
ar
X

iv
:1

30
4.

12
06

v4
 [

cs
.D

M
]

 4
 N

ov
 2

01
3

Finding primitive elements in finite fields of small

characteristic

Ming-Deh Huang and Anand Kumar Narayanan

Abstract. We describe a deterministic algorithm for finding a generating
element of the multiplicative group of the finite field with pn elements. In
time polynomial in p and n, the algorithm either outputs an element that
is provably a generator or declares that it has failed in finding one. Under
a heuristic assumption, we argue that the algorithm does always succeed in
finding a generator. The algorithm relies on a relation generation technique in
a recent breakthrough by Antoine Joux’s for discrete logarithm computation in
small characteristic finite fields in L(1/4, o(1)) time. For the special case when

the order of p in (Z/nZ)× is small (bounded by (log
p
(n))O(1)), we present a

modified algorithm which is reliant on weaker heuristic assumptions.

1. Introduction

Let p be a prime and n a positive integer. The multiplicative group F
×
pn of

the finite field Fpn is cyclic and has φ(pn − 1) generators (also called primitive

elements), where φ is Euler’s totient function. Since φ(pn − 1) = Ω(pn−1
log(log(pn−1)))

[15], a large fraction of F×
pn are primitive elements. In spite of their abundance,

finding one efficiently remains an important open problem. The difficulty partly
lies in testing if a given element is a generator and all known algorithms for testing
either factor pn − 1 or solve an instance of the discrete logarithm problem in F

×
pn ,

both of which are believed to be difficult.

Even if the question were relaxed and an element of large order is sought, ap-
proaches that work in general for every p and n are rare. Gao [11] presents an
algorithm that produces an element of order exp(Ω(log n)2/ log(log(n))). Gao’s
algorithm is efficient conditioned on a conjecture which bears resemblance to our
heuristic 2.1. Voloch [25] presents an approach suited to small p that finds an ele-
ment of order exp(Ω(

√
n)). Notably, no previous algorithms to compute an element

of order exponential in n were known, even if allowed to make heuristic assumptions.

There are other constructions that provably find an element of large order, but
they only apply to very special (p, n) pairs [27][1][6][7][4][20][21]. For certain
(p, n) pairs, von zur Gathen and Shparlinski [27] introduced the idea of construct-
ing elements of high order using Gauss periods. Extensions and improvements on

2010 Mathematics Subject Classification. 12E20 (primary),11Y16.

1

http://arxiv.org/abs/1304.1206v4

2 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

their results appear in [1][4][20][21]. When n = pc−1
p−1 for some c > 1, Cheng,

Gao and Wan [7] describe a deterministic algorithm that finds an element of order
exp(Ω(

√
pc)) in time polynomial in pc. Voloch [26] and Chang [5] present construc-

tions based on elements appearing as coordinates of points on certain curves.

An alternate relaxation of the question is to find small sets that contain a gen-
erator. Davenport [10] proved that when p is large enough compared to n and
Fpn = Fp[θ], the set Fp + θ contains a generator of F×

pn . Shoup [22] extended this
result to prove the existence of a subset A ⊆ Fpn of size polynomial in p and n
that contains a generator. Further, the set contains elements of degree bounded by
O(logp(n)) when represented as polynomials in θ. Shparlinski in [23] gave a simpler
more efficient construction and in [24] further reduced the size of the subset A. The
question remains on how to identify a generator given a small set that contains one.

In recent breakthroughs, Gologlu, Granger, McGuire, Zumbragel [12] and Joux [16]
independently devised algorithms that assuming certain widely believed heuristics
compute discrete logarithms in small characteristic finite fields faster than pre-
viously known. The authors of [12] demonstrated their algorithm by computing
discrete logarithms in F21971 which at the time of announcement was a record [13].
Joux’s algorithm is the first to compute discrete logarithms in heuristic L(1/4, o(1))
time, where L(ℓ, c) is defined as exp((c + o(1))(log(pn)ℓ)(log log(pn))1−ℓ). All pre-
vious algorithms required L(1/3, o(1)) time and this speed up allowed Joux [17] to
compute discrete logarithms in F24080 . Gologlu, Granger, McGuire and Zumbragel
[14] then extended the record to F26120 .

A remarkable feature shared by the algorithms is that they both consider a small
set as the factor base, one that is of size polynomial in the extension degree. Fur-
ther, if the extensions they consider are obtained by adjoining a root ζ, then the
factor base contains the elements that can be represented as linear polynomials in ζ.

