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We examine a parametric cycle in the N-body Lieb-Liniger model that starts from the free system

and goes through Tonks-Girardeau and super-Tonks-Girardeau regimes and comes back to the free

system. We show the existence of exotic quantum holonomy, whose detailed workings are analyzed

with the specific sample of two- and three-body systems. The classification of eigenstates based on

clustering structure naturally emerges from the analysis.

PACS numbers: 02.30.Ik, 03.65.Vf, 67.85.-d

I. INTRODUCTION

Among the solvable models of quantum mechan-

ics, the Lieb-Liniger system [1] belongs to the selec-

tive class of models that are genuinely many-body. It

is a system made up of identical bosons interacting

through two-body contact force. It was later shown

that the one-dimensional system of identical fermions

with two-body contact interactions can be rigorously

mapped to the Lieb-Liniger system with strong and

weak coupling regimes interchanged [2, 3]. Several

further extensions of the model with anyon statistics

has been found [4–7], and they are also known to be

mathematically equivalent to the original model. The

thermodynamics of the Lieb-Liniger model has been

studied extensively [8–11].

What has made the Lieb-Liniger model a focus

of renewed recent attention is its experimental re-

alization in the form of Tonks-Girardeau gas [12–

14]. It has been shown that the coupling strength of

the Lieb-Liniger system can be experimentally con-

trolled through the Feshbach resonance mechanism

[15]. In recent experiments by Haller and collabora-

tors [16, 17], a smooth change of the coupling strength

from large negative values to large positive values,

where one finds the super-Tonks-Girardeau system

[18], has been realized.
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The continuous transition from a strongly repul-

sive to strongly attractive regimes of Lieb-Liniger

model inspires us to propose following parametric cy-

cle C. We start with the noninteracting limit, in-

crease the coupling strength adiabatically, reaching

the strongly attractive regime crossing the ±∞ cou-

pling limit, then decrease the absolute value of nega-

tive coupling strength until it reaches the noninteract-

ing limit again. In this paper, we show that the ini-

tial energy eigenstates of the cycle are different from

the final eigenstates, although the initial and the final

Hamiltonians are identical.

This phenomenon, the so-called exotic quantum

holonomy, in which quantum eigenvalues and eigen-

states do not come back to the original ones af-

ter a cyclic parameter variation [19], belongs to a

wider class of quantum holonomy that comprises both

the celebrated Berry phase [20] and the Wilczek-Zee

holonomy [21] which appears in systems with degen-

erate eigenvalues. The exotic quantum holonomy in

the δ-function potential system was considered in [22].

Here we report a finding of the quantum holonomy in

many-body systems interacting through the δ-function

potential.

The plan of this paper is as follows. In Sec. II, we

derive the spectral equation for Lieb-Liniger model

in two different forms to demonstrate the presence of

quantum holonomies with respect to C. In Sec. III, we

show that the backward cycle is not always possible

due to the clustering of particles. This leads to the

concept of minimal states, which we utilize to classify

the spectrum of the system in Sec. IV. In Sec. V, we
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provide another view of the quantum anholonomy by

focusing on the two-body system through the com-

plexification the coupling strength. Section VI con-

tains our conclusion.

II. ADIABATIC CYCLE C FOR

LIEB-LINIGER MODEL

Let us consider N bosons confined in a one-

dimensional space. The system is described by the

Hamiltonian

H = −
1

2

N∑

j=1

∂2

∂x2
j

+ g

N∑

j=1

j−1∑

l=1

δ(xj − xl), (1)

where the unit is chosen such that ~ and the mass

of a particle can be set to unity. The parameter g

is the interaction strength. We impose the periodic

boundary condition to the position space. For sim-

plicity, L = 2π is assumed, where L is the period in

the position space. It is straightforward to extend our

analysis to an arbitrary L, as long as 0 < L < ∞.

We look at the dependence of eigenenergies and

eigenvectors on the coupling strength g. In partic-

ular, we focus on the cycle C, which consists of three

stages C(s) (s = 1, 2, 3). In the first stage C(1), g is

prepared to be 0 and is adiabatically increased to ∞.

Next, in stage C(2), g is suddenly flipped from ∞ to

−∞. In the final stage C(3), g is again adiabatically

increased to 0, which is the initial value of g. We de-

note the initial and final points of C as g = 0 and

g = 0−, respectively, to distinguish them.

