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Abstract

In general it is not clear which kind of information is supposed to be used for calculating the

fair value of a contingent claim. Even if the information is specified, it is not guaranteed that

the fair value is uniquely determined by the given information. A further problem is that

asset prices are typically expressed in terms of a risk-neutral measure. This makes it difficult

to transfer the fundamental results of financial mathematics to econometrics. I show that the

aforementioned problems evaporate if the financial market is complete and sensitive. In this

case, after an appropriate choice of the numéraire, the discounted price processes turn out to

be uniformly integrable martingales under the real-world measure. This leads to a Law of

One Price and a simple real-world valuation formula in a model-independent framework

where the number of assets as well as the lifetime of the market can be finite or infinite.
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1. Motivation

T
HE central motivation of this work is to clarify the economic conditions under which

the discounted price processes in a financial market are martingales under the physical

measure P and not only under an equivalent martingale measure Q 6=P. This martingale

property is strongly connected to Samuelson’s Martingale Hypothesis, which is also formulated

in terms of P instead of Q (Samuelson, 1965). A substantial difference between Samuelson’s

approach and the methodological framework chosen in this work is that the desired martingale

property is derived without any requirement on the interest and risk attitude of the market

participants. The underlying probabilistic assumptions are minimal. In this model-independent

framework, I try to build a bridge between the fundamental results of financial mathematics in

terms of “Q” and the broad field of econometrics, which requires the “P.”

Let F be any flow of information that encompasses the evolution E of asset prices in a complete

financial market. The main result of this work can be stated as follows:

If the market is sensitive to F, there exists a normalized E-predictable trading strategy

that can be chosen as a numéraire such that each discounted price process is a

uniformly integrable P-martingale with respect to F.

Conversely, choose any normalized E-predictable trading strategy as a numéraire. If

each discounted price process is a uniformly integrable P-martingale with respect

2



Frahm, 2015 • Pricing and Valuation under the Real-World Measure

to F, the market is sensitive to F.

In either case, the chosen numéraire is the unique growth-optimal portfolio with

respect to F, and P is the unique equivalent measure under which the discounted

price process is a uniformly integrable martingale with respect to F.

In the following, every financial market is said to be simple if and only if it contains a finite

number of assets. By contrast, it is said to be complex if and only if the number of assets is

infinite. The main result solves a fundamental problem which frequently occurs in the context of

pricing and valuation both in simple and complex financial markets. This problem is threefold:

(i) The set of equivalent martingale measures depends on the given information flow. Hence,

there are many possibilities to represent the asset prices and to calculate the fair value of a

contingent claim. This leads to the following question:

Does it pay to strive for more information or is it better to renounce searching

altogether and to use the information we already have?

(ii) Even if we specify the flow of information, the set of equivalent martingale measures

typically contains a multitude of elements. In this case, it is still not clear which one to

choose and then the fair value of a contingent claim is not uniquely determined by the

given information. Hence, we might ask:

Which economic condition guarantees that the set of equivalent martingale

measures is a singleton given the specified flow of information?

(iii) Given a unique equivalent martingale measure for the specified flow of information, it

is not always clear how to use this measure in empirical applications, especially if the

market is complex. Therefore, the last question is:

Under which circumstances is it possible to represent asset prices and calculate

the fair value of any contingent claim in terms of P instead of Q?

These issues are highly relevant both from a theoretical and a practical perspective. Albeit

the given exposition is rigorous in a mathematical sense, most of the presented results have a

clear economic content. In particular, the results developed in this work fit harmonically into

different coexistent branches of financial mathematics and finance theory. I hope that their

practical implications are substantial. The industry still keeps inventing complicated financial

instruments, which is a permanent challenge for the quant. This work shall provide a universal

approach for assessing the fair value of a contingent claim, which might be considered helpful

for the practitioner.

The main result of this work requires a complete financial market. Unfortunately, the classic

notion of market completeness has got a bad reputation. In simple financial markets, i.e., if

the number of assets is finite, the assumption of market completeness is very restrictive. In

the continuous-time framework, only a small number of models are known to be complete,

e.g., Bachelier’s Brownian-motion model, the Black-Scholes model, the compensated Poisson

process, and Azéma martingales (Cox and Ross, 1976, Harrison and Pliska, 1981, Jarrow and

Protter, 2008). For this reason, many alternative approaches have been proposed during the

last decades. In particular, the concept of market completeness has been adopted to complex
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financial markets, i.e., to markets with an infinite number of assets (see, e.g., Artzner and Heath,

1995, Bättig and Jarrow, 1999, Delbaen, 1992, Jarrow and Madan, 1999, Jarrow et al., 1999).1 On

the one hand, this essentially relaxes the notion of market completeness, but on the other hand

market complexity sets higher standards for the underlying economy. In view of the vast amount

of financial instruments and the increasing globalization of financial markets, complexity can

be regarded as an acceptable assumption, at least for every well-developed economy.

Similarly, one can find a plethora of definitions of market efficiency (see, e.g., Fama, 1965,

1970, Fama et al., 1969, Latham, 1986, Malkiel, 1992, Samuelson, 1965). The classic approach to

the Efficient-Market Hypothesis is based on the fair-game model (Fama, 1970). Unfortunately,

this model suffers from a serious drawback, i.e., the joint-hypothesis problem (Campbell et al.,

1997, Fama, 1991). For this reason, I rely on another concept which I call “market sensitivity.”

A financial market is said to be sensitive to F if and only if E is P-immersed in F. This is a

rigorous definition of informational efficiency in terms of martingale theory. Put another way,

in a sensitive market, the evolution of asset prices “fully reflects” or “rapidly adjusts to” the

information flow F. In Section 4.2 I show that the concept of market sensitivity is intimately

connected to different notions of the Efficient-Market Hypothesis. Nevertheless, sensitivity does

not require that the market is a fair game and thus, in contrast to the classic approach to market

efficiency, it does not suffer from the joint-hypothesis problem (see Section A.1).

A financial market is said to be arbitrage free if and only if there is no free lunch with vanishing

risk (NFLVR) and no dominance (ND) with respect to the information flow F. Due to the 1st

Fundamental Theorem of Asset Pricing (FTAP), the NFLVR condition alone only guarantees that

there exists an equivalent probability measure Q such that each discounted price process is a

local Q-martingale with respect to F (Delbaen and Schachermayer, 1994). Jarrow and Larsson

(2012) prove that, in every simple market with finite lifetime, the additional ND condition turns

the discounted price processes into Q-martingales with respect to F. Conversely, if a simple

market with finite lifetime contains an equivalent martingale measure Q with respect to F, it

must be arbitrage free. This result is referred to as the 3rd FTAP (Jarrow, 2012). In this work, I

extend the 3rd FTAP to financial markets with infinite lifetime.

Modern approaches to the Efficient-Market Hypothesis focus on the absence of arbitrage

(Jarrow and Larsson, 2012, Ross, 2005). In fact, Jarrow and Larsson (2012) show that NFLVR

and ND together are necessary and sufficient for the existence of a pure exchange economy,

with finite lifetime and a finite number of assets, where all subjects use the information flow

F for their investment-consumption plans and the discounted price processes form an Arrow-

Radner market equilibrium. This demonstrates that every simple market, with finite lifetime

and symmetric information, that is considered “efficient” must be at least arbitrage free or,

equivalently, the discounted price processes must be martingales with respect to F under any

equivalent probability measure Q. Both the absence of arbitrage opportunities and the ability

of asset prices to “fully reflect” or “rapidly adjust to” the information flow F are fundamental

assumptions of neoclassical finance (Ross, 2005). These axioms turn out to be essential also for

the theory presented in this work and so I use the following definition of market efficiency: A

financial market is said to be efficient if and only if it is sensitive to F and contains a risk-neutral

measure, i.e., an equivalent martingale measure Q with respect to F.2

1For a nice overview of those contributions see Biagini (2010).
2As a consequence of the extended version of the 3rd FTAP, which I present in this work, the discounted price processes
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The mathematical tools I use belong to martingale theory (Jacod and Shiryaev, 2003) and

the key results stem from a discipline called “enlargement of filtrations,” developed by Yor and

Jeulin (1978, 1985).3 This is a popular instrument in modern finance and has often been applied

in the recent literature, especially in the area of credit risk and insider trading (Amendinger,

1999, Bielecki and Rutkowski, 2002, Elliott et al., 2000, Kohatsu-Higa, 2007). The enlargement of

filtration is typically done under some probability measure Q that is equivalent to P. To the best

of my knowledge, the question of market sensitivity, where we are mainly concerned with an

enlargement under the physical measure, has not yet been investigated in the literature.

Since the 1st, 2nd, and 3rd FTAP (Delbaen and Schachermayer, 1994, 1998, Harrison and

Pliska, 1981, 1983, Jarrow, 2012, Jarrow and Larsson, 2012) are essential in this methodological

framework, they are briefly discussed in Section 3 and Section 4.1. Another essential branch of

literature is related to the benchmark approach propagated by Platen and Heath (2006). This is

based on the growth-optimal portfolio (GOP), which has been a subject of heated discussions

(Christensen, 2005, MacLean et al., 2011). In fact, the benchmark approach goes back to Long

(1990), who has introduced the notion of numéraire portfolio (NP). In Section 5, I give a short

overview of the benchmark approach and explain the connection between the GOP and the NP.

The GOP plays a fundamental role in modern finance (Karatzas and Kardaras, 2007, MacLean

et al., 2011, Platen and Heath, 2006). If the market contains no unbounded profit with bounded

risk (NUPBR), the GOP can be used as an NP. Unfortunately, this leads only to a Law of Minimal

Price. The question of how to obtain a Law of One Price, in the strict sense mentioned at the

beginning of this introduction, has not yet been investigated in the literature. Section 6 contains

the main result of this work. This can be put in a nutshell as follows:

Every complete and sensitive market contains a specific numéraire such that Q=P.

2. Preliminary Definitions and Assumptions

Let
(
Ω,F,P

)
be a filtered probability space where the filtration F = {Ft }t≥0 is right-continuous

and complete. It is implicitly assumed that F∞ forms the σ-algebra of the given probability

space. Consider an asset universe A with a finite or infinite number of primary assets. Let

St be the set of asset prices in A at time t ≥ 0. More precisely, it is supposed that {St }t≥0

is an F-adapted price process. Two assets are considered identical if and only if their price

processes coincide almost surely. For notational convenience, I omit the subscript “i ∈ I ” in

every expression of the form “{Xi }i∈I ” if the index set I is clear from the context.

The filtration F can be viewed as a cumulative flow of information evolving through time.

Since {St } is F-adapted, Ft contains at least the price history Et at every time t ≥ 0.4 More

precisely, Et denotes the σ-algebra generated by the price history in A at time t . It is supposed

that E0 is trivial, i.e., it contains only the P-null and P-one elements of F∞ . The evolution of

asset prices is represented by E = {Et }, i.e., the natural filtration of the price process {St }. A

filtration I = {It } is said to be a subfiltration if and only if E ⊆ I ⊆ F, i.e., Et ⊆It ⊆Ft for all t ≥ 0.

The notation “X ∈I ” means that the random quantity X is I -measurable, where I is any

sub-σ-algebra of F∞. Attributes that are ascribed to random quantities or stochastic processes

are even assumed to be uniformly integrable martingales under Q .
3For a nice overview see Jeanblanc (2010, Ch. 2), which contains a comprehensive list of references on that topic.
4The fact that {St } is F-adapted does not imply that each market participant has access to the information flow F.
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are meant to hold almost surely. For example, the equality “X = Y ” for any two random vectors

X and Y means that each component of X equals the corresponding component of Y almost

surely. Any inequality of the form “X ≤ Y ,” “X ≥ Y ,” “X < Y ,” or “X > Y ” is to be understood

in the same sense. If {X t } is an Rd -valued stochastic process, {X t } ≥ a means that {X t } is almost

surely (uniformly) bounded from below by a ∈ Rd . Moreover, two stochastic processes are

considered identical if and only if they coincide (almost surely).

