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We investigate the QCD magnetic susceptibility χq for flavor SU(2) at finite temperature (T )
beyond the chiral limit, using the liquid instanton model, defined in Euclidean space and modified
by the T -dependent caloron solution. The background electromagnetic fields are induced to the
QCD vacuum, employing the Schwinger method. We first compute the scalar (chiral) and tensor
condensates as functions of T as well the current-quark mass m, signaling the correct universal chiral
restoration patterns. It turns out that χq, given by the ratio of the two condensates, is a smoothly
decreasing function of T , showing about 20% reduction of its strength at the chiral transition T ≡ T0,
in comparison to that at T = 0, and decreases almost linearly beyond T0 for m 6= 0. We observe
that the present numerical results are in qualitatively good agreement with other theoretical results,
including the lattice simulations. Finally, we examine the effects of the external magnetic field on
the tensor-polarization VEV, resulting in that it plays the role of the chiral order parameter.
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I. INTRODUCTION

The low-energy quantum chromodynamics (QCD) manifesting nonperturbative natures have been investigated
extensively in many different ways, such as the lattice QCD (LQCD), effective QCD-like models, QCD sum rule
(QCDSR), and so on. To understand the nonperturbative features of QCD, it is necessary to scrutinize the QCD
vacuum structure, which governs the breakdown of relevant symmetries of QCD and the phase transitions of the QCD
matter. Note that, recently, the electromagnetic (EM) properties of the QCD vacuum at finite temperature (T ) and/or
finite quark chemical potential (µq) have attracted much attention from experiments [1] as well as theories [2–4], being
together with the energetic progresses of the heavy-ion collision experiments. Among the relevant physical quantities,
which are sensitive to the U(1) EM interactions, the QCD magnetic susceptibility is one of the important ones, due
to its impact in theories and experiments. The QCD magnetic susceptibility for a quark flavor q, χq is stands for a
response of the scalar (chiral) condensate to the external EM background field, and defined in terms of the vacuum
expectation value (VEV) for the tensor-polarization operator (TP-VEV), 〈q†σµνq〉EM, in Euclidean space [5, 6]:

〈q†σµνq〉EM = eqFµν〈iq†q〉χq, (1)

where eq and Fµν denote the quark electric charge and the EM field strength tensor. The subscript EM in the
left-hand-side of Eq. (1) stands for the existence of the external EM field. Note that TP-VEV is a linear function of
Fµν in the leading order. The magnetic susceptibility is also pertinent to the photon distribution amplitude [7] as
well as the anisotropy in terms of the para- or dia-magnetism [8]. This physical quantity was studied up to now in
QCDSR [9–11], effective quark models [5, 12], holographic QCD (hQCD) [13, 14], operator product expansion with
the pion dominance (OPE+PD) [15], and LQCD [16–18], and so on. Note that, in the previous work, we computed
χq using the liquid instanton model (LIM) [19, 20] at finite density [21], in which we noticed that χq > 0 with
the Euclidean metric, indicating the diamagnetic matter (χq < 0 for the Minkowski metric). Taking the present
heavy-ion collision experiments at low quark density into account, in the present work, we are focusing on the QCD
magnetic susceptibility for the flavor SU(2), SU(2f ), at finite T and µq = 0, using LIM, modified by the T -dependent
caloron solution [22, 23]. We mention that all the calculations are performed in Euclidean space. The relevant
instanton parameters, such as the average (anti)instanton size ρ̄ and inter-(anti)instanton distance R̄ are modified as
functions of temperature, employing the trivial-holonomy (Harrington-Shepard) caloron solution [24–26]. As a result,
these modifications show the partial restorations of the spontaneous breakdown of the chiral symmetry (SBχS) as
T increases. Relating to those model parameters, it is worth mentioning that our model (renormalization) scale is

taken as µ ≈
√

2/ρ̄ ≈ 0.85 GeV at T = 0 [22]. The T -dependent effective quark mass is computed numerically as
an order parameter for SBχS, employing the T -modified effective thermodynamic potential [26]. By doing that, we
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observe correct universal chiral restoration patterns for the zero and finite current-quark masses, i.e. the second-order
and crossover chiral restoration patterns. Being equipped with those ingredients, we present the numerical results
for the chiral condensates 〈iq†q〉, tensor condensate 〈q†Σq〉, their ratio corresponding to the magnetic susceptibility
〈q†Σq〉/〈iq†q〉 ≡ χq, and TP-VEV 〈q†σµνq〉EM. Here, we write the definition of the tensor condensate as follows:

〈q†Σq〉 ≡ 〈q
†σµνq〉EM

eqFµν
= χq〈iq†q〉 for Fµν 6= 0. (2)

