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In this paper, Stieltjes electrostatic model and quantum Hamilton Jacobi for-

malism is analogous to each other is shown. This analogy allows, the bound state

problem to mimics as n unit moving imaginary charges ih̄, which are placed in be-

tween the two fixed imaginary charges arising due to the classical turning points of

the potential. The interaction potential between n unit moving imaginary charges

ih̄ is given by logarithm of the wave function. For an exactly solvable potential, this

system attains stable equilibrium position at the zeros of the orthogonal polynomials

depending upon the interval of the classical turning points.

keywords : Orthogonal polynomials, quantum Hamilton Jacobi and zeros of orthogonal

polynomials.

I. INTRODUCTION

Stieltjes [1, 2] considered the following problem with n moving unit charges, interacting

through a logarithmic potential, are placed between two fixed charges p and q at −1 and

1 respectively on a real line. He then proved that the system attains a stable equilibrium

position at the zeros of the Jacobi polynomial P (α,β)
n (x). Proof is given in Szego’s book

(section 6.7) [3]. If, the interval is changed on the real line, for the fixed charges, then the the

system attains stable equilibrium position at the zeros of the orthogonal polynomial with the

respective intervals. For example, in the interval [0;∞) one gets the Laguerre polynomials

L(k)
n (x) and for the the interval (−∞;∞) one gets the Hermite polynomials polynomials

Hn(x). This model has been extended to the zeros of general orthogonal polynomials in the

ref [4].

The Quantum Hamilton Jacobi (QHJ) formalism, was formulated for the bound state

problems by Leacock and Padgett [6, 7] and later on was successfully applied to several
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exactly solvable models (ESM) [8–12] in one dimension, the quasi - exactly solvable (QES)

models [13], the periodic potentials [14] and the PT symmetric potentials [15] in quantum

mechanics. In QHJ the central role is played by the quantum momentum function (QMF).

This function, in general, contains fixed poles that arises due to the classical turning points

of the potential. In general, for most of the potentials in quantum mechanics there will be

only two fixed poles, and n moving poles arise due the zeroes of wave function. Thus, one

can immediately see the connection between the two scenarios presented above. The fixed

poles of the potential are like the the two fixed charges and n moving poles on the real line

are like n moving charges.

A. Electrostatic Model

Stieltjes considered the interaction forces for the n moving unit charges arising from

a logarithmic potential which are in between the to fixed charges p and q at −1 and 1

respectively on a real line as

L = −LogDn(x1, x2...xn) + p
n
∑

i=1

Log(
1

|1− xi|
)

+q
n
∑

i=1

Log(
1

|1 + xi|
), (1)

where

− LogDn(x1, x2...xn) =
n
∑

1≤i<j≤n

Log(
1

|xi − xj |
) (2)

Then, he proved in ref [1, 2] that the expression (1) becomes a minimum

n
∑

i=1,i 6=k

1

xi − xk
−

p

xk − 1
−

q

xk + 1
= 0. (3)

when (x1, x2, · · · , xn) are the zeros of the Jacobi polynomial

(1− x2)P ′′
n (x) + 2[q − p− (p+ q)x]P ′

n(x) = n[n+ 2(p+ q)− 1]Pn(x), (4)

where P (2p−1,2q−1)
n (x) are the Jacobi polynomial. For the proof refer to Szego’s book (section

6.7) [3]. The zeros of the Laguerre and the Hermite polynomials admit the same interpre-

tation.
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B. Quantum Hamilton Jacobi

In this section, a brief review of Quantum Hamilton Jacobi formalism is presented below.

For details see the references [10, 12]. The Schrödinger equation is given by,

−
h̄2

2m
∇2ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z). (5)

One defines a function S analogous to the classical characteristic function by the relation

ψ(x, y, z) = exp
(

iS

h̄

)

(6)

which, when substituted in (5), gives

(~∇S)2 − ih̄~∇.(~∇S) = 2m(E − V (x, y, z)). (7)

the quantum momentum function p is defined in terms of the function S as

~p = ~∇S. (8)

Substituting (8) in (7) gives the QHJ equation for ~p as

(~p)2 − ih̄~∇.~p = 2m(E − V (x, y, z)) (9)

and from (5) and (8), one can see that ~p is the the logarithmic derivative of ψ(x, y, z) i. e.