The eigenvalue problem ofH , Eq. (1), can be solved

by the Bethe ansatz, where an eigenfunction is com-

posed of N plane waves specified by a set of quasimo-

menta, also called rapidity kj , which satisfy

exp (i2πkj) =
∏

l 6=j

kjl + ig

kjl − ig
, (2)

where kjl = kj−kl [1]. We examine how kj(g)’s, which

are chosen to be smooth as g is varied, are changed by

the cycle C. The function kj(g) completely character-

izes the parametric evolution of eigenenergies, as well

as the “adiabatic” evolution of eigenvectors along C.

The analysis is decomposed into the three stages C(s)

(s = 1, 2, 3).

At the initial point g = 0 of the first stage C(1), kj(0)

takes an integer value. Without loss of generality, we

can choose the order of kj(g)’s so as to satisfy k1(g) <

k2(g) < · · · < kN (g) for small positive g [23]. This

ensures k1(0) ≤ k2(0) ≤ · · · ≤ kN (0).

We introduce two quantized quantities which is con-

served during the parametric evolution of kj(g) along

C(1). Such “topological invariants” provide a way to

evaluate the change of kj(g) induced by stage C(1).

First, during the interval 0 ≤ g < ∞, we have an

integer

Ij(g) ≡ kj(g)−
1

π

∑

j 6=l

arctan
g

kjl(g)
. (3)

This is a consequence of Eq. (2) and (t+ i)/(t− i) =

−e−2i arctan t, which is applicable as long as t−1 6= 0.

We use the principal branch of arctan throughout this

paper. This is justified for Eq. (3) because g/kjl(g)

does not cross its standard branch cuts, which em-

anate from ±i to ±i∞ [24]. The continuity and dis-

creteness of Ij(g) in 0 ≤ g < ∞ imply that Ij(g) takes

a constant value, which can be determined from the

value of kj(g) at the initial point of C, i.e.,

Ij(g) = kj(0). (4)

Second, Eq. (2) and another formula for arctan

(t+ i)/(t− i) = e2i arctan(t
−1), which holds for t 6= 0,

implies that, in the interval 0 < g ≤ ∞,

Jj(g) ≡ kj(g) +
1

π

∑

l 6=j

arctan
kjl(g)

g
(5)

is a half-integer for even N and an integer for odd

N [1]. Following a similar argument for Ij(g) above,

we obtain the value of the invariant Jj(g) for 0 < g ≤

∞:

Jj(g) = kj(∞). (6)

Now we evaluate the change of kj(g) during C(1)

using these invariants. From Eqs. (3) and (5), we

obtain

kj(∞)− kj(0) =
1

2

∑

l 6=j

sgnℜ
kjl(g)

g
, (7)

where we used the identity

arctan(t) + arctan(1/t) =
π

2
sgn[ℜ(t)]. (8)
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We note that the right-hand side of Eq. (7) makes

sense only for 0 < g < ∞. Here, kjl(g) is positive for

j > l and negative for j < l, since we have assumed

the order of kj(g) at the initial point of C(1), and the

sign of kjl(g) does not change for g > 0 [23]. This

implies

∑

l 6=j

sgnℜ
kjl(g)

g
=

j−1∑

l=1

−

N∑

l=j+1

. (9)

Accordingly, we obtain

kj(∞)− kj(0) = j −
N + 1

2
. (10)

Next we examine the second stage C(2), where g sud-

denly changes from ∞ to −∞. Note that all kj(∞)’s

are finite because of Eq. (10). Since a finite root of

the Bethe equation, Eq. (2), at g = ∞ is also its root

at g = −∞, we employ a smooth extension of kj(g)

along C(2), i.e.,

kj(−∞) = kj(∞). (11)

Details of the justification of our choice are explained

in Appendix A.

We further extend kj(g)’s for the final stage C(3).

First, we impose that kj(g)’s satisfy Jj(g) = kj(∞)

within the interval −∞ ≤ g < 0. This implies that

kj(g)’s also satisfy Eq. (2). We provide an argument

that such kj(g)’s exist for −∞ ≤ g < 0, and are real-

valued in Appendix A. We accordingly conclude that

Jj(g) is independent of g within the interval −∞ ≤

g < 0, because kj(g)’s take real and finite values there.

Second, we examine Ij(g) [Eq. (3)] for −∞ < g ≤ 0.

In contrast to the analysis of Jj(g) above, we need to

inspect kj(0−), which is the final value of kj(g) in

C(3) and is different from the initial value kj(0). We

carry this out by extending kj(g)’s from the interval

−∞ ≤ g < 0. We explain the details of our argument

in Appendix B and only show the result that Ij(g)

agrees with kj(0−) within the interval −∞ < g ≤ 0.

The change of kj(g) in the path C(3) is given by

kj(0−)− kj(−∞) = −
1

2

∑

l 6=j

sgnℜ
kjl(g)

g
. (12)

We can ensure that

k1(g) < k2(g) < · · · < kN (g) (13)

because it holds at g = −∞ (see Appendix B). Re-

calling the fact that g is negative here, we obtain

kj(0−)− kj(−∞) = j −
N + 1

2
. (14)

Combining above three arguments, we obtain a non-

trivial change of kj(g) due to C in the form

kj(0−)− kj(0) = 2j − (N + 1). (15)

Note that the total momentum remains unchanged

during the cycle C. The final energy and state after

the adiabatic cycle, however, are different from the

initial ones, showing that C induces the eigenenergy

and eigenspace anholonomies [22]. We also remark

that k1 < k2 < · · · < kN holds at the end of C.

This implies that we can repeat the adiabatic cycle

C arbitrarily, and the repetition of C will induce the

further instances of the eigenenergy and eigenspace

anholonomies.

We can summarize our results in terms of a mapping

between two sets of quasimomenta of free bosons, i.e.,

kj(0)’s and kj(0−)’s . It is sufficient to consider the

case that initial condition nj ≡ kj(0) satisfies n1 ≤

n2 ≤ · · · ≤ nN . With the notation n′
j ≡ kj(0−),

the mapping (n1, n2, . . . , nN) 7→ (n′
1, n

′
2, . . . , n

′
N) =

F (n1, n2, . . . , nN), which is given by

F (n1, n2, . . . , nN)

= (n1 −N + 1, n2 −N + 3, . . . , nN +N − 1), (16)

expresses the quantum holonomy induced by the cycle

C.

III. INVERSE CYCLE

We now examine the inverse of the cycle C. In con-

trast to the forward cycle C, the parametric variation

along the inverse C−1 is not always possible. This is

because the clustering of particles at g = −∞ induces

the divergence of eigenenergy [1]. Such a clustering

invalidates the use of the Hamiltonian, Eq. (1). We

call an eigenstate of free boson at g = 0 a minimal

state if the the parametric variation along C−1 is im-

possible. The precise condition for appearance of the

minimal state is the subject of this section.
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Formally, C−1 corresponds to the inverse of the

mapping F [Eq. (16)] on the sets of quasimomenta

at g = 0:

F−1(n1, n2, . . . , nN )

= (n1 +N − 1, n2 +N − 3, . . . , nN −N + 1), (17)

where we impose the ordering condition n1 ≤ n2 ≤

· · · ≤ nN . When the distance between nj ’s are far

enough, F−1 preserves the ordering. This is the case

that C−1 can be realized, and the resultant energy and

quantum state are the solution of the eigenvalue prob-

lem of H [Eq. (1)] at g = 0. On the other hand, when

a pair of nj ’s is too close, F−1 breaks the ordering,

which implies the emergence of the clustering of par-

ticles during the inverse cycle. There are two possible

cases. The first case is where a pair of quasimomenta,

say, nj and nj+1, are degenerate, i.e., nj = nj+1.

By applying F−1, the resultant quasimomenta satisfy

nj > nj+1. In fact, the eigenenergy diverges −∞ as

g → −∞ during C−1. The second case, nj = nj+1+1,

also leads the clustering of particles.

The argument above is sufficient to determine the

condition for the minimal states. When there is, at

least, a pair of two quasimomenta at g = 0 that satis-

fies

|nj − nj+1| ≤ 1, (18)

states specified by nj and nj+1 are minimal states.

