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DIFFERENTIABILITY OF MATHER’S β-FUNCTION VS

MAÑÉ’S CONJECTURE

DANIEL MASSART

Abstract. We prove that if a time-periodic Tonelli Lagrangian on a
closed manifold M satisfies a strong version of the Differentiability Prob-
lem for Mather’s β-function, then the Legendre transforms of rational
homology classes are dense in the first cohomology of M , which is a first
step towards Mañé’s conjecture.

1. Introduction

1.1. Tonelli Lagrangians. Let M be a compact, connected manifold with-
out boundary. For the sake of brevity we shall refer to such manifolds as
closed. A Tonelli Lagrangian on M is a C2 function on TM ×T, where T is
the circle R/Z, satisfying the following conditions :

(1) for every (x, t) ∈ M × T, the function v 7→ L(x, v, t) is superlinear
(2) for every (x, v, t) ∈ TM × T, the bilinear form ∂2L(x, v, t)/∂v2 is

positive definite
(3) the local flow Φt defined on TM×T by the Euler-Lagrange equation

for extremals of the action of curves is complete.

A good example to keep in mind is the sum of a Riemann metric, viewed
as a quadratic function on TM , and a time-periodic potential (a function
on M × T). See [Mr91, F] for more background and references. When the
Lagrangian does not depend on t ∈ T, it is called autonomous and we omit
the factor T.

The following classical way to obtain invariant subsets of the Euler-
Lagrange flow was introduced by Mather in [Mr91]. Define Minv to be
the set of Φt-invariant, compactly supported, Borel probability measures on
TM ×T. Mather showed that the function (called action of the Lagrangian
on measures)

Minv −→ R

µ 7−→
∫

TM×T
Ldµ

is well defined and has a minimum. A measure achieving this minimum is
called L-minimizing. The union of the supports of all minimizing measures
is called Mather set, and denoted M(L). The following classical trick gives
us more invariant sets from the same construction. If ω is a closed one-
form on M , then L − ω is again a Tonelli Lagrangian, and it has the same
Euler-lagrange flow as L. Besides, by [Mr91], if µ ∈ Minv, the integral
∫

TM×T
ωdµ only depends on the cohomology class of ω. A measure achieving
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the minimum of

(1)
Minv −→ R

µ 7−→
∫

TM×T
(L− ω)dµ

where ω is any closed 1-form in the cohomology class c, is called (L, c)-
minimizing. Thus, for each cohomology class c ∈ H1(M,R), we find a
Mather set M(L, c).

1.2. Mañé’s problem. The upside of this measure-theoretic construction
is that it readily yields an existence theorem. The downside is that we
don’t know what the minimizing measures look like. One of the most basic
questions one may ask is, if we choose the Lagrangian randomly, what are
the minimizing measures ? are they supported on fixed points or periodic
orbits ? if not, how big are their supports ?

In [Mn95, Mn96], R. Mañé proposed the following problem (sometimes
stated as Mañé’s conjecture, although Mañé’s conjecture is a stronger state-
ment published in a later paper [Mn97]):

Problem 1.1. Is it true that given a Tonelli Lagrangian L on a manifold
M , there exists an residual subset O(L) of C∞(M × T), such that for any
f ∈ O(L), there exists an open dense set U(L, f) of H1(M,R), such that for
any c ∈ U(L, f), there exists only one (L+ f, c)-minimizing measure, and it
is supported by a periodic orbit ?

The case when M is the circle is treated in [O09], with some arguments
provided by [Mr02]. The analogous problem in codimension one Aubry-
Mather theory is dealt with in [BM11]. However, the full statement of
Problem 1.1 seems way out of reach for the time being, so it makes sense to
look for similar, but simpler, problems.

First, we leave aside the question of the openness, and focus on finding
a dense set of cohomology classes. Second, we relax the requirement on the
support of the minimizing measure, by replacing it with some condition on
its homology class. Let us explain what the homology class of a measure is.
For any µ ∈ Minv, the homology class [µ] is the unique h ∈ H1(M,R) such
that

〈[ω] , h〉 =

∫

TM×T

ωdµ

for any closed one-form ω on M . This is well defined because if µ ∈ Minv,
the integral

∫

TM×T
ωdµ only depends on the cohomology class of ω.

Now let us explain the notion of irrationality of a homology class. The
torsion-free part of H1(M,Z) embeds as a lattice Γ in H1(M,R). A class
h ∈ H1(M,R) is called integer if it lies in Γ, and rational if nh ∈ Γ for some
n ∈ Z. A subspace of H1(M,R) is called integer if it is generated by integer
classes.

The quotient H1(M,R)/Γ is a torus Tb, where b is the first Betti number
of M . For h in H1(M,R), the image of Zh in Tb is a subgroup of Tb, hence
its closure T (h) is a finite union of tori of equal dimension. This dimension
is called the irrationality I(h) of h (it is denoted IZ(h) in [Mt09]). It is zero
if h is rational. We say a class h is completely irrational if its irrationality
is maximal, i.e. equals b. In the same way, if v is a vector of Rn, we call
irrationality of v the dimension of the image of Zv in Rn/Zn. Note that the
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irrationality of h equals that of nh for n ∈ Z, n 6= 0 since the quotient of
T (h) by T (nh) is a group of cardinality n.

As an example let us look at the homology class of a measure supported on
a periodic orbit. Assume γ : [0, T ] −→ M , with T ∈ N, is a C2 closed curve
such that (γ, γ̇, t) is a periodic orbit of Φt. Then the probability measure µγ

on TM × T such that, for any continuous function f on TM × T,
∫

TM

fdµγ =
1

T

∫ T

0
f(γ(t), γ̇(t), t)dt

is Φt-invariant and supported on (γ, γ̇, t), so it belongs in Minv. Its ho-
mology class is 1

T
[γ]. Therefore [µγ ] is rational. Conversely, one may ask

whether an invariant measure with a rational homology class is supported
on a periodic orbit. It is true when M = T, or when dimM = 2 and L
is autonomous (see [CMP04]), however, it is false in general. Still, a good
starting point for Problem 1.1 is the following

Problem 1.2. When is it true that given a Tonelli Lagrangian L on a
manifold M , there exists a dense set U(L) of H1(M,R), such that for any
c ∈ U(L), there exists a (L, c)-minimizing measure with a rational homology
class ?

1.3. The Differentiability Problem. In this paper we mean to explain
the relationship between Problem 1.2 and another important question in the
field, the differentiability problem for Mather’s β-function. First we need to
define some objects. Mather’s α-function is the opposite of the minimum in
Equation (1), that is,

α : H1(M,R) −→ R

c 7−→ −min
{

∫

TM×T
(L− ω)dµ : µ ∈ Minv, [ω] = c

}

.

This is a convex and superlinear function (see [Mr91]), so it has a convex
dual

β : H1(M,R) −→ R,

defined by

∀h ∈ H1(M,R), β(h) = sup
c∈H1(M,R)

(〈c, h〉 − α(c)) .

Actually Mather ([Mr91]) proved that

∀h ∈ H1(M,R), β(h) = min

{
∫

TM×T

Ldµ : µ ∈ Minv, [µ] = h

}

.

By the superlinarity of α and β, the suprema in the definitions of α and
β are actually maxima. In particular minα = −β(0), and for all c ∈
H1(M,R), h ∈ H1(M,R) we have the Fenchel inequality :

α(c) + β(h) ≥ 〈c, h〉.

For any h ∈ H1(M,R), we call Legendre transform of h with respect to β,
the set

∂β(h) := {c ∈ H1(M,R) : α(c) + β(h) = 〈c, h〉}.
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Likewise, for any c ∈ H1(M,R), we call Legendre transform of c with respect
to α, the set

∂α(c) := {h ∈ H1(M,R) : α(c) + β(h) = 〈c, h〉}.

The functions α and β are sometimes called effective Hamiltonian and La-
grangian, respectively. They resemble the Hamiltonian, or Lagrangian, in
that they are convex and superlinear; on the other hand, they need not be
strictly convex, nor smooth, that is, the sets ∂β(h) and ∂α(c) need not have
cardinality one. By convex duality, it is equivalent to study the differentia-
bility of β, and the strict convexity of α.

When M = T, the following theorem says everything about the differen-
tiability of β :

Theorem 1.3 ([Mr90, Ba94]). If M = T then β is differentiable at every
irrational homology class. It is differentiable at a rational homology class if
and only if periodic orbits in this class fill up T.

If we want to extend this theorem to higher dimensional manifolds, it
seems natural to proceed as follows. A convex function has a tangent cone
at every point. We say that β is differentiable in k directions at h if the
tangent cone to β at h contains a linear space of dimension k. We are
thus led to ask whether β is always differentiable in at least k directions
at a k-irrational homology class. This will henceforth be referred to as the
Differentiability Problem. Mather conjectures the answer is yes for C∞

Lagrangians. The answer to the Differentiability Problem is yes for all C2

Lagrangians when M = T by Theorem 1.3. It cannot be yes in general by
[BIK97].

1.4. A stronger version of the Differentiability Problem.

Definition 1.4. Let

• M be a closed manifold
• L be a Tonelli Lagrangian on TM × T

• h be a homology class in H1(M,R).

We define

Ṽh := {λ
(

c− c′, α(c) − α(c′)
)

: c, c′ ∈ ∂β(h), λ ∈ R}.

In plain language, Ṽh is the underlying vector space to the affine space
generated by the subset {(c, α(c)) : c ∈ ∂β(h)} of H1(M,R)×R. We define

Vh := {λ (c− c) : c, c′ ∈ ∂β(h), λ ∈ R},

that is, Vh is the canonical projection of Ṽh to H1(M,R).
Recall that a vector subspace of H1(M,R)×R = H1(M ×T,R) is integer

if it is generated by integer cohomology classes. A slight modification of
[Mt09], Proposition 20 (see Proposition 2.10) says that if for every h ∈
H1(M,R), Ṽh is integer, then the answer to the Differentiability Problem is
affirmative, that is, β is always differentiable in at least k directions at a
k-irrational homology class.
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1.5. An even stronger version of the Differentiability Problem. In
[Mt03] we proposed the following approach to the Differentiability Problem,
based on the notion of Aubry set, as defined by Fathi in [F] (see subsec-
tion 2.2). For the time being all we need to know is that given a Tonelli
Lagrangian L : TM × T −→ R and an homology class h, the Aubry set
Ã(L, h) is a compact subset of TM × T which is invariant under the Euler-
Lagrange flow of L, and projects injectively to M × T. The projection of
Ã(L, h) to M × T is called the projected Aubry set, and denoted A(L, h).
Another important object in weak KAM theory is the so-called quotient
Aubry set, originally defined in [Mr02] (see also [FFR09], and [Be10]). See
subsubsection 2.2.1 for the precise definition.

The idea of [Mt03] is to relate the differentiability of β with the topology
of the complement in M × T of the projected Aubry set.

Let Ẽh be the set of (c, τ) ∈ H1(M × T,R) = H1(M,R)×H1(T,R) such
that there exists a smooth closed one-form ω on M × T with [ω] = (c, τ)

and supp(ω) ∩ Ã(L, h) = ∅. Let Eh be the canonical projection of Ẽh to
H1(M,R). By a slight modification (see subsubsection 2.3.1) of Theorem 14
of [Mt07] ([Mt03] in the autonomous case) we have, for every h ∈ H1(M,R),
Eh ⊂ Vh.

What this has to do with the Differentiability Problem is summed up in
Corollary 2.11 which says that if, for every h ∈ H1(M,R), we have Eh = Vh,
then we have an affirmative answer to the Differentiability Problem.

1.6. Now at last we can state our main theorem. The meaning of our
main result is, roughly speaking, that if we have an affirmative answer to the
strong version of the Differentiability Problem stated in Subsection 1.5, plus
some non-degenaracy conditions which are satisfied by a generic Lagrangian
thanks to [BC08], or when the dimension of M is small by [FFR09], then
we have an affirmative answer to Problem 1.2, which is a weak version of
Problem 1.1, which is itself a weak version of Mañé’s conjecture. All of
which is to say that Mañé’s conjecture is a pretty bold statement. In [FR],
another approach to Mañé’s conjecture is taken, by relaxing the regularity
condition : instead of looking for a residual subset of C∞(M), the authors
look for a residual subset of C2(M).

Before stating our result, let us point out that given a cohomology class
c, it is equivalent to say that there exists a (L, c)-minimizing measure with
a rational homology class, and to say that there exists a rational homology
class h such that c ∈ ∂β(h). With that in mind, the following theorem
partially answers Problem 1.2.