~p = −ih̄~∇lnψ(x, y, z) (10)

The above discussion of the QHJ formalism is done in three dimensions the same equation

in one dimension takes the following form

p2 − ih̄
dp

dx
= 2m(E − V (x)), (11)

which is also known as the Riccati equation. In one dimension the eq (10) take the form

p = −ih̄
d

dx
lnψ(x). (12)

It is shown by Leacock and Padgett [6, 7] that the action angle variable gives rise to exact

quantization condition

J(E) ≡
1

2π

∮

C
pdx = nh̄. (13)
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II. MODEL

By considering the form of the wave function, in the equation (12), to be ψ =
∏N

i=1(x−xi).

Then, in the quantum momentum function this corresponds to n zeros on the real line. These

zeros are also called the moving poles in the language of QHJ. Choosing, an exactly solvable

potential V (x), with two fixed poles as the classical turning points, substituting in equation

(11). Then, for bound states the following feature always arises in QHJ that the n moving

poles lie in between the two fixed poles and the solutions are the orthogonal polynomials for

the exactly solvable potential V (x). The examples are the Harmonic oscillator, the Coulomb

potential , the Scarf potential etc [10, 12].

Thus, the connection between the QHJ and the Stieltjes electro static model can be seen.

The fixed poles of the potential are like the two fixed charges and the n moving poles of the

real line are like n moving charges. In the electrostatic model the moving charges interact

with the logarithmic potential and in the QHJ the logarithmic potential arises from the

wave function. As the quantum momentum function is log derivative of the wave function.

Starting with the QMF the analogue between the two models is established. The fact

that only the residues of the QMF are required for finding the eigenvalues is studied in ref

[8, 9]. The formalism for effectively obtaining both the eigenfunctions and the eigenvalues

from the singularity structure of the quantum momentum function is given in ref [10]. The

quantum momentum function assume that there are no other singular points of p in the

complex plane. Then the quantum momentum function is given by [8–13]

p =
n
∑

k=1

−i

x− xk
+Q(x), (14)

here the moving poles are simple poles with residue −ih̄ (we take here h̄ = m = 1) [10, 12]

and Q(x) is the residues of fixed poles arising due to the exactly solvable potentials. This

equation resembles the equation (3) except that it is the minimum of the potential. Thus, the

quantum momentum function can interpret as system of equations arising for the logarithmic

derivative of wave function and fixed poles arising from the classical turning points. By

asking the following question, when does this system come to stable equilibrium ? From the

above discussion it is clear that answer can be obtained using Stieltjes Electrostatic model.

It can be shown that the same wave function can be obtained from both the models. Thus,

their exist a analogy between the Stieltjes electrostatic interpretation for zeros of orthogonal
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polynomials and the quantum Hamilton Jacobi formalism.

The most important point in the quantum Hamilton Jacobi formalism is that if one has

the total information about the pole structure of the quantum momentum function than

by calculating the integral in the eq (13) one gets the exact quantization condition. Or

one can also get the quantization condition by converting the quantum momentum function

into a differential equation. Therefore, the connection between the Stieltjes electrostatic

interpretation and the quantum Hamilton Jacobi formalism is established by solving the

quantum momentum function as a differential equation. This is achieved by solving for

limx→xk
ip(x) = 0 and thus the equation (14) is given by

lim
x→xk

[

n
∑

k=1

1

x− xk
+ iQ(x)

]

= 0. (15)

By introducing the polynomial

fn(x) = (x− x1)(x− x2) · · · (x− xn), (16)

then using the following relation [4, 5],

n
∑

j=1,i 6=k

1

xj − xk
= lim

x→xk

[

f ′
n(xk)

fn(xk)
−

1

x− xk

]

. (17)

As Q(x) does not have any poles at xk, the equation (15) is given as

n
∑

j=1,i 6=k

1

xj − xk
+ iQ(x) = 0. (18)

It is clear that above equation is similar to eq (3). Therefore, the Stieltjes electrostatic

method goes through for solving the quantum momentum function. By using the formula

[4, 5]

