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Abstract

We apply a sum rule for the forward light-by-light scattering process within the context of the
φ4 quantum field theory. As a consequence of the sum rule a stringent causality criterion is
presented and the resulting constraints are studied within a particular resummation of graphs.
Such resummation is demonstrated to be consistent with the sum rule to all orders of pertur-
bation theory. We furthermore show the appearance of particular non-perturbative solutions
within such approximation to be a necessary requirement of the sum rule. For a range of values
of the coupling constant, these solutions manifest themselves as a physical bound state and a
K-matrix pole. For another domain however, they appear as tachyon solutions, showing the
inconsistency of the approximation in this region.

Keywords:

1. Introduction

Sum rules provide a powerful tool to study relativistic quantum field theories, and apply
also outside the regime where perturbative expansions hold. As sum rules are consequences of
such general principles as analyticity and unitarity, they allow to establish rigorous relations
between physical observables, even when the underlying theory is non-perturbative in nature
and cannot be solved exactly.

In recent works [1, 2], we have derived three sum rules for the low-energy forward light-by-
light scattering process. These γγ-sum rules are non-perturbative in origin and demonstrate
that the low and high-energy behaviors of the theory are related. We showed e.g. that a sum
rule for the helicity-difference total cross-section of the photon-photon-fusion process, γγ → X,
reveals in the hadron sector an intricate correlation between contributions of pseudoscalar and
tensor mesons. In the charm quark sector, the γγ sum rules reveal an interplay between cc̄
bound states, open charmed meson continuum states, as well as exotic cc̄ resonance states [2].
Several experiments, primarily at e+e− collider facilities, are presently uncovering the rich
spectroscopy of such systems, see e.g. [3, 4] for some recent reviews.

Besides its relevance to hadron phenomenology, we can use the γγ-sum rules in the same
way in model field theories, where in the case of renormalizable models they can be applied
perturbatively. When the conditions of applicability are fulfilled these sum rules were shown
to hold in leading order calculations [2]. However, the realization of the causality constraints
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at higher orders as well as in the non-perturbative regime of quantum field theories is still an
open issue.

Studies of causality constraints on the basis of different sum rules were carried out in the
past in a number of different contexts. Especially the realization of the well-known Gerasimov-
Drell-Hearn sum rule [5] within perturbative field theory was analyzed for spin-1/2 targets at
the lowest nontrivial order [6] as well as at higher orders in QED [7]. In Refs. [8, 9] consequences
of the sum rules within asymptotically free theories were considered. In more recent years, they
have also been discussed within the context of quantum gravity [10, 11].

In the present work, we are using light-by-light scattering sum rule as a tool to study causal-
ity constraints within a model field theory, the φ4 scalar theory. We consider a bubble-chain
resummation and demonstrate it to be consistent with causality to all orders of perturbation
theory. Furthermore, it is shown that the sum rule strictly defines the non-perturbative struc-
ture of the solutions which arise dynamically within this approximation. In a particular regime
of the coupling constant the spectrum of solutions contains a dynamically generated bound
state and a K-matrix pole. For another domain the solution possesses an unphysical pole with
negative invariant mass being a direct sign of the inconsistency of the approximation.

The outline of this letter is as follows. In Sect. 2, we compute the light-by-light scattering
sum rule involving the helicity difference cross section for the γγ → X process, within the
φ4 scalar field theory at one-loop level. In Sect. 3, we provide a calculation beyond the one-
loop level in the “bubble-chain" approximation. In Sect. 4 we discuss how causality imposes
constraints on the solutions for different values of the renormalized self-interaction coupling
constant of the φ4 theory. The summary and outlook are given in Sect. 5.

2. One loop

In this work, we will focuss on a sum rule for the forward light-by-light scattering, which
involves the helicity-difference cross-section for real photons [12, 13, 1] and reads as:

∞
∫

s0

ds
∆σ(s)

s
= 0, (1)

where ∆σ(s) = σ2(s) − σ0(s) is the total helicity-difference cross section of the two-photon
fusion process γγ → X, with the Mandelstam variable s = (q1 + q2)

2, where q1 and q2 are the
two photon 4-momenta, and s0 is the lowest production threshold of the process.

We will study the above sum rule in a particular model quantum field theory. We take
one of the simplest examples: a self-interacting scalar field φ(x) with charge e and mass m as
described by the following Lagrangian density,

L = (Dµφ)∗Dµφ−m2φ∗φ+
λ0

4
(φ∗φ)2 −

1

4
F µνFµν , (2)

where λ0 is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by Dµ = ∂µ + ieAµ and Fµν = ∂µAν − ∂νAµ.

We denote the helicity amplitudes for the process γγ → φφ∗ by M++ and M+−, where the
subscripts indicate the photon helicities. Given these amplitudes, the cross section for total
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helicity-0 and 2 are found as:

σ0(s) =
β(s)

32πs

∫ 1

−1

d cos θ |M++(s, θ)|
2 , (3)

σ2(s) =
β(s)

32πs

∫ 1

−1

d cos θ |M+−(s, θ)|
2 , (4)

where θ is the angle of one of the members of the φφ∗ pair w.r.t. the photon in the center-of-mass
system, and where we introduced their relative velocity β as:

β(s) =

√

1−
4m2

s
. (5)

To leading order in λ̃0 ≡ λ0/(4π)
2 and in the fine-structure constant α ≡ e2/4π, the helicity

amplitudes are found to be:

M++(s, θ) = 4πα

{

2(1− β2)

1− β2 cos2 θ
+ λ̃0 2F (s)

}

, (6a)

M+−(s, θ) = 4πα
2β2 sin2 θ

1− β2 cos2 θ
, (6b)

where the first term in M++ and the expression for M+− correspond with the tree level ampli-
tudes for γγ → φφ∗ in scalar QED. The second term in M++ describes the one-loop production
process corresponding with Fig. 1, with the grey blob denoting the four-particle amplitude
evaluated to leading order in λ0. Furthermore in Eq. (6a), the (dimensionless) form factor F (s)
describing the transition of photons to a scalar pair at one-loop order is given explicitely by :

F (s) = −1−
m2

s
Re

[

ln
1 + β(s)

1− β(s)
− iπ

]2

+ i
2πm2

s
θ(s− 4m2) ln

1 + β(s)

1− β(s)
. (7)

It is quite easy now to compute the cross sections for γγ → φφ∗, the result for the helicity
difference cross-section is:

∆σ(s) = ∆σ(tree)(s)− α2 λ̃0
8π

s

(

1− β2(s)
)

arctanh β(s) ReF (s), (8)

where ∆σ(tree) is the tree-level cross section in scalar QED (cf., e.g., Appendix in [2]). The tree-
level cross section weighted with 1/s integrates to zero by itself, and it can easily be verified
that

∞
∫

4m2

ds
ReF (s)

s3
arctanhβ(s) = 0. (9)

Hence, we have shown that the sum rule is obeyed at the one-loop level.

3. Bubble-chain sum

A class of diagrams naturally arises when one analyzes how the sum rules are realized at
higher orders in perturbation theory, and in fact beyond perturbation theory. In the following,
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Figure 1: The contribution to the γγ-fusion process within the φ4 field theory considered in this work. The
solid lines denote the charged scalar fields.

Figure 2: The bubble chain contribution entering the grey blob of Fig. 1.

we discuss the contribution of the bubble-chain type diagrams to the γγ-fusion process as
shown on Fig. 1, where the shaded blob now denotes a bubble-chain contribution to the four-
particle vertex, as shown in Fig. 2. The bubble-chain approximation arises in many contexts,
but most notably as the leading large-N result of the O(N) models. The interest in such an
approximation is due to the fact that it preserves much of the non-linear structure of the exact
theory [14, 15].

The bubble-chain only contributes to the helicity-0 amplitude M++, with the nth-bubble
contribution being given by

M
(n+1)
++ (s) = 4πα λ̃0 [λ0B(s)]n 2F (s). (10)

In the dimensional regularization scheme the one-loop corrections to the four-particle vertex,
corresponding with a single bubble in Fig.2, can be expressed through the scalar integral :

B(s) ≡ −i

∫

ddl

(2π)d
1

[(p+ l)2 −m2 + iε] [l2 −m2 + iε]
, (11)

with p the total four-momentum, and s = p2. This integral has the explicit form :

B(s) =
1

(4π)2

{

−Lε(µ
2) + 2− β(s) ln

1 + β(s)

1− β(s)
+ iπβ(s)θ(s− 4m2)

}

. (12)

Here Lε = −1/ε + γE + log(m2/4πµ2) is the dimensional regularization factor and µ is the
corresponding dimensional regularization scale, γE = −Γ′(1) ≃ 0.5772 is Euler constant.

The resulting amplitudes are independent of the renormalization scale µ which is achieved
as usual by adding a counter term corresponding to the coupling constant renomalization. We
define a renormalized coupling constant λ̃ by the equation

λ̃−1(µ2) = λ̃−1
0 + Lε(µ

2)− 2. (13)

This gap equation allows to renormalize the calculated contribution to each order perturba-
tively. Using such renormalization, leads to the renormalized (subtracted) one-loop four-point
function :

B̃(s) ≡ (4π)2
[

B(s)− B(4m2)
]

= −β(s) ln
1 + β(s)

1− β(s)
+ iπβ(s)θ(s− 4m2), (14)
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Figure 3: Real and imaginary part of the renormalized one-loop correction to the four-point function of Eq. (14),
as function of s.

where we have also absorbed a factor (4π)2 in its definition. We notice that our renormalization
procedure is conveniently chosen so as to make a subtraction at threshold: B̃(4m2) = 0. We
show the real and imaginary parts of the renormalized function B̃(s) versus s in Fig. 3.

The interference of two chain diagrams with total number of (n− 1) bubble loops gives rise
to a cross-section correction of the order O(λ̃n). For the helicity-difference cross-section, which
in the given case is equal to the helicity-0 cross section, we obtain as correction beyond the
tree-level :

∆σ(n)(s) = −α2λ̃n4π

s
β(s)

{

ξ(s)Re
[

F (s)B̃n−1(s)
]

+ |F (s)|2
n−2
∑

i=0

B̃i(s)
[

B̃n−2−i(s)
]∗
}

, (15)

where we used the notation

ξ(s) =
2 (1− β2(s))

β(s)
arctanh β(s). (16)

One can check explicitly that the expression of Eq. (15) satisfies the helicity-difference sum rule
exactly in each order of perturbation theory, i.e.

I(n)(λ̃) ≡

∞
∫

4m2

ds
∆σ(n)(s)

s
= 0. (17)

In Fig. 4, we plot the integrands of the sum rule at different orders of perturbation theory. One
sees that in all cases the low- and high-energy contributions cancel.

It is well-known in quantum field theory that when trying to sum the different orders of
perturbation theory, the resulting series is mostly divergent and has at best a meaning as an
asymptotic series, a notable exception being the case of theories which have the property of
asymptotic freedom [16, 17, 18]. As a result, the perturbation theory often can not determine
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= 4.

the solution uniquely. If we are only interested in perturbative phenomena, it is not a problem
to deal with it in the region of small coupling constants. However if we are interested in non-
perturbative phenomena then we are faced with the problem to give a meaning to a divergent
series.

For example, the photon propagator calculated in the leading logarithmic approximation
possesses an unphysical pole associated with negative invariant mass and negative probability,
usually called the "Landau ghost" [19]. In QED, however, due to the smallness of the coupling
constant the ghost appears at an extremely high energy scale, and the results at the energy
scales accessible in experiment are not influenced by it. However, in contrast to the QED case,
in the theory under consideration the coupling constant is not constrained to small values, and
we are faced with the need to regularize our solution. The appearance of the Landau singularity
is usually attributed to non-Borel-summability of the considered series, where some individual
Feynman amplitudes are positive and grow like the factorial of the number of vertices producing
a singularity on the real positive axis of the Borel transform of the perturbative series [20]. A
similar situation arises also in the context of our model. We can easily see how non-Borel-
summability manifests itself in the context of sum rules, by analyzing the contribution from
the high-energy region to the sum rule integral. In the example under study, the cross section
Eq. (15) in the n-bubble approximation behaves at large s as :