Now, choose an arbitrary asset as a numéraire and let {S0t } be its price process. Every finite

subset of A that contains the chosen numéraire asset plus N ∈N other assets is said to be a

subuniverse.5 This is symbolized by A ⊆A and St =
(
S0t ,S1t , . . . ,SN t

)
denotes the corresponding

vector of asset prices for all t ≥ 0. It is assumed that {St } is a positive F-adapted RN+1-valued

semimartingale being right-continuous with left limits (càdlàg).6 Also its left-continuous version,

i.e., {St−} (with t− = 0 for t = 0), is assumed to be positive.

The limit of {St }, i.e., S∞, exists and is finite. Moreover, it is assumed that S∞ > 0. This general

approach enables us to analyze markets with infinite lifetime. Markets with finite lifetime, e.g.,

the Black-Scholes model, can be considered a special case. This is simply done by assuming

that Ft =FT for all t ≥ T , where T ∈ ]0,∞ [ is any fixed lifetime. Discrete-time financial markets

are obtained in the same way, just by assuming that the filtration F is constant over the time

intervals [ti , ti+1[ for i = 0,1, . . . ,n −1, 0 = t0 < t1 < . . . < tn = T , and n ∈N.

For notational convenience, but without loss of generality, it is supposed that Si 0 = 1 for

i = 0,1, . . . , N . I usually refer to the RN+1-valued process of discounted asset prices, i.e., {Pt } with

Pt =
(
1,S1t /S0t , . . . ,SN t /S0t

)
for all t ≥ 0.7 Since {St } and {St−} are assumed to be positive, we

also have that {Pt }, {Pt−} > 0. If I say that any statement is true for all {Pt }, I mean that it is true

for the discounted price process in each subuniverse A ⊆A . Similarly, a statement is true for all

{St } if and only if it is true for the nominal price process in every A ⊆A . All previous statements

are supposed to be true for all {St } and {Pt }, respectively.

Every F-predictable RN+1-valued stochastic process {Ht } with Ht = (H0t , H1t , . . . , HN t ) that is

integrable with respect to the discounted price process {Pt } is said to be a trading strategy. The

discounted value of the strategy at every time t ≥ 0 is given by

Vt =
N∑

i=0
Hi t Pi t =V0 +

∫ t

0
Hs dPs ,

where V0 =∑N
i=0 Hi 0Pi 0 is the discounted initial value and

∫ t
0 Hs dPs represents the discounted

gain of the strategy up to time t ≥ 0.8 This means Vt evolves from self-financing transactions

between time 0 and t . The integral
∫ t

0 Hs dPs is to be understood in the sense of Jacod and

Shiryaev (2003, p. 207), i.e., as a stochastic vector integral.9

The strategy {Ht } is called admissible if and only if there exists a real number a ≥ 0 such that{∫ t
0 Hs dPs

}≥−a.10 The discounted initial value of {Ht }, i.e., V0, need not be constant. If we add

5In this work, the symbol “N” stands for the set of positive integers, i.e., N= {1,2, . . .}.
6It is not assumed that {St } is bounded or locally bounded.
7From Itô’s Lemma it follows that

{
S−1

0t

}
is a semimartingale and the product of two semimartingales is also a

semimartingale. This means {Pt } is an RN+1-valued semimartingale.
8Two strategies are considered identical if and only if their (discounted) value processes coincide.
9For this reason, the requirements on {Ht } that are mentioned by Harrison and Pliska (1981) are too strict (Jarrow and

Madan, 1991). See also Remark 1.3 in Biagini (2010).
10According to Delbaen and Schachermayer (1994, Definition 2.7), the strategy {Ht } is called “a-admissible” if and only

if
{∫ t

0 Hs dPs
}≥−a for a given number a > 0 but just “admissible” if and only if

{∫ t
0 Hs dPs

}≥−a for some a ≥ 0.

6
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a−V0 numéraire assets at t = 0, we obtain the strategy
{

H a
t

}
, which has a nonnegative discounted

value process
{
V a

t

}
with V a

t = a +∫ t
0 H a

s dPs for all t ≥ 0. In the case a > 0 we can divide
{

H a
t

}
by a so as to obtain the strategy

{
H a

t /a
}

whose discounted value process
{
V a

t /a
}

starts at 1 and

remains nonnegative. By choosing a sufficiently high number a, we can even guarantee that

both
{
V a

t /a
}

and its left-continuous version
{
V a

t−/a
}

are positive. Each admissible strategy that

leads to a positive discounted value process starting at 1, such that the left-continuous version

of the discounted value process is positive, too, is said to be normalized.11 A normalization just

leads to an affine-linear transformation of the discounted value process of {Ht }, which enables

us to switch easily between the different no-arbitrage conditions explained in Section A.2.1. This

general framework shall guarantee that the basic assumptions of the fundamental theorems of

asset pricing and of the benchmark approach are satisfied (Delbaen and Schachermayer, 1994,

1998, Harrison and Pliska, 1981, 1983, Jarrow, 2012, Karatzas and Kardaras, 2007).

In this work, we are often concerned with an equivalent martingale measure (EMM), an

equivalent local martingale measure (ELMM) or an equivalent uniformly integrable martingale

measure (EUIMM). A probability measure Q is said to be an E(L)MM with respect to F if and

only if

(i) Q is equivalent to P on F∞ and

(ii) every discounted price process {Pt } is a (local) Q-martingale with respect to F.

The equivalence betweenQ and P on F∞ is denoted byQ∼P. Further, M a
A (F)

(
U a

A (F)
)

is the set

of all probability measures Q∼P such that the discounted price process {Pt } in the subuniverse

A ⊆ A is a (uniformly integrable) Q-martingale with respect to F. The superscript “a” shall

indicate the chosen numéraire asset a ∈A . Analogously, L a
A (F) denotes the set of all probability

measures that are equivalent to P on F∞ such that {Pt } is a local Q-martingale with respect to F.

Moreover, whenever I drop the subscript A, I mean that the corresponding martingale property

holds for all {Pt } in the given asset universe.

A statement like “Q ∈M a(E)” does not imply that Q is equivalent to P on the σ-algebra F∞
and even if Q ∼ P, {Pt } is not necessarily a Q-martingale with respect to F. Nevertheless, we

always have that U a(F) ⊆M a(F) ⊆L a(F) and

L a(F) ⊆L a(E), 12 M a(F) ⊆M a(E), 13 and U a(F) ⊆U a(E).14

Every probability measure Q ∼ P is associated with a unique Radon-Nikodym (derivative

or density) process (RNP) {Λt }, i.e., a positive uniformly integrable P-martingale with respect

to F with Λ∞ > 0. Although F0 need not be trivial, we can assume without loss of generality

thatΛ0 = 1 (see Section A.2.2). Each stochastic process {Λt } that satisfies the aforementioned

properties is said to be a (local) discount-factor process (DFP) if and only if {Λt Pt } is a (local)

P-martingale with respect to F for every discounted price process {Pt }. Whenever the lifetime of

the financial market is finite, the uniform-integrability assumption about {Λt } can be dropped

11A normalized strategy is always 1-admissible by construction. Moreover, each normalized strategy is still normalized

after any change of numéraire.
12Since Q is equivalent to P on F∞, it is also equivalent to P on E∞. Due to Föllmer and Protter (2011, Theorem 3.6),

every positive E-adapted local Q-martingale with respect to F is a local Q-martingale with respect to E.
13Since {Pt } is E-adapted, it holds that EQ(PT |Et ) = EQ

(
EQ(PT |Ft ) |Et

)= EQ(Pt |Et ) = Pt for all 0 ≤ t ≤ T <∞ .
14This is simply because uniform integrability does not depend on the chosen filtration.

7
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NA

NUPBR

NFLVR

ND

NWA

Figure 1: Relationship between the several no-arbitrage conditions.

and it is clear that every DFP is a local DFP but not vice versa.15 Every (local) DFP {Λt } has an

associated probability measure Q∼P which is defined by

Q(F ) =
∫

F
Λ∞ dP , ∀ F ∈F∞ .

I say that {Λt } is an F-RNP or a (local) F-DFP, respectively, to emphasize the underlying filtration

F. Finally, each ratio Λt ,T = ΛT /Λt (0 ≤ t ≤ T <∞) is said to be a discount factor and I write

Λt ,∞ =Λ∞/Λt for all t ≥ 0.

In the following, I refer to several no-arbitrage conditions. Most of them are frequently applied

in financial mathematics. Only the ND condition is not widespread in the literature. This no-

arbitrage condition has been introduced by Merton (1973) and can be found, e.g., in Jarrow (2012)

as well as Jarrow and Larsson (2012). All other no-arbitrage conditions are well-established. See

for example Karatzas and Kardaras (2007) for a nice overview or consult Section A.2.1.

A dominant strategy, a free lunch with vanishing risk, and an unbounded profit with bounded

risk can be seen as weak arbitrage opportunities. I say that there is no weak arbitrage (NWA) if

and only if there is ND and NFLVR or, equivalently, ND and NUPBR, i.e.,

NWA :⇐⇒ ND ∧ NFLVR ⇐⇒ ND ∧ NUPBR.

The relationship between the several no-arbitrage conditions is illustrated in Figure 1.

If the information flow F does not allow for a weak arbitrage in the given subuniverse A, I say

that A is arbitrage free and write NWAa
A(F). The statements NFLVRa

A(F) and NUPBRa
A(F) shall be

understood in the same sense. Moreover, the entire market or, equivalently, the asset universe

A , is said to be arbitrage free if and only if NWAa
A(F) for all A ⊆A . The distinction between A

and A is crucial if the market is complex.

15Each local DFP is a so-called local martingale deflator (see Proposition 4).

8
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3. The Third Fundamental Theorem of Asset Pricing

The 1st FTAP for unbounded price processes (Delbaen and Schachermayer, 1998) states that

NFLVRa
A(F) if and only if {Pt } is a Q-σ-martingale with respect to F, where Q is equivalent to P.16

Every local martingale is a σ-martingale and every σ-martingale that is bounded from below

is a local martingale (Jacod and Shiryaev, 2003, p. 214, 216). Since the discounted asset prices

are positive, {Pt } is a local martingale if and only if it is a σ-martingale. For this reason, it is not

necessary to distinguish between the terms “local martingale” and “σ-martingale” in the present

context. This means NFLVRa
A(F) if and only if {Pt } is a local Q-martingale with Q ∼ P. Every

positive local martingale is a supermartingale. Hence, Pt ≥ EQ(PT |Ft ) for all 0 ≤ t ≤ T <∞ and

so the 1st FTAP provides only a lower bound for the discounted price process.

Now, suppose that the financial market has a fixed finite lifetime T > 0. In this situation, the 3rd

FTAP (Jarrow, 2012) strengthens the 1st FTAP. It states that there is NWA with respect to {Ft }0≤t≤T

if and only if {Pt } is a Q-martingale with respect to {Ft } for any Q ∼ P. Moreover, Jarrow and

Larsson (2012, Theorem 3.2) show that the existence of an EMM with respect to {Ft } is equivalent

to the existence of a pure exchange economy, with finite lifetime T > 0, where all subjects use the

same information flow {Ft } and {Pt } is a discounted Arrow-Radner equilibrium-price process

with respect to {Ft }.17 Hence, the absence of weak arbitrage opportunities seems to be an

essential requirement—not only for risk-neutral valuation but also for the existence of any

market equilibrium in a finite economy.18 This result marks a cornerstone in the development

of the Efficient-Market Hypothesis.

The following theorem extends the 3rd FTAP to financial markets with infinite lifetime.

Theorem 1 (The 3rd FTAP). Let A ⊆A be any subuniverse and a ∈ A some numéraire asset. Then

U a
A (F) 6= ; if and only if NWAa

A(F).