For instance, in Ref. [18], the authors defined the tensor condensate as 〈q†Σq〉 ≡ −τq.
From the numerical calculations, it turns out that the chiral condensate exhibits the correct chiral restoration

patterns as expected from those of the effective quark mass as mentioned above. The chiral transition T is given
as T0 = (166, 170) MeV for the zero and finite current-quark masses, i.e. m = 0, and 5 MeV, considering the
SU(2f ) flavor symmetry. Note that the values for the chiral condensates are obtained as 〈iq†q〉 = (258, 260 MeV)3

for m = (0, 5) MeV at T = 0. These values are well compatible with its empirical one (240 ± 10 MeV)3. Using the
same parameter sets, we also compute the tensor condensates, which also manifest the universal chiral restoration
patterns. At zero temperature, we have 〈q†Σq〉 = (52, 49) MeV for m = (0, 5) MeV at T = 0. Interestingly, we
observe bump structures in the tensor condensate curves for m 6= 0 at T = (50 ∼ 60) MeV, due to the nontrivial
interference between the constituent- and current-quark masses. These values are again well-compatible with the
known theoretical estimations [5, 7, 10–12, 12, 18]. When we compare the temperature-dependent behaviors of the
present numerical results with the lattice data [18], extrapolated to the physical u-quark mass, at the renormalization
scale µ = 1 GeV, we observe qualitatively good agreement with them, but sizable deviations also appear in the vicinity
of the chiral transition temperature T0. At the chiral phase transition T , T0 = 170 MeV, the tensor condensate for
m 6= 0 becomes 21 MeV, whereas it is zero for the chiral limit.

It turns out that the magnetic susceptibility decrease steadily with respect to T . We obtain their typical values,
estimated as χq = (3.03, 2.77) GeV−2 for m = (0, 5) MeV at T = 0. Again, these values are well matched with those
from the LQCD and other effective models. Beyond T0 = 170 MeV, the curve for the magnetic susceptibility behave
almost as a linearly decreasing one as T increases. At T0, we observe about 20% decreases in their strengths, in
comparison to those at T = 0. TP-VEV is a linear function of the external magnetic field (eqB) in the leading order.
The slope of the TP-VEV line with respect to eqB decreases as T increases, since the tensor condensate plays the
role for its slope value, signaling the (partial) restoration of SBχS. Thus, TP-VEV can be considered as a chiral order
parameter. Consequently, we observe that it vanishes at T0 = 166 MeV in the chiral limit, whereas remains finite
beyond T0 for m 6= 0, because of the crossover chiral phase transition.

We organize the present work as follows: In Section II, we briefly introduce the liquid instanton model (LIM) and
how to compute the magnetic susceptibility in terms of the field theoretical manner. In Section III, the temperature
modifications of the relevant model parameters are performed using the trivial caloron solution. We also show the
correct universal chiral restoration patterns, computed within the present model. The numerical results for the chiral
and tensor condensates as functions of temperature are presented with relevant discussions in Section IV. In addition,
the magnetic susceptibility is estimated and compared with other theoretical estimations. Final Section is devoted to
summary, conclusion, and future perspectives.

II. EFFECTIVE ACTION VIA THE INSTANTON-VACUUM CONFIGURATION

In this Section, we introduce the liquid-instanton model (LIM) briefly as a theoretical framework to study the
magnetic susceptibility. Details on the present framework can be found in Refs. [19, 26]. The effective action for
SU(2f ) via the instanton vacuum can be written in Euclidean momentum as follows [5, 19]:

Seff [m,Aµ, Tµν ] = −Spc,f,γ ln
[
i /D + im̂+ iM(∂2) + σ · T

]
, (3)

where Spc,f,γ represent the functional trace running over the color (c), flavor (f), and Lorentz index (γ). The U(1)
covariant derivative reads iDµ = i∂µ + eqAµ, in which eq stands for the electric charge of a quark. m̂ stands for the
current-quark mass matrix, diag(mu,md). Throughout this work, we assume the SU(2f ) symmetry for the quark
masses, i.e. mu ≈ md ≈ m = 5 MeV for the cases beyond the chiral limit. The effective quark mass M(∂2) is
generated from the nontrivial interactions between the quarks and (anti)instanton via the quark zero mode [19], and
it reads

M(∂2) = M0F
2(∂2) = M0

[
2

2 + ρ̄2|∂|2

]2

→M(k2) = M0

[
2

2 + ρ̄2k2

]2

≡Mk. (4)
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Here, ρ̄ denotes the average (anti)instanton size ∼ 1/3 fm [19], and M0 indicates the constituent-quark mass at zero
virtuality. In the last step of Eq. (4), we wrote the effective mass in the Euclidean momentum space. We defined the
antisymmetric tensor σµν = i(γµγν − γνγµ)/2 with the external tensor source field Tµν . From the effective action in
Eq. (3), one can write the chiral condensate space by performing the functional derivative of the effective action with
respect to m as follows:

〈iq†q〉 = 4Nc

∫
k

[
M̄2
k

k2 + M̄2
k

− m

k2 +m2

]
, (5)

where we assign as
∫
k
≡
∫

d4k
(2π)4 for convenience. We also have used a simplified notation M̄k = m+Mk. Employing

the phenomenological values for the model parameters 1/ρ̄ ≈ 600 MeV and M0 ≈ 350 MeV, which are chosen to
reproduce the pion weak-decay constant Fπ ≈ 93 MeV, we obtain 〈iq†q〉 ≈ (250 MeV)3 in the chiral limit. Note that
this value is well compatible with its empirical values [27].