We propose to use the factor base and relation generation technique in the initial
phase of Joux’s paper [16] to efficiently find generators in F

×
pn . Whereas the algo-

rithm for discrete logarithm computation assumes a given generator of the entire
group, our interest is to find such a generator. The relation generation procedure
collects multiplicative relations satisfied by the elements in the factor base and is
guaranteed to collect enough only under a heuristic assumption. Unlike in discrete
logarithm computations, while computing primitive elements it is not straight for-
ward to check if the relations generated suffice and if so to extract from it a primitive
element. To this end, we modify both the factor base and the relation generation
step and describe how to test if the generated relations suffice and if so to obtain
a primitive element. The factor base is chosen such that if the relation generation
step is successful, then the collected relations among the elements of the factor base
determine a group whose largest invariant factor contains a large cyclic subgroup of
F
×
pn . Further, we can test if the relation generation was successful from the invari-

ant decomposition of the the group determined by the relations and if successful
extract a generator of this large cyclic subgroup of Fpn(see section 2.5). Once a
generator for this large subgroup is known, a primitive element can be computed.
For the aforementioned invariant factor to contain a large cyclic subgroup of F×

pn ,

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 3

the factor base does not necessarily have to contain a primitive element. It suf-
fices if the factor base generates the whole multiplicative group, and this is indeed
the case as we observe that a result of F.R.K Chung [9] nicely applies to our situa-
tion when the finite field is considered as an extension over a large enough base field.

Our algorithm, in time polynomial in p and n, either certifiably finds a genera-
tor or indicates that it has failed in doing so. Moreover assuming a slightly weaker
heuristic assumption than what is implicitly assumed in Joux’s method, our al-
gorithm finds a generator in time polynomial in p and n (see Theorem 2.4). In
addition to the heuristic reasoning provided in this paper, the success of Joux’s
method in breaking the record of discrete logarithm computation can be taken as
a strong evidence in support of the heuristic assumption.

It should be noted that our running time has polynomial dependence on p and
not on log p. Thus the algorithm is efficient only in small characteristic.

For instances where p is of small order in (Z/nZ)×, we present a modified al-
gorithm that is simpler to state and reliant on fewer heuristic assumptions.

In a recent further advancement [2], Barbulescu, Gaudry, Joux and Thome have
discovered an algorithm to compute discrete logarithms in F

×
q2n for n ≤ q in qO(logn)

time based on heuristics. Their result combined with Shoup’s [22] proof of the ex-
istence of small sets containing a primitive element implies a heuristic algorithm to

compute primitive elements in Fpn with quasi-polynomial running time (pn)
O(logn)

.
Our algorithm is faster since the running time is polynomial in p and n.

2. Finding Primitive Elements

2.1. Overview of the Algorithm. The algorithm first proceeds by embed-
ding Fpn into an extension Fq2m where q is a power of p such that n ≤ q and m is a

multiple of n such that q/2 < m ≤ q. In particular, we set q := p⌈logp(n)⌉ and m is
chosen as the largest integral multiple of n satisfying q/2 < m ≤ q. We remark that
our choice of embedding field Fq2m is in certain cases larger than the one chosen in
Joux’s algorithm [16].

The field Fq2m is constructed as Fq2 [ζ], where ζ is a root of an irreducible poly-
nomial g(x) ∈ Fq2 [x] of degree m that is of a special form. Following Joux,
we seek polynomials h0, h1 ∈ Fq2 [x] of low degree such that the factorization of
h(x) := h1(x)x

q − h0(x) over Fq2 [x] has an irreducible factor of degree m and pick
g(x) to be one such irreducible factor of degree m. The motivation behind choosing
g in this manner is that the identity h1(ζ)ζ

q − h0(ζ) = 0 would later allow us to
replace ζq with an expression consisting of the low degree polynomials h0(ζ) and
h1(ζ). For technical reasons explained in section 2.5, we deviate from Joux’s algo-
rithm and impose three further restrictions on h(x) (see section 2.2).

Once h0(x), h1(x) and hence g(x) are chosen, we invoke Joux’s relation genera-
tion algorithm which picks a small subset of F×

q2m as the factor base and finds a set

of multiplicative relations satisfied by the elements in the factor base. However, the
success of the relation generation algorithm in finding enough relations is reliant

4 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

on certain heuristic assumptions.

We show in section 2.5 that if sufficiently many relations are generated, then they
yield a primitive element. A theorem of F.R.K Chung assures that the subgroup
generated by the factor base contains a primitive element and is an important in-
gredient in our argument. Further, we devise a sufficient condition on the outcome
of the relation generation step that can be tested and that if found true leads to
efficient computation of a primitive element γ that generates Fq2 [ζ]

×.

As a consequence, δ := γ(q
2m−1)/(pn−1) has order pn − 1 and generates the multi-

plicative group of Fp[δ] ∼= Fpn .

We assume an explicit representation of Fpn (see [18]) as an input. That is, a
representation of Fpn as an Fp vector space with a basis that allows efficient mul-
tiplication. For instance, regarding Fpn as Fp[µ] where µ is a root of a known irre-
ducible degree n polynomial is an explicit representation. Due to Lenstra [18][Thm
1.2], an isomorphism between two explicit representations of a field of size pn can
be computed deterministically in time polynomial in n and log(p). Thus a genera-
tor for any explicit representation of Fpn can be found as the image of δ under an
isomorphism.