2
n
∑

j=1,i 6=k

1

xk − xj
=

f ′′
n(xk)

f ′
n(xk)

, (19)

then the equation (18) becomes

−
1

2

f ′′
n(xk)

f ′
n(xk)

+ iQ(xk) = 0. 1 < k < n (20)

By demanding the solution equation (20), for an exactly solvable potentials, to be zeros of

certain orthogonal polynomials makes the points xk to vanish. The interval is fixed by the

fixed poles of the potential. It is well known that the classical orthogonal polynomials arise
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as solutions to the bound states problems. Thus, the classical orthogonal polynomials are

classified into three different categories depending upon the range of the polynomials. The

polynomials in the intervals (−∞;∞) are the Hermite polynomials, in the intervals [0;∞)

are the Laguerre polynomials and in the intervals [−1; 1] are the Jacobi polynomials. Their

singularity structure is as follows Q(x) = x, Q(x) = b
x
+ C, and Q(x) = − a

x−1
− b

x+1
for the

Hermite, the Laguerre and the Jacobi polynomials respectively. Hence, the differential equa-

tion can be obtained by examining at the singularity structure of the quantum momentum

function. This can be seen by rewriting the equation (20) as

− f ′′
n(x) + 2iQ(xk)f

′
n(x) = 0. 1 < k < n (21)

The function Q(x) which has the information of fixed pole singularity structure appears

as the coefficient of f ′
n(xk). By examining the differential equations of the Hermite, the

Laguerre and the Jacobi polynomials the coefficients of Q(x) are fixed.

Let f(x) = Lm
λ (x) satisfy the Laguerre differential equation

x
d2

dx2
f(x) + (m+ 1− x)

d

dx
f(x) + λf(x) = 0, (22)

where λ is an integer. By examining the first two terms of the differential equations (21)

and (22) one gets

2iQ(x) =
(m+ 1)

x
− 1 (23)

the singularity structure for the Laguerre is

Q(x) =
b

x
+ C (24)

thus one gets b = −i(m+ 1) and C = i. Similarly for the Jacobi differential equation

(1− x2)f ′′
n(xk) + 2[p− q − (p+ q)x]f ′

n(xk) + n[n + 2(p+ q)− 1]fn(x) = 0 (25)

again comparing the first two terms

2iQ(x) = −
p

xk − 1
−

q

xk + 1
(26)

the singularity structure for the Jacobi is

2iQ(x) = −
a

x− 1
−

b

x+ 1
(27)
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thus one has p = −ia and q = −ib. Similar analysis can be done for the Hermite polynomials.

The values of m, p and q has to be determined as these are not points like in the elec-

trostatic model. The method adopted by QHJ, search for the polynomial solutions leads

to quantization, are used to calculate these values. By writing the quantum momentum

function as

p =
n
∑

k=1

i
f ′(x)

f(x)
+ Q(x) (28)

and substituting in (11) then one gets

f ′′
n(xk) + 2iQ(x)f ′

n(xk) + [Q2(x)− iQ′(x)−E + V (x)]f(x) = 0. (29)

The first two terms in the above differential equation arises due to the pole structure. Now

by fixing the solution to be certain orthogonal polynomial depending upon the pole structure

of Q(x). This is equivalent to demanding [Q2(x) − iQ′(x) − E + V (x)] to be constant i.e.

”the search for the polynomial solutions leads to quantization”. This will fix the values

of the residues appearing for fixed poles and in the process the system is quantized for a

given V (x). Thus by comparing the equation (21) and (29) it can seen that the singularity

structure of iQ(x) determines the differential equation. Therefore, the same wave function

is obtained from both the methods.