Similarly, the matrix element in the left-hand-side of Eq. (1), i.e. TP-VEV can be evaluated by performing the
functional derivative with respect to Tµν in the presence of the EM background field, induced by the Schwinger
method [5, 21, 28]:

〈q†σµνq〉EM︸ ︷︷ ︸
TP-VEV

=
1

Nf

∂Seff [m,Aµ, T
µν ]

∂Tµν

∣∣∣
T=0

. (6)

By expanding Eq. (6) in terms of eq, we obtain the following expression in the leading order ∝ O(eq), according to
enq � 1 for n ≥ 2 [5, 21]:

〈q†σµνq〉EM = 4Nc(eqFµν)

∫
d4k

(2π)4

[
M̄k +Nk

(k2 + M̄2
k )2
− m

(k2 +m2)2

]
≡ eqFµν〈q†Σ q〉. (7)

Here, we assign 〈q†Σ q〉 as a tensor condensate for convenience as mentioned previously. Here, Σ stands for a scalar
operator to satisfy Eq. (7), and its analytic form does not make any impact on the final results of the present work.
It is worth mentioning that the tensor condensate is defined alternatively as 〈q†Σ q〉 ≡ −τq with the Minkowski
metric [18]. The mass-derivative term Nk is defined as

Nk ≡ −k2 ∂Mk

∂k2
=

8M0(ρ̄2k2)

(2 + ρ̄2k2)3
. (8)

Notice that TP-VEV in Eq. (7) is a linear function of the field-strength tensor Fµν in the leading order expansion of
eq. This observation is consistent with other theoretical studies [6]. Details of the derivation of Eqs. (7) and (8) can
be found in our previous work [21] and references therein. Substituting Eqs. (7) and (5) into Eq. (1), we have the
following equation for the QCD magnetic susceptibility as follows:

χq =
〈q†Σ q〉
〈iq†q〉

=

{∫
k

[
M̄k +Nk

(k2 + M̄2
k )2
− m

(k2 +m2
q)

2

]}{∫
k

[
M̄k

k2 + M̄2
k

− m

k2 +m2
q

]}−1

. (9)

III. TEMPERATURE-DEPENDENT EFFECTIVE QUARK MASS FOR FLAVOR SU(2f)

In this Section, we would like to briefly discuss how to compute the effective quark mass M0 in Eq. (4) as a function
of T , and to develop the T -dependences for the model parameters. In Refs. [26], we derived it by using the caloron
distribution with trivial holonomy, i.e. Harrington-Shepard caloron [24, 25]. Firstly, we want to explain briefly how
to modify ρ̄ and R̄ as functions of T , using the caloron solution. Details can be found in Ref. [26]. An instanton
distribution function for arbitrary Nc and Nf can be written with a Gaussian suppression factor as a function of T
and an arbitrary instanton size ρ for pure-glue QCD [25]:

d(ρ, T ) = CNc ΛbRS β̂
Nc︸ ︷︷ ︸

C

ρb−5 exp
[
−(ANcT

2 + β̄γnρ̄2)ρ2
]
. (10)

We note that the CP-invariant vacuum was taken into account in Eq. (10), and we assumed the same analytical
form of the distribution function for both the instanton and anti-instanton. Note that the instanton number density
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(packing fraction) N/V ≡ n ≡ 1/R̄4 and ρ̄ have been taken into account as functions of T implicitly. For simplicity,
we take the numbers of the anti-instanton and instanton are the same, i.e. NI = NĪ = N . We also assigned the
constant factor in the right-hand-side of the above equation as C for simplicity. The abbreviated notations are also
given as:

β̂ = −b ln[ΛRSρcut], β̄ = −b ln[ΛRS〈R〉], CNc =
4.60 e−1.68αRSNc

π2(Nc − 2)!(Nc − 1)!
,

ANc =
1

3

[
11

6
Nc − 1

]
π2, γ =

27

4

[
Nc

N2
c − 1

]
π2, b =

11Nc − 2Nf
3

. (11)

Note that we defined the one-loop inverse charge β̂ and β̄ at certain phenomenological cutoff ρcut and 〈R〉 ≈ R̄.
ΛRS denotes a scale, depending on a renormalization scheme, whereas V3 for the three-dimensional volume. Using the
instanton distribution function in Eq. (10), we can compute the average value of the instanton size ρ̄2 straightforwardly
as follows [29]:

