a)]2

1− u2
⇐⇒ u =

√
v2 + [a/(1 + a)]2

1 + v2
,

gives

log(2u) = log 2 +
1

2
log
(
v2 + [a/(1 + a)]2

)
− 1

2
log(v2 + 1),

du

u
=

[
v

v2 + [a/(1 + a)]2
− v

v2 + 1

]
dv.

Hence,

I = 4

∫ ∞

0

[
log 2 +

1

2
log
(
v2 + [a/(1 + a)]2

)
− 1

2
log(v2 + 1)

]
·
[

v2

v2 + [a/(1 + a)]2
− v2

v2 + 1

]
dv

(4.13)

= 2

∫ ∞

−∞

[
log 2 +

1

2
log
(
v2 + [a/(1 + a)]2

)
− 1

2
log(v2 + 1)

]
·
[

1

v2 + 1
− [a/(1 + a)]2

v2 + [a/(1 + a)]2

]
dv.

Now, for α, β > 0,

(4.14)

∫ ∞

−∞

α2

v2 + α2
dv = απ,

(4.15)

∫ ∞

−∞

α2 log(v2 + β2)

v2 + α2
dv = 2απ log(α+ β).

The first equality (4.14) is elementary. To get (4.15), one can differentiate the LHS
with respect to β, and one obtains, for α 6= β,
∫ ∞

−∞

2α2 β

(v2 + α2)(v2 + β2)
dv =

2α2 β

β2 − α2

[∫ ∞

−∞

dv

v2 + α2
−
∫ ∞

−∞

dv

v2 + β2

]
=

2πα

α+ β
.

By continuity, the last equality remains true for α = β, and reversing the differen-
tiation gives

∫ ∞

−∞

α2 log(v2 + β2)

v2 + α2
dv = 2απ log(α+ β) + C(α).



24 J. NAJNUDEL, A. NIKEGHBALI, AND A. ROUAULT

Now, to determinate C(α) let us write
∫ ∞

−∞

α2 log(v2 + β2)

v2 + α2
dv = α log(β2)

∫ ∞

−∞

α

v2 + α2
dv + α

∫ ∞

−∞

α log(1 + v2/β2)

v2 + α2
dv .

The first integral is equal to 2απ log(β) and the second tends to zero for α fixed
and β → ∞ by dominated convergence. This gives C(α) = 0 and then (4.15).
Expanding (4.13), then using (4.14) and (4.15) gives:

I =
2π

1 + a
[(1 + 2a) log(1 + 2a)− (1 + a) log(1 + a)− 2a log(2a) + a log(a)] .

Coming back to the definition of I, we obtain:
∫

T

log |1− ζ| dµa(ζ) = I(1 + 2a)− I(1 + a)− I(2a) + I(a) = Ea(1) .

In particular, ∫

T

log |1− ζ| dµγ/2(ζ) = ξ,

and the value of a involved in Proposition 4.2 is equal to γ/2. It remains to check
that −ΣT(µγ/2) = h0(1, ξ, 0). Indeed,

−ΣT(µγ/2) = −
∫
Qγ/2(ζ)dµγ/2(ζ)−B(γ/2) = γξ −B(γ/2)

= γξ − F (1 + γ) + F (γ) + 2F (1 + γ/2)− 2F (γ/2)− F (1) ,

which proves Proposition 4.1.

Remark 4.3. The determination of I could also be viewed as a consequence of
the weak convergence of the empirical spectral measure under CJnaβ′ . Of course
the mapping µ 7→

∫
T
log |1 − ζ| dµ(ζ) is not continuous, but since the extremal

eigenvalues converge to the extreme points of the support of µa (see [2]), we have
∫

T

log |1− ζ| dµa(ζ) = lim
n→∞

1

n
log |Φn(1)| = Ea(1)

where the last equality comes from (2.9) in Theorem 2.1.

Proof of Proposition 4.2 A possible way consists in studying the maximization of
the functional

ΣT(µ) + r

∫

T

log |1− z| dµ(z) ,

where r is some Lagrange multiplier.
It is convenient to push-forward this problem to R via the Cayley transformation

z = eiθ =
λ+ i

λ− i

so that, for z, z′ 6= 1,

log |1− z| = −1

2
log(1 + λ2) + log 2

log |z − z′| = log |λ− λ′| − 1

2
log(1 + λ2)− 1

2
log(1 + λ′2) + log 2 .
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Hence, one needs to minimize:

ΣR(ν) + 2

∫

R

Q(λ) dν(λ),

over ν ∈ M1(R), where

ΣR(ν) =

∫ ∫

R×R

log

(
1

|λ− λ′|

)
dν(λ)dν(λ′)

and

2Q(x) =
(
1 +

r

2

)
log(1 + x2).