IV. CLASSIFICATION OF SPECTRA

Because of the existence of quantum holonomy,

some states are reachable by the repetitions of para-

metric cycles C and C−1 starting from one particu-

lar eigenstate, while other states are not. This offers

the classification of whole eigenstates into families of

states connected by quantum holonomy. Such a family

can be specified by a minimal state introduced above,

because an arbitrary eigenstate with a finite energy

can become minimal by a finite repetition of C−1.

From one minimal state, we can find other minimal

states using the symmetries of the Hamiltonian (1).

Suppose that a minimal state is specified by quasi-

momenta (n1, n2, . . . , nN). The translational symme-

try implies that (n1 + 1, n2 + 1, . . . , nN + 1) is also

-2

Hg=±¥L

-1

Hg=-1L

0

Hg=0L

1

Hg=1L

2

Hg=±¥L

x

1

2

3
E

FIG. 1. (Color online) Parametric evolution of eigenener-

gies of the two-body Lieb-Liniger model, where the x and

y axes indicate (4/π) arctan g and
√
E, respectively. The

unit is chosen such that ~ and the mass of a particle are

set to unity. The period of the position space is chosen to

be 2π. The thick (black) and thin (blue) lines correspond

to the families specified by the minimal states (0, 0) and

(0, 1), respectively. See Eqs. (21) and (22). Note that the

eigenenergies are continuous at g = ±∞.

a minimal state, whose total momentum is larger

by N than the original one. For an arbitrary in-

teger ℓ, (n1 + ℓ, n2 + ℓ, . . . , nN + ℓ) is also a min-

imal state. The reflection symmetry implies that

(−nN , . . . ,−n2,−n1) is also a minimal state, which

may or may not be different from the original state.

Hence, it is sufficient to find all minimal states

whose total momenta satisfy the condition

−
N

2
<

∑

j

nj ≤
N

2
, (19)

to enumerate all minimal states using the translational

symmetry, offering a way to classify the spectra of

the Lieb-Liniger model completely. We illustrate this

classification for few-body cases.

We start the analysis of N = 2 case with two mini-

mal states,

(0, 0) and (0, 1). (20)

We obtain two families of eigenstates at g = 0 from

these two minimal states, by repeating C,

(0, 0) 7→ (−1, 1) 7→ (−2, 2) 7→ · · · , (21)
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Hg=±¥L
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1

2

3

4

5

6
E

FIG. 2. (Color online) Eigenenergies of N = 3 fami-

lies, where the x and y axes are the same as in Fig. 1.

The total momentum of all families shown here is zero.

The thick (black) line corresponds to the family [Eq. (24)]

specified by the minimal state (0, 0, 0). The thin (blue)

line corresponds to the (−1, 0, 1) family. These two fam-

ilies are trimers. The dotted (red), dashed (brown), and

dash-dotted (gray) lines are dimer families specified by

minimal states (−1,−1, 2), (−2,−2, 4), and (−3,−3, 6),

respectively. Although there are level crossings, the adia-

batic theorem ensures that the adiabatic time evolution is

confined within a family [25]. The choice of the unit is the

same as in Fig. 1.

and

(0, 1) 7→ (−1, 2) 7→ (−2, 3) 7→ · · · , (22)

respectively. The eigenenergies of these families are

depicted in Fig. 1. By shifting the total momentum

from the two minimal states [Eq. (20)], we obtain an

infinite number of minimal states (ℓ, ℓ) and (ℓ, ℓ + 1)

with an arbitrary integer ℓ. The (ℓ, ℓ)- and (ℓ, ℓ+ 1)-

families have the set of quasimomenta at g = 0 given

by {(ℓ−m, ℓ+m)}∞m=0 and {(ℓ−m, ℓ+1+m)}∞m=0,

respectively. This exhausts the minimal states and

families for N = 2.

The N = 3 case is far more complex than the N = 2

case. First, we consider the case that the total mo-

mentum is zero, where an infinite number of minimal

states can be found. We depict some of them in Fig. 2.

There are two minimal states,

(0, 0, 0) and (−1, 0, 1), (23)

-2

Hg=±¥L

-1

Hg=-1L

0

Hg=0L

1

Hg=1L

2

Hg=±¥L

x

1

2

3

4

5

6

7

8
E

FIG. 3. (Color online) Parametric evolution of eigenen-

ergies of the N = 4 case, where the x and y axes are the

same as in Fig. 1. The thick (black) line corresponds to

the family (0, 0, 0, 0) 7→ (−3,−1, 1, 3) 7→ (−6,−2, 2, 6) . . . .