ρ̄2(T ) =

∫
dρ ρ2d(ρ, T )∫
dρ d(ρ, T )

=

[
A2
Nc
T 4 + 4νβ̄γn

] 1
2 −ANcT 2

2β̄γn
, (12)

where ν = (b− 4)/2. It can be easily shown that Eq. (12) satisfies the following asymptotic behaviors [29]:

lim
T→0

ρ̄2(T ) =

√
ν

β̄γn
, lim

T→∞
ρ̄2(T ) =

ν

ANcT
2
. (13)

Here, the second relation of Eq. (13) indicates a correct scale-temperature behavior at high T , i.e., 1/ρ̄ ≈ Λ ∝ T .
Substituting Eq. (12) into Eq. (10), the caloron distribution function can be evaluated further:

d(ρ, T ) = C ρb−5 exp
[
−F(T )ρ2

]
, F(T ) =

1

2
ANcT

2 +

[
1

4
A2
NcT

4 + νβ̄γn

] 1
2

. (14)

The instanton packing fraction n can be computed self-consistently, using the following equation:

n
1
νF(T ) = [C Γ(ν)]

1
ν , (15)

where we replaced NT/V3 → n, and Γ(ν) stands for the Γ-function with an argument ν. Note that C and β̄ can be
determined easily using Eqs. (12) and (15), incorporating the vacuum values for n ≈ (200 MeV)4 and ρ̄ ≈ (600 MeV)−1:
C ≈ 9.81 × 10−4 and β̄ ≈ 9.19. Finally, in order for estimating the T -dependence of M0, one needs to consider the
normalized distribution function, defined as follows:

dN (ρ, T ) =
d(ρ, T )∫
dρ d(ρ, T )

=
ρb−5Fν(T ) exp

[
−F(T )ρ2

]
Γ(ν)

. (16)

Here, the subscript N denotes the normalized distribution. For brevity, we want to employ the large-Nc limit to
simplify the expression for dN (ρ, T ). In this limit, as understood from Eq. (16), dN (ρ, T ) can be approximated as a
δ-function:

lim
Nc→∞

dN (ρ, T ) = δ[ρ− ρ̄(T )]. (17)

The numerical result for the trajectories of ρ̄(T ) (solid) and 1/R̄(T ) (dot) are given in the panel (a) in Figure 1.
Here we choose ρ̄(0) ≈ 1/3 fm and R̄ ≈ 1 fm for all the numerical calculations. These values are phenomenologically
preferred in the present model [19]. The curve for ρ̄(T ) shows that the average (anti)instanton size smoothly decreases
with respect to T , indicating that the instanton ensemble gets diluted and the nonperturbative effects via the quark-
instanton interactions are diminished. At T = (150 ∼ 200) MeV, which is close to the chiral phase transition T , the
instanton size decreases by about (10 ∼ 20)% in comparison to its vacuum value. Considering that the instanton

size corresponds to the scale parameter of the model, i.e. UV cutoff mass, ρ̄ ≈ 1/(
√

2µ), the T -dependent cutoff
mass is a clearly distinctive feature in comparison to other low-energy effective models, such as the NJL model. In
addition, we also show the T dependence of the average (anti)instanton number density or (anti)instanton packing
fraction, N/V ≈ 1/R̄4, in the panel (a) of Figure 1. Again, the instanton number density get decreased as temperature
increases: The instanton ensemble gets diluted. We will use these two temperature-dependent quantities for computing
the chiral and tensor condensates, and TP-VEV in the next Section.
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FIG. 1: Average (anti)instanton size ρ̄ ≈ 1/Λ [fm] and (anti)instanton packing fraction (N/V )1/4 [GeV] as functions of T ,
computed from the Harrington-Shepard caloron distribution [24, 25] in the panel (a). Effective quark mass at zero virtuality,
M0 computed from Eq. (19) as functions of T for m = 0 (solid) and m = 5 MeV (dot), signaling the second-order and crossover
chiral phase transitions, respectively, in the panel (b). The vertical lines indicate the chiral-phase-transition temperatures
T0 = (166, 170) MeV for m = (0, 5) MeV.

Now, we are in a position to discuss the T dependence of the constituent quark mass M0 as a chiral order parameter.
As in Ref. [26], the LIM thermodynamic potential per volume in the leading large-Nc contributions at zero quark
chemical potential can be written as follows:

ΩLIM =
N

V

[
1− ln

N

λVM

]
+ 2σ2 − 2NcNf

∫ ∞
0

d3k

(2π)3

[
Ek + 2T ln

[
1 + e−

Ek
T

]]
, (18)

where λ and M represent a Lagrange multiplier to exponentiate the effective quark-instanton action and an arbitrary
massive parameter to make the argument for the logarithm dimensionless. σ stands for the VEV for the isosinglet
scalar meson field corresponding to the effective quark mass. The quark energy is defined by E2

k = k2 + M̄2
k. In the

leading large-Nc contributions, we have the relation 2σ2 = N/V [26]. The gap equation can be derived from Eq. (18)
by differentiating ΩLIM by the Lagrange multiplier λ:

∂ΩLIM

∂λ
= 0→ Nf

M̄0

N

V
− 2NcNf

∫ ∞
0

d3k

(2π)3
F 4
k

M0

Ek

[
1− 2e−

Ek
T

1 + e−
Ek
T

]
= 0. (19)

Note that one can write the instanton packing fraction in terms of the effective quark mass M0 and ρ̄ [19]:

N

V
=
C0NcM2

0

π2ρ̄2
. (20)

The value of C0 locates in (1/3 ∼ 1/4) for 1/ρ̄ ≈ 600 MeV, M0 ≈ (300 ∼ 400) MeV and N/V ≈ (200 ∼ 260 MeV)4 for
vacuum [30]. We choose C0 = 0.27 to reproduce M0 = (340 ∼ 350) MeV at (T, µ) = 0 in the chiral limit. After solving
Eq. (19) with respect to M0 numerically, the numerical results for M0 as a function of T are given in the panel (b)
of Figure 1 for the zero and finite current quark mass: m = 0 (solid) and m = 5 MeV (dot). These results indicate
correct universal patterns for the chiral phase transition like the those of the Ising model, i.e. the second-order chiral
phase transition for the massless fermion and the crossover for the finite mass. From those numerical results, the
phase transition T for the two chiral restorations are obtained as T0 ≈ (166, 170) MeV for m = (0, 5) MeV. The
transition temperatures are indicated by the thin solid vertical lines in the panel (b) of Figure 1. Detailed discussions
for the chiral phase structure within the present model is given in Ref. [31].

To evaluate χq as a function of T , we redefine Eq. (9) with the fermionic Matsubara formula: The integral over the
fourth momentum, k4, is compactified into a summation over the Matsubara frequency:

χq =
〈q†Σ q〉
〈iq†q〉

=

{
T

∞∑
n=−∞

∫
k

[
M̄k +Nk

(w2
n + E2

k)2
− m

(w2
n + E2

0)2

]}{
T

∞∑
n=−∞

∫
k

[
M̄2

k

w2
n + E2

k

− m

w2
n + E2

0

]}−1

, (21)
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where the fermionic Matsubara frequency wn = (2n+ 1)πT and the three-dimensional integral is given in a simplified

notation
∫
k
≡
∫

d3k
(2π)3 . Here, we use the notation E2

0 = k2 + m2, whereas k denotes the three momentum of the

quark. Here is one caveat: Introducing the Matsubara frequency, we assume that the effective quark mass in Eq. (4)
is simplified by k4 → 0:

Mk →Mk = M0

[
2

2 + ρ̄2k2

]2

, (22)

and the same for Nk → Nk in Eq. (8). We have verified that this simplification makes the problem in hand much
convenient and simplified for the analytic as well as the numerical calculations, and does not make significant deviations
from the full calculations, as shown in many successful applications [22, 23, 26]. Then, the summations over wn in
Eq. (21) can be analytically performed, and we defined the following functions:

f2(E) ≡ 1

8TE3
sech2

(
E

2T

)[
T sinh

(
E

T

)
− E

]
, f1(E) ≡ 1

4E
tanh

(
E

2T

)
. (23)

Using Eq. (23), Eq. (21) can be then rewritten finally as

χq =
〈q†Σ q〉
〈iq†q〉

=

{∫
k

[
(M̄k +Nk)f2(Ek)−mf2(E0)

]}{∫
k

[
M̄kf1(Ek)−mf1(E0)

]}−1

. (24)

Note that all the quantities, χq, and chiral and tensor condensates, are positive-real valued functions of T and m in
the present work with the Euclidean metric. Hence, our theoretical results exhibit the diamagnetism, considering that
χM
q < 0 for the Minkowski (M) metric.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this Section, we demonstrate the numerical results with relevant discussions. First, we show them for the
chiral condensates 〈iq†q〉 as functions of T in the panel (a) of Figure 2. The (solid, dash) curves correspond to
the condensates with m = (0, 5) MeV. In what follows, numerical values given in the form of (x, y) represents the
theoretical results for m = (0, 5) MeV, respectively, unless otherwise stated. The vertical straight lines denote the
chiral transition T , T0 = (166, 170) MeV. At T = 0, we observe 〈iq†q〉1/3 = (258 MeV, 260 MeV) at T = 0. Here, we
only observe small deviations depending on m. These numerical values are slightly larger than the empirical values
〈iq†q〉 = (240 ± 10 MeV)3, but still in qualitative agreement with them. As for the curve for m = 0, it shows the
second-order chiral phase transition as expected and understood by Eq. (5), which is proportional to M0. On the
contrary, m becomes finite, the curves manifest the crossover transition, satisfying the universal class pattern of the
chiral restoration. At T0 = 170 MeV, we have 〈iq†q〉 ≈ (209 MeV)3 for m = 5 MeV, showing about 20% reduction, in
comparison to that for T = 0.

In the panel (b) of Figure 2, we depict the tensor condensate 〈q†Σq〉 ≡ −τq with the same manner of the panel (a).
Again, the condensates show the proper chiral restoration patterns depending on m. Interestingly, there appear bump
structures in the curves for m 6= 0 at T = (50 ∼ 60) MeV, due to the nontrivial interference between the constituent-
and current-quark mass terms in Eq. (7). We find 〈q†Σq〉 = (52, 49) MeV at T = 0. From these values, we conclude
that the tensor condensate decreases with respect to m which is consistent with the observation of Ref. [32]. Here,
we want to mention other theoretical estimations for the tensor condensate for SU(2f ) for T = 0. Using QCDSR
techniques, it was studied in Refs. [7, 10, 11], which estimated it as (40 ∼ 70) MeV, depending on the different
renormalization scales µ = 0.5 GeV or µ = 1 GeV. In Ref. [5], employing the same instanton model for vacuum, with
slightly different model parameters, the authors calculated it in the chiral limit, resulting in (45 ∼ 50) MeV, which
is well compatible with ours by construction. Employing the NJL model and quark model (QM), it was estimated
as 69MeV and 65 MeV, respectively, in Ref. [12] which is about 10% larger than ours. From the quenched LQCD
simulations for SU(2c) [16] and SU(3c) [17], they observed 46 MeV and ∼ 52 MeV at µ = 2 GeV. A full SU(3c) lattice
simulation was performed in Ref. [18], and provided (38.9 ∼ 40.7) for the chiral limit and physical current-quark
mass at µ = 2 GeV. Considering that the renormalization constant for the tensor condensate with the running scale
µ = (1 ∼ 2) GeV is close to unity as will be shown below, our present estimations for the tensor condensates are well
compatible with other theoretical results. The comparisons with other studies are summarized in Table I

Now, we are in a position to discuss the T dependence of the tensor condensate. Bali et al. estimated the T
dependence of the tensor condensate via the full SU(3c) lattice simulation with tree-level Symanzik improved gauge
action [18]. They also performed renormalization-group analyses, resulting in the renormalization constants for
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FIG. 2: (Color online) (a) Chiral condensate 〈iq†q〉 = −〈q̄q〉 in Eq. (24) for m = (0, 5) MeV in the (solid, dash) lines, respectively.
The vertical lines indicate the chiral phase transition T , T0 = (166, 170) MeV for (m = 0,m 6= 0). The horizontal shaded area
denotes the range of 〈iq†q〉 = (250 ∼ 260 MeV)3, which corresponds to its empirical value. (b) Tensor condensate 〈q†Σq〉 ≡ −τq
in Eq. (24), represented in the same manner with the panel (a). The lattice QCD data at the renormalization scale µ = 1 GeV
are taken from Ref. [18], and indicates the continuum extrapolation for the u quark with the errors containing all statistical
and systematic errors. The data for the d quark are still within the u-quark errors.

the chiral (scalar) (S) and tensor (T) condensates for the running scale µ = (2 → 1) GeV as follows, considering
χq = 〈q†Σq〉/〈iq†q〉:

ZS
MS
≈ 0.76, ZT

MS
≈ 1.13. (25)

Note that in their lattice simulation, they renormalized all the quantities at µ = 2 GeV with (mu +md) ≈ 6.94 MeV,
which gives 〈q̄q〉 = −(269 MeV)3. Using ZS

MS
in Eq. (25), this chiral condensate value becomes −(245 MeV)3 at µ = 1

GeV. Since our renormalization scale is about 0.85 GeV ∼
√

2/ρ̄, for appropriate comparison, one needs to evolve their
data at µ = 2 GeV to those at µ = 1 GeV. After the scale evolution, just multiplying ZT

MS
to the data, the continuum

extrapolated data for the u quark are given with the open dot with the sum of the statistical and systematic errors
in the panel (b) of Figure 2. Note that the lattice data locates between the curves for m = 0 and m = 5 MeV.
Although there appear quantitative differences between the lattice data and ours, the overall tendency and strength
are qualitatively comparable. Note that the chiral transition T was given T0 ≈ 162 MeV in the lattice simulation
which is a only few percent smaller than ours T0 = 170 MeV. At the chiral phase transition T , T0 = 170 MeV, the
tensor condensate for m = 5 MeV becomes 21 MeV from our calculations, showing about two-times reduction.