This problem can be connected to the research of the equilibrium measure in the
Cauchy ensemble, i.e. for the Coulomb gas with probability distribution given by
formula (3.124) in Forrester [10]. According to Saff and Totik [24], this potential Q
is admissible (p.27) as soon as r > 0. In that case the minimizer is unique (Theorem
1.3), its support is compact. In the book, an explicit method is presented for a class
of potentials satisfying some conditions, in particular if Q is even, differentiable and
such that xQ′(x) is positive and increasing in (0,∞). These properties are satisfied
here since:

xQ′(x) =
(
1 +

r

2

) x2

1 + x2
.

Then ([24] Corollary 1.12 p. 203) the support is S = [−b, b] where b is solution of

2

π

∫ 1

0

btQ′(bt)√
1− t2

dt = 1(4.16)

i.e.
2 + r

π

∫ 1

0

b2t2

(1 + b2t2)
√
1− t2

dt = 1

or
∫ 1

0

dt

(1 + b2t2)
√
1− t2

=
πr

2(2 + r)
(4.17)

which gives (make t = (1 + τ2)−1/2)
∫ ∞

0

dτ

1 + b2 + τ2
=

πr

2(2 + r)

i.e.

b =
2
√
1 + r

r
.

To find the extremal measure, we apply Theorem IV.3.1 in [24], which contains the
following result:

Theorem 4.4 (Lubinsky-Saff). Let f be a differentiable even function on [−1,+1],

such that sf ′(s) is increasing for s ∈ (0, 1) and for some 1 < p < 2, f ′(s)/
√
1− s2 ∈

Lp[−1, 1]. Then the integral equation
∫ 1

−1

log
1

|x− t|g(t)dt = −f(x) + Cf , x ∈ (−1, 1) ,

(where Cf is some constant) has a solution of the form

g(t) = L[f ′](t) +
Bf

π
√
1− t2

(4.18)
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where

L[f ′](t) =
2

π2

∫ 1

0

√
1− t2 (sf ′(s)− tf ′(t))√

1− s2 (s2 − t2)
ds,(4.19)

Bf = 1− 1

π

∫ 1

−1

sf ′(s)√
1− s2

ds .

Here, we look for the measure µ with support [−b, b] such that for z ∈ (−b, b),
∫ b

−b

log
1

|z − t|dµ(t) = −Q(z) + C.(4.20)

Theorem 4.4 is set for b = 1, so we need a scaling. Equation (4.20) becomes, with
dµ(x) = gb(x)dx,

∫ 1

−1

log
1

|z − t|bgb(bt)dt = −Q(bz) + C′.(4.21)

Theorem 4.4 can now be applied by taking f(s) = Q(bs), and one has bgb(bt) = g(t),
Bf = 0 and

sf ′(s)− tf ′(t)

s2 − t2
= b2

(
1 +

r

2

) 1

(1 + b2t2)(1 + b2s2)
.

Owing to (4.17), we get

bgb(bt) =

(
1 +

√
1 + b2

)

π

√
1− t2

(1 + b2t2)
I[−1,1](t)

i.e.

gb(x) =

(
1 +

√
1 + b2

)

bπ

√
1− x2b−2

(1 + x2)
I[−b,b](x).

Now, it is enough to apply Theorem I.3.3 of [24] as follows. The support of the
equilibrium measure is S = [−b, b], the measure µ is supported by S, has a finite

logarithmic energy and
∫ b

−b log
1

|z−t|dµ(t) +Q(z) is constant for z ∈ S, so µ is the

equilibrium measure. To find µa, it is enough to carry µ back on the circle by the
inverse transformation

λ =
1

i

1 + z

1− z
.

5. Appendix

5.1. Some properties of ℓ = log Γ and Ψ = ℓ′. From the Binet formula (Abramowitz
and Stegun [1] or Erdélyi et al. [9] p.21), we have for Rex > 0

ℓ(x) = (x− 1

2
) log x− x+ 1 +

∫ ∞

0

f(s)[e−sx − e−s] ds(5.1)

= (x− 1

2
) log x− x+

1

2
log(2π) +

∫ ∞

0

f(s)e−sx ds ,(5.2)

where the function f is defined by

f(s) =

[
1

2
− 1

s
+

1

es − 1

]
1

s
= 2

∞∑

k=1

1

s2 + 4π2k2
,(5.3)
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and satisfies for every s ≥ 0:

0 < f(s) ≤ f(0) = 1/12 , 0 <

(
sf(s) +

1

2

)
< 1 .(5.4)

By differentiation (recall that Ψ is the Digamma function Γ′/Γ),

log x−Ψ(x) =
1

2x
+

∫ ∞

0

sf(s)e−sx ds =

∫ ∞

0

e−sx

(
sf(s) +

1

2

)
ds .(5.5)

Moreover, since Ψ(x+ 1) = 1
x +Ψ(x), we have a variation of (5.5):

log x−Ψ(x+ 1) = − 1

2x
+

∫ ∞

0

sf(s)e−sx ds(5.6)

=

∫ ∞

0

e−sx

(
sf(s)− 1

2

)
ds .