The thin (blue) and dotted (red) lines correspond to

(−1, 0, 0, 1) and (−1,−1, 1, 1) families, respectively. The

choice of the unit is the same as in Fig. 1.

which are called trimers [26], because the clustering of

all three particles occurs in the limit g → −∞. The

family of eigenstates at g = 0 specified by the minimal

state (0, 0, 0) is

(0, 0, 0) 7→ (−2, 0, 2) 7→ (−4, 0, 4) 7→ . . . . (24)

Besides, there are an infinite number of minimal

states,

{(−ℓ,−ℓ, 2ℓ)}ℓ>0 and {(−2ℓ, ℓ, ℓ)}ℓ>0, (25)

where the latter set can be induced through the use

of the reflection symmetry. These minimal states are

called dimers [26], because the clustering of two parti-

cles occurs in the limit g → −∞. Second, we consider

the case
∑

j nj = 1. We have a trimer,

(0, 0, 1), (26)

and an infinite number of dimers

{(−ℓ,−ℓ, 2ℓ+ 1)}ℓ>0, {(−ℓ,−ℓ+ 1, 2ℓ)}ℓ>0,

{(−2ℓ+ 1, ℓ, ℓ)}ℓ>0, {(−2ℓ, ℓ, ℓ+ 1)}ℓ>0. (27)

Note that all minimal states that satisfy
∑

j nj = −1

can be obtained from the minimal state with
∑

j nj =

page 5
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1 through the use of the reflection symmetry. We

obtain all other minimal states from above using the

translational and reflection symmetry.

It is possible to enumerate minimal states and as-

sociated spectral families in a similar way for larger

N . We simply close this section by showing several

families of the N = 4 system in Fig. 3.

V. EXCEPTIONAL POINTS

So far we have focused on the quantum holon-

omy induced by the real cycle C. In this sec-

tion, we examine the relationship between the ex-

otic quantum holonomy and non-Hermitian degener-

acy points, which are also known as Kato’s excep-

tional points [27, 28], using the complexification of the

coupling parameter g. When we adiabatically vary g

along a cycle that encloses an exceptional point, the

permutation of eigenenergies as well as eigenspaces

occurs. This resembles the exotic quantum holonomy.

Indeed, in Ref. [29] it is argued that, through an anal-

ysis of a quantum kicked top, the quantum holonomy

has a correspondence with the exceptional points. In

other words, it is conjectured that the eigenenergy and

eigenspace anholonomy can be understood as a result

of the metamorphosis of eigenenergies and eigenstates

induced by the encirclements around the exceptional

points. In the following, we offer another example of

this conjecture using the two-body Lieb-Liniger model

by deforming C in the complexified g space.

Due to the complexification of g, the Lieb-Liniger

Hamiltonian (1) becomes non-Hermitian, which de-

scribes a one-dimensional dissipative Bose system [30].

We obtain eigenenergies with complex-valued cou-

pling parameter g through numerical computation.

We here focus on the (0, 0) family [Eq. (21)]. Let

En(g) denote the eigenenergy of the state whose quasi-

momenta take (−n, n) at g = 0. We depict En(g) for

n = 0, 1, 2 in Fig 4. We find that these eigenener-

gies compose a Riemann surface. Its Riemann sheets

En(g) are connected by the exceptional points and

associated branch cuts (cf. Ref. [31]).

Under the present choice of the branch cuts, all

exceptional points of the (0, 0) family appear in the

E0(g) sheet. A pair of eigenenergies En(g) (n > 0)

-2 -1 0 1

-4

-2

0

ReHgL

Im
Hg
L

HaL

-2 -1 0 1

-4

-2

0

ReHgL

Im
Hg
L

HbL

-2 -1 0 1

-4

-2

0

ReHgL

Im
Hg
L

HcL

FIG. 4. (Color online) Contour plots of ℜEn(c): (a) n = 0;

(b) n = 1; (c) n = 2. Lighter (darker) color indicates

larger (smaller) value of ℜE. Thin lines are the contours

of ℜEn(c). The exceptional points are indicated by solid

circles. Bold lines indicate the branch cuts. While all

complex exceptional points appear in E0(c), each En(c)

(n = 1, 2) has a single exceptional point. (d) Schematic

explanation of complex cycles that enclose exceptional

points. We depict C by a thick (red) line. Dashed (blue)

and dotted (black) curves indicate C1 and C2, respectively.