Theorem 1.5. Let M be a closed manifold, and let L be a Tonelli La-
grangian on TM × T. Assume that for every h ∈ H1(M,R), Vh = Eh,
and the quotient Aubry set Ah has Hausdorff one-dimensional measure zero.
Then the set of cohomology classes

⋃

∂β(h) : h ∈ H1(M,R), h rational

is dense in H1(M,R).

This theorem is proved, in the context of codimension one Aubry-Mather
theory, as Proposition 2.2 of [BM11]. In the codimension one theory, the
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non-degeneracy hypothesis-that is, the quotient Aubry set being small- is
not necessary, and α is C1, which makes the proof a little easier.

2. Preliminaries

2.1. Flats of α and β. Throughout this paper we shall pay special at-
tention to the parts of the graph of α (resp. β) which are contained in
proper affine subspaces of H1(M,R) × R (resp. H1(M,R) × R). Such sets
are called flats of α (resp. β). We shall often identify a flat of α (resp. β)
with its canonical projection to H1(M,R) (resp. H1(M,R)). When L is
autonomous, by [Ca95], α (not β) is constant on its flats. The sets of the
kind ∂β(h), ∂α(c) are the most obvious examples of flats.

We call relative interior of a flat of α (resp. β), its interior in the affine
subspace it generates in H1(M,R)×R (resp. H1(M,R)×R). Recall Lemma
A.3 of [Mt11] :

Lemma 2.1. Let

• E be a finite dimensional Banach space
• A : E −→ R be a convex and superlinear map
• x0 be a point of E
• I be some (possibly infinite) set
• Fi, i ∈ I be a family of flats of A such that x0 lies in the relative
interior of Fi for all i ∈ I.

Then there exists a flat F containing Fi for all i ∈ I such that x is an
interior point of F .

This lemma enables us to speak of the largest flat of α containing a
cohomology class c in its relative interior. We denote it by Fc.

Lemma 2.2. Let

• E be a finite dimensional Banach space
• A : E −→ R be a convex and superlinear map
• B : E∗ −→ R be the Fenchel dual of A.

Take x in E and y ∈ E∗ in ∂A(x). Then any flat of A containing x in its
interior is contained in ∂B(y). In particular, if x lies in the relative interior
of ∂B(y), the largest flat of A containing x in its interior is ∂B(y).

For our purposes, this means that if c is a cohomology class which lies
in the relative interior of ∂β(h), for some homology class h, then Fc, the
largest flat of α containing c in its relative interior, is ∂β(h).

2.2. Aubry sets. Define, for all n ∈ N,

hn : (M × T)× (M × T) −→ R

((x, t), (y, s)) 7−→ min
∫ s+n

t
L(γ, γ̇, t)dt

where the minimum is taken over all absolutely continuous curves
γ : [t, s+ n] −→ M such that γ(t) = x and γ(s + n) = y. Note that this
is a slight abuse of notation, since we denote by the same t an element of
T = R/Z or the corresponding point in [0, 1[. The Peierls barrier is then
defined as

h : (M × T)× (M × T) −→ R

((x, t), (y, s)) 7−→ lim infn→∞ hn ((x, t), (y, s)) .
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The Aubry set is

Ã(L) := {(x, t) ∈ M × T : h ((x, t), (x, t)) = 0} .

The image of the Aubry set under the canonical projection (π, id) : TM×
T −→ M×T, where id is the identity map from T to itself, is called projected
Aubry set and denoted A(L). For the sake of brevity, we may sometimes
say Aubry set rather than projected Aubry set.

2.2.1. Quotient Aubry sets. Consider the equivalence relation on A0 defined
by (x, t) ≈ (y, s) if and only if h((x, t), (y, s)) + h((y, s), (x, t)) = 0. The
classes are called static classes.The quotient A0/ ≈ is a metric space with
distance

d((x, t), (y, s)) = h((x, t), (y, s)) + h((y, s), (x, t)),

where (x, t) is the equivalence class of (x, t). It is called quotient Aubry

set and denoted A0 after [Mr02]. The distance d((x, t), (y, s)) is called the
Mather distance.

The property of the quotient Aubry set that we use the most is the fol-
lowing upper semi-continuity property : when the quotient Aubry set of L
has 1-dimensional Hausdorff measure zero, by Corollary 5 of [Be10], for any
neighborhood V of A(L) in TM , there exists a neighborhood U of L in the
C2 compact-open topology such that for any L′ in U , we have A(L′) ⊂ V .

The quotient Aubry set of L having 1-dimensional Hausdorff measure zero
is not a rare phenomenon : by [BC08], given a Tonelli Lagrangian L on a
closed manifold M , there exists a residual subset O(L) of C∞(M), such that
for every f ∈ O(L), for every c ∈ H1(M,R), the quotient Aubry set of (L, c)
is a finite set. Also, by [FFR09], for any autonomous Tonelli Lagrangian
L on a closed manifold of dimension two, the quotient Aubry set of L has
1-dimensional Hausdorff measure zero.

2.3. Aubry sets and faces of α. As in the case of Mather sets, if ω
is a closed one-form, L − ω has an Aubry set, which depends only on the
cohomology class c of ω. We denote itA(L, c) or justA(c) when no confusion
is possible. For the convenience of the reader we recall Proposition 6 of
[Mt03] ([Be02] for the time-periodic case) :

Proposition 2.3. Let M be a closed manifold and let L : TM × T −→ R

be a Tonelli Lagrangian. If a cohomology class c1 belongs to a flat Fc of αL

containing c in its interior, then Ã(c) ⊂ Ã(c1). In particular, if c1 lies in

the interior of Fc, then Ã(c) = Ã(c1). Conversely, if two cohomology classes

c and c1 are such that Ã(c)∩Ã(c1) 6= ∅, then αL has a flat containing c and
c1.

So for any flat F of α and any c1, c2 in the relative interior of F , the Aubry
sets Ã(c1) and Ã(c2) coincide. We denote by Ã(F ) the common Aubry set
to all the cohomologies in the interior of F . Recall that for any homology
class h, ∂β(h) is a flat of α. For brevity we shall denote by Ã(h) the Aubry

set Ã(∂β(h)), or Ã(L, h) when we need to emphasize the dependance on the
Lagrangian.
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2.3.1. Now we look at the interplay between the dimension of Fc, and the
size of the Aubry set of c.

We call Ṽc the vector space generated by the pairs (c′ − c, α(c′) − α(c))

where c′ ∈ Fc. We call Vc the canonical projection of Ṽc to H1(M,R). So, by
Lemma 2.2, when c lies in the relative interior of ∂β(h) for some homology

class h, we have Ṽc = Ṽh, with Ṽh as in Definition 1.4.

Definition 2.4. Let Ẽc be the set of (c′, τ) ∈ H1(M ×T,R) = H1(M,R)×
H1(T,R) such that there exists a smooth closed one-form ω on M × T with

[ω] = (c′, τ) and supp(ω) ∩ Ã(L, c) = ∅. Let Ec be the canonical projection

of Ẽc to H1(M,R).

Note that if c lies in the relative interior of ∂β(h) for some homology class

h, we have Ẽc = Ẽh, with Ẽh as defined in subsection 1.5.
The following theorem is proved in [Mt07](see [Mt03] for the autonomous

case).

Theorem 2.5. Let L be a Tonelli Lagrangian on a closed manifold M , and
let c be a cohomology class in H1(M,R). Then we have Ec ⊂ Vc.

Therefore, for every h ∈ H1(M,R), we have Eh ⊂ Vh, because every Eh

(resp. Vh) is an Ec (resp. Vc) for some c ∈ H1(M,R).

Since the Differentiability Problem requires the integrality of Ṽh, rather
than Vh, we first extend Theorem 2.5 to Ẽc and Ṽc. However we have to be
careful because of the sign of α(c) in the respective definitions of Ẽc and Ṽc.
Define a map

flip: H1(M,R)× R −→ H1(M,R) ×R

(c, τ) 7−→ (c,−τ).

Lemma 2.6. Let L be a time-periodic Lagrangian on a closed manifold M ,
and let c be a cohomology class in H1(M,R). Then

Ẽc ⊂ flip
(

Ṽc

)

,

and Ec = Vc if and only if Ẽc = flip
(

Ṽc

)

.

Proof. First we observe that Ṽc is the graph, over Vc, of the map c′ 7→
α(c′)− α(c). Now recall Lemma 15 of [Mt07]:

Lemma 2.7. If ω is a closed one form on M × T, with [ω] = (c, τ) ∈
H1(M,R)×H1(T,R), and µ is an (L, c)-minimizing measure, then

∫

(L− ω)dµ = −α(c)− τ.

Consequently, if (c′, τ) ∈ Ẽc, and ω is a smooth 1-form on M × T with

[ω] = (c′, τ) and supp(ω) ∩ Ã(L, c) = ∅, we have, for any (L, c)-minimizing
measure µ,

−α(c′)− τ =

∫

(L− ω)dµ =

∫

Ldµ = −α(c)

so τ = α(c) − α(c′). Therefore Ẽc is the graph, over Ec, of the map c′ 7→
α(c) − α(c′). Thus
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• Ec ⊂ Vc entails Ẽc ⊂ flip
(

Ṽc

)

, and since the former is always true,

so is the latter. This proves the first statement of the lemma.

• Ec = Vc entails Ẽc = flip
(

Ṽc

)

, which proves the first implication of

the second statement. The converse implication is obvious.

�

Corollary 2.8. Let L be a time-periodic Lagrangian on a closed manifold
M , and let c be a cohomology class in H1(M,R). Then Ec = Vc entails that

Ṽc is an integer subspace of H1(M,R)× R.

Proof. By Lemma 2.6, Ec = Vc yields Ẽc = flip
(

Ṽc

)

, and by Corollary

A.2, Ẽc is an integer subspace of H1(M,R) × R. Now the map flip leaves
the integer lattice invariant, so it takes an integer subspace to an integer
subspace.

�

In [Mt09] we prove the following proposition:

Proposition 2.9. Let L be a Tonelli Lagrangian on a closed manifold M
with first Betti number b. Assume that for every cohomology class c, Ṽc is
an integer subspace of H1(M × T1,R). Let h be a k-irrational homology
class. Then β is differentiable at h in at least k directions.

This implies that if Ṽc is an integer subspace of H1(M × T1,R) for every
c ∈ H1(M,R), then we have an affirmative answer to the Differentiability
Problem. However, in the proof of Proposition 2.9, we only use cohomology
classes which lie in the relative interior of ∂β(h). So what we actually prove
is

Proposition 2.10. Let L be a Tonelli Lagrangian on a closed manifold M
with first Betti number b. Assume that for every homology class h, Ṽh is an
integer subspace of H1(M × T1,R). Let h be a k-irrational homology class.
Then β is differentiable at h in at least k directions.

Proposition 2.10 and Corollary 2.8 combine to prove the following corol-
lary, which explains why the hypothesis Eh = Vh for any homology class h
in our main theorem contains an affirmative answer to the Differentiability
Problem :

Corollary 2.11. Let M be a closed manifold and let L : TM×T be a Tonelli
Lagrangian on M . Let h ∈ H1(M,R) be a k-irrational homology class such
that Eh = Vh. Then β is differentiable at h in at least k directions.

2.4. One last lemma before we go. Let us choose, for every c ∈ H1(M,R),
a closed one-form ω(c) on M × T, such that [ω] = (c, α(c)), in such a way
that the map c 7→ ω(c) is linear (hence continuous since b1(M) is finite).

Recall that Fc is the maximal face of the epigraph of α that contains
(c, α(c)) in its relative interior. This definition makes sense by Lemma 2.1.
By Proposition 2.3 we also have

Fc(L) := {
(

c′, α(c′)
)

: A(L, c) ⊂ A(L, c′)}.

Lemma 2.12. Let
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• M be a closed manifold
• L be a Tonelli Lagrangian on TM × T

• c be a cohomology class in H1(M,R).

Then

F0(L− ω(c)) = Fc(L)− (c, 0).

Proof. First observe that for any cohomology class c′,

αL−ω(c)(c
′) = − inf

µ

∫

(

L− ω(c) − ω(c′)
)

dµ

= − inf
µ

∫

(

L− ω(c+ c′)
)

dµ

= αL(c+ c′).

Now, for any cohomology class c′,

(c′, αL(c
′)) ∈ Fc(L) ⇔

A(L, c) ⊂ A(L, c′) ⇔

A(L− ω(c)) ⊂ A(L− ω(c′)) ⇔

A(L− ω(c)) ⊂ A(L− ω(c)− ω(c′ − c)) ⇔

(c′ − c, αL−ω(c)(c
′ − c)) ∈ F0(L− ω(c)) ⇔

(c′ − c, αL(c
′)) ∈ F0(L− ω(c)).