The algorithm is deterministic and it always terminates in time polynomial in
n and p. We either successfully find a primitive element or declare failure. The
algorithm can fail for two reasons, either we fail in finding g(x) of the special form
or the relations generated do not suffice. Based on heuristic assumptions, we argue
that neither occurs.

2.2. The Polynomial Search Phase: Let C be a positive integer. We say
that an integer is q2C -smooth if and only if all its prime factors are at most q2C .

We define a polynomial f(x) ∈ Fq2 [x] to be “good” if and only if the following
four conditions are satisfied.

(1) f(x) is square free.
(2) f(x) does not have linear factors.
(3) f(x) has an irreducible factor of degree m.
(4) For every irreducible factor g′(x) of f(x) such that deg(g′(x)) 6= m,

gcd(q2 deg(g′) − 1, q2m − 1) is q2C -smooth.

We set a degree bound D and investigate the existence of h0, h1 ∈ Fq2 [x] each of
degree bounded by D such that h(x) = h1(x)x

q − h0(x) is “good”.

The existence of “good” polynomials of the above form requires that q + D is
at least m+ 2 for otherwise we are left with a linear factor. To this end, if m = q,
we assume D > 1 and if m = q − 1, we assume D > 0.

For m > 2 and r ≥ m, let Nq(r,m) denote the number of polynomials in Fq2 [x]
of degree r ≥ m that satisfy the first three conditions of being “good” and let

Pq(r, n) =
Nq(r,n)

q2r denote the probability that a random polynomial of degree r

satisfies the first three conditions of being “good”. Let s and t be non negative

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 5

integers such that q+D−m = s(m−1)+ t, where t < m−1. For a positive integer
k, let Ik denote the number of monic irreducible polynomials in Fq2 [x] of degree k.

If t 6= 1, then

Nq(q +D) ≥ Im

(

Im−1

s

)

It

since we can chose an irreducible polynomial of degree m, s irreducible polynomials
of degree m− 1 and one irreducible polynomial of degree t and take their product
to get a polynomial of degree q +D. By substituting the lower bound

Ik ≥ qk

k
− q(qk/2 − 1)

(q − 1)k

in the above expression we get

Pq(q +D,m) =
Nq(q +D,m)

q2(q+D)
≥ 1

m(m− 1)sts!

(

1−O
(

1

qt

))

.

Likewise, when t = 1, it follows that s ≥ 1 and we obtain

Nq(q +D,m) ≥ Im

(

Im−1

s− 1

)

Im−2It+1

⇒ Pq(q +D,m) ≥ 1

m(m− 1)s−1(m− 2)(t+ 1)(s− 1)!

(

1−O
(

1

qt+1

))

.

If we were to assume that a random polynomial of the form h1(x)x
q −h0(x), where

h0 and h1 are of degree at most D satisfies the first three conditions of being “good”
with probability Pq(q +D,n), then since s = O(D/m) choosing

D = Θ(logq2(m(m− 1)sts!)) = Θ(1)

is sufficient to ensure the existence of h0 and h1 such that h(x) is square free, has
a degree m factor and no linear factors.

Heuristically it is likely that a large fraction of polynomials that satisfy the first
three constraints also satisfy the fourth constraint on being “good”.

For a polynomial that satisfies the first three conditions, if each of its factors ex-
cluding its degree m factor is either of degree prime to m or of degree bounded by
C, then it is likely to satisfy the fourth condition.

Consider positive integers m′, s′ and t′ such that m′ > m/2, t′ > 1, q +D −m =
s′m′ + t′, gcd(m′,m) = 1 and either gcd(t′,m) = 1 or t < C. For such a choice,

gcd(q2m
′ − 1, q2m− 1) and gcd(q2t

′ − 1, q2m− 1) are both likely to be qO(1)-smooth.
Hence by taking an irreducible polynomial of degree m, s′ irreducible polynomials
of degree m′ and an irreducible polynomial of degree t′, we can construct a “good”
polynomial. From an analysis similar to the above computation of Pq(q +D,m),
we can conclude heuristically that choosing D = Θ(1) and C = Θ(1) are sufficient
to guarantee the existence of the “good” polynomials that we seek.

6 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

Heuristic Assumption 2.1. There exists positive integers D,C such that for
all prime powers q and for all positive integers 2 < m ≤ q, there exists h0, h1 ∈
Fq2 [x] of degree bounded by D such that h1(x)x

q − h0(x) is square free, has an
irreducible factor (call g(x)) of degree m, and for each irreducible factor g′(x) of

h(x)/g(x), deg(g′) > 1 and gcd(q2 deg(g′) − 1, q2m − 1) is q2C -smooth.

Search for h0(x), h1(x) and g(x): Fix constants C,D. Enumerate candidates
for h0, h1 ∈ Fq2 [x] with each of their degrees bounded by D. For each candidate
pair (h0, h1), factor h(x) = h1(x)x

q − h0(x). If h(x) is “good”, output h0, h1 and
the factor of degree m and stop. If no such candidates are found, declare failure.

The search algorithm terminates after considering at most q2(D+1) = qO(1) can-
didate pairs. Factoring each candidate h1(x)x

q − h0(x) takes time polynomial in
the degree q + D and p using Berlekamp’s deterministic polynomial factorization
algorithm[3]. All four conditions of being good can be checked efficiently given the
degrees of the irreducible factors in the factorization of h. Thus, the search for
h0, h1 and hence g of the desired takes at most qO(1) time.

2.3. Small Generating Set. We next choose a small subset S ⊆ Fq2 [ζ] that
generates Fq2 [ζ]

×. F.R.K Chung proved that for all prime powers s, for all positive
integers r such that (r − 1)2 < s, for all µ such that Fsr = Fs[µ], the set Fs + µ
generates F×

sr [9, Thm. 8][28, Ques 1.1]. Since m ≤ q, setting S := Fq2 + ζ ensures
that the subgroup generated by S, 〈S〉 = Fq2 [ζ]

×.

Given that 〈S〉 = F
×
q2m , the next step is to determine the relations satisfied by

the elements in S so that we can determine Fq2 [ζ] as the free abelian group gener-
ated by S modulo the relations.

For a technical reason, S is first extended to the set F := h1(ζ) ∪ {λ} ∪ S, where
〈λ〉 = F

×
q2 . An identity in F

×
q2m of the form

∏

β∈F β
eβ = 1 for integers eβ is called

as a relation and it can be identified with the relation vector (eβ , β ∈ F) indexed
by elements in F .

2.4. Joux’s Relation Generation Algorithm. The relation search step be-
gins with the following identity over Fq2 [x]

∏

α∈Fq

x− α = xq − x.

For (a, b, c, d) ∈ F
4
q2 such that ad− bc 6= 0, the substitution x 7→ aζ+b

cζ+d yields

∏

α∈Fq

(a− αc)ζ + (b − αd)

(cζ + d)q
=

(cζ + d)(aζ + b)q − (aζ + b)(cζ + d)q

(cζ + d)q+1

⇒ (cζ + d)
∏

α∈Fq

((a− αc)ζ + (b− αd)) = (cζ + d)(aζ + b)q − (aζ + b)(cζ + d)q.

Linearity of raising to the qth power implies

(cζ + d)
∏

α∈Fq

((a− αc)ζ + (b − αd)) = (cζ + d)(aqζq + bq)− (aζ + b)(cqζq + dq).

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 7

By substituting ζq = h0(ζ)
h1(ζ)

, the right hand side becomes

(caq − acq)ζh0(ζ) + (daq − bcq)h0(ζ) + (cbq − adq)ζh1(ζ) + (dbq − bdq)h1(ζ)

h1(ζ)
.

Consider the numerator of the above expression as the polynomial

N(x) := (caq−acq)xh0(x)+(daq−bcq)h0(x)+(cbq−adq)xh1(x)+(dbq −bdq)h1(x)
evaluated at ζ. The degree of N(x) is bounded by d+1. If N(x) factors in to linear
factors over Fq2 [x], then we get the following relation in 〈F 〉

(cζ + d)h1(ζ)
∏

α∈Fq

((a− αc)ζ + (b− αd)) = n(ζ).

The above expression can be written as a product of an element µ ∈ F
×
q2 times

h1(ζ) times a fraction of products of monic linear polynomials in ζ over Fq2 being

equal to 1. By expressing the element µ in F
×
q2 as a power of λ by computing a

discrete logarithm over F×
q2 , we indeed get a relation in 〈F 〉.

The reason for choosing to work over Fq2 instead of Fq is that for every choice
of a, b, c, d ∈ Fq, the relation it yields becomes ζq − ζ =

∏

α∈Fq
(ζ − α). Thus, we

have to work over an extension of Fq where the qth power map would be non trivial
and Fq2 is the smallest such extension.

Relation Generation: For every (a, b, c, d) ∈ F
4
q2 such that ad− bc 6= 0, compute

the numerator N(x) and if it factors into linear factors over Fq2 [x], add the relation
as a row to the relation matrix R.

Add the relation corresponding to the identity λq
2−1 = 1 to R.

The relation generation step can be performed in qO(1) time since the number
of choices for (a, b, c, d) is at most qO(1) and factoring the numerator polynomial
using Berlekamp’s deterministic factoring algorithm takes qO(1) time as the numer-
ator polynomial is of constant degree. We have to express the constant F×

q2 factor

in the relation as a power of λ, but that can be accomplished by solving the discrete
logarithm in F

×
q2 exhaustively in O(q2) time.