∆σ(n)(s) ∼ (−λ̃)n
(ln s/m2)n−2

s
. (18)

The contribution of the high-energy region to the sum rule integral can then be approximated
by :

∞
∫

Λ2

∆σ(n)(s)

s
ds ∼

∞
∫

Λ2

(−λ̃)n
(ln s/m2)n−2

s2
ds = (−λ̃)n(n− 2)!

1

Λ2

(

1 + ln
Λ2

m2
+O(1/n)

)

, (19)

where Λ2 ≫ m2. As we see for negative λ̃ the high-energy contribution to the sum rule integral
is positive definite and grows factorially with the order of perturbation theory, which amounts
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to the non-Borel summability of the series

I(λ̃) ≡
∞
∑

n=0

I(n)(λ̃) =
∞
∑

n=0

∞
∫

s0

∆σ(n)(s)

s
ds . (20)

As a result we can consider
∑∞

n=0∆σ(n)(s) only in the sense of an asymptotic series. According
to Poincaré [21], a divergent series is an asymptotic expansion of a function f(λ) if

lim
|λ|→0

[

1

λn

∣

∣

∣

∣

∣

f(λ)−
n

∑

k=0

fkλ
k

∣

∣

∣

∣

∣

]

= 0, for n > 0. (21)

This definition implies that an asymptotic series does not define a function uniquely. The
expansion coefficients of a function of the type e−1/λ

∑n
k=0 fkλ

k being identically zero, such a
function can be added to f(λ) without changing Eq. (21)[22].

Thus it is natural to expect that in order to obtain the correct behavior of I(λ̃) for negative
λ̃, one has to modify a formal resummation of the geometric series of renormalized bubble-chain
corrections to the cross section in Eq. (15), which is given by :

∆σ(s) =

∞
∑

n=0

∆σ(n)(s) = ∆σ(tree) − α24π

s
β(s)

{

ξ(s)Re

[

F (s)

λ̃−1 − B̃(s)

]

+

∣

∣

∣

∣

F (s)

λ̃−1 − B̃(s)

∣

∣

∣

∣

2
}

, (22)

where the tree-level cross section satisfies the sum rule by itself. As was discussed above, due to
the non-Borel-summability of the series of Eq. (20), we do not have any reasons to expect that
the sum rule integral will vanish for the resummed theory. In Fig. 5 we show the dependence
of the sum rule integral for the cross section of Eq. (22) on the value of λ̃. We indeed notice
from Fig. 5 that the sum rule is only valid for positive values of λ̃ (denoted by region I), but is
violated for negative values of λ̃ (regions II and III on Fig. 5), showing that the naive procedure
of the resummation is not applicable. In order to preserve validity of the sum rules beyond
the region I, we need to find a way to evaluate the cross section correctly. We will discuss the
physical situation for the three regions of λ̃ in the following.
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Figure 5: The dependence of the sum rule integral for the helicity difference cross section of the γγ → X process
on the inverse coupling λ̃−1.
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4. Discussion of the results

Region I : convergent perturbative expansion

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation
at least in the region of positive λ̃, as one can see from Fig. 5. For λ̃−1 > 0 (region I) the
series is alternating-sign, since ReB̃(s) < 0, and one can expect the series to be resummable.
Alternatively we can interpret such a resummation at the level of photon-photon-fusion ampli-
tudes by summing up contributions of bubble-chain diagrams at different orders, which yields
the amplitude :

M++(s, θ) = M
(tree)
++ (s, θ) + 4πα

2F (s)

λ̃−1 − B̃(s)
, (23)

with tree-level amplitude given as in Eq. (6a). Squaring the amplitude of Eq. (23) then yields
the cross section of Eq. (22). In the region I, the amplitude (23) has no poles for all complex
values of s, and the series is conventionally convergent for all values of s. Thus the formal
resummation of Eq. (22) satisfies the sum rule.

Region II : Bound state and K-matrix pole

Now we proceed to the discussion of the second region, denoted by region II on Fig. 5. In
the domain of −2 < λ̃−1 < 0 the sum rule is not valid for the naive cross section, given by
Eq. (22). It is easy to see that the amplitude of Eq. (23) acquires additional singularities below
the two-particle production threshold. Indeed from Fig. 3 we can see that the imaginary part
of B̃(s) vanishes for s < 4m2 and monotonically increases for s > 4m2. The real part satisfies
the inequality

−∞ < ReB̃(s) 6 0, (24)

for 0 6 s < ∞, with the upper limit attained for s = 4m2. Thus we see that for λ̃−1 < 0 there
is always a S-matrix pole for s < 4m2. Above the two-particle threshold, there is a value of s
where λ̃−1 = ReB̃(s), corresponding with a K-matrix pole as will be discussed below.

We first discuss the pole below the threshold, which obviously corresponds to a bound state
of the scalar pair. One notices from Fig. 3 that the mass of the bound state varies continuously
from M2

B = 4m2 for λ̃−1 = 0 to M2
B = 0 for λ̃−1 = −2 as we sweep over the bound state region

on Fig. 5. In general, the position of the bound state pole is defined by the equation :

λ̃−1 = B̃(M2
B). (25)

It is important to note that the bound state singularity is not described by perturbation theory
being essentially of non-perturbative nature.

Figure 6: The amplitude of the bound state production in the γγ-fusion process.

The agreement with the sum rule can now be remedied by treating the bound state as a new
asymptotic state of the theory and thus including the channel of its production in γγ collision,
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see Fig. 6. The corresponding contribution to the helicity-0 cross section is:

σ
(γγ→B)
0 (s) = 4πα2 g

2
eff

M2
B

|F (M2
B)|

2 δ(s−M2
B), (26)

where the effective coupling of the bound state to φφ∗ is found as the residue of the pole:

g2eff =
1

|B̃ ′(M2
B)|

, B̃ ′(M2
B) =

d

ds
B̃(s)

∣

∣

∣

s=M2

B

. (27)

It is not difficult to see now that its contribution to the sum rule integral:
∫ ∞

0

ds

s
σ
(γγ→B)
0 (s) = 4πα2 g2eff

M4
B

|F (M2
B)|

2, (28)

exactly counter-balances the contribution of the γγ → φφ∗ channel shown in Fig. 5. Thus the
causality is restored in this region of λ̃.

We now turn to the position of the singularity above the two-particle threshold. To describe
the elastic φφ scattering in φ4 theory, we only need to consider S-wave scattering in the bubble-
chain approximation. The (dimensionless) elastic forward scattering amplitude f(s) is expressed
through a real phase shift δ(s) as:

f(s) = eiδ(s) sin δ(s), (29)

or through the K-matrix amplitude K(s) ≡ tan δ(s) as:

f(s) =
1

K−1(s)− i
. (30)

Since the imaginary part of the loop function is

ImB(s) = πβ(s) θ
(

s− 4m2
)

, (31)

for s ≥ 4m2 we can define the elastic amplitude as :

f(s) = πβ(s)
1

λ̃−1 − B̃(s)
=

(

1

λ̃πβ(s)
+

2

π
arctanhβ(s)− i

)−1

, (32)

and hence

K−1(s) =
1

λ̃πβ(s)
+

2

π
arctanhβ(s). (33)

In Fig. 7 we show plots of the phase shift for different values of the coupling constant. Note that
for negative λ̃ the phase-shift starts from π which indicates the presence of one bound state.
Also for negative λ̃ the phase shift crosses π/2 at s > 4m2 satisfying the following equation:

λ̃−1 = Re B̃(M2
K). (34)