In the panel (a) of Figure 3, we show the numerical results for χq as functions of T for m = (0, 5) MeV in the (solid,
dash) lines. Since χq is the ratio of the chiral and tensor condensates as shown in Eq. (9), we can not define it in the
chiral limit beyond T0, while χq for m 6= 0 has finite values for T ≥ T0 as shown in the panel (a). The typical values

for χq at T = 0 are given by χq = (3.03, 2.77) GeV−2. Note that we have χq = (2.85 ∼ 5.7) GeV−2 from the QCDSR
methods [7, 10, 11], and these values are well compatible with our estimations. The LQCD simulations also estimated
comparable values with ours [16–18] as shown in Table I. However, the hQCD [14] and OPE+PD [15] calculations
showed considerably larger values for them: χq = 11.5 and 8.91, respectively. The effective quark models, such as
NJL and QM, evaluated χq ≈ 4.3 and 5.25, depending on each models. From these observations, we can conclude
that our model estimations are compatible qualitatively with other theoretical ones. At T = 0, we depict some LQCD
results in the panel (a) of Figure 3. The solid square and circle are the estimations at µ = 1 GeV from the full SU(3c)
LQCD simulation for m = 5 after a proper scale evolution by multiplying ZT

MS
/ZS

MS
= 1.49. It turns out that the

LQCD data match with the present numerical curve for m = 0 approximately, and larger than that for m = 5 MeV
by about 10%. The SU(2c) quenched LQCD data at µ = 2 GeV are also shown with the solid triangle and diamond
for different T [16]. Although their estimation at 0.82Tc with Tc = 313 MeV (triangle) is comparable to ours, one
must be careful about that the simulations were done for Nc = 2 at a relatively larger renormalization scale without
dynamic quarks. Note that their value at T = 0 (diamond) is much smaller than ours as well as the SU(3c) LQCD
simulation [18]. It was suggested that the magnetic susceptibility can be parameterized in terms of OPE+PD, using
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FIG. 3: (Color online) (a) Magnetic susceptibility χq as functions of T for m = (0, 5) MeV in the (solid, dash) lines, respectively.
The SU(3c) lattice QCD data at the renormalization scale µ = 1 GeV are taken from Ref. [18] for the u-quark and d-quark,
given in the solid square and circle. The SU(2c) quenched LQCD data at µ = 2 GeV are also shown with the solid triangle
and diamond [16]. The vertical lines indicate the chiral phase transition T , T0 = (166, 170) MeV for m = (0, 5) MeV. (b)
Tensor-polarization VEV (TP-VEV), 〈q†σxyq〉EM as functions of eqB for different T and m values. See the text for details.

the Gell-Mann–Oakes–Renner (GMOR) relation, as follows [15]:

χq =
cχqNc

8π2f2
π

= 2.22 cχq GeV−2 for Nc = 3, (26)

where we have chosen the normalization fπ =
√

2Fπ with Fπ = 92.4 MeV and cχq stands for a positive real constant.
We list the (average) values for cχq for the various theory calculations in Table I. Approximately, its value amounts
to (1.0 ∼ 2.0) for various calculations, whereas the OPE+PD and hQCD still give larger values than others as the
magnetic susceptibility.

Finally, we want to examine the external magnetic field dependence for TP-VEV in Eq. (1). As already mentioned,
in the leading order of eq, TP-VEV is a linear function of the field strength tensor Fµν . Choosing a certain configuration
for Fµν , we can write the following equation from Eq. (1):

〈q†σabq〉EM = eqB〈q†Σq〉, (27)

where the Lorentz indices a and b are understood to pick up the magnetic field from the field strength tensor in
Euclidean space. B denotes the strength of the external magnetic field B = |B|. Considering the positive quark
charge, u quark for instance, one can parameterize eqB as a real positive variable in the unit of GeV2. Note that
the tensor condensate in the right-hand-side of Eq. (27) has been already computed as above. In the panel (b) of
Figure 3, we show TP-VEV as functions of eqB for different T . The thick and thin lines denote the those for m = 0

Present LIM [5] NJL [12] LQCDf
3 [18] LQCDq

2 [16] LQCDq
3 [17] SR [7, 10, 11] OPEPD [15] hQCD [14] QM [12]

µ 0.85 0.85 0.627 2.0 2.0 2.0 0 0.5 � 1.15 0.560

m (0, 5) 5 5 0, 3.47 0 0 Physical Physical 0 5

〈q†Σq〉 (52, 49) 40 ∼ 45 69 38.9 ∼ 40.7 46 ∼ 52 40 ∼ 70 − − 65

χq (3.03, 2.77) 2.5± 0.15 4.3 1.93 ∼ 2.16 1.547 4.24± 0.18 2.85 ∼ 5.7 8.91 11.5 5.25

c̄χq 1.26 1.12 1.94 0.92 1.045 1.91 1.95 4.01 5.18 2.36

TABLE I: Various theoretical estimations for the tensor condensate 〈q†Σq〉 [MeV] and magnetic susceptibility χq [GeV−2] for
certain renormalization scale µ [GeV] and the current-quark mass [MeV] at T = 0. All the listed values are converted to those

for Euclidean space. The notation LQCD
(f,q)