Proof: If NWAa
A(F) there cannot exist a free lunch with vanishing risk with respect to F in the

subuniverse A and thus we can apply Theorem 2.12 in Delbaen and Schachermayer (1997) as

well as Theorem 5.7 in Delbaen and Schachermayer (1998).19 Since every asset in A is F-maximal,

it follows from Theorem 2.12 in Delbaen and Schachermayer (1997) that the sum of all assets in

A is F-maximal, too.20 Theorem 5.7 in Delbaen and Schachermayer (1998) implies that there

exists an ELMM Q with respect to F such that the sum of all discounted asset prices in A is a

uniformly integrable Q-martingale with respect to F. Hence, the discounted price process in A

is a positive local Q-martingale bounded above by a uniformly integrable Q-martingale and so

it is also a uniformly integrable Q-martingale with Q∼ P, i.e., U a
A (F) 6= ;. Conversely, if there

exists a measure Q ∼ P such that the discounted price process of A is a uniformly integrable

Q-martingale with respect to F, Theorem 5.7 in Delbaen and Schachermayer (1998) implies that

16The stochastic process {Yt } is said to be a Q-σ-martingale with respect to F if and only if Yt = Y0 +
∫ t

0 Hs dXs for all

t ≥ 0. Here {Ht } is an {Xt }-integrable F-predictable stochastic process and {Xt } is a local Q-martingale with respect

to F (see Proposition 2 (i) in Émery (1980) and Theorem III.6.41 in Jacod and Shiryaev (2003, p. 217)).
17This means (i) the investment-consumption plans of all subjects are optimal with respect to {Ft } and (ii) all (i.e., the

security and the commodity) markets clear with {Pt }.
18Under short-selling constraints, a market equilibrium at least implies the existence of a local martingale deflator {Λt }.

This guarantees that {Λt Pt } is a local P-martingale with respect to {Ft } (Jarrow and Larsson, 2013, Theorem 3.1).
19The admissibility condition given by Delbaen and Schachermayer (1998) is always satisfied in this context and recall

that we do not have to distinguish between σ-martingales and local martingales.
20Jarrow and Larsson (2012) remark that the requirement that {Pt } is locally bounded, which is given by Delbaen and

Schachermayer (1997), in fact is superfluous.
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each asset in A is F-maximal, whereas the 1st FTAP guarantees that there is NFLVR with respect

to F in A. Hence, we have that NWAa
A(F). Q.E.D.

The uniform integrability of {Pt } is an essential requirement. It leads to a financial market

that is consistent in the following sense.

Theorem 2 (Change of numéraire). Let a ∈ A be some numéraire asset. If U a(F) 6= ; then

U b(F) 6= ; for every other numéraire asset b ∈A .

Proof: Let
{
Sa

t

}
be the price process of the numéraire asset a and

{
Sb

t

}
the price process of

any numéraire asset b 6= a. Further, consider an EUIMM Q ∈U a(F). Then
{
Sb

t /Sa
t

}
is a positive

uniformly integrable Q-martingale with respect to F with Sb
0 /Sa

0 = 1 and Sb∞/Sa∞ > 0. Hence, we

obtain the EMM Q̃= ∫
Γ∞ dQ ∈M b(F) with Γt = Sb

t /Sa
t for all t ≥ 0. Since

St

Sb
t

= EQ

(
Γ∞
Γt

S∞
Sb∞

|Ft

)
= EQ̃

(
S∞
Sb∞

|Ft

)

for all t ≥ 0 and {St }, each Q̃-martingale
{
St /Sb

t

}
is closed by S∞/Sb∞. This means Q̃ ∈U b(F), i.e.,

U b(F) 6= ;. Q.E.D.

The previous theorems justify the following definition.

Definition 1 (Risk-neutral measure). Let a ∈A be some numéraire asset. A probability measure

Q is said to be a risk-neutral measure if and only if Q ∈U a(F) .

The existence of a risk-neutral measure implies that the market is arbitrage free in the sense

of Theorem 1, i.e., that there is NWA with respect to F. Nonetheless, Herdegen (2014) points out

that most no-arbitrage conditions essentially depend on the choice of the numéraire asset. For

this reason, he refrains from using a numéraire asset and suggests a numéraire-independent

modeling framework for financial markets. Theorem 2 at least guarantees that the existence of

a risk-neutral measure is invariant under a change of numéraire. By contrast, L a(F) 6= ; only

guarantees that there is NFLVR with respect to F, but a change of numéraire can destroy the

local martingale property (Delbaen and Schachermayer, 1995).

The following theorem provides an equivalent representation of the discounted price process

{Pt } in terms of the real-world measure P instead of the risk-neutral measure Q.

Theorem 3 (Representation Theorem). Let A ⊆A be any subuniverse and a ∈ A some numéraire

asset. Then NWAa
A(F) if and only if there exists an F-DFP {Λt } such that {Λt Pt } is a uniformly

integrable P-martingale with respect to F.

Proof: I start with the “only if” part. According to Theorem 1, NWAa
A(F) implies that U a

A (F) 6= ;.

Consider some risk-neutral measure Q ∈ U a
A (F) and let {Λt } be the associated F-RNP. From

Lemma 2 we know that {Λt Pt } is a P-martingale with respect to F. Moreover, from Lemma 1 we

conclude that

Pt = EQ(P∞ |Ft ) = EP

(
Λ∞
Λt

P∞ |Ft

)
and thusΛt Pt = EP(Λ∞P∞ |Ft ) for all t ≥ 0. Hence, the P-martingale {Λt Pt } is closed byΛ∞P∞
and thus uniformly integrable. Lemma 3 guarantees that {Λt } is an F-DFP. For the “if” part

10
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consider the F-DFP {Λt } and let Q ∈M a(F) be the associated EMM. Since {Λt Pt } is uniformly

integrable, we have thatΛt Pt = EP(Λ∞P∞ |Ft ) and with Lemma 1 we obtain

Pt = EP

(
Λ∞
Λt

P∞ |Ft

)
= EQ(P∞ |Ft )

for all t ≥ 0. This means theQ-martingale {Pt } is closed by P∞ and thus it is uniformly integrable.

We conclude that Q ∈U a(F) and from Theorem 1 it follows that NWAa
A(F). Q.E.D.

So far, we have established the basic conditions for risk-neutral valuation, but some important

issues are still missing on the agenda (see also p. 3):

(i) In real life, we do not know the set of risk-neutral measures, i.e., U a(F). In fact, this set

might be considerably smaller than U a(E).

(ii) In general, U a(F) contains a multitude of risk-neutral measures and so the fair value of a

contingent claim might not be unique, even if U a(F) was known.

(iii) Moreover, even if U a(F) is a singleton, it is practically impossible to derive the risk-neutral

measure without making additional assumptions on the (discounted) price processes.

Theorem 3 is merely a re-formulation of Theorem 1. For this reason, the aforementioned

obstacles cannot be cleared by the Representation Theorem: In general, (i) the DFP {Λt } is not

E-adapted, (ii) {Λt } is not unique, and (iii) it is not a priori clear how to calculate {Λt }. In the

following, I present the economic conditions under which {Λt } turns out to be a unique and

well-defined E-adapted stochastic process so that the aforementioned problems evaporate.

4. Market Completeness and Sensitivity

4.1. Completeness

Consider a simple financial market with finite lifetime T > 0 and choose any asset a ∈A as a

numéraire. Harrison and Pliska (1981) call every positive random variable C ∈ ET a contingent

claim. They suppose that M a(E) 6= ; and fix any Q ∈M a(E). Now, according to Harrison and

Pliska (1981), the financial market is complete if and only if for every contingent claim C with

EQ(C /Sa
T ) < ∞ , there exists an E-predictable strategy {Ht } whose discounted value process

{Vt } is a Q-martingale with respect to E such that VT =C /Sa
T . This implies that {Vt } is positive.

Moreover, by the Predictable Stopping Theorem (Jacod and Shiryaev, 2003, Lemma I.2.27), also

the left-continuous version of {Vt } is positive. Since the σ-algebra E0 is assumed to be trivial, V0

is constant and so the chosen strategy is admissible.

The economic idea behind the definition of market completeness can be explained like this:

The goal is to replicate a contingent claim C by an admissible E-predictable strategy {Ht } as

favorable as possible. Theorem 2.9 in Delbaen and Schachermayer (1994) implies that {Vt }

must be a Q-supermartingale with respect to E. This means we have that Vt ≥ EQ
(
C /Sa

T |Et
)

for

all 0 ≤ t ≤ T . Hence, in a complete financial market, we achieve the best possible replicating

strategy if and only if the resulting discounted value process is a Q-martingale with respect to

E. We conclude that the fair value of C (expressed in units of the basic currency) amounts to

Sa
t EQ

(
C /Sa

T |Et
)

at every time 0 ≤ t ≤ T . It is worth emphasizing that calculating the fair value of

a contingent claim C makes no sense if the market already contains an asset with discounted

11
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price process {Πt } such thatΠT =C /Sa
T . In this case, we can already observe the (nominal) price

of the contingent claim at every time 0 ≤ t ≤ T and, since we have that M a(E) 6= ;, this can be

considered a fair value of C .

The 2nd FTAP (Harrison and Pliska, 1983) states that a market is complete if and only if Q

is the unique EMM with respect to E. Moreover, it is complete if and only if {Pt } satisfies the

predictable-representation property. This means every Q-martingale {X t } with respect to E

can be represented by X t = X0 +
∫ t

0 Hs dPs for all 0 ≤ t ≤ T , where {Ht } is an E-predictable (not

necessarily admissible) trading strategy. Unfortunately, in the continuous-time framework, only

a small number of market models satisfy the desired predictable-representation property.

It is not meaningful to expand the concept of market completeness from E to F simply by

substituting E with F. In this case, we could only guarantee that every contingent claim C ∈ ET is

replicable by an F-predictable trading strategy, but this is not necessarily E-predictable. This

means a market that is complete with respect to F might be incomplete with respect to E. Put

another way, if we substitute E with F, market completeness would lack the so-called subset

property (Latham, 1986).21 The subset property is a natural requirement and turns out to be

crucial when switching between the filtrations E and F, which is frequently done in this work.

Moreover, by substituting E with F we would allow C to be an FT -measurable payoff, but in

most practical situations it is sufficient and, for technical reasons, even necessary to assume

that C is determined only by the price history at time T , i.e., C ∈ ET .22 Interestingly, Harrison

and Pliska (1981, p. 220) mention that they consider only the natural filtration E, whereas in

Harrison and Pliska (1983) this essential point has been dropped.

If there exists a risk-neutral measure Q with respect to F it is not sufficient to require that the

discounted value process {Vt } of the E-predictable strategy {Ht } is a Q-martingale with respect

to E. More precisely, when replicating C it should be possible to produce a Q-martingale with

respect to F. In this case, the replicating strategy {Ht } is also fair with respect to F although

it is only E-predictable. This can be seen as follows: Suppose that we would allow {Ht } to

be an admissible F-predictable and not only E-predictable strategy. From Theorem 2.9 in

Delbaen and Schachermayer (1994) we conclude that the discounted value process of {Ht } is aQ-

supermartingale with respect to F, i.e., Vt ≥ EQ
(
C /Sa

T |Ft
)

for all 0 ≤ t ≤ T , where EQ
(
C /Sa

T |Ft
)

is the discounted value of the most favorable E-predictable replicating strategy at time t . This

means we cannot find a better result by allowing the replicating strategy {Ht } to be F-predictable.

The following definition of market completeness is based on the aforementioned arguments

and is less restrictive than the original one. It allows for complex financial markets with infinite

lifetime and an arbitrary filtration F ⊇ E. In particular, it satisfies the desired subset property.

Thus it can be considered a natural generalization of the definition of market completeness

given by Harrison and Pliska (1981, 1983).

Definition 2 (Complete market). Let a ∈A be some numéraire asset and suppose that U a(F) 6= ;.

Fix any risk-neutral measureQ ∈U a(F). The financial market is said to be complete if and only if

for every contingent claim C ∈ E∞ with EQ(C /Sa∞) <∞ , there exists an E-predictable strategy {Ht }

such that Vt = EQ(C /Sa∞ |Ft ) for all t ≥ 0, where {Vt } is the discounted value process of {Ht }.

The requirement of a risk-neutral measure is motivated by Theorem 1. Definition 2 allows

21Here, I use the term “subset property” in a broad sense, albeit Latham (1986) focuses on market efficiency.
22For example, the Black-Scholes model requires that F coincides with the natural filtration E (Harrison and Pliska,

1981, Jarrow and Madan, 1991).
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{Ht } to be based on any subuniverse A ⊆A of the financial market and it is assumed that the

contingent claim C is E∞-measurable. Moreover, the strategy {Ht } must be E-predictable and

thus its discounted initial value V0 is constant. The discounted value process {Vt } is a uniformly

integrable Q-martingale with respect to F (and not only with respect to E). This implies that

{Vt } > 0 and {Vt−} > 0, i.e., {Ht } is admissible. Moreover, it follows that V∞ = C /Sa∞ and so the

given strategy indeed replicates the contingent claim C .

The chosen definition of market completeness is relatively weak. Since it is only required that

the contingent claim is E∞-measurable, we need not assume that it is possible to assess the fair

value of any exotic derivative based on events that go beyond the history of asset prices. Typical

examples are weather derivatives or non-financial bets. Nonetheless, market completeness does

not exclude the possibility to replicate (some) exotic instruments. Moreover, for a complex and

complete market it is neither necessary nor sufficient that any finite subset of the asset universe

forms a complete market. This means in a complete financial market, with an infinite number of

assets, the predictable-representation property need not be satisfied in any subuniverse A ⊆A .

In particular, every subuniverse might contain a multitude of equivalent martingale measures.

The most striking example of a complex market, which is complete but model independent, is a

“dense” market, i.e., a financial market where each contingent claim C ∈ E∞ can be attained by a

single asset. Note that the properties required by Definition 2 are implicitly satisfied for every

E-predictable buy-and-hold single-asset strategy.

An important consequence of Definition 2 is that, for calculating the fair value of a contingent

claim C , we need only the information flow E but not the broader information flow F. On the

one hand, the replicating strategy {Ht } is only E-predictable and, on the other hand, it holds that

Vt = EQ
(
C /Sa∞ |Ft

)= EQ
(
C /Sa∞ |Et

)
for all t ≥ 0. Hence, if the market is complete with respect

to F, each information that goes beyond the evolution of asset prices, E, but does not exceed

the general information flow F can be neglected. This solves the first part of the fundamental

problem mentioned at the beginning of the introduction. The second part of the problem is

solved by the following theorem.

Theorem 4 (Uniqueness). Let a ∈A be some numéraire asset. If the financial market is complete,

U a(F) is a singleton.

Proof: Since U a(F) ⊆U a(E) and U a(F) 6= ;, it follows that U a(E) 6= ;. Let {Λt } be the E-RNP

associated with any Q ∈U a(E). The market is complete and so the contingent claim Sa∞Λ−1∞ > 0

can be attained by an E-predictable trading strategy with discounted value process {Vt }. We

have that V∞ =Λ−1∞ and thus

Vt = EQ
(
V∞ |Ft

)= EQ
(
V∞ |Et

)= EP
(
Λt ,∞V∞ |Et

)= EP
(
Λt ,∞Λ−1

∞ |Et
)=Λ−1

t

for all t ≥ 0. Now, suppose that there exist two probability measuresQ1,Q2 ∈U a(E) and let {Λ1t }

and {Λ2t } be the associated E-RNPs. Then
{
Λ−1

1t

}
and

{
Λ−1

2t

}
are the discounted value processes

for the contingent claims Sa∞Λ−1
1∞ and Sa∞Λ−1

2∞ . Define Qt =Λ−1
1t /Λ−1

2t for all t ≥ 0. We see that

both {Qt } and
{
Q−1

t

}
are P-martingales with Q0 =Q−1

0 = 1 and thus EP
(
Qt

)= EP
(
Q−1

t

)= 1 for all

t ≥ 0. This means we have that

EP

(
1

Qt

)
= 1

EP
(
Qt

) , ∀ t ≥ 0.
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Since the function f : x 7→ x−1 for all x > 0 is strictly convex, Jensen’s inequality implies that Qt = 1

and thusΛ1t =Λ2t for all t ≥ 0. This means U a(E) must be a singleton and so U a(F) ⊆U a(E) is

a singleton, too. Q.E.D.

Theorem 4 states that each complete financial market cannot have more than one risk-neutral

measure. This result holds irrespective of whether the market contains a finite or infinite number

of assets. Similar statements can be found, e.g., in Jarrow and Madan (1999), Jarrow et al. (1999)

as well as Biagini (2010). Hence, in every complete financial market we are always able to find a

unique representation of asset prices and fair values.

The following theorem guarantees that market completeness does not depend on the chosen

numéraire asset.

Theorem 5 (Change of numéraire). Let a ∈A be some numéraire asset. If the market is complete

with respect to a it is also complete with respect to every other numéraire asset b ∈A .

Proof: LetQ ∈U a(F) be the risk-neutral measure and choose any other numéraire asset b ∈A .

According to the proof of Theorem 2, we have that Q̃= ∫
Γ∞ dQ ∈U b(F) with Γt = Sb

t /Sa
t for all

t ≥ 0. Consider any contingent claim C ∈ E∞ with EQ̃
(
C /Sb∞

)<∞. It holds that

EQ
(
C /Sa

∞
)= EQ

(
Γ∞

C

Sb∞

)
= EQ̃

(
C /Sb

∞
)<∞ .

This means the contingent claim C can be attained by an E-predicable strategy {Ht } with value

process {Vt }—discounted by a—such that Vt = EQ
(
C /Sa∞ |Ft

)
for all t ≥ 0. Now, given the

numéraire asset b, the same strategy leads to the discounted value process
{
Ṽt

}
with

Ṽt =
Sa

t

Sb
t

Vt = EQ

(
Γ∞
Γt

C

Sb∞
|Ft

)
= EQ̃

(
C

Sb∞
|Ft

)
for all t ≥ 0. We conclude that the market is complete with respect to b ∈A . Q.E.D.

The third part of the fundamental problem discussed on p. 1 and p. 3 is still unsolved. This

means I need to clarify the circumstances under which it is possible to represent asset prices

and fair values in terms of P. Put another way, we are waiting to see the (additional) condition

that enables us to use the real-world measure as a risk-neutral measure.

4.2. Sensitivity

In the following, the time t ≥ 0 shall be understood as the “present,” every s ≥ 0 before t is

the “past,” whereas T > t symbolizes the “future,” i.e., we have that 0 ≤ s ≤ t < T <∞ unless

otherwise stated. Let X be some E∞-measurable random vector. For example, X could be a

vector of asset prices, or any other function of asset prices, that will be manifested in the future.

The complement of Et relative to Ft , i.e., σ(Ft \Et ), represents the information in Ft that goes

beyond the price history Et . For example, if Ft is the set of public information then σ(Ft \Et )

denotes the subset of public information that does not belong to the price history at time t .

A natural requirement arising in financial econometrics is

P(X ≤ x |Ft ) =P(X ≤ x |Et ) (1)

for all t ≥ 0, x ∈Rm , m ∈N, and E∞-measurable m-dimensional random vectors X . Eq. 1 implies

that the random vector X isP-independent of Ft conditional on the price history Et . This means

14
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the conditional distribution of future asset prices might depend on the current history Et of

asset prices but not on any additional information contained in Ft . Under these circumstances,

it is impossible to produce a better prediction of future asset prices (or functions thereof) by

using some information in Ft , provided the price history Et has already been taken into account.

More precisely, we have that

EP(X |Ft ) = EP(X |Et )

for all t ≥ 0 and X ∈ E∞ with EP(|X |) <∞ . Nevertheless, although it is superfluous to use any

kind of information that exceeds Et but is contained in Ft , there might exist some information

Gt beyond Ft that could be useful.

Another desirable property is

P
(
Yt ≤ y |E∞

)=P(
Yt ≤ y |Et

)
(2)

for all t ≥ 0, y ∈Rn , n ∈N, and Ft -measurable n-dimensional random vectors Yt . For example,

let Yt be a variable that indicates whether a stock company has committed a balance-sheet fraud

up to time t ≥ 0 (Yt = 1) or not (Yt = 0). Since the choice of F ⊇ E is arbitrary, we can suppose

without loss of generality that Yt ∈ Ft for all t ≥ 0. Consider an investor who takes only the

current price history into account and is not aware of the fraud. It is assumed that the fraud will

eventually have an impact on the stock price. Hence, it would be ideal for the investor to know

the future price evolution today, since on the basis of the future price movements, he or she

would get a better assessment of the fraud probability. Unfortunately, in real life, E∞ is unknown

at time t . Nonetheless, Eq. 2 states that the investor can readily substitute E∞ by Et . This means

all information that would be useful for calculating the fraud probability, conditional on past

and forthcoming price data, is already incorporated in the asset prices that can be observed now.

This paraphrases the widely accepted idea that asset prices “rapidly adjust to” new information

(Fama et al., 1969).

The following definition (Jeanblanc, 2010, p. 16) is crucial for the subsequent analysis.

Definition 3 (Immersion). Let Q be any probability measure. The filtration E is said to be Q-

immersed in F if and only if every square-integrable Q-martingale with respect to E is a square-

integrable Q-martingale with respect to F.

The statement that “E is immersed in F” (with respect to a probability measure Q) is often

referred to as the H-Hypothesis (Brémaud and Yor, 1978).

The following theorem provides different characterizations of the H-Hypothesis under the

physical measure P.

Theorem 6 (H-Hypothesis). The following assertions are equivalent:

(i) E is P-immersed in F.

(ii) It holds that P(X ≤ x |Ft ) =P(X ≤ x |Et ) for all t ≥ 0 , x ∈Rm , m ∈N, and m-dimensional

random vectors X ∈ E∞ .

(iii) It holds that P
(
Yt ≤ y |E∞

)=P(
Yt ≤ y |Et

)
for all t ≥ 0 , y ∈Rn , n ∈N, and n-dimensional

random vectors Yt ∈Ft .

(iv) Every local P-martingale with respect to E is a local P-martingale with respect to F.
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Moreover, if any one of the previous assertions is true it follows that

Et =Ft ∩E∞ , ∀ t ≥ 0.

Proof: Statements (i) to (iv) follow from Proposition 2.1.1 in Jeanblanc (2010). The last

implication is part of Theorem 3 in Brémaud and Yor (1978). Q.E.D.

Theorem 6 shows that the fundamental properties expressed by Eq. 1 and Eq. 2 are equivalent.

This leads to the following definition.

Definition 4 (Sensitive market). A financial market is said to be sensitive if and only if any one of

the equivalent assertions expressed by Theorem 6 is true. This is denoted by F E .

A financial market that is sensitive to F is also sensitive to every subfiltration I . This means

market sensitivity satisfies the subset property and F E does not exclude I E for any other

filtration I ⊇ E . Moreover, it is trivial that E E .

The following proposition provides a sufficient condition for market sensitivity.

Proposition 1. Consider any probability measure Q ∼ P and let {Λt } be the F-RNP associated

with Q . If E is Q-immersed in F and {Λt } is E-adapted we have that F E .

Proof: This is a direct consequence of Proposition 2.1.4 in Jeanblanc (2010). Q.E.D.

There are many possibilities to define the meaning of informational efficiency in the sense

that asset prices “fully reflect” some information flow F. For example, Dothan (2008) states that,

“The intuitive notion that prices fully reflect the information structure F = (Ft )0≤t≤T

is then the requirement that the discounted price process X t be Markov.”

Unfortunately, the Markov assumption, i.e.,

P(X ≤ x |Et ) =P(X ≤ x |St ) , ∀ t ≥ 0, x ∈Rm , m ∈N, X ∈ E∞ ,

essentially restricts the number of possible market models and it is well-known that this property

is not satisfied in reality.23

The concept of market sensitivity is less restrictive, but it is still intimately connected to

different notions of the Efficient-Market Hypothesis:

• The relationship expressed by (1) can be interpreted as a probabilistic definition of Fama’s (1970)

famous hypothesis that asset prices “fully reflect” Ft at every time t ≥ 0. For example, let Ft be the

set of all private information at time t . If the market is strong-form efficient (Fama, 1970) all private

information, except for the price history Et , can be ignored because it is already “incorporated”

in Et . Hence, if somebody aims at quantifying the conditional distribution of X ∈ E∞, the weaker

condition Et is as good as the stronger condition Ft , i.e., each private information beyond the

price history is simply useless.