As easy consequences, we have, for every x > 0,

0 < x (log x−Ψ(x)) ≤ 1 ,(5.7)

0 < log x−Ψ(x)− 1

2x
≤ 1

12x2
.(5.8)

Differentiating again we see that for q ≥ 1, Rex > 0,

Ψ(q)(x) = (−1)q−1(q − 1)!x−q + (−1)q−1

∫ ∞

0

e−sxsq
(
sf(s) +

1

2

)
ds

and then

|Ψ(q)(x) − (−1)q−1(q − 1)!x−q| ≤ (Re x)−q−1q! .(5.9)

Another useful formula is

Ψ(z + 1) = −γ −
∞∑

k=1

(
1

k + z
− 1

k

)
,(5.10)

fir z + 1 /∈ R−.

5.2. The density g
(δ)
r and some moments related to it. Recall that for r > 0

and δ such that r + 2Re δ + 1 > 0, the density g
(δ)
r on the unit disc D is given by

g(δ)r (z) = cr,δ(1− |z|2)r−1(1− z)δ̄(1− z̄)δ

where cr,δ is the normalization constant. The following lemma is the key to compute

cr,δ and the moments of g
(δ)
r .

Lemma 5.1. Let s, t, ℓ be complex numbers such that: Re ℓ, Re(s+ ℓ+1), Re(t+
ℓ+1) and Re(s+ t+ ℓ+1) are strictly positive. Then, the following identity holds:

∫

D

(1− |z|2)ℓ−1(1− z)s(1− z̄)td2z = πΓ

[
ℓ , ℓ+ 1 + s+ t

ℓ+ 1 + s , ℓ+ 1 + t

]
,(5.11)

where for the sake of simplicity we use the polygamma symbol

Γ

[
a, b, · · ·
c, d, · · ·

]
:=

Γ(a)Γ(b) · · ·
Γ(c)Γ(d) · · · .
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A proof of this result is given in [5]. A first consequence is that

cr,δ = π−1Γ

[
r + 1 + δ , r + 1 + δ̄
r , r + 1 + δ + δ̄

]
.(5.12)

A second consequence is that if γ has the density g
(δ)
r , then we have

E(1− γ)a(1− γ̄)b = Γ

[
r + 1 + δ + δ̄ + a+ b , r + 1 + δ̄ , r + 1 + δ
r + 1 + δ + δ̄ , r + 1 + δ̄ + a , r + 1 + δ + b

]

(5.13)

as soon as all the real parts of the arguments of the gamma functions are strictly
positive.

Let us notice that for r = 0 the RHS of (5.13) is the Mellin-Fourier transform of
1− γ when γ ∈ T is distributed according to λ(δ).

In this paper, we need the following computations, in order to deduce the mo-
ments of log(1 − γ). The quantities involved below are all well-defined as soon as
s > s0, where s0 is some strictly negative quantity depending on r and δ, and in
particular, for (s, t) in the neighborhood of (0, 0), one can write:

Λ(s, t) := logE exp (2sRe log(1− γ) + 2tIm log(1− γ)) =

= logE exp (Re (2(s− it) log(1− γ)) =

= logE(1 − γ)s−it(1− γ̄)s+it =

= ℓ
(
r + 1 + δ + δ + 2s

)
− ℓ
(
r + 1 + δ + δ

)
(5.14)

−ℓ
(
r + 1 + δ + s− it

)
− ℓ
(
r + 1 + δ + s+ it

)

+ℓ
(
r + 1 + δ

)
+ ℓ
(
r + 1 + δ

)
.

To compute moments we need differentiation. First we have:

∂

∂s
Λ(s, t) = 2Ψ

(
r + 1 + δ + δ + 2s

)

−Ψ(r + 1 + δ + s+ it)−Ψ
(
r + 1 + δ + s− it

)
(5.15)

∂

∂t
Λ(s, t) = iΨ

(
r + 1 + δ̄ + s− it

)
− iΨ

(
r + 1 + δ + s+ it

)
.