�

3. Lower semi-continuity results

When proving our main theorem we shall have to deal with the following
situation : we have a sequence of homology classes hn that converges to
some h. We know that the Aubry set of hn has some nice property P . So
for any cn in the relative interior of ∂β(hn), the Aubry set of cn has property
P . We would like to deduce that any c ∈ ∂β(h) lies in the closure of the set
of cohomology classes whose Aubry sets have property P . For this we need
to show that any c ∈ ∂β(h) is a limit point of a sequence cn in in the relative
interior of ∂β(hn). This is false in general but Lemma 3.2 below covers our
needs. This is the reason why we include this rather technical section.

3.1. Lower semi-continuity of Fc. The meaning of the next lemma is,
roughly speaking, that under appropriate non-degenaracy hypothesis, the
maximal face of α containing c in its interior is lower semi-continuous as a
function of c.

Lemma 3.1. Let

• M be a closed manifold
• c be a cohomology class in H1(M,R)
• L0 be a Tonelli Lagrangian on M
• Ac be the Aubry set of (L0, c)
• α be the α-function of L0

• F1 be a compact, convex subset of the relative interior of Fc(L0)
containing (c, α(c)) in its relative interior.
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Assume that Ec(L0) = Vc(L0), and, for every cohomology class c′ in the
relative interior of Fc(L0), the quotient Aubry set of (L0, c

′) has Hausdorff
one-dimensional measure zero.

Then there exists a neighborhood U of L0 in the C2 compact-open topology,
such that for all L ∈ U , denoting by αL the α-function of L, for all c′ such
that (c′, α(c′)) ∈ F1, we have (c′, α(c′)− α(c) + αL(c)) ∈ Fc(L).

Proof. Replacing L0 with L0 − ω, where ω is any closed one-form with co-
homology c, we assume that c = 0. For the sake of brevity we denote
F0 := F0(L0). Since F1 is contained in the relative interior of F0, by Propo-
sition 2.3, for any (c, α(c)) ∈ F1, A(L0, c) = A(L0). Since E0(L) = V0(L),
there exists a neighborhood U ofA0 inM×T such that for any (c, α(c)) ∈ F0,
there exists a closed one-form ω on M × T, supported outside of U , such
that [ω] = (c, α(c)).

We have made the hypothesis that for any cohomology class c in the
relative interior of F0(L0), the one-dimensional Hausdorff measure of the
quotient Aubry set of L − ω(c) is zero. So, by [Be10], the Aubry set is
semi-continuous, as a function of the Lagrangian, at L0 − ω(c) for every c
in the relative interior of F0, where ω(c) is defined in Subsection 2.4. Thus,
for every c such that (c, α(c)) lies in the relative interior of F0, there exists
a neighborhood U1(c) of L0 in the C2 compact-open topology, such that for
all L in U1(c), we have A(L, c) ⊂ U .

Now for any (c, α(c)) in F1, there exists a neighborhood V (c) of c in F0,
and a neighborhood U(c) of L0 in the C2 compact-open topology, such that
L − ω(c′) + ω(c) lies in U1(c) for any c′ in V (c) and any L in U(c). This
is where we use the fact that F1 is contained in the relative interior of F0.
Observe that for any L, c, c′,

A(L− ω(c′) + ω(c), c) = A(L, c′),

so for all (c, α(c)) ∈ F1,

(2) ∀c′ ∈ V (c), ∀L ∈ U(c), A(L− ω(c′) + ω(c), c) = A(L, c′) ⊂ U.

Cover the compact set of c’s such that (c, α(c)) ∈ F1 by finitely many
V (c)’s, say V (c1), . . . V (cn). Then

U :=

n
⋂

i=1

U(ci)

is a neighborhood of L0 in the C2 compact-open topology. Take any (c, α(c)) ∈
F1. Let i be such that c ∈ V (ci). Then for any L ∈ U , we have L ∈ U(ci),
so by Equation (2) we have A(L, c) ⊂ U . Recall that E0(L0) is generated
by 1-forms supported outside of U . Thus for any c such that (c, α(c)) ∈ F1,
for all L ∈ U ,

E0(L0) ⊂ Ec(L) ⊂ Vc(L).

Recall that Vc(L) is the underlying vector space of the affine space generated
by Fc(L), so for any L ∈ U , for any c such that (c, α(c)) ∈ F1, the graph of
αL contains an open subset of (c, αL(c)) + E0.

Now let us prove that for any c such that (c, α(c)) ∈ F1, we have αL(c) =
α(c) + αL(0) − α(0). Pick any c such that (c, α(c)) ∈ F1, and consider the
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map
[0, 1] −→ R

t 7−→ αL(tc).

This map has the same derivative as the map t 7−→ α(tc) because for any
t ∈ [0, 1], the graph of αL contains an open subset of (tc, αL(tc)) + E0,
while the the graph of α contains an open subset of (tc, α(tc)) + E0. Thus,
for all t ∈ [0, 1], we have αL(tc) = α(tc) + αL(0) − α(0), in particular
αL(c) = α(c) + αL(0) − α(0).

Since this is true for any c such that (c, α(c)) ∈ F1, the graph of αL

contains F1 + (0, αL(0)− α(0)). �

3.2. Lower semi-continuity of ∂β(L, h). The next lemma says that ∂β(L, h)
is lower semi-continuous as a function of L and h, when h is restricted to a
special subspace of H1(M,R).

Lemma 3.2. Let

• M be a closed manifold
• L be a Tonelli Lagrangian on TM × T

• α denote the α-function of L
• Ln a sequence of Lagrangians that converges to L in the C2 compact-
open topology

• h0 be a homology class in H1(M,R)
• c0 be a cohomology class in the relative interior of ∂β(L, h0)
• H0 := {h ∈ H1(M,R) : α(c)− α(c′) = 〈c− c′, h〉 ∀c, c′ ∈ ∂β(L, h0)}
• hn, n ∈ N be a sequence in H0 that converges to h0
• cn be an element of ∂β(Ln, hn) for each n ∈ N, such that the sequence
cn converges to some c ∈ ∂β(L, h0).

Assume that Eh0
= Vh0

, and, for every cohomology class c in the rela-
tive interior of ∂β(h0), the quotient Aubry set of (L, c) has Hausdorff one-
dimensional measure zero.

Then cn + c0 − c lies in ∂β(Ln, hn) for n large enough.