• The probability distribution of future asset prices generally depends on the underlying information.

In a risky situation (Knight, 1921), the quality of each decision cannot become worse the more

information is used.24 This means every market participant should gather as much information

23It is often supposed that P(X ≤ x |Ft ) = P(X ≤ x |St ) (∀ t ≥ 0, x ∈ Rm , m ∈N, X ∈ E∞), which implies both market

sensitivity and the Markov property.
24This statement is no longer true under uncertainty (Frahm, 2015).
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as possible.25 Consequently, the chosen market model must specify which kind of information is

accessible by the economic subjects and used for their investment decisions. Suppose that their

decisions are based only on the conditional distribution of future asset prices, i.e., other variables

that will be manifested in the future do not matter. Eq. 1 says that any information contained in

Ft , but being complementary to Et , would not alter the conditional price distribution and so

this information can be simply ignored. More precisely, the economic subjects cannot improve

their asset allocations by using some information in σ(Ft \Et ) provided they have already taken

the current price history Et into account. Hence, in a pure investment economy where Eq. 1 is

satisfied, the current asset prices would be unaffected by revealing Ft to all market participants.

For example, if Ft is the set of private information, revealing some private information to the

investors would not change their investment decisions and so the financial market is strong-form

efficient in the sense of Latham (1986) and Malkiel (1992).26

• As already mentioned above, according to Fama et al. (1969), a financial market is considered

efficient if it “rapidly adjusts to” new information. Eq. 2 is the probabilistic counterpart of this

statement and implies that every “new information” Ft ∈Ft is instantaneously incorporated in the

asset prices that can be observed at time t , i.e., now, and not only at a later time T > t .

• Samuelson (1965) conjectures that the market participants “properly anticipate” the future price

evolution. He writes, “If one could be sure that a price will rise, it would have already risen.”

Suppose that Et 6= Ft ∩E∞ for some t ≥ 0. Due to the last part of Theorem 6 it follows that the

market is not sensitive. Hence, we have that Et ⊂Ft ∩E∞ and so there exists an event Ft ∈Ft ∩E∞
such that Ft 6∈ Et . Since the event Ft is also contained in E∞ but exceeds Et , it leads to a situation

where one can “foresee” to some degree the price evolution after time t . More precisely, the

information Ft reveals which sample paths are going to follow and which are not. This can be seen

as a contradiction to Samuelson’s doctrine. In the opposite case, i.e., if F E and thus Et =Ft ∩E∞
for all t ≥ 0, clairvoyance is impossible unless one has access to some information flow G ⊃ F and

the market is not sensitive to G.

The reason why the properties described by Theorem 6 characterize a “sensitive” market is

best understood by examining a market that is not sensitive. For this purpose, we have to take

a closer look into the measure-theoretic framework. Let Et ∈ Et be the current history of asset

prices and ET ∈ ET with ET ⊂ Et the price history at some future point in time T > t . Suppose

for the sake of simplicity that P(Et ) > P(ET ) > 0. Consider a trader who operates on the basis

of the information flow F and let his or her investment decision at time t be determined by

the distribution of future asset prices conditional on Ft . Since the market is not sensitive, we

can assume that there exists some information Ft ∈ Ft with Ft ⊂ Et and P(Ft ) > 0 such that

P(ET |Ft ) 6=P(ET |Et ). In this case, the investment decision made by the trader, given the current

history of asset prices, could depend on the realization of 1Ft .27 For example, the trader might

want to buy some asset in case 1Ft = 1 but decides to sell the same asset if 1Ft = 0. By definition,

the price history at time t is Et -measurable, i.e., the past and current asset prices are constant

over the set Et . Hence, the current asset prices are not sensitive to 1Ft , i.e., the trader is a price

taker—conditional on the current price history Et . From an economic point of view, this is not

desirable and characterizes a market where the asset prices do not “fully reflect” or “rapidly

adjust to” the information flow F, although this flow of information could be useful also for other

25This is true if the information costs are negligible (Grossman and Stiglitz, 1980). Otherwise, each rational subject

stops searching for information when the marginal cost approaches the marginal revenue (Jensen, 1978).
26Here, it is implicitly assumed that the subjects have already taken the current price history into account.
27Here, 1Ft (ω) = 1 if ω ∈ Ft and 1Ft (ω) = 0 else (∀ω ∈Ω).
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traders. Hence, perfect competition might enable a small investor to realize “abnormal profits”

if he or she has access to information that is not already known to other investors. For example,

this could be insider information.

We see that sensitivity is a highly desirable economic property. A market that is sensitive

can immediately react to the news evolving with F, irrespective of whether those news are

considered “good” or “bad.” This means in a sensitive market, the asset prices instantly adapt

to the investment decisions that are based on the future price expectations of the market

participants with respect to F. More precisely, each information Ft ∈Ft that is considered useful

for assessing the physical distribution of future asset prices has an immediate impact on the

supply and demand curves, which instantaneously affects the market quotes at time t . This does

not mean that every subject who operates on the basis of F makes the same investment decision.

Market sensitivity does not even imply that the investment decisions are rational in any sense

and pricing in a sensitive market need not be fair. For this reason, market sensitivity must not be

confused with Fama’s fair-game model (Fama, 1970) or any other approach to market efficiency

that requires the absence of “economic profits” (Jensen, 1978). Hence, the concept of market

sensitivity does not suffer from the joint-hypothesis problem (see Section A.1).

Let n ∈N be the number of market participants and suppose that each investor operates on

the basis of some information flow {Fi t } (i = 1,2, . . . ,n). An ideal market is sensitive to the flow of

private information, i.e., {Gt } with Gt =σ
(⋃n

i=1 Fi t
)

for all t ≥ 0. If insider trading is prohibited

and all insiders follow this rule, even an ideal market is not sensitive to the flow of insider

information. Even if there exist a few insider traders, but the market is competitive, each insider

is a price taker and so the market is still not sensitive to the flow of insider information. The

bigger a group of investors acting on the same information flow, the greater its potential impact

on the market prices. Hence, it can be assumed that financial markets are at least sensitive to

the flow of public information, i.e., {It } with It =⋂n
i=1 Fi t for all t ≥ 0.

Market sensitivity per se does not guarantee that the market is arbitrage free and in this specific

sense “efficient:” If the market is sensitive but not arbitrage free, it is evident that all market

participants will search in F for arbitrage opportunities. No-arbitrage conditions only guarantee

that the market is free of profits that would be realized by everyone, irrespective of his or her

own expectation, interest, and risk attitude. Nonetheless, if the market is arbitrage free but

not sensitive, some market participants might still improve their positions by collecting data

in addition to the current history of asset prices and re-allocating their capital. In either case,

the market participants have an incentive to search for information that cannot be found just

by investigating the history of asset prices. Only if the market is arbitrage free and sensitive, it

is impossible to “make money out of nothing” on the basis of F and the price evolution “fully

reflects” or “rapidly adjusts to” the broader information flow F. The former is a fundamental

assumption in financial mathematics, whereas the latter is a basic paradigm in finance theory.

This justifies the following definition of market efficiency.

Definition 5 (Efficient market). Let a ∈A be some numéraire asset. The financial market is said

to be efficient if and only if U a(F) 6= ; and F E .

Theorem 2 guarantees that market efficiency does not depend on the chosen numéraire asset.

Moreover, every complete and sensitive market is also efficient.
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5. The Growth-Optimal Portfolio

Fix a subuniverse A ⊆A and choose any asset a ∈ A as a numéraire. Further, let {Ht } and {Kt } be

two normalized F-predictable strategies whose discounted value processes are denoted by {Vt }

and {Wt }, respectively. Let Qt =Vt /Wt be the value of Vt benchmarked by Wt at each time t ≥ 0.

Since Qt =Vt /Wt = (Sa
t Vt )/(Sa

t Wt ) for all t ≥ 0, it does not matter whether we express the values

in units of the chosen numéraire asset or in units of the basic currency. This implies that the

benchmarked value process {Qt } does not depend on the chosen numéraire asset at all.

The normalized strategy {Kt } is said to be a numéraire portfolio with respect to F if and only

if for every normalized F-predictable strategy {Ht }, the benchmarked value process {Qt } is a

P-supermartingale with respect to F, i.e., EP(QT |Ft ) ≤ Qt for all 0 ≤ t ≤ T <∞. In particular,

the stochastic process
{
W −1

t

}
is a positive P-supermartingale. Doob’s Martingale Convergence

Theorem guarantees that W −1∞ exists and is finite, i.e., W −1∞ ∈ [0,∞[ . Hence, the terminal value

W∞ > 0 is well-defined, but we could have that W∞ =∞.28

The strategy {Kt } is said to be a growth-optimal portfolio with respect to F if and only if it

maximizes the drift rate of {logWt } with respect to F, i.e., the so-called growth rate of {Wt }, for all

t ≥ 0. Since logK ′
t Pt = logK ′

t St − logSa
t for all t ≥ 0, every strategy is growth optimal with regard

to the discounted price process {Pt } if and only if it is growth optimal with regard to the nominal

price process {St }. Thus growth optimality cannot be destroyed by moving from discounted

to nominal asset prices and vice versa. Put another way, the choice of the numéraire does not

matter for a GOP and the same holds for every NP.

A historical summary of the GOP is given by Christensen (2005) and a rich collection of

contributions related to the GOP can be found in MacLean et al. (2011). Karatzas and Kardaras

(2007) provide deep insights into the mathematical properties of the GOP and vividly explain

its connection to the several no-arbitrage conditions discussed in this work.29 Theorem 3.15

in Karatzas and Kardaras (2007) describes a set of regularity conditions which guarantee that

there exists one and only one GOP with respect to F. In this case, this is also an NP with respect

to F. Conversely, if an NP with respect to F exists, the regularity conditions are satisfied and

the NP corresponds to the unique GOP with respect to F. Moreover, there exists an NP with

finite terminal value if and only if there is NUPBR (Karatzas and Kardaras, 2007, Theorem 4.12).

Throughout this section it is assumed that NUPBRa
A(F).

If the market is sensitive, every decision at time t− that is based on the conditional probability

P(E |Ft−) for any E ∈ E∞ can be done as well on the basis of P(E |Et−). This can be seen as

follows: Consider the two P-martingales {Mt } and {Nt } with Mt = P(E |Ft ) and Nt = P(E |Et )

for all t ≥ 0. Obviously, these martingales are identical if F E . Now, the Predictable Stopping

Theorem (Jacod and Shiryaev, 2003, Lemma I.2.27) implies that

Mt− = EP(Mt |Ft−) =P(E |Ft−) and Nt− = EP(Nt |Et−) =P(E |Et−) .

Since Mt− = Nt− for all t ≥ 0 (with t− = 0 for t = 0), we have that

P(E |Ft−) =P(E |Et−) , ∀ t ≥ 0, E ∈ E∞ .

28Since {Qt } is a nonnegative P-supermartingale, it converges almost surely to some nonnegative random variable Q∞ .

This means also the discounted value process {Vt } has a terminal value, i.e., V∞ =W∞Q∞ ≥ 0. In the unfavorable

case V∞ = 0, the investor applies a so-called “suicide strategy” (Harrison and Pliska, 1981).
29See also Hulley and Schweizer (2010) as well as Imkeller and Petrou (2010) for similar results.
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In particular, the drift rates conditional on Ft− and Et− coincide at every time t ≥ 0. Hence, if

F E the GOP with respect to F equals the GOP with respect to E.

As already mentioned, the GOP plays a fundamental role in modern finance. It serves as a

benchmark portfolio (Platen, 2006, 2009, Platen and Heath, 2006).30 There exists an important

connection between the GOP and market sensitivity, which can be seen by the following theorem.

Theorem 7 (Benchmarked value process). Suppose that NUPBRa
A(F) and F E . Let {Vt } be the

discounted value process of a normalized F-predictable strategy {Ht } and {Wt } the discounted

value process of the GOP with respect to E. Further, let {Qt } with Qt =Vt /Wt for all t ≥ 0 be the

benchmarked value process of {Ht }. Then

(i) EP(QT |Ft ) ≤Qt for all 0 ≤ t ≤ T <∞ and

(ii) for every σ-algebra It ⊆Ft and all 0 ≤ t ≤ T <∞ we have that

EP

(
QT

Qt
−1 |It

)
≤ 0 as well as EP

(
log

QT

Qt
|It

)
≤ 0.

Proof: (i) Since the market is sensitive, {Wt } represents the discounted value process of the NP

with respect to F, which leads to the supermartingale property of {Qt }. (ii) If we substitute It by

Ft , the first inequality is an immediate consequence of (i) and the second inequality follows

from

EP

(
log

QT

Qt
|Ft

)
≤ logEP

(
QT

Qt
|Ft

)
≤ 0, ∀ 0 ≤ t ≤ T <∞ .

The same inequalities with respect to It rather than Ft appear after applying the law of iterated

expectations. Q.E.D.

Hence, if the market is sensitive, it is impossible to find a normalized F-predictable strategy

whose benchmarked value process leads to a positive expected (log-)return, conditional on some

information set It ⊆Ft at any time t ≥ 0. The σ-algebra It need not contain Et . This means it

can be any sub-σ-algebra of Et , e.g., the σ-algebra generated by a set of technical indicators or

statistics based on the history of asset prices at time t . This allows us to apply simple hypothesis

tests for market sensitivity and/or growth optimality. Here, I ignore the econometric implications

of Theorem 7 and concentrate on aspects of financial mathematics.

Let {Wt } be the discounted value process of the GOP with respect to F and consider any

contingent claim C ∈ ET for a fixed time T <∞ of maturity such that

EP

(
C /Sa

T

WT

)
<∞ .

Suppose that there is NFLVR with respect to F and consider an admissible F-predictable strategy

{Ht } that leads to C , i.e., VT = C /Sa
T . Since C is positive, the discounted value process {Vt }

and its left-continuous version must be positive, too. This means {Ht /V0} is a normalized F-

predictable strategy with discounted value process {Vt /V0}. Hence, the benchmarked value

process {(Vt /V0)/Wt } is a P-supermartingale with respect to F and thus

Vt

Wt
≥ EP

(
C /Sa

T

WT
|Ft

)
30Under some additional assumptions, the GOP is a linear combination of the market portfolio and the money-market

account (Platen, 2006, Platen and Heath, 2006, Ch. 11). Typically, it is assumed that all market participants use the

same information flow F or at least that their expectations are rational.
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for all 0 ≤ t ≤ T . This means {
EP

(
C /Sa

T

WT /Wt
|Ft

)}
0≤t≤T

forms a lower bound for the discounted value processes of all admissible F-predictable strategies

that lead to C . This means an investor who aims at replicating the payoff C , but has no more

information than F, should try to choose an F-predictable strategy whose discounted value

process attains the lower bound with respect to F. By contrast, if the investor has access to

some broader information flow G ⊃ F, he or she might find a better strategy to obtain C . These

arguments lead to the following definition (Platen, 2009).31

Definition 6 (Fair strategy). Suppose that NFLVRa
A(F) and let {Wt } be the discounted value process

of the GOP with respect to F. An admissible F-predictable strategy {Ht } that leads to the terminal

value C ∈ ET for any fixed T <∞ such that

EP

(
C /Sa

T

WT

)
<∞

is said to be fair with respect to F if and only if

Vt = EP

(
C /Sa

T

WT /Wt
|Ft

)
, ∀ 0 ≤ t ≤ T .

From the previous arguments, we conclude that the discounted value process of a fair strategy

as well as its left-continuous version is always positive.

In general, if some information flow F is available to the investor, the GOP at time t ∈ [
0,T

]
should be calculated by Ft− and not by Et− , since otherwise he or she could overestimate the

fair price of a contingent claim. By contrast, if the market is sensitive, using the information Et−
is sufficient. This is the quintessence of the following theorem.

Theorem 8 (Fair strategy). Suppose that NFLVRa
A(F) and F E . If a strategy is fair with respect

to E it is fair with respect to F.

Proof: Let {Vt } be the discounted value process of a fair strategy {Ht } with respect to E that

leads to C ∈ ET and {Wt } be the discounted value process of the GOP with respect to E, so that

Vt = EP

(
C /Sa

T

WT /Wt
|Et

)
for all 0 ≤ t ≤ T . Since the market is sensitive, we have that

EP

(
C /Sa

T

WT /Wt
|Et

)
= EP

(
C /Sa

T

WT /Wt
|Ft

)
for all 0 ≤ t ≤ T and the GOP with respect to E is also growth optimal with respect to F . Hence,

{Ht } is also fair with respect to F. Q.E.D.

This means an investor who aims at a positive payoff C ∈ ET cannot gain anything by taking

an information flow F into account if the market is sensitive to F, provided he has already found

a fair strategy with respect to E.32

31Platen (2009) only requires NUPBR a
A(F), but he explicitly assumes that {Vt } is positive.

32The proof of Theorem 8 reveals that the discounted value process of a fair strategy with respect to E coincides with

the discounted value process of a fair strategy with respect to F. This means the strategies are identical.
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6. The Martingale Hypothesis

The methodological framework that has been chosen in this work does not require a competitive

market. In particular, it is not assumed that the market participants are price takers. This

means any individual investment decision Hi t− (i = 1,2, . . . ,n) can have an influence on St−
and vice versa. Hence, the financial market can be highly illiquid. The price-taker assumption,

i.e., the assumption that each order “gets lost in the masses,” does not adequately describe the

pricing mechanism of financial markets. In fact, market sensitivity thrives on the fact that each

investment decision has an impact on the asset prices, whereas completeness guarantees that

the market participants are able to tailor each financial instrument to their needs. Therefore,

completeness and sensitivity mutually support each other and enables us to derive a simple

real-world valuation formula. This is done in the subsequent analysis.

A method which comes very close to the target is the benchmark approach discussed in

Section 5. Fix any subuniverse A ⊆A with some numéraire asset a ∈ A. If there is NUPBRa
A(F),

it must hold that

Pt ≥ EP

(
PT

WT /Wt
|Ft

)
(3)

for all 0 ≤ t ≤ T <∞, where {Wt } is the discounted value process of the GOP with respect to F.

Unfortunately, the given result represents only a Law of Minimal Price (Platen, 2009) but not a

Law of One Price. The reason is twofold: (i) It provides only a lower bound for the discounted

price process {Pt } and (ii) even if (3) was an equality, the conditional expectation in general

is not stable under a change of filtration. Another drawback is that for calculating the GOP

with respect to F it is not sufficient to take only asset prices into consideration. In general, it is

necessary to search for data in F that go beyond E.

In the following, I derive a Law of One Price under the assumption that the market is complete

and sensitive. The basic idea is simple: I fix the physical measure P and search for a normalized

E-predictable strategy ? such that P ∈U ?(F). This means I treat the strategy ? like an asset,33

which is possible only because ? is determined by the evolution of asset prices. Hence, its value

process is E-adapted, like every other price process. By contrast, risk-neutral valuation works

the other way around: One fixes a numéraire asset a ∈ A and searches for some risk-neutral

measure Q ∈U a(F) or at least for an EMM Q ∈M a(F).

The idea of fixing the physical measure and searching for an appropriate numéraire ? such

that P ∈ M?(F) or at least P ∈ L ?(F) can be found in Becherer (2001) and Long (1990),34 but

the results presented in this work differ in several aspects. The aforementioned authors (i) do

not study conditions under which the discounted price processes turn out to be uniformly

integrable P-martingales with respect to F, (ii) do not distinguish between E and F, and (iii)

assume a financial market with finite lifetime, so that the essential requirement of uniform

integrability becomes superfluous.

Most of the following results require a complete financial market. They are applicable both

to simple and complex markets but, due to the arguments given in Section 4.1, it is tempting

to think about a market with an infinite number of assets. This leads to a model-independent

framework, i.e., although the market is assumed to be complete, it is not necessary to make any

specific assumption about the (discounted) price processes.

33This is not to say that ? belongs to the asset universe, A , which contains only the primary assets in the market.
34According to Becherer (2001), this approach even goes back to Vasicek (1977, p. 184).
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Proposition 2. Let a ∈ A be some numéraire asset and suppose that the financial market is

complete. If the F-RNP associated with any Q ∈U a(F) is E-adapted it follows that F E .

Proof: Consider any square-integrable Q-martingale {X t } with respect to E . Hence, {X t } is

uniformly Q-integrable and converges to some limit X∞ . Choose any real number x > 0 and

define

X1∞ := x +max{X∞ ,0} > 0 and X2∞ := x −min{X∞ ,0} > 0

so that X∞ = X1∞− X2∞ . The market is complete and so the contingent claims Sa∞X1∞ > 0

and Sa∞X2∞ > 0 can be attained by two E-predictable trading strategies with discounted value

processes {V1t } and {V2t }. It follows that

EQ(V1∞ |Ft ) =V1t = EQ(V1∞ |Et ) and EQ(V2∞ |Ft ) =V2t = EQ(V2∞ |Et )

for all t ≥ 0. Hence, we obtain

X t = EQ(X∞ |Et ) = EQ(X1∞−X2∞ |Et ) = EQ(X1∞ |Et )−EQ(X2∞ |Et )

= EQ(V1∞ |Et )−EQ(V2∞ |Et ) = EQ(V1∞ |Ft )−EQ(V2∞ |Ft )

= EQ(X1∞ |Ft )−EQ(X2∞ |Ft ) = EQ(X1∞−X2∞ |Ft ) = EQ(X∞ |Ft )

for all t ≥ 0 and so {X t } is a (square-integrable) Q-martingale with respect to F . This means E is

Q-immersed in F. Now, Proposition 1 guarantees that F E . Q.E.D.

The usual definition of the GOP can be applied to complex financial markets by allowing the

investors to operate in any subuniverse of A . A GOP based on a subuniverse A ⊆A is simply

said to be “the GOP” if and only if there is no GOP in any other subuniverse B ⊆A that leads to

a higher growth rate. The GOP remains growth optimal if prices and values are denominated

in the basic currency. Moreover, as is shown in Section 5, every GOP with respect to E is also

growth optimal with respect to F if the market is sensitive.

Proposition 3. Let? be any normalized E-predictable strategy and suppose that P ∈L ?(F). Then

? is the unique GOP with respect to F.

Proof: Fix any subuniverse A ⊆A containing the assets that are used by the strategy ? and

take ? as a numéraire. Further, let {Ht } be any normalized F-predictable strategy in A. From

Theorem 2.9 in Delbaen and Schachermayer (1994) it follows that the discounted value process

of {Ht } is a P-supermartingale with respect to F. This means ? is an NP in A with respect to F.

Theorem 3.15 in Karatzas and Kardaras (2007) implies that? is the unique GOP in A with respect

to F. The same holds for every other subuniverse that contains the assets of ?. Further, it is clear

that any other subuniverse that does not contain all assets used by ? cannot lead to a higher

growth rate. This means ?must be growth optimal with respect to F. By the same arguments,

we may conclude that ? is unique. Q.E.D.

Theorem 9 (Growth-optimal portfolio). Every complete and sensitive financial market contains

a unique E-predictable GOP with respect to F.