(2,3) indicates the (full, quenched) LQCD simulations for Nc = (2, 3). c̄χq denotes the

average value over possible χq.
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FIG. 4: (Color online) Tensor-polarization VEV (TP-VEV), 〈q†σabq〉EM [GeV3] as a function of T and eqB for the chiral limit
(left) and m = 5 MeV (right). See the text for details.

and m = 5 MeV, respectively. It turns out that, as T increases, the slope of the lines decreases for the both current-
quark masses. This behavior signals the (partial) chiral restoration, due to the decreasing of the tensor condensate,
which plays the role of the slope of the line here. Note that this observation is consistent with that from the SU(3c)
LQCD simulation [18], although the strength of the lines are different by about two times and the LQCD data show
nonlinearity as T increases which is not shown for the present leading-order calculations. The strength difference can
be understood by the different renormalization scales, i.e. µ ≈ 0.85 for ours and µ = 2 GeV for the LQCD simulation.
If we go beyond the leading order O(eq), it is sure that there appears nonlinearity in TP-VEV. However, we will not
discuss this issue in the present work, and leave it for the future works. Comparing the lines for the chiral limit and
finite quark mass, the line slope get diminished much for m = 0 with respect to T , since TP-VEV also plays the role
of the chiral order parameter. In other words, TP-VEV in the chiral limit becomes zero for even finite eqB at the
chiral transition T . To see this situation clearly, in Figure 4, we show TP-VEV as functions of eB as well as T for
m = 0 (left) and m = 5 MeV (right). As shown in the left panel, TP-VEV behaves linearly with respect to eB, and
decreases its strength as T increases. Then, it vanishes at T0 = 166 MeV. In contrast, due to the crossover chiral
phase transition, TP-VEV for m = 5 MeV remains finite even beyond T0 = 170 MeV.

V. SUMMARY AND CONCLUSION

In the present work, we have investigated the QCD magnetic susceptibility for SU(2f ) as a function of temperature,
beyond the chiral limit. For this purpose, we employed the liquid-instanton model (LIM), being modified by the
trivial-holonomy caloron solution. We calculated the chiral 〈iq†q〉 and magnetic 〈q†Σq〉 condensates, QCD magnetic
susceptibility χq, and tensor-polarization VEV (TP-VEV) 〈q†σµνΣq〉EM, numerically in Euclidean space. We com-
pared our results with various theoretical estimations for those nonperturbative quantities. Important observations
in the present work are given as follows:

• The chiral and tensor condensates manifest the role of the chiral order parameter, showing correct chiral restora-
tion patters. We observe 〈q†Σq〉 = (52, 49) for m = (0, 5) MeV at T = 0. These values are well comparable
with the widely accepted one ∼ 50 MeV. The T dependence of the tensor condensates are also compared with
the LQCD data, and show qualitative agreement. At the chiral phase transition T , T0 = 170 MeV, the tensor
condensate for m 6= 0 becomes 21 MeV, whereas it is zero for the chiral limit.

• We find that the magnetic susceptibility is a smoothly decreasing function of T . The typical values for them
are estimated as χq = (3.03, 2.77) GeV−2 for m = (0, 5) MeV at T = 0. Again, these values are well compatible
with the results from the LQCD and other effective models. Beyond T0 = 170 MeV, the curve for the magnetic
susceptibility behave almost as a linearly decreasing one with respect to T . At T0, we observe about 20%
decreases in their strengths, in comparison to those at T = 0.

• TP-VEV is a linearly increasing function of the external magnetic field (eqB) in the leading order. The slope
of the TP-VEV line with respect to eqB decreases as T increases, since the tensor condensate plays the role for
its slope, signaling the (partial) restoration of SBχS. In that way, TP-VEV can be considered as a chiral order
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parameter. Hence, we find that it vanishes at T0 = 166 MeV in the chiral limit, whereas it remains finite beyond
T0 for m 6= 0, due to the crossover chiral phase transition.

From the above observations, we can conclude that the present model calculations have revealed meaningful and
reliable results. Since the effects of the EM fields to QCD vacuum has been one of the most energetically progressing
objects nowadays, it is meaningful to study more various nonperturbative quantities, being sensitive to the gauge
field, such as the mixed quark-gluon condensate 〈q̄σ · Gq〉EM, where Gµν represents the gluon field strength tensor,
for instance. Moreover, as discussed in the previous Section, calculations beyond the linearity on the magnetic field,
i.e. beyond the leading order, can provide interesting modifications to the present results. Related works are under
progress and appear elsewhere.
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