2.5. Testing. Let R be the N by |F | matrix consisting of the relation vectors
as rows and ΓR the Z-lattice generated by the rows of R. The Smith normal form
of R gives the decomposition of Z|F |/ΓR into its invariant factors

Z
|F |/ΓR = 〈e(1)〉 ⊕ 〈e(2)〉 ⊕ . . .⊕ 〈e(|F |)〉 ∼= Z/d1Z⊕ Z/d2Z⊕ . . .⊕ Z/d|F |Z

where for 1 ≤ i ≤ |F |, e(i) ∈ Z
|F | denotes a relation vector and di the order of e(i)

in Z
|F |/ΓR and for 1 ≤ i < |F |, di | di+1.

For a polynomial f(x) ∈ Fq2 [x], let Ff denote the ring Fq2 [x]/
(

f(x)Fq2 [x]
)

.

Let h =
∏k

i=0 gi(x) be a factorization of h(x) into distinct irreducible polynomials
in Fq2 [x]. Without loss of generality, let g0(x) = g(x).

While our objective in the relation generation step was to collect relations in F
×
g , the

8 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

relations generated are in fact satisfied in F
×
gi for every 0 ≤ i ≤ k. It is to break this

symmetry and focus on F
×
g that we insist that ∀1 ≤ i ≤ k, gcd(q2 deg(gi)−1, q2m−1)

is q2C -smooth.

The fact that the relations generated hold in F
×
gi for every 0 ≤ i ≤ k is also of

concern to Joux’s algorithm for computing discrete logarithms. This was also ob-
served independently by [8].

For a non constant polynomial f(x) ∈ Fq2 [x] dividing h(x), let Γf denote the

relation lattice of the subgroup of F×
f corresponding to the generating set

Ff := {µ} ∪ {h1(x) mod f(x)} ∪ {x+ θ mod f(x), θ ∈ Fq2}.
That is,

Γf =







(zβ)β∈Ff
∈ Z

|F ||
∏

β∈Ff

βzβ = 1







.

The relation lattice generated ΓR is contained in Γh which is in turn contained in
Γg and we have the natural surjection

Z
|F |/ΓR ։ Z

|F |/Γg.

Recall F.R.K Chung’s theorem that for all prime powers s, for all positive integers
r such that (r−1)2 < s, for all µ such that Fsr = Fs[µ], the set Fs+µ generates F×

sr

[9, Thm. 8][28, Ques 1.1]. Since deg(g(x)) ≤ q, F.R.K Chung’s theorem implies
that Z|F |/Γg

∼= F
×
g

Thus, the natural reduction map ϕ : Z|F |/ΓR ։ F
×
g is surjective. For 1 ≤ i < |F |,

let πi denote ϕ(e(i)) =
∏

β∈F β
e(i)β .

If h were to have a linear factor, then the relation generation step will not re-
late that linear factor to the rest of the linear polynomials in the factor base. As a
result, we would have to exclude that linear factor from the factor base and F.R.K
Chung’s theorem would no longer apply. It is to circumvent this that we insisted
that h have no linear factors.

We next prove a lemma which states a condition on Z
|F |/ΓR that guarantees that

our relation generation step has collected enough enough relations to extract an
element of large order in F

×
g . From this large order element we will eventually

compute a primitive element.

Lemma 2.2. If gcd(d|F |−1, q
2m − 1) is q2C-smooth, then there exists a q2C-

smooth number B such that the order of ϕ(e(|F |)) in F
×
g is divisible by q2m−1

B .

Assume gcd(d|F |−1, q
2m − 1) is q2C -smooth. From the Smith normal form, we

have the invariant factor decomposition

Z
|F |/ΓR =

|F |
⊕

j=1

〈e(j)〉

where dj is the order of e(j) in Z
|F |/ΓR.

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 9

Since
∣

∣

∣
ϕ
(

⊕|F |−1
j=1 〈e(j)〉

)∣

∣

∣
=

∏|F |−1
j=1 |ϕ (〈e(j)〉)| divides

∏|F |−1
j=1 dj and dj | dj+1 for

1 ≤ j < |F | − 1, it follows that gcd
(∣

∣

∣
ϕ
(

⊕|F |−1
j=1 〈e(j)〉

)∣

∣

∣
, q2m − 1

)

is q2C -smooth.

Since ϕ(Z|F |/ΓR) = F
×
g and F

×
g is cyclic of order q2m − 1, there exists a q2C -

smooth number B such that the order of ϕ(e(|F |)) in F
×
g is divisible by q2m−1

B . �

We next show if the relation generation is successful in computing the relation
lattice of Γh in its entirety, then the condition stated in lemma 2.2 is satisfied.

Lemma 2.3. If ΓR = Γh, then gcd
(

d|F |−1, q
2m − 1

)

is q2C-smooth.

Let v denote the largest factor of q2m − 1 that is q2C -smooth and let L =
(q2m − 1)/v. Since h is square free,

F
×
h
∼= F

×
g ×

k
∏

i=1

F
×
gi .