See the main text. The choice of the unit is the same as

in Fig. 1.

and E0(g) has a pair of degenerate points gn and g∗n,

where we choose ℑgn < 0. We find that all degenerate

points are of degree two. Hence, the pair of eigenener-

gies for an exceptional point exhibits square-root-type

singularity. The encirclement around the exceptional

point gn in the complex g plane induces the permu-

tation of E0(g) and En(g). We numerically confirm

these properties of gn with n = 1, 2, . . . , 10. We find

that ℜgn and ℑgn decrease monotonically as n in-

creases. We also obtain similar results for the (0, 1)

family.

We note that our numerical finding can be explained

by a perturbation expansion for g = −∞ with a small

parameter g−1, as for the exceptional points that are

far from the real axis [32]. We will explain the details

in a forthcoming publication [33].
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Let us consider the cycle that is a concatenation

of C and C1 in Fig 4 (d). Because this cycle en-

circles the exceptional point g1, the cyclic permuta-

tion (E0, E1) occurs. On the other hand, the cycle

composed of C and C2 induces the cyclic permutation

among (E0, E1, E2). As the cycle involves more deeper

exceptional points, the accuracy of the the resultant

permutation become better to approximate a shift to

eigenenergies (E0, E1, . . . ) 7→ (E1, E2, . . . ), which is

realized by the quantum holonomy along the cycle C.

In this sense, we may say that the spectrum of Lieb-

Liniger model feels the exceptional points that reside

in the complex parameter space to induce the quan-

tum holonomy along C.

VI. CONCLUSION

We have shown in this work that an eigenstate of

the free Lieb-Liniger system g = +0 is transformed to

another eigenstate with higher energy in the process of

eigenspace anholonomy involving the parametric cycle

g : +0 → +∞ : −∞ → −0. Experimental testing

should be within the range of current techniques [16,

17]. On the way to prove the existence of quantum

holonomy, we have demonstrated that the eigenstates

of the Lieb-Liniger model can be classified according

to their clustering property. The two- and three-boson

systems have been analyzed in detail.

Our result can be interpreted in terms of geometry.

Consisting of real numbers and ±∞, the parameter

space of coupling strength is homeomorphic to S1.

Therefore, our anholonomy is affected by the topol-

ogy of S1. The presence of two kinds of invariants,

Ij(g) [Eq. (3)] and Jj(g) [Eq. (5)], for the parametric

evolution of kj(g) reflects the fact that at least two

charts are required for S1. Converting one of spec-

trum condition to the other by using the formula of

arctan (8) corresponds to coordinate transformation.

The cycle of the winding number m, Cm, increases

kj(0) by m[2j − (N + 1)].

The topological nature of the the quantum holon-

omy implies that it is stable against, at least, small

perturbations [34]. This also suggests that an experi-

mental realization of the quantum anholonomy is pos-

sible in one-dimensional bosonic systems.

ACKNOWLEDGEMENT

This research was supported by the Japan Ministry

of Education, Culture, Sports, Science and Technol-

ogy under the Grant numbers 22540396 and 24540412.

Appendix A: Extension of kj(g)’s to −∞ ≤ g < 0

We examine kj(g)’s that satisfy

kj(∞) = kj(g) +
1

π

∑

l 6=j

arctan
kjl(g)

g
(A1)

in the interval −∞ ≤ g < 0 in this appendix. Our

argument consists of two parts. First, we provide an

argument that kj(g)’s are real and finite for −∞ ≤

g < 0. Second, we explain that such kj(g)’s are the

smooth extension of the ones defined in the first stage

C(1).

We have already examined kj(∞), which appears in

the left-hand side of Eq. (A1), in the main text. In

particular, kj(∞)’s are real and finite. Also, kj(∞)’s

are not degenerate, i.e.,

kj(∞)− kl(∞) > 0, (A2)

for j > l, which is ensured by Eq. (10).