Proof: Consider some numéraire asset a ∈ A . Let Q ∈ U a(F) ⊆ U a(E) be the unique risk-

neutral measure and {Λt } the E-RNP associated with Q. From Lemma 3 we know that {Λt } is

an E-DFP, i.e., {Λt Pt } is a P-martingale with respect to E for each discounted price process {Pt }.
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Since the market is sensitive, Theorem 6 implies that {Λt Pt } is also a P-martingale with respect

to F for each discounted price process {Pt }. Further, the market is complete and so there exists

an E-predictable trading strategy {Kt } with discounted value process {Wt } such that W∞ =Λ−1∞
and

Wt = EQ(W∞ |Ft ) = EQ(W∞ |Et ) = EP(Λt ,∞W∞ |Et ) = EP(Λt ,∞Λ−1
∞ |Et ) =Λ−1

t

for all t ≥ 0. This means
{
Pt /Wt

}
is a P-martingale with respect to F for each discounted price

process {Pt }. Let {S?t } with S?t = Sa
t Wt for all t ≥ 0 be the nominal value process of {Kt }, so that

each {St /S?t } is a P-martingale with respect to F, i.e., P ∈M?(F) ⊆L ?(F). Now, Proposition 3

implies that {Kt } is the unique GOP with respect to F. Q.E.D.

The following theorem is the main result of this work. It provides a simple characterization of

market completeness and sensitivity. Moreover, it clarifies that under these ideal circumstances,

the GOP with respect to F is E-predictable and thus can be considered a “benchmark asset.”

Theorem 10 (Martingale Hypothesis). A complete financial market is sensitive if and only if there

exists a normalized E-predictable strategy ? such that P ∈U ?(F). The strategy ? corresponds to

the unique GOP with respect to F.

Proof: I start with the “only if” part. The proof of Theorem 9 reveals that there exists an E-

predictable GOP with respect to F with nominal value process
{
S?t

}
. Since the market is sensitive,

we obtain

St

S?t
= EQ

(
W∞
Wt

S∞
S?∞

|Ft

)
= EQ

(
W∞
Wt

S∞
S?∞

|Et

)
= EP

(
S∞
S?∞

|Et

)
= EP

(
S∞
S?∞

|Ft

)
for all t ≥ 0 and {St }, where Q ∈U a(F) represents the unique risk-neutral measure. This means

each P-martingale {St /S?t } is closed by S∞/S?∞ , i.e., P ∈U ?(F). For the “if” part consider some

numéraire asset a ∈A and note that
{
W −1

t

}
with Wt = S?t /Sa

t for all t ≥ 0 is a positive uniformly

integrable P-martingale with respect to F such that W −1
0 = 1 and W −1∞ > 0. This means

{
W −1

t

}
is

an F-DFP with associated probability measure Q̃= ∫
W −1∞ dP and we have that

St

Sa
t
= EP

(
W −1∞
W −1

t

S∞
Sa∞

|Ft

)
= EQ̃

(
S∞
Sa∞

|Ft

)

for all t ≥ 0 and {St }. Thus each Q̃-martingale {St /Sa
t } is closed by S∞/Sa∞ , i.e., Q̃ ∈U a(F). Since

U a(F) is a singleton, we conclude that Q̃=Q . This means
{
W −1

t

}
is the F-RNP associated with

Q and, since
{
W −1

t

}
is E-adapted, Proposition 2 implies that F E. Finally, from P ∈U ?(F) ⊆

L ?(F) and Proposition 3, we conclude that ? is the unique GOP with respect to F. Q.E.D.

Hence, every complete financial market is sensitive to the information flow F if and only if

the discounted price processes turn out to be uniformly integrable P-martingales with respect

to F after an appropriate choice of the numéraire. This leads to a Law of One Price. In fact, we

have that Pt = EP
(
P∞ |Ft

)
with Pt = St /S?t for all t ≥ 0. Since the nominal value process

{
S?t

}
is E-adapted, we can always substitute Ft by Et . Theorem 10 also clarifies that the DFP {Λt }

given by Theorem 3 is directly related to the GOP. More precisely, S?t /S?∞ represents a state-price

density or pricing kernel, so that

St = EP

(
S?t
S?∞

S∞ |Ft

)
, ∀ t ≥ 0.
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Samuelson (1965) claims that the nominal price process {St } is a P-martingale with respect to

the natural filtration if future prices are “properly anticipated.” In his proof he ignores interest

and risk aversion. It is clear that this Martingale Hypothesis cannot be maintained if one takes

interest and/or risk preferences into consideration. Theorem 10 provides a generalization of

Samuelson’s Martingale Hypothesis. The trick is to apply the “correct” discount factor to asset

prices, i.e., to choose the GOP as a numéraire, given that the market is complete and sensitive.

In this case, we obtain the simple real-world valuation formula Vt = EP
(
C /S?∞ |Ft

)
for all t ≥ 0

and each contingent claim C ∈ E∞. This solves the remaining part of the fundamental problem

discussed at the beginning of the introduction and at the end of Section 3.

The actual challenge is to find the GOP. In practical situations, this can be done by applying

econometric procedures. For this purpose, it is not necessary to propagate any specific market

model. Another possibility is to approximate the GOP by a linear combination of the market

portfolio and the money-market account (Platen, 2006, Platen and Heath, 2006, Ch. 11). In either

case, since the market is sensitive, it is not necessary to investigate any information that goes

beyond the evolution of asset prices and does not exceed the general information flow F.

7. Conclusion

After an appropriate choice of the numéraire, the discounted price processes in a complete

financial market are uniformly integrable martingales under the real-world measure if and only

if the market is sensitive. The given result is model independent, i.e., the underlying probabilistic

assumptions are minimal, and it highlights two fundamental axioms of neoclassical finance: (i)

The absence of arbitrage opportunities and (ii) informational efficiency. An arbitrage opportunity

can be either a free lunch with vanishing risk or a dominant strategy. This particular notion of

arbitrage is motivated by the 3rd FTAP. Informational efficiency means that the evolution of asset

prices is immersed in a general flow of information with respect to the physical measure. Roughly

speaking, the market prices must “fully reflect” or “rapidly adjust to” all relevant information.

To the best of my knowledge this work presents novel results. For example, it extends the

3rd FTAP to markets with infinite lifetime. Further, it illustrates how no-arbitrage conditions,

completeness, efficiency, and the growth-optimal portfolio are connected to each other. The

presented theorems strengthen the general findings that have been thoroughly discussed in

the literature under the label of “benchmark approach,” which leads to a Law of Minimal Price.

A key observation of this work is that in a complete and sensitive market, the growth-optimal

portfolio is determined by the evolution of asset prices and so we obtain a Law of One Price.

The given results could be used for constructing hypothesis tests for market efficiency. For

example, one can test the null hypothesis that a market is efficient with respect to the flow of

public or private information. Additionally, it is possible to test whether a trader makes use of

information that is not “fully reflected” by the asset prices. The econometric implications of the

presented results and their empirical implementation shall be addressed in the future.
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A. Appendix

A.1. The Classic Approach to Market Efficiency

The literature on the Efficient-Market Hypothesis is overwhelming and even the number of

review papers is huge. Here, I give only a very brief overview of the classic approach to market

efficiency.35 This suggests that the market is a fair game (Fama, 1970):

(i) Each asset has a fair equilibrium expected return conditional on Ft for all 0 ≤ t ≤ T and

(ii) the true expectations conditional on Ft coincide with the fair equilibrium expected

returns given by (i) at every time t ∈ [
0,T

]
.36

Another, more general, interpretation of market efficiency is due to Jensen (1978):

“A market is efficient with respect to information set θt if it is impossible to make

economic profits by trading on the basis of information set θt . By economic profits,

we mean the risk adjusted returns net of all costs.”

Similarly, Timmermann and Granger (2004) conclude that,

“A market is efficient with respect to the information set, X t , search technologies,

St , and forecasting models, Mt , if it is impossible to make economic profits by

trading on the basis of signals produced from a forecasting model in Mt defined over

predictor variables in the information set X t and selected using a search technology

in St .”

For identifying “economic profits” we need to define “equilibrium expected” or “risk adjusted”

asset returns. This leads to the following problem (Campbell et al., 1997):

“[. . . ] any test of efficiency must assume an equilibrium model that defines normal

security returns. If efficiency is rejected, this could be because the market is truly

inefficient or because an incorrect equilibrium model has been assumed. This joint

hypothesis problem means that market efficiency as such can never be rejected.”

The joint-hypothesis problem can be considered the Achilles heel of the classic approach to

market efficiency (Fama, 1991). There exist many definitions or interpretations of the Efficient-

Market Hypothesis. Some of them are discussed in Section 4.2. Definition 5 does not require any

equilibrium model and thus it is not affected by the joint-hypothesis problem.

A.2. Arbitrage-Free Markets

A.2.1. No-Arbitrage Conditions

In the following, I use the shorthand notation
∫

H dP = ∫ ∞
0 Ht dPt for the final gain of the strategy

{Ht }.37 An admissible F-predictable strategy {Ht } that is such that

35See Sewell (2011) for a comprehensive discussion on the history of the Efficient-Market Hypothesis.
36The assumption that asset returns are serially independent or that they follow a random walk is neither necessary

nor sufficient for a fair game (Campbell et al., 1997, LeRoy, 1973, Lucas, 1978).
37Here, it is implicitly assumed that the limit

∫ ∞
0 Ht dPt exists almost surely.
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(i) P
(∫

H dP ≥ 0
)= 1 and

(ii) P
(∫

H dP > 0
)> 0

is said to be an arbitrage. Now, consider two admissible F-predictable strategies {Gt } and {Ht }.

The strategy {Gt } is said to dominate {Ht } if and only if

(i) P
(∫

G dP ≥ ∫
H dP

)= 1 and

(ii) P
(∫

G dP > ∫
H dP

)> 0.

By contrast, if there is no admissible F-predictable strategy that dominates {Ht }, the latter is said

to be F-maximal (Delbaen and Schachermayer, 1998).

Dominance can be interpreted as “relative arbitrage” (Merton, 1973).38 A strategy that is

dominated by another strategy can be considered Pareto inefficient. This is because the final

gain of the dominating strategy can never be worse, but it is better in some possible states of the

world. I say that there is no dominance if and only if each single asset in A is F-maximal. ND

implies no arbitrage (NA) but the converse is not true. Moreover, the ND condition implies that

no asset can be dominated on any time interval [s, t ] with 0 ≤ s < t <∞ . Otherwise, one could

hold the corresponding asset from time 0 to time s, switch to the dominant strategy at time s,

apply this strategy from time s to time t , switch back to the asset at time t and maintain this

position until the end of time. This would dominate the asset and so the ND condition would be

violated.39

Let
{

Htn
}

n∈N be a sequence of admissible F-predictable strategies and
∫

Hn dP the final gain

of the n-th strategy (n ∈N).40 The sequence {Htn} is said to be a free lunch with vanishing risk if

and only if there exist some real numbers δ,ε> 0 such that ‖(
∫

Hn dP )−‖∞ → 0 as n →∞ and

for each n ∈N there exists a natural number m ≥ n such that

P

(∫
Hm dP > ε

)
> δ.41

A free lunch with vanishing risk is essentially an arbitrage, since the maximum loss can be

made arbitrarily small by choosing a sufficiently large n ∈N.42 No free lunch with vanishing risk

implies NA but the converse is not true. NFLVR also guarantees that the final gain
∫

H dP of

every admissible strategy {Ht } exists and is finite (Delbaen and Schachermayer, 1994).

Let {Htn} be a sequence of normalized F-predictable strategies and {Vtn} the corresponding

sequence of discounted value processes. The sequence {Htn} is said to be an unbounded profit

with bounded risk if and only if
{
V∞n

}
is unbounded in probability, i.e.,

lim
x→∞ sup

n∈N
P
(
V∞n > x

)> 0.

This is also referred to as an arbitrage of the first kind (Imkeller and Perkowski, 2011). Karatzas

and Kardaras (2007) mention that an unbounded profit with bounded risk gives an investor

38For a similar concept see, e.g., Karatzas and Fernholz (2005) as well as Platen (2004).
39See Jarrow and Larsson (2012) for a similar argument.
40Each

{∫ t
0 Hsn dPs

}
is bounded below by a common number −a ≤ 0. This is implicit in the definition of K0 in Delbaen

and Schachermayer (1994, p. 473).
41Actually, according to Delbaen and Schachermayer (1994, Corollary 3.7), this is a characterization of a free lunch with

vanishing risk rather than the original definition which is given in topological terms.
42It is worth emphasizing that the loss

(∫
Hn dP

)− vanishes uniformly (on the essential part ofΩ) as n →∞ and not

only in probability (Delbaen and Schachermayer, 1994, p. 501).
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the possibility of making a considerable amount of money out of almost nothing. In fact, there

always exist a probability p > 0 and a real number x0 > 0 such that supn∈NP
(
V∞n/x > 1

)≥ p for

all x ≥ x0 . According to Karatzas and Kardaras (2007, Proposition 4.2), there is NUPBR and NA if

and only if there is NFLVR, i.e., NFLVR ⇔ NA ∧ NUPBR.