Let 〈Fh〉 denote the subgroup of F×
h generated by Fh. We have the inclusion

ψ : 〈Fh〉 →֒ F
×
g ×

k
∏

i=1

F
×
gi

α 7−→ αg

∏

i

αgi

Since the projection from 〈Fh〉 to F
×
g is surjective, there exists a β ∈ 〈Fh〉 whose

projection βg in F
×
g is of order q2m − 1.

The order of β ∈ 〈Fh〉 is divisible by the order of its projection βg ∈ F
×
g . Hence

〈Fh〉 has an element of order q2m − 1 which implies that we have an inclusion

Z/LZ →֒ 〈Fh〉
and hence L divides |〈Fh〉|.

Since 〈Fh〉 →֒ F
×
g ×∏k

i=1 F
×
gi , |〈Fh〉| divides (q2m − 1)

∏k
i=1(q

2 deg(gi) − 1).

Since gcd(q2 deg(gi) − 1, q2m − 1) is q2C -smooth for gi 6= g, it follows that there
exists integers w, y such that w is q2C -smooth, gcd(L, y) = 1 and |〈Fh〉| = Lwy.

For every prime ℓ dividing L, the ℓ-primary component of 〈Fh〉 is cyclic since
Z/LZ →֒ 〈Fh〉 and |〈Fh〉| is L times a factor relatively prime to L. Hence in the
Smith normal form of 〈Fh〉, for every prime ℓ dividing L, the ℓ-primary component
of 〈Fh〉 is contained in the largest invariant factor. In particular, the largest invari-
ant factor has order divisible by L.

Since |〈Fh〉| = Lwy, it follows that the second largest invariant factor of 〈Fh〉
has order dividing wy. Since w is q2C -smooth and gcd(L, y) = 1, gcd(wy, q2m − 1)
is q2C -smooth.

If ΓR = Γh, then Z
|F |/ΓR

∼= 〈Fh〉 and the order d|F |−1 of the second largest

10 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

invariant factor of Z|F |/ΓR divides wy. Thus gcd(d|F |−1, q
2m − 1) is q2C -smooth.

�.

Testing Phase: Compute the Smith normal form of R and if gcd(d|F |−1, q
2m− 1)

is q2C-smooth, output π|F |. Else, declare failure.

The Smith normal form computation can be performed in qO(1) time since R has at
most Θ(q3) rows, at most q2+2 columns and each entry is an integer bounded by q2.

If the testing phase is successful, we can extract a primitive element of F×
g from the

output π|F | of the testing phase as follows. Recall that v is the largest q2C -smooth

factor of q2m − 1. If µ ∈ F
×
g is of order divisible by v, then µπ|F | is a primitive

element in F
×
g .

Shoup [22] proved that there exists a constant C1 such that P := {f(ζ)|f ∈
F
2
q[x], deg(f) ≤ C1 logq(m)} contains a generator of F×

g . In particular, P has an
element of order divisible by v.

Since C is a constant, v can be computed in time polynomial in q. For an ǫ ∈ P ,

we can check if it has order divisible by v by verifying that ǫ(q
2m−1)/v 6= 1. By

exhaustively searching, we can find an element µ ∈ P of order divisible by v in time
polynomial in |P | which is polynomial in q.

2.6. Relation Generation Heuristic. In this subsection, we argue under a
heuristic assumption that the relation generation algorithm does indeed produce
enough relations to successfully extract a primitive element.

We begin by counting the number of relations that we could obtain by count-
ing the possible choices for (a, b, c, d) in the relation generation algorithm.

For an e ∈ F
×
q2 , the substitutions x 7→ aζ+b

cζ+d and x 7→ aeζ+be
ceζ+de are identical and

will lead to the same relation. Thus, the possible choices for a, b, c, d ∈ Fq2 , that
could lead to distinct relations can at best be identified with elements in PGL(2, q2).

Further, the relations corresponding to an element in PGL(2, q2) and its product
with an element in PGL(2, q) are off by the relation corresponding to the identity
ζq − ζ =

∏

α∈Fq
(ζ − α).

Thus the number of possible choices for a, b, c, d can be identified with elements
in the group PGL(2, q2)/PGL(2, q) which has cardinality q(q2 + 1) = Θ(q3).1

The probability that a random polynomial of degree at most D + 1 factors into
linear factors is roughly 1

(D+1)! [19]. If the numerator polynomials N(x) that ap-

pear in the relation generation phase behave as random polynomials of the same
degree with respect to their probability of splitting in to linear polynomials, then
the expected number of trials required to get a relation is (D + 1)!. Since D is a
constant independent of q and n, the expected number of rows of R is a constant

1We would like to thank Antoine Joux for pointing out the need to mod out by PGL(2, q).

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 11

fraction of Θ(q3).

Since the dimension of the lattice |F | is at most q2 + 2 and ΓR is the lattice
generated by Θ(q3) points, it is overwhelmingly likely that ΓR = Γh, which makes
the weaker claim of the heuristic 2.4 below even more plausible.

Heuristic Assumption 2.4. The generated relation lattice ΓR is large enough
to ensure that the greatest common divisor of q2m − 1 and the cardinality of the
second largest invariant factor of Z |F |/ΓR is q2C -smooth.

To summarize, our algorithm either certifiably finds a generator or indicates
that it has failed in doing so. If the heuristics 2.1 and 2.4 are true, then the
algorithm finds a generator in time polynomial in q which is a polynomial in p and
n.

2.7. Reducing the Problem of Finding Primitive Elements to a Con-

jecture. Since the generated relation lattice ΓR depends on the choice of the poly-
nomials h0, h1 and g, heuristic 2.4 implicitly claims that for every choice of h0,
h1 and g, the relation generation step succeeds in determining a primitive element.
This assumption can be weakened significantly by using the following modified test-
ing phase.

Modified Testing: Compute the Smith normal form of R and if gcd(d|F |−1, q
2m−

1) is q2C-smooth, output π|F |. Else, continue with the search for a new choice of
h0 and h1.

The modified testing phase implies the following theorem.

Theorem 2.5. If there exists positive integers D,C such that for all prime pow-
ers q and for all positive integers q/2 < m ≤ q, there exists h0, h1 ∈ Fq2 [x] of degree
bounded by D such that h(x) = h1(x)x

q − h0(x) is square free, has an irreducible
factor (call g(x)) of degree m, and for each irreducible factor g′(x) of h(x)/g(x),

deg(g′) > 1 and gcd(q2 deg(g′)−1, q2m−1) is q2C-smooth and the generated relation
lattice ΓR corresponding to h0, h1 is large enough to ensure that the greatest com-
mon divisor of q2m − 1 and the cardinality of the second largest invariant factor of
Z |F |/ΓR is q2C-smooth, then a generator for Fpn can be found deterministically in
time polynomial in p and n.

2.8. The special case when p is of small order in (Z/nZ)×. For the
special case when ordn(p), the order of p modulo n is (logp n)

O(1), we present a
modification to the algorithm that results in a procedure that has a greater guar-
antee of success while assuming less.

In the initial step, set q := pordn(p) and embed Fpn in to Fq2(q−1) .

We skip the search phase and instead set h1(x) = 1 and h0(x) = λx where
〈λ〉 = Fq2×. Such an λ can be found in O(q) time by exhaustive searching. Since
h(x) = h1(x)x

q − h0(x) = x(xq−1 − λ), where (xq−1 − λ) is irreducible of degree
q − 1, set g(x) = xq−1 − λ.

This choice of h(x) violates the requirements of the search phase of our algorithm

12 MING-DEH HUANG AND ANAND KUMAR NARAYANAN

since it has a linear factor x. The concern is that as a consequence we have to leave
out x mod g(x) from the factor base. However, adding the relation xq−1λ−1 = 1
mod g(x) to our relation generation step allows the inclusion of x mod g(x) in our
factor base F and the correctness of the algorithm is not affected.

Since the degrees of h1 and h0 are at most 1, the numerator N(x) that appears in
the relation search is of degree at most 2.

If the numerators N(x) behave as random polynomials of degree 2 in terms of
factorization, then they factor with probability 1

2 . Thus, we expect to get at least

q(q2+1)/2 relations. In fact, we can prove that we get at least 2q2+2q−1 relations.

Consider the upper triangular subgroup GU of PGL(2, q2)/PGL(2, q), that is, the
subgroup whose elements have a representative of the form

(

a b
0 1

)

where a ∈ F
×
q2 , b ∈ Fq2 . The cardinality of GU is ((q2 − 1)q2)/((q − 1)q) = q2 + q.

For an element in GU corresponding to an a ∈ F
×
q2 and a b ∈ Fq2 , the numera-

tor polynomial n(x) we obtain is the linear polynomial

(aqη − a)x+ (bq − b).

Thus, we are guaranteed at least q2 + q relations.

Likewise, by considering the subgroup GL of PGL(2, q2)/PGL(2, q) consisting of
elements with a lower triangular representative, we get q2 + q − 1 more relations.

Thus far we have made no heuristic assumptions for this special case. The only
assumption we make is that Z

|F |/ΓR is large enough to ensure that the testing
phase is successful. The dimension of the relation lattice Γh is q2 + 1 and we get
at least 2q2 + 2q − 1 distinct relations. If the relations that we obtain are modeled
as being drawn independently at random from Γh, then with overwhelming proba-
bility ΓR = Γh.

As a final remark, instead of restricting the factor base F to monic linear poly-
nomials in δ, we could also include the evaluations of quadratic irreducible polyno-
mials in Fq2 [x] at δ, but only those that appear as factors of the N(x) during the
relation search. Further, the first time a degree two element is encountered, it can
be expressed in terms of a product of linear factors. If a quadratic factor reappears
then it implies a new relation between products of linear factors.

3. Acknowledgements

We would like to thank Antoine Joux and Igor Shparlinski for their comments
and suggestions on an earlier version of this paper.