III. DISCUSSION

From the previous discussion, it is clear that Stieltjes electrostatic model and quantum

Hamilton Jacobi formalism are analogous to each other. Therefore, this analogy allows, the

bound state problem to mimics as n unit moving imaginary charges ih̄, which are placed in

between the two fixed imaginary charges arising due to the classical turning points of the

potential. The interaction potential between n unit moving imaginary charges ih̄ is given by

logarithm of the wave function. For an exactly solvable potential, this system attains stable

equilibrium position at the zeros of the orthogonal polynomials depending upon the interval

of the classical turning points. Once charges arise in any model they satisfy the continuity

equation of the form

∂

∂t
ρ+∇ · J = 0. (30)

Since, the equation (21) and (29) are nothing but the different form of the Schroedinger

equation. Therefore their exist a continuity equation of this form for these imaginary with
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ρ =
∫

V ψ
∗ψdV is probability density function and J = h̄

i
[ψ∗(∇ψ) − ψ(∇ψ∗)] is probability

current density function. Hence, the conservation of probability leading to conservation of

imaginary charge and probability current leads to current density for imaginary charge. In

this model ρ is the amount of imaginary charge and J is the current density for imaginary

charge. Thus, this model is consistent with quantum mechanics.

IV. CONCLUSION

In this paper, the two different models, one the Stieltjes electrostatic model and the other

one Quantum Hamilton Jacobi formalism are examined. Except that one is a classical model

and another is a quantum model. It is shown that Stieltjes electrostatic model and quantum

Hamilton Jacobi formalism are analogous to each other. One new feature comes out of

this study is that the wave function can be obtained from the quantum momentum function

itself, one need not solve the quantum Hamilton Jacobi equation. From Stieltjes electrostatic

model gives nice insights to the methodology of quantum Hamilton Jacobi formalism. It

is interesting to note that the Stieltjes electrostatic model existed almost 30 years before

quantum mechanics came into existence.

Acknowledgments

Author thank A. K. Kapoor, V. Srinivasan, Prasanta K. Panigrahi, Sashideep Gutti and

P K Thirivikraman for stimulating conversations.

[1] T.J. Stieltjes, Sur quelques theoremes d’algebre, Comptes Rendus de l’Academie des Sciences,

Paris, 100 (1885), 439-440; Oeuvres Completes, Vol. 1, 440-441.

[2] T.J. Stieltjes, Sur quelques theoremes d’algebre, Comptes Rendus de l’Academie des Sciences,

Paris, 100 (1885), 620-622; Oeuvres Completes, Vol. 1, 442-444.

[3] G. Szego, Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc., Providence, 1975.

[4] Mourad E. H. Ismail Pacific journal of Mathematics, 193, 2, 2000.

[5] Jacques Faraut, lecture notes ”Logarithmic potential theory, orthogonal polynomials, and

random matrices” CIMPA School, Hammamet 2011.



9

[6] R. A Leacock and M. J. Padgett Phys. Rev. Lett. 50, 3, (1983).

[7] R. A. Leacock and M. J. Padgett Phys. Rev. D28, 2491, (1983).

[8] R.S. Bhalla, A.K. Kapoor and P. K. Panigrahi, Am. J. Phys. 65, 1187, (1997).

[9] R. S. Bhalla, A. K. Kapoor and P. K. Panigrahi, Mod. Phys. Lett. A, 12, 295 (1997).

[10] S. Sree Ranjani, K. G. Geojo, A. K. Kapoor, P. K. Panigrahi, Mod. Phys. Lett. A. Vol 19,

No. 19, 1457, (2004).

[11] S. Sree Ranjani Thesis and refrence there in ”Quantum Hamilton - Jacobi solution for spectra

of several one dimensional potentials with special properties” arXiv:quant-ph/0408036.

[12] K. G. Geojo Thesis and refrence there in ”Quantum Hamilton - Jacobi study of wave functions

and energy spectrum of solvable and quasi - exactly solvable models” arXiv:quant-ph/0410008.

[13] K. G. Geojo, S. Sree Ranjani, A. K. Kapoor, J. Phys A: Math. Gen. 36, 4591, (2003).

[14] S. Sree Ranjani, A. K. Kapoor, P. K. Panigrahi, Int. jour. of Theoretical Phys., 44, No. 8,

1167 (2005).

[15] S. Sree Ranjani, A. K. Kapoor, Prasanta K. Panigrahi, arXiv:quant-ph/0403054 .

http://arxiv.org/abs/quant-ph/0408036
http://arxiv.org/abs/quant-ph/0410008
http://arxiv.org/abs/quant-ph/0403054

	I Introduction
	A Electrostatic Model
	B Quantum Hamilton Jacobi

	II Model 
	III Discussion
	IV Conclusion
	 Acknowledgments
	 References