Proof. We shall denote αn and βn the α and β functions of Ln, respectively.
First observe that

α(c0) + β(h0) = 〈c0, h0〉

α(c) + β(h0) = 〈c, h0〉

since c, c0 ∈ ∂β(h0), so α(c0)−α(c) = 〈c0− c, h0〉. Besides, cn ∈ ∂β(Ln, hn),
so

αn(cn) + βn(hn) = 〈cn, hn〉

= 〈cn + c0 − c, hn〉+ 〈c− c0, hn〉

≤ αn(cn + c0 − c) + βn(hn) + α(c) − α(c0)

where we have used the Fenchel inequality for cn + c0 − c and hn, and the
fact that hn ∈ H0. Therefore

(3) αn(cn) + α(c0)− α(c) ≤ αn(cn + c0 − c).

We shall now prove, for n large enough, the converse inequality

(4) αn(cn) + α(c0)− α(c) ≥ αn(cn + c0 − c).
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It will follow that

αn(cn + c0 − c) + βn(hn) = αn(cn) + α(c0)− α(c) + βn(hn)

= 〈cn, hn〉+ 〈c− c0, hn〉

= 〈cn + c0 − c, hn〉

using the Fenchel equality for cn and hn, and the fact that hn ∈ H0. There-
fore cn + c0 − c ∈ ∂β(Ln, hn), which proves the lemma.

Now let us prove Equation (4). Since c0 lies in the relative interior of
∂β(h0), by Lemma 2.2,

Fc0(L) = {(c, αL(c)) : c ∈ ∂β(h0)} .

Since c lies in ∂β(h0) and c0 lies in the relative interior of ∂β(h0), there
exists a positive ǫ such that

{(c0 + t(c− c0), α(c0) + t(α(c) − α(c0))) : t ∈ [−2ǫ, 1]} ⊂ Fc0(L).

Therefore

F1 := {(c0, α(c0)) + t (c− c0, α(c) − α(c0)) : t ∈

[

−ǫ,
1

2

]

}

is contained in the relative interior of Fc0(L). So by Lemma 3.1, there exists
N ∈ N such that for all n ≥ N ,

(5) F1 + (0, αLn−ω(cn)+ω(c)(c0)− α(c0)) ⊂ Fc0(Ln − ω(cn) + ω(c))

where ω(cn), ω(c) are defined as in 2.4. Thus, taking t = 1/2 and t = 0, we
have, ∀n ≥ N ,

αLn−ω(cn)+ω(c)(
c0 + c

2
)− αLn−ω(cn)+ω(c)(c0) = α(

c0 + c

2
)− α(c0)

=
α(c) − α(c0)

2

and, recalling that αLn−ω(cn)+ω(c)(.) = αn(.+ cn − c),

(6) ∀n ≥ N, αn(cn +
c0 − c

2
)− αn(cn + c0 − c) =

1

2
(α(c)− α(c0)) .

Combining Equation (5) and the fact that

(c0, α(c0)) ,

(

c0 + c

2
,
α(c0) + α(c)

2

)

∈ F1,

we get that

(c0, α(c0)) + (0, αLn−ω(cn)+ω(c)(c0)− α(c0)) =
(

c0, αLn−ω(cn)+ω(c)(c0)
)

= (c0, αn(c0 + cn − c))

and
(

c0 + c

2
,
α(c0) + α(c)

2

)

+ (0, αLn−ω(cn)+ω(c)(c0)− α(c0))

=

(

c0 + c

2
, αLn−ω(cn)+ω(c)(c0) +

α(c) − α(c0)

2

)

=

(

c0 + c

2
, αn(c0 + cn − c) +

α(c) − α(c0)

2

)
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both lie in Fc0(Ln − ω(cn) + ω(c)). Recall that by Lemma 2.12

Fcn+c0−c(Ln)− (cn − c, 0) = Fc0 (Ln − ω(cn) + ω(c)) .

Therefore (c0 + cn − c, αn(c0 + cn − c)) and
(

cn +
c0 − c

2
, αn(c0 + cn − c) +

α(c) − α(c0)

2

)

both lie in Fcn+c0−c(Ln).
Now let us take some h′n in ∂α(Ln, cn + c0 − c). First let us observe that

for any c′ such that (c′, αn(c
′)) ∈ Fcn+c0−c(Ln), we have c′ ∈ ∂β(Ln, h

′
n).

Indeed the projection to H1(M,R) of Fcn+c0−c(Ln) is a flat of α containing
cn + c0 − c in its relative interior, and h′n lies in ∂α(Ln, cn + c0 − c). Then,
applying Lemma 2.2, with x = cn + c0 − c and y = h′n, we get that the
projection to H1(M,R) of Fcn+c0−c(Ln) is contained in ∂β(Ln, h

′
n), which

proves our claim.
Hence both cn + c0 − c and cn + 2−1(c0 − c) lie in ∂β(Ln, h

′
n), that is,

αn(cn + c0 − c) + βn(h
′
n) = 〈cn + c0 − c, h′n〉

αn

(

cn +
c0 − c

2

)

+ βn(h
′
n) = 〈cn +

c0 − c

2
, h′n〉

whence

〈
c0 − c

2
, h′n〉 = αn(cn + c0 − c)− αn

(

cn +
c0 − c

2

)

and, using Equation (6), ∀n ≥ N, 〈c0 − c, h′n〉 = α(c0) − α(c) (that is,
h′n ∈ H0). Therefore

αn(cn) + βn(h
′
n) ≥ 〈cn, h

′
n〉

= 〈cn + c0 − c, h′n〉+ 〈c− c0, h
′
n〉

= αn(cn + c0 − c) + βn(h
′
n) + α(c) − α(c0)

which proves Equation 4, and the lemma. �

4. Density of Legendre transforms of rational homologies

Theorem 1.5 is an immediate corollary of the following

Theorem 4.1. Let

• M be a closed manifold
• L be a Tonelli Lagrangian on TM × T

• U be an open set of H1(M,R), such that for all h in the Legendre
transform V := ∂α(U) of U , Eh = Vh and the quotient Aubry set
Ah has Hausdorff one-dimensional measure zero.

Then the Legendre transform V = ∂α(U) contains a rational homology class.