We introduce an assumption that plays the crucial

role in the following argument. We assume that there

uniquely exists {kj(g)}
N
j=1 that satisfies Eq. (A1). We

note that this assumption indeed holds, as for g >

0 [8].

We show that kj(g)’s are real numbers by reductio

ad absurdum. Namely, we suppose that kj(g) is not

real and satisfies Eq. (A1) for a given j. Accordingly,

its complex conjugate kj(g)
∗ also satisfies Eq. (A1),

because Eq. (A1) is invariant under the complex con-

jugate. Since kj(g)
∗ is different from kj(g) and there

uniquely exists {kj(g)}
N
j=1, there exists j′ such that

kj′(g) = kj(g)
∗ and j′ 6= j. We compare kj(∞) and

{kj′(∞)}∗, which are real numbers. Using Eq. (A1),

we find kj(∞) − {kj′(∞)}∗ = 0, which contradicts

Eq. (A2).

A corollary of the above proposition, i.e., kj(g) are

real for −∞ ≤ g < 0, is the continuity of kj(g)’s in

the stages C(2) as well as C(3), as mentioned in the

main text [see Eq. (11)]. In this sense, kj(g)’s that
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satisfy Eq. (A1) are the smooth extension of kj(g) for

0 < g ≤ ∞. We prove this corollary. Since kj(g)’s are

real numbers, we have

|arctan [kjl(g)/g]| < π/2, (A3)

which implies that kj(g)’s are finite, i.e.,

|kj(g)| ≤ |kj(∞)|+
1

π

∑

l 6=j

π

2
< ∞, (A4)

where we use Eq. (A1). Hence, we find

lim
g→−∞

kjl(g)/g = 0. (A5)

Taking the limit of Eq. (A1) as g → −∞, we obtain

lim
g→−∞

kj(g) = kj(∞) + lim
g→−∞

1

π

∑

l 6=j

arctan
kjl(g)

g

= kj(∞).

(A6)

Hence, we conclude that kj(g) is continuous at g =

−∞. A similar argument above tells us that kj(g) is

also continuous at g = ∞.

Appendix B: Extension of kj(g)’s from g < 0 to

g = 0

We have explained the smooth extension of kj(g)’s

through the flip of g from ∞ to −∞ in Appendix A.

Here we extend further kj(g)’s from g < 0 to g = 0 to

complete the analysis of the stage C(3). We carry this

out by showing kj(0−) = Ij(g).

To prepare this, we show that kj(g) 6= kj′(g) holds

for g < 0, and an arbitrary pair of (j, j′). We prove

this by contradiction. Suppose that there exists g (<

0), where kj(g) = kj′ (g) (j 6= j′). Then Eq. (A1)

implies that kj(∞) = kj′ (∞), which is inconsistent

with Eq. (A2).

Next we show that kj(g) 6= kj′ (g) (j 6= j′) also

holds in the limit g → 0−. We show this by using re-

ductio ad absurdum. Suppose kj(0−) = kj′ (0−). We

can assume j > j′ without loss of generality. Hence,

Eq. (A1) under the limit g → 0− implies

kj(∞)− kj′ (∞) = lim
g→0−

2

π
arctan

kjj′ (g)

g
. (B1)

Thus we conclude kj(∞) − kj′ (∞) ≤ 0, since

arctan [kjj′ (g)/g] < 0 holds as long as g < 0. This

conclusion contradicts with Eq. (A2) with j > j′. We

thus show kj(0−) 6= kj′(0−).

We examine Ij(g) [Eq. (3)] in the limit g → 0−.

Since kjl(0−) 6= 0 holds, as shown above, we find

limg→0− g/kjl(g) = 0. Hence, we obtain Ij(0−) =

kj(0−). Because Ij(g) is independent of g for −∞ <

g < ∞, we conclude Ij(g) = kj(0−) for g ≤ 0. We

note that this result and Eq. (4) imply continuity of

kj(g) at g = 0±. As for the proof of the continuity at

g = 0+, we refer to Ref. [23].

Finally, we remark that the present argument and

Eq. (A2) imply that the ordering of kj(g) satisfies

k1(g) < k2(g) < · · · < kN (g) for g ≤ 0.
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