The first moment is then:

ERe log(1 − γ) = Ψ(r + 1 + δ + δ̄)− 1

2
Ψ(r + 1 + δ)− 1

2
Ψ(r + 1 + δ̄)

E Im log(1 − γ) =
1

2i
Ψ(r + 1 + δ)− 1

2i
Ψ(r + 1 + δ̄)

or

E log(1− γ) = Ψ(r + 1 + δ + δ̄)−Ψ(r + 1 + δ̄) .(5.16)
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Differentiating again (5.15) we get

∂2

∂s2
Λ(s, t) = 4Ψ′

(
r + 1 + δ + δ + 2s

)

−Ψ′
(
r + 1 + δ + s+ it

)
−Ψ′

(
r + 1 + δ + s− it

)

∂2

∂t2
Λ(s, t) = Ψ′

(
r + 1 + δ̄ + s− it

)
+Ψ′

(
r + 1 + δ + s+ it

)
(5.17)

∂2

∂s∂t
Λ(s, t) = −iΨ′

(
r + 1 + δ + s+ it

)
+ iΨ′

(
r + 1 + δ̄ + s− it

)

and the second moments are

VarRe log(1− γ) = Ψ′
(
r + 1 + δ + δ

)
− 1

4
Ψ′
(
r + 1 + δ

)
− 1

4
Ψ′
(
r + 1 + δ

)

VarIm log(1− γ) =
1

4
Ψ′
(
r + 1 + δ

)
+

1

4
Ψ′
(
r + 1 + δ

)
(5.18)

Cov (Re log(1− γ), Im log(1 − γ)) =
1

4i
Ψ′
(
r + 1 + δ

)
− 1

4i
Ψ′
(
r + 1 + δ̄

)
.

5.3. Complex logarithm and characteristic polynomial. Let Ek be the set of
the complex k × k matrices with no eigenvalue on the interval [1,∞). For V ∈ Ek,
let us define

log det(Ik − V ) :=

k∑

j=1

log(1− λj),

where the λj ’s are the roots, counted with multiplicity, of the polynomial z 7→
det(zIk − V ), and where in the right-hand side, one considers the principal branch
of the logarithm. This definition is meaningful, since by assumption, 1 − λj /∈ R−

for all j ∈ {1, . . . , k}. By the continuity of the set of roots of a polynomial with
respect to its coefficients, the set Ek is open and the function V 7→ log det(Ik − V )
defined just above is continuous on Ek. In fact, since Ek is connected (this is
easily checked by tridiagonalizing the matrices), this is the unique way to define
the logarithm of det(Ik − V ) as a continuous function of V ∈ Ek if we assume that
it should take the value zero at V = 0.

Now, with the notation of the beginning of the paper, the matrix Gk(Un) is a
submatrix of the unitary matrix Un, and all its eigenvalues have modulus bounded

by 1. If we assume γ0, . . . , γn−1 6= 1 (which holds almost surely under CJ
(n)
β,δ), then

by (1.2), Φk,n(1) 6= 0, and one easily deduces that Gk(Un) ∈ Ek, which allows to
define logΦk,n(1) without ambiguity. Now, the map from Dn−1 × (U\{1}) to R,
given by

(γ1, . . . , γn−1) 7→
k−1∑

j=0

log(1 − γj)

is continuous if we take the principal branch of the logarithm, and since Un depends
continuously on (γ1, . . . , γn−1) ∈ Dn−1 × (U\{1}), as it can be checked in [5], the
map

(γ1, . . . , γn−1) 7→ log Φk,n(1)
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is also continuous. These two maps have the same exponential, and one can check
that they are both real if the γj ’s are all real. Hence, they are equal, which fully
justifies the equation

(5.19) logΦk,n(1) =

k−1∑

j=0

log(1− γj).

5.4. Abel-Plana summation formula.

Theorem 5.2. Let m < n be integers and let g be a holomorphic function on the
strip {t ∈ C, n ≤ Re t ≤ m} (i.e. g is continuous on this strip and holomorphic in
its interior). We assume that g(t) = o (exp(2π|Im t|)) as Im t → ±∞, uniformly
with respect to Re t ∈ [n,m]. Then,

n∑

j=m+1

g(j) =

∫ n

m

g(t)dt+
g(n)− g(m)

2

+ i

∫ ∞

0

g(m+ iy)− g(n+ iy)− g(m− iy) + g(n− iy)

e2πy − 1
dy .

(5.20)

For a proof see [20] p. 290.
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bonne, F-31062 Toulouse Cedex 9, France

E-mail address: joseph.najnudel@math.univ-toulouse.fr

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057
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