This is the location of the K-matrix pole, corresponding with a scattering amplitude which
becomes purely imaginary. Usually this behaviour is attributed to a resonance. Since above the
threshold, the imaginary part of B(s) is not zero for all complex s and λ̃ is real, the amplitude
(23) does not possess a S-matrix pole for s > 4m2. Hence there is no resonance associated
with this K-matrix pole. Note that on the right side of region II on Fig. 5, corresponding
with λ̃−1 = 0, the K-matrix pole merges with the bound state and is defined by the position
M2

K = 4m2. When reaching the left side of region II on Fig. 5, corresponding with λ̃−1 = −2,
the mass is obtained from ReB(M2

K) = 0, which implies M2
K ≈ 13.1m2.
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Figure 7: Phase shift for different values of λ̃.

Region III : Ground state instability and tachyonic solution

If λ̃−1 becomes smaller than −2 (corresponding with region III on Fig. 5), the binding energy
of the bound state exceeds 2m, and the pole crosses the point s = 0, moving into the unphysical
region s < 0, and producing a tachyonic solution (a pole with negative invariant mass). The
occurrence of a pole for negative values of s signals that the ground state of the theory is
unstable [14, 15]. We could formally still include this pole in the γγ-production channel as an
asymptotic state and add its contribution to the total cross section in the same way as we did
for the bound state, which restores the validity of the sum rule. For small negative values of
λ̃, i.e. λ̃−1 → −∞, corresponding with the left asymptotic edge of the region III in Fig. 5, the
contribution of the tachyon pole is vanishingly small and the sum rule is satisfied approximately.
This is consistent with the observations in other models, for example, in the leading logarithmic
approximation in QED, where the position of the Landau pole appears at very large scales due
to the smallness of the fine structure constant. The position of the tachyon pole in this limit is
defined by

M2 ∼ −e−1/λ̃, (35)

which shows explicitly the non-perturbative structure of this contribution. The contribution of
this pole in this sum rule is asymptotically defined as

∆σ(s) ∼ 1/M2 ∼ −e1/λ̃ (36)

and vanishes when λ̃−1 → −∞. However such a procedure has a number of inconsistencies.
Being required by the sum rule such extra contribution spoils the general principles of field
theory. The cross section of Eq. (36) is negative, thus indicating that the appearance of a
tachyon ghost state contradicts the usual quantum mechanical probabilistic interpretation and
spoils unitarity. Moreover, the delta function is located at a space-like squared four momentum
−M2 indicating the occurrence of a tachyonic instability and spoiling the analyticity principle.
All these facts show that the bubble-chain approximation is essentially inconsistent in region
III of the coupling constant. For the full theory, such unphysical state will not appear among
the exact eigenstates.
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5. Conclusions

We have studied consequences of causality constraints imposed by a recently established
sum rule for the forward light-by-light scattering process within the φ4 scalar quantum field
theory. Within this theory, we verified the sum rule at the one-loop level as well as to all orders
within the bubble-chain approximation. Furthermore, we have performed a resummation of
bubble graphs. We have demonstrated that depending on the value of the renormalized self-
interaction coupling constant of the φ4 theory, three different regimes emerge. In a first regime,
the perturbative series is convergent and the sum rule as calculated from the continuum states
in the theory holds exactly. In a second regime for the renormalized coupling, the resummed
amplitude acquires additional singularities: a dynamically generated bound state below the two-
particle production threshold and a K-matrix pole above the two-particle production. It was
shown that when evaluating the light-by-light sum rule, the bound state contribution exactly
cancels the continuum contribution, so as to verify the sum rule. Furthermore, we found a
third regime of the renormalized coupling where a tachyonic solution with negative invariant
mass appears, signaling that in this regime the vacuum is unstable and that the considered
bubble-chain resummation is essentially inconsistent.

The results within the considered model relativistic quantum field theory have demonstrated
that light-by-light scattering sum rules provide a very powerful tool to quantitatively connect
dynamically generated bound states with the continuum region of the theory. As such this can
be a first step, to apply such a tool e.g. to the study of mesons produced in the γγ-fusion
process presently under study at different e+e− collider facilities.
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