Proof. Recall that V , the Legendre transform of U , is the set of homology
classes h such that for some c ∈ U , < c, h >= α(c) + β(h). In Appendix
A.1 we define a rational affine subspace subspace of H1(M,R) as a subset
of H1(M,R) defined by affine equations with integer coefficients. We shall
prove by induction on k = 0, 1, . . . b1(M)− 1 the following alternative :

• either V contains an open subset of a rational affine subspace Hk of
H1(M,R), of codimension k
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• or there exists an open subset Uk of U , and integer one-forms ω1, . . . ωk+1

on M × T, whose cohomology classes are linearly independant in
H1(M × T,R), and such that

∀c ∈ Uk, ∀i = 1, . . . k + 1, Ac ∩ suppωi = ∅.

In the first case, by Lemma A.3, V contains a rational homology class, so we
are done. Assume we are in the second case for k = b1(M) − 1. Set [ωi] =
(ci, τi) ∈ H1(M,R)×H1(T,R) for each i = 0, . . . b1(M)−1. Pick c ∈ Uk and
an (L, c)-minimizing measure µ. We have

∫

ωidµ = 0 because suppµ ⊂ A(c)
and (suppωi) ∩ A(c) = ∅. On the other hand

∫

ωidµ = 〈ci, h〉 + τi. Now
τi ∈ Z because ωi is an integer one-form, so 〈ci, h〉 ∈ Z for i = 1, . . . b1(M).

Note that 〈ci, h〉, 0 = 1, . . . b1(M)−1, are the coordinates of h in the basis
of H1(M,R) dual to the basis ci, i = 0, . . . b1(M) − 1 of H1(M,R). This
basis consists of integer cohomology classes, so its dual consists of rational
homology classes. This proves that h is rational, and the proposition.

Let us start the induction with k = 0.
First case. Assume that for all h in V , dim ∂β(h) = 0, that is, ∂β(h) is

a point. Then let us show that V is open in H1(M,R). Take

• h ∈ V
• a sequence hn in H1(M,R) such that hn converges to h
• a sequence cn in H1(M,R) such that < cn, hn >= α(cn) + β(hn) for
all n ∈ N.

Since α is superlinear, the sequence cn remains within some compact subset
of H1(M,R), hence we may assume that cn converges to some c. Then by
continuity < c, h >= α(c)+β(h) so c ∈ ∂β(h). Since we assumed that ∂β(h)
is a point, we have ∂β(h) = {c}. Now recall that h ∈ V , so c ∈ U . Hence
∃n0 ∈ N, ∀n ≥ n0, cn ∈ U . Therefore ∀n ≥ n0, hn ∈ V , which proves that
V is open in H1(M,R), hence it contains a rational homology class.

Second case. Assume that for some h in V , dim ∂β(h) ≥ 1. Since
h ∈ V , we have ∂β(h) ∩ U 6= ∅, and since U is open, U must then meet
the relative interior of ∂β(h). Take c ∈ U in the relative interior of ∂β(h).
Then the Aubry set, (resp. quotient Aubry set), of c, are the Aubry set
(resp. quotient Aubry set) of h. In particular the quotient Aubry set Ac has
Hausdorff one-dimensional measure zero.

Furthermore, Fc, the largest face of α containing c in its relative interior,
is ∂β(h) by Lemma 2.2. Thus Vc = Vect∂β(h), which yields Ec = Vect∂β(h)
by our assumption on U . So the dimension of Ec is at least one. Moreover
Ec is an integer subspace of H1(M,R) by Lemma A.2. So we may find an
integer one-form ω1 on M × T, such that [ω1] ∈ Ec and the support of ω1 is
disjoint from the Aubry set of c.

Moreover, by the upper semi-continuity of the Aubry set, there exists a
neighborhood U1 of c in U , such that

∀c′ ∈ U1, A(c′) ∩ suppω1 = ∅.

This finishes the first induction step.
Assume now we have carried out the induction process until the k-th step

for some 1 ≤ k ≤ b1(M) − 2. If we are in the first case of the k-th step,
there is nothing left to do, so assume we are in the second case.



16 DANIEL MASSART

Set [ωi] = (ci, τi) ∈ H1(M,R) × H1(T,R) for each i = 0, . . . k. Let
Hk be the rational affine subspace of H1(M,R) defined by the equations
〈ci, .〉 = −τi for i = 1, . . . k + 1. Denote by Vk the Legendre transform of
Uk. Then any h ∈ Vk is the homology class of a c-minimizing measure µ for
some c ∈ Uk. The support of µ does not meet suppωi so 〈ci, [µ]〉 = −τi for
i = 1, . . . k + 1. Moreover,

∀h ∈ Vk, Vect(c1, . . . ck+1) ⊂ Ec ⊂ Vc ⊂ Vect∂β(h),

where the last inclusion holds because c ∈ ∂β(h), whence Fc ⊂ ∂β(h) by
Lemma 2.2. Thus the dimension of ∂β(h) is ≥ k + 1.

First case. Assume that for all h ∈ Vk, dim∂β(h) = k+1, that is, for all
h ∈ Vk, Vect(c1, . . . ck+1) = Vect∂β(h). Let us show, then, that Vk is open
in Hk. Take

• h0 ∈ Vk

• c0 ∈ Uk such that c0 lies in the relative interior of ∂β(h0)
• a sequence hn in Hk such that hn converges to h0
• a sequence cn such that cn ∈ ∂β(hn) for all n ∈ N

Taking a subsequence if we have to, we may assume the sequence cn con-
verges to some c in ∂β(h0). We want to apply Lemma 3.2 to hn so we have
to check that for every c, c′ in ∂β(h0), we have

(7) α(c)− α(c′) = 〈c− c′, hn〉.

Take c, c′ in ∂β(h0), so we have α(c)−α(c′) = 〈c−c′, h0〉. Since Vect(c1, . . . ck+1) =

Vect∂β(h0), there exist real numbers λ1, . . . λk+1 such that c−c′ =
∑k+1

i=1 λici,

so 〈c − c′, h0〉 = −
∑k+1

i=1 λiτi. Now since hn ∈ Hk, we have, for all i =

1, . . . , k + 1, 〈ci, hn〉 = −τi, so 〈c − c′, hn〉 = −
∑k+1

i=1 λiτi = α(c) − α(c′),
which proves Equation (7).

Then by Lemma 3.2 there exists N ∈ N such that ∀n ≥ N , cn + c0 − c ∈
∂β(hn). Now cn+c0−c converges to c0 so for n large enough, cn+c0−c ∈ Uk.
Then hn ∈ Vk, which proves that Vk is open in Hk.