A.2.2. Radon-Nikodym Derivatives

For every probability measure Q∼P the Radon-Nikodym Theorem guarantees that there exists

one and only one positive F-adapted stochastic process {Λt } such that∫
Ft

dQ=
∫

Ft

Λt dP , ∀ Ft ∈Ft , t ≥ 0.

The random variableΛt represents the Radon-Nikodym derivative of Q with respect to P on the

σ-algebra Ft . Therefore, {Λt } is referred to as the Radon-Nikodym process with respect to the

filtration F associated with Q . Moreover, there exists one and only one positive random variable

Λ such that
∫

F dQ= ∫
F ΛdP for all F ∈F∞ and thus∫

Ft

Λt dP=
∫

Ft

ΛdP , ∀ Ft ∈Ft , t ≥ 0.

This means it holds that Λt = EP
(
Λ |Ft

)
for all t ≥ 0 and so {Λt } is a uniformly integrable P-

martingale with respect to F converging to Λ> 0.43 The inverse RNP
{
Λ−1

t

}
with respect to F

carries the Radon-Nikodym derivatives of P with respect to Q and is a uniformly integrable

Q-martingale with respect to F converging toΛ−1 > 0.

Lemma 1. Consider a probability measure Q∼P. Let {Λt } be the associated F-RNP and fix any

T <∞ . Then for every random variable X ∈FT with EQ(|X |) <∞ we obtain

EQ(X |Ft ) = EP

(
ΛT

Λt
X |Ft

)
for all 0 ≤ t ≤ T . Moreover, for every random variable X ∈F∞ with EQ(|X |) <∞ we have that

EQ(X |Ft ) = EP

(
Λ∞
Λt

X |Ft

)
for all t ≥ 0 .

Proof: Since EQ(|X |) <∞ and X as well asΛT are FT -measurable, we have that∫
Ft

X dQ=
∫

Ft

ΛT X dP=
∫

Ft

EP(ΛT X |Ft )dP

=
∫

Ft

EP

(
ΛT

Λt
X |Ft

)
Λt dP=

∫
Ft

EP

(
ΛT

Λt
X |Ft

)
dQ

for all 0 ≤ t ≤ T and Ft ∈ Ft , i.e., EQ(X |Ft ) = EP
[
(ΛT /Λt ) X |Ft

]
. Similar arguments apply in

the case X ∈F∞. Q.E.D.

Due to Lemma 1, we have that

EQ(X |Ft ) = EP

(
ΛT

Λt
X |Ft

)
= EP

(
ΛT /Λ0

Λt /Λ0
X |Ft

)
for all 0 ≤ t ≤ T <∞ . Hence, we can focus on the normalized RNP {Λt /Λ0}. Throughout this

work it is implicitly assumed thatΛ0 = 1 without loss of generality.

43Lévy’s Zero-One Law leads toΛt = EP(Λ |Ft ) → EP(Λ |F∞) =Λ as t →∞ .

28



Frahm, 2015 • Pricing and Valuation under the Real-World Measure

Lemma 2. Consider a probability measure Q ∼ P and let {Λt } be the associated F-RNP. The

stochastic process {X t } is a (local) Q-martingale with respect to F if and only if {Λt X t } is a (local)

P-martingale with respect to F.

Proof: For the “only if” part suppose that {X t } is a local Q-martingale with respect to F and

consider a localizing sequence {τn} of F-stopping times, so that

X t∧τn = EQ(XT∧τn |Ft ) = EP

(
ΛT

Λt
XT∧τn |Ft

)
, ∀ n ∈N , 0 ≤ t ≤ T <∞ .

Hence, the stochastic process {Λt X t∧τn } is a P-martingale with respect to F for all n ∈ N . It

follows that {Λt∧τn X t∧τn } is also a P-martingale with respect to F for all n ∈ N.44 This means

{Λt X t } is a localP-martingale with respect to F. For the “if” part suppose that {Yt } with Yt =Λt X t

for all t ≥ 0 is a local P-martingale with respect to F. Now, there exists a localizing sequence {τt },

so that

Yt∧τn = EP(YT∧τn |Ft ) = EQ

(
Λ−1

T

Λ−1
t

XT∧τn |Ft

)
, ∀n ∈N , 0 ≤ t ≤ T <∞ .

This means
{
Λ−1

t∧τn
Yt∧τn

}
is a Q-martingale with respect to F. Since Λ−1

t∧τn
Yt∧τn = X t∧τn for all

t ≥ 0, {X t } is a localQ-martingale with respect to F. Similar arguments apply without localization

if {X t } is a Q-martingale or {Λt X t } is a P-martingale with respect to F. Q.E.D.

Lemma 3. Let a ∈A be some numéraire asset and suppose that M a(F) 6= ; (L a(F) 6= ;). Then

the F-RNP associated with Q ∈ M a(F) (Q ∈ L a(F)) is a (local) F-DFP associated with Q and a

(local) F-DFP associated with Q is the F-RNP associated with Q ∈M a(F) (Q ∈L a(F)).

Proof: The F-RNP {Λt } associated with Q ∈ L a(F) is a positive uniformly integrable P-

martingale with respect to F such that Λ0 = 1 and Λ∞ > 0. Every discounted price process

{Pt } is a local Q-martingale with respect to F and Lemma 2 implies that {Λt Pt } is a local P-

martingale with respect to F. Hence, {Λt } is a local F-DFP associated withQ . Conversely, let {Λt }

be a local F-DFP associated with Q , i.e.,

Q(F ) =
∫

F
Λ∞ dP , ∀F ∈F∞ .

It holds that

Q(Ft ) =
∫

Ft

Λ∞ dP=
∫

Ft

EP(Λ∞ |Ft )dP=
∫

Ft

Λt dP , ∀Ft ∈Ft , t ≥ 0.

Since Λ0 = 1 and Λt > 0 for all t ≥ 0, the Radon-Nikodym Theorem guarantees that Λt is the

Radon-Nikodym derivative on the σ-algebra Ft for all t ≥ 0. SinceΛ∞ > 0 we have that Q∼P.

Moreover, {Λt } leads to a local P-martingale {Λt Pt } with respect to F. From Lemma 2 it follows

that {Pt } is a local Q-martingale with respect to F and thus Q ∈L a(F). Similar arguments apply

if Q ∈M a(F) or {Λt } is an F-DFP, respectively. Q.E.D.

Proposition 4. Let a ∈A be some numéraire asset and {Vt } the discounted value process of any

admissible F-predictable strategy. Suppose that there exists a local F-DFP {Λt }. Then {Λt Vt } is a

local P-martingale with respect to F.

44More precisely, {Λt∧τn Xt∧τn } is obtained by stopping {Λt Xt∧τn } once again by {τn }.
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Proof: Let Q be the ELMM associated with {Λt }. According to Lemma 3, {Λt } represents the

F-RNP associated with Q ∈L a(F). From the Ansel-Stricker Theorem (Ansel and Stricker, 1994)

we conclude that {Vt } is a local Q-martingale with respect to F. Now, Lemma 2 implies that

{Λt Vt } is a local P-martingale with respect to F. Q.E.D.

The last result shows that {Λt } is a local martingale deflator and as such it is also an equivalent

supermartingale deflator (Jarrow and Larsson, 2013, Karatzas and Kardaras, 2007). This reminds

us of the supermartingale property of the benchmarked value process
{
W −1

t Vt
}

, where {Wt } is the

discounted value process of the GOP with respect to F. In general, the inverse of any equivalent

supermartingale deflator {Λt } need not be the discounted value process of the GOP or any other

(1-)admissible trading strategy. Hence,
{
Λ−1

t

}
is not necessarily a tradeable supermartingale

deflator (Kabanov et al., 2015, Karatzas and Kardaras, 2007). Nonetheless, from Theorem 4.12

in Karatzas and Kardaras (2007) we conclude that there exists a tradeable supermartingale

deflator if and only if there is NUPBR. Moreover, there is NUPBR if and only if any equivalent

supermartingale deflator exists.

A.2.3. Stochastic Discount Factors

Stochastic discount factors are frequently used in finance literature (Cochrane, 2005). In the

following, {Πt } denotes the scalar-valued discounted price process of an arbitrary asset. The

basic pricing formula

Πt = EP
(
Λt ,TΠT |Ft

)= EQ
(
ΠT |Ft

)
for all 0 ≤ t ≤ T <∞, where {Λt } is an F-DFP, implies that

EP

[
Λt ,T

(
ΠT

Πt
−1

)
|It

]
= EQ

(
ΠT

Πt
−1|It

)
= 0

for every σ-algebra It ⊆ Ft and all 0 ≤ t ≤ T <∞. Here, Q denotes the EMM with respect to

F associated with {Λt } and ΠT /Πt −1 is the return on the given asset between time t and T .

This means future asset returns cannot be predicted under the EMM Q on the basis of any

information set It ⊆Ft , but under the physical measure P, they are possibly predictable. Hence,

contrary to common belief, market efficiency does not rule out predictability of asset returns

(Timmermann and Granger, 2004).

If {Λt } is a local F-DFP it can only be guaranteed that

EP

[
Λt ,T

(
ΠT

Πt
−1

)
|It

]
= EQ

(
ΠT

Πt
−1|It

)
≤ 0

for every σ-algebra It ⊆ Ft and all 0 ≤ t ≤ T < ∞ . Nevertheless, the expected asset return

conditional on It still might be positive under P.

Once again, let {Λt } be an F-DFP. An important feature of the basic pricing formula is that

EP
(
Λt ,TΠT |Et

)= EP
[

EP
(
Λt ,TΠT |Ft

) |Et

]
= EP

(
Πt |Et

)=Πt

for all 0 ≤ t ≤ T <∞ . Hence, stochastic discount factors are “downward compatible,” i.e., every

discount factor that has been calculated on the basis of F can be applied to E.45

45In general, the F-DFP {Λt } is not E-adapted and thus, although we have that EP(Λt ,TΠT |Et ) =Πt for all 0 ≤ t ≤ T <∞ ,

downward compatibility does not imply that {ΛtΠt } is a P-martingale with respect to E.
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More precisely, let
{
ΛF

t

}
be an F-DFP. Each discount factor ΛF

t ,T is FT -measurable but not

necessarily ET -measurable. Nevertheless, since M (E) ⊇M (F) =;, there also exists an E-DFP{
ΛE

t

}
, so that

Πt = EP
(
ΛF

t ,TΠT |Et

)
= EP

(
ΛE

t ,TΠT |Et

)
,

but in general

EP
(
ΛE

t ,TΠT |Et

)
6= EP

(
ΛE

t ,TΠT |Ft

)
for any 0 ≤ t ≤ T <∞ . Put another way, stochastic discount factors are not “upward compatible,”

which means that a discount factor that has been calculated on the basis of E in general cannot

be applied to a broader filtration F. Hence, if somebody aims at representing asset prices with

respect to the information set Ft , he or she must use a discount factor that is made for F or for

any superfiltration G ⊃ F. This is cumbersome or even impossible in most practical situations.

For this reason, it is highly desirable to know under which circumstances stochastic discount

factors that have been calculated on the basis of E can be applied also to a broader filtration F.

In fact, this is the key property of a sensitive market, since market sensitivity guarantees that

EP
(
ΛE

t ,TΠT |Et

)
= EP

(
ΛE

t ,TΠT |Ft

)
for all 0 ≤ t ≤ T <∞ . Put another way, if the market is sensitive, the discount factorΛE

t ,T contains

all relevant information.
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