References

1. O. Ahmadi, I. Shparlinski, J. F. Voloch, “Multiplicative order of Gauss periods”, Intern. J.
Number Theory, 6 (4), 2010, pp.877-882.

FINDING PRIMITIVE ELEMENTS IN FINITE FIELDS OF SMALL CHARACTERISTIC 13

2. R. Barbulescu, P. Gaudry, A. Joux , E. Thom, “A quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic”, http://arxiv.org/abs/1306.4244

3. E. R. Berlekamp, “Factoring Polynomials Over Finite Fields”, Bell System Technical Journal
46 (1967): 18531859.

4. M.-C. Chang, “Order of Gauss periods in large characteristic”, Taiwanese J. Math., 17 (2013),
621–628.

5. M.-C. Chang, “Elements of large order in prime finite fields”, Bull. Aust. Math. Soc., (to
appear).

6. Q. Cheng, “On the construction of finite field elements of large order, Finite Fields and Their
Applications”, Vol 11, Issue 3, Pages 358-366, 2005.

7. Q. Cheng, S. Gao and D. Wan,“ Constructing high order elements through subspace polyno-
mials”, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2012), Pages: 1457-1463

8. Q. Cheng, D. Wan and J. Zhang, “Traps to the BGJT-Algorithm for Discrete Logarithms”
http://arxiv.org/abs/1310.5124

9. F.R.K Chung, “Diameters and Eigenvalues”, J. Amer. Math. Soc. 2 (1989), no. 2, 187196.
10. H. Davenport, “On primitive roots in finite fields”, Quart. J. Math. (Oxford) 8 (1937), 308-312.
11. S. Gao, Elements of provable high orders in finite fields, Proc. Amer. Math. Soc.,

127(6):16151623, 1999.

12. F. Gologlu, R. Granger, G. McGuire and J. Zumbragel, “On the Function Field Sieve and
the Impact of Higher Splitting Probabilities: Application to Discrete Logarithms in F21971”,
Cryptology ePrint Archive: Report 2013/074.

13. F. Gologlu, R. Granger, G. McGuire and J. Zumbragel,“ Discrete Logarithms in GF(21971)”,
NMBRTHRY List, Feb 2013.

14. F. Gologlu, R. Granger, G. McGuire and J. Zumbragel,“ Discrete Logarithms in GF(26120)”,
NMBRTHRY List, Apr 2013.

15. G. H. Hardy and E. M. Wright, “An introduction to the theory of numbers”, 5th ed., Oxford
Univ. Press, 1984.

16. A. Joux, “A new index calculus algorithm with complexity L(1/4+o(1)) in very small char-
acteristic”, Cryptology ePrint Archive: Report 2013/095.

17. A. Joux, “ Discrete Logarithms in GF(24080)”, NMBRTHRY List, March 2013.
18. H.W Lenstra, “Finding isomorphism between finite fields”, Math. Comp., 56 (1991), pp.

329347.
19. D. Panario, X. Gourdon, P. Flajolet, “An Analytic Approach to Smooth Polynomials over

Finite Fields”, ANTS 1998: 226-236
20. R. Popovych, “Elements of high order in finite fields of the form Fq[x]/Φr(x)’”, Finite Fields

Appl., 18 (2012), 700–710.
21. R. Popovych, ‘Elements of high order in finite fields of the form Fq[x]/(xm

−a)’, Finite Fields
Appl., 19 (2013), 86–92.

22. V. Shoup, “Searching for primitive roots in finite fields”, Mathematics of Computation 58:369-
380, 1992

23. I. E. Shparlinski, “On primitive elements in finite fields and on elliptic curves”, Matem.
Sbornik, 181 (1990), 1196–1206 (in Russian).

24. I. E. Shparlinski, “Approximate constructions in finite fields”, Proc. 3rd Conf. on Finite Fields
and Appl., Glasgow, 1995, London Math. Soc., Lect. Note Series, 1996, v.233, 313–332.

25. J. F. Voloch. “On the order of points on curves over finite fields”, Integers, 7, 2004.
26. J. F. Voloch,“Elements of high order on finite fields from elliptic curves”, Bull. Aust. Math.

Soc., 81 (2010), 425–429.
27. J. von zur Gathen, I. Shparlinski, “Gauss periods in Finite Felds”, Proc. 5th Conference of

Finite Fields and their Applications, Augsburg, 1999, Springer-Verlag, Berlin, (2001), 162-177.
28. D. Wan, “Generators and irreducible polynomials over finite fields”, Math. Comp. 66 (219)

(1997) 11951212.

Computer Science Department, University of Southern California

E-mail address: mdhuang@usc.edu

Computer Science Department, University of Southern California

E-mail address: aknaraya@usc.edu

http://arxiv.org/abs/1306.4244
http://arxiv.org/abs/1310.5124

	1. Introduction
	2. Finding Primitive Elements
	3. Acknowledgements
	References