Second case. Assume that for some h ∈ Vk, dim∂β(h) > k + 1. Take c
in the relative interior of ∂β(h). We have Ec = Vect∂β(h) as in the second
case of the first step so the dimension of Ec is at least k + 2. Since Ec is
an integer subspace of H1(M,R), we may find linearly independant integer
one-forms ω1, . . . ωk+2 such that

∀i = 1, . . . k + 2, A(c) ∩ suppωi = ∅.

Moreover, by semi-continuity of the Aubry set, there exists a neighborhood
Uk+1 of c in Uk, such that

∀c′ ∈ Uk+1, ∀i = 1, . . . k + 2, A(c′) ∩ suppωi = ∅.

This finishes the (k+1)-th induction step, and the proof of the theorem. �

Appendix A. Integrality of E0

The following lemma is not directly useful for the proof of Theorem 1.5,
only Lemmata A.2 and A.3 are. However we believe it might be useful in
future work on the subject, so we beg the reader to bear with us for a while.

Lemma A.1. Let
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• M be a closed manifold, equipped with a Riemann metric
• b1(M) be the first Betti number of M
• F be a closed subset of M
• Fǫ be the open ǫ-neighborhood of F in M , for any positive ǫ
• Eǫ be the set of cohomology classes of closed 1-forms on M supported
outside Fǫ

• E0 be the set of cohomology classes of closed 1-forms on M supported
outside F

• Hǫ be the subset of H1(M,R) that consists of the homology classes
of cycles contained in Fǫ

• E⊥
0 be the set of homology classes h in H1(M,R) such that 〈c, h〉 = 0

for all c in E0.

Then there exists ǫ0 > 0 such that for any 0 < ǫ ≤ ǫ0, any element of
E⊥

0 is represented by a cycle contained in Fǫ, with at most b1(M) connected
components.

Proof. Observe that

∀ 0 < ǫ′ ≤ ǫ, Eǫ ⊂ Eǫ′ and Hǫ′ ⊂ Hǫ.

Also, since Eǫ (resp. Hǫ) is a vector subspace ofH
1(M,R) (resp. H1(M,R)),

which is finite dimensional since M is compact, there exists ǫ0 > 0 such that

∀ 0 < ǫ ≤ ǫ0, Eǫ = Eǫ0 and Hǫ = Hǫ0.

Since F is compact, any element of E0 is contained in Eǫ for some ǫ > 0, so
E0 = Eǫ0 .

Denote by H⊥
ǫ the set of cohomology classes c in H1(M,R) such that

〈c, h〉 = 0 for all h in Hǫ.
First let us show that H⊥

ǫ = E0 for any 0 < ǫ ≤ ǫ0. Take

• 0 < ǫ′ < ǫ ≤ ǫ0
• an element c of H⊥

ǫ

• a closed 1-form ω on M such that [ω] = c
• a smooth function ϕ on M such that ϕ(x) = 1 for all x in Fǫ′ , and
ϕ(x) = 0 for all x in M \ Fǫ.

Then the integral of ω vanishes on any cycle contained in Fǫ, hence ω is
exact inside Fǫ, that is, there exists a C1 function f : Fǫ −→ R such that
ω = df inside Fǫ.

So the closed 1-form ω − d(ϕf) is cohomologous to ω, and vanishes iden-
tically inside Fǫ′ , so c ∈ Eǫ′ = E0. Therefore H⊥

ǫ ⊂ E0. The converse
inclusion is obvious, so

∀ 0 < ǫ ≤ ǫ0, H⊥
ǫ = E0.

Hence by duality (recall that the dimension of H1(M,R) is finite)

∀ 0 < ǫ ≤ ǫ0, Hǫ = E⊥
0 ,

that is, any element h of H1(M,R) such that 〈c, h〉 = 0, ∀c ∈ E0, is repre-
sented by a cycle contained in Fǫ for any 0 < ǫ ≤ ǫ0.

We still have to prove the statement about the number of connected com-
ponents. Consider the map J : H1(Fǫ,R) −→ Hǫ induced by the inclusion
of Fǫ into M . The map J is surjective by definition of Hǫ. The connected
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cycles contained in Fǫ generate H1(Fǫ,R), hence they generate Hǫ. There-
fore we may find a basis of Hǫ that consists of connected cycles contained
in Fǫ. The cardinal of this basis is at most b1(M) since Hǫ is a vector sub-
space of H1(M,R). Therefore any element of Hǫ is represented by a linear
combination of at most b1(M) connected cycles contained in Fǫ.

�

Lemma A.2. Let

• M be a compact manifold without boundary
• F be a closed subset of M
• E0 be the set of cohomology classes of closed one forms on M sup-
ported outside F .

Then E0 is an integer subspace of H1(M,R).

Proof. Re-using the notation of the previous lemma, we have H⊥
ǫ = E0 for

any 0 < ǫ ≤ ǫ0. Now by the Universal Coefficient Theorem, H1(Fǫ,R)
is generated by integer classes, so Hǫ is an integer subspace of H1(M,R).
Therefore H⊥

ǫ = E0 is also integer. �

A.1. Rational affine subspaces. We say an affine subspace of H1(M,R)
is rational if it is defined by equations of the form 〈ci, h〉 = τi, i = 1, . . . k,
where ci, i = 1, . . . k, are integer cohomology classes, and τi ∈ Z, i = 1, . . . k.
What we need to know about rational affine subspaces is the

Lemma A.3. Let H be a rational affine subspace of H1(M,R).Then H ∩
H1(M,Q) is dense in H.

Proof. Let 〈ci, h〉 = τi, i = 1, . . . k be the equations that define H. Discard-
ing some equations if we have to, we may assume that ci, i = 1, . . . k are
linearly independant. Take integer cohomology classes ck+1, . . . cb such that
c1, . . . cb is a basis of H1(M,R) as a vector space. Then the numbers 〈ci, h〉
are the coordinates of h in the basis of H1(M,R) dual to c1, . . . cb, which
consists of rational homology classes. Then the homology classes h which
satisfy

〈ci, h〉 = τi, i = 1, . . . k

〈ci, h〉 ∈ Q, i = k + 1, . . . b

are rational, and they form a dense subset of H. �
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[Mn97] R. Mañé Lagrangian flows: the dynamics of globally minimizing orbits Bol. Soc.

Brasil. Mat. (N.S.) 28 (1997), no. 2, 141153.
[Mt97] D. Massart Stable norms of surfaces: local structure of the unit ball at rational

directions Geom. Funct. Anal. 7 (1997), 6, 996–1010.
[Mt03] D. Massart On Aubry sets and Mather’s action functional
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