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Abstract

We study some basic and interesting quantum mechanical systems in

dynamical noncommutative spaces in which the space- space commuta-

tion relations are position dependent. It is observed that the fundamental

objects in the dynamical noncommutative space introduced here are string-

like. We show that the Stark effect can be employed to determine whether

the noncommutativity of space is dynamical or non-dynamical. It appears

that unlike non-dynamical case there is a fundamental energy
τ h̄

2

m
in this

dynamical space.

1 Introduction

The idea of extension of noncommutativity to the coordinates was first suggested
by Heisenberg as a possible solution for removing the infinite quantities of field
theories. The renewed interest by physics community started to grow after
the paper by Seiberg and Witten [1], see also [2]. Noncommutative quantum
mechanics has received a wide attention in recent years and many physical
problems have been studied in the framework of the noncommutative quantum
mechanics.
The noncommutativity of the coordinates can be described by the following
commutation relation:

[xµ, xν ] = iθµν (1)

where θµν is an anti-symmetric tensor. The simplest case corresponds to θµν
being constant, which we call it non-dynamical or θ-noncommutative spaces. In
[3], the authors assumed θµν to be a function of position coordinates.
Recently [4] a generalization to dynamical( position dependent ) noncommuta-
tive spaces (DNCS) has been proposed in which the noncommutativity tensor is
not constant but is position dependent and the following commutation relations
are introduced for a two dimensional dynamical noncommutative space :

[X,Y ] = iθ(1 + τY 2) ; [X,Px] = ih̄(1 + τY 2) ; [X,Py] = 2iτY (θPy + h̄X)

[Y, Py] = ih̄(1 + τY 2) ; [Y, Px] = 0 ; [Px, Py] = 0 (2)
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It is worth mentioning that by taking τ → 0, we recover the non-dynamical
(θ-noncommutative) commutation relations:

[x0, y0] = iθ ; [x0, px0
] = ih̄ ; [x0, py0

] = 0

[y0, py0
] = ih̄ ; [y0, px0

] = 0 ; [px0
, py0

] = 0 (3)

The X coordinate and the momentum in Y direction, Py are not Hermi-
tian so the Hamiltonian involving these variables will in general also not be
Hermitian. But we may look for a similarity transformation i.e. a Dyson map
η O η−1 = o = o† which convert the non-Hermitian system into a Hermitian
one. It is shown that the relevant Dyson map is η = (1 + τY 2)−1/2, so the new
Hermitian variables x, y, px and py can be stated in terms of θ-noncommutative
space variables as follows [4]:

x = ηXη−1 = (1 + τy20)
−1/2(1 + τy20)x0(1 + τy20)

1/2

= (1 + τy20)
1/2x0(1 + τy20)

1/2

y = ηY η−1 = (1 + τy20)
−1/2y0(1 + τy20)

1/2 = y0

px = ηPxη
−1 = (1 + τy20)

−1/2px0
(1 + τy20)

1/2 = px0

py = ηPyη
−1 = (1 + τy20)

−1/2(1 + τy20)py0
(1 + τy20)

1/2

= (1 + τy20)
1/2px0

(1 + τy20)
1/2 (4)

where zero index indicates the coordinates in θ-noncommutative spaces.
These Hermitian dynamical noncommutative variables satisfy the following re-
lations:

[x, y] = iθ(1 + τy2) ; [x, px] = ih̄(1 + τy2) ; [px, py] = 0

[x, py] = 2iτy(θpy + h̄x) ; [y, px] = 0 ; [y, py] = ih̄(1 + τy2) (5)

Using Bopp-shift one can relate the θ-noncommutative variables to the variables
of standard (conventional) commutative space:

xi0 = xis −
θij

2h̄
pjs , pi0 = pis , i, j = x, y (6)

where θij = ǫijkθk and we take θ3 = θ and the rest of the θ−components to zero
[7].
An interesting point is that the minimal uncertainty of the coordinate X :

∆Xmin = θ
√
τ
√

1 + τ〈Y 〉2ρ (7)

leads to a minimal length for X in a simultaneous X , Y measurment, but there
is no nonvanishing length in the Y -direction [4]. Here ρ = η2 = (1 + τY 2)−1,
is the metric operator, and 〈Y 〉ρ is the expectation value of operator Y with
respect to this metric.
This means that the fundamental objects in this type of dynamical noncommu-
tative spaces are string like and this is a good motivation to study physics in
these spaces. In this paper we study some interesting and important quantum
systems in DNCS.
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2 The harmonic oscillator

Harmonic oscillator is an important model in many branches of physics. It can
be used to illustrate the basic concepts and methods in quantum mechanics. It
also has applications in a variety of branches of modern physics including spec-
troscopy, condensed matter physics, nuclear structure, quantum optics, quan-
tum field theory and statistical mechanics.
The Hamiltonian of a two dimensional harmonic oscillator in DNCS is given by:

H(x, y, px, py) =
p2x + p2y

2m
+

1

2
mω2(x2 + y2) (8)

Using Eq.(4), we rewrite the Hamiltonian in terms of θ-noncommutative vari-
ables:

h(x0, y0, px0
, py0

) =
1

2m
[p2x0

+ (1 + τy20)
1/2py0

(1 + τy20)py0
(1 + τy20)

1/2]

+
1

2
mω2[(1 + τy20)

1/2x0(1 + τy20)x0(1 + τy20)
1/2 + y20 ] (9)

with the help of the Bopp-shift this Hamiltonian can be stated in terms of the
standard commutative variables. To the first order in θ and τ we have:

Hho(xs, ys, pxs
, pys

) =
p2xs

+ p2ys

2m
+

1

2
mω2(x2

s + y2s)−
mω2θ

2h̄
Lzs

+
τ

m
y2sp

2
ys

+mω2τy2sx
2
s − 2i

τ h̄

m
yspys

− τh̄2

2m
= Hs

ho +Hθ,τ (10)

where Hs
ho is the Hamiltonian of harmonic oscillator in commutative spaces. If

we set τ = 0 we get the Hamiltonian of harmonic oscillator in θ-noncommutative
case i.e. Eq.(8) of Ref.[5](we note that in this equation to the first order in θ,
the paramete k=1).
Since the noncommutativity parameters τ and θ if they are non-zero should
be very small, we use perturbation theory to find the spectrum of quantum
systems. The perturbation Hamiltonian can be rewritten as follows:

Hθ,τ = −mω2θ

2h̄
Lzs +

τ

m
y2sp

2
ys

+mω2τy2sx
2
s − 2i

τ h̄

m
yspys

− τh̄2

2m
= v1 + v2 + v3 + v4 + v5 (11)

3



The contributions of the different parts of the perturbation Hamiltonian are as
follows:

〈nx, ny|v1|n′
x, n

′
y〉 = − i

2
mω2θ

√

(n′
y + 1)n′

xδnx,n′

x
+1δny,n′

y
−1

+
i

2
mω2θ

√

(n′
x + 1)n′

yδnx,n′

x
−1δny,n′

y
+1

〈nx, ny|v2|n′
x, n

′
y〉 =

τh̄2

4m
(2n′2

y + 2n′
y − 1)δnx,n′

x
δny,n′

y

〈nx, ny|v3|n′
x, n

′
y〉 =

τh̄2

4m

[√

(n′
y − 1)n′

yδny,n′

y
−2 + (2n′

y + 1)δny,n′

y

+
√

(n′
y + 1)(n′

y + 2)δny,n′

y
+2

][

√

(n′
x − 1)n′

xδnx,n′

x
−2

+ (2n′
x + 1)δnx,n′

x
+
√

(n′
x + 1)(n′

x + 2)δnx,n′

x
+2

]

〈nx, ny|v4|n′
x, n

′
y〉 =

τh̄2

m
δnx,n′

x
δny,n′

y

〈nx, ny|v5|n′
x, n

′
y〉 = −τh̄2

2m
δnx,n′

x
δny,n′

y
(12)

So the elementes of the perturbation Hamiltonian are given by:

H
θ,τ
ij =























































































τh̄2

4m

√

(j − 1)(j − 2)(g − j + 2)(g − j + 3) ; i− j = −2

imθω2

2

√

(j − 1)(g − i+ 1) ; i− j = −1

τh̄2

4m
[−2(j − 1)2 + 2(j − 1) + 2(2j − 1)g + 2] ; i = j

− imθω2

2

√

(i− 1)(g − j + 1) ; i− j = 1

τh̄2

4m

√

j(j + 1)(g − j + 1)(g − j) ; i− j = 2

(13)
where g = nx + ny and integers i and j represent the row and column indices,

respectively.
The energy shift for the ground state nx + ny = 0 is:

∆E = −τh̄2

2m
(14)

There is an interesting point involved here, although the correction to the ground
state of the harmonic oscillator due to the noncommutativity of space to the
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first order in noncommutativity parameter vanishes in non-dynamical spaces (

θ-noncommutative space )[5], it has nonvanishing value−τh̄2

2m
in dynamical case.

The first excited state nx + ny = 1, has two fold degeneracy. The perturbation
matrix is given by:







τh̄2

m

1

2
mω2θ

−1

2
mω2θ 2

τh̄2

m






(15)

and the corresponding energies are:

Enx+ny=1 =















2h̄ω +
3τh̄2

2m
−
√

τ2h̄4

4m2
+

m2ω4θ2

4

2h̄ω +
3τh̄2

2m
+

√

τ2h̄4

4m2
+

m2ω4θ2

4

(16)

3 Quantum Hall effect

Quantum Hall effect( QHE ) is the remakable observation of quantized transport
in two dimensional electron gasses placed in a transverse magnetic field. Let
us consider a moving particle with charge q and mass µ in a two dimensional
x−y plane and submitted to a uniform magnetic field ~B in the z-direction. The
components of vector potential can be taken as follows:

Ax = −1

2
By , Ay =

1

2
Bx , Az = 0 (17)

For the Hamiltonian of the system we have:

H(x, y, px, py) =
1

2µ
[(px +

qB

2c
y)2 + (py −

qB

2c
x)2] (18)

In terms of the θ-noncommutative variables, the Hamiltonian takes the following
form:

H(x0, y0, px0
, py0

) =
1

2µ

[

(px0
+

qB

2c
y0)

2 + [(1 + τy20)
1/2py0

(1 + τy20)
1/2

− qB

2c
(1 + τy20)

1/2x0(1 + τy20)
1/2]2

]

= hθ
ho − 2θµωLτ

2h̄y20 + 2iωL(τy0 + τ2y30)[h̄x0 + θpy0
]

− ωLτy
2
0py0

x0 + τh̄ωLθ − ωLlz0 (19)

where hθ
ho is the Hamiltonian of the harmonic oscillator in θ-noncommutative

space, with angular frequency ωL =
qB

2µc
. In terms of the standard commutative
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space variables it is given by:

H(xs, ys, pxs
, pys

) =
1

2µ
(p2xs

+ p2ys
) +

1

2
µω2

L(x
2
s + y2s)− ωLLzs

− µω2
Lθ

2h̄
Lzs +

τ

µ
y2sp

2
ys

+ µω2
Lτy

2
sx

2
s − 2i

τ h̄

µ
yspys

− τh̄2

2µ

+ 2iωLτh̄ysxs − ωLτy
2
spys

xs +
ωLθ

2h̄
(p2xs

+ p2ys
)

= Hs
ho +Hθ,τ (20)

It is convenient to write the perturbation Hamiltonian in circular cylinderical
coordinates:

Hθ,τ = −τh̄2

µ
{ρ2 sin4 ϕ ∂2

∂ρ2
−m2 sin2 ϕ cos2 ϕ− 2im sin3 ϕ cosϕ

+ 2imρ sin3 ϕ cosϕ
∂

∂ρ
}+ µω2

Lτρ
4 sin2 ϕ cos2 ϕ+ {im cos2 ϕ

+ ρ sinϕ cosϕ
∂

∂ρ
} − 2

τh̄2

µ
{ρ sin2 ϕ ∂

∂ρ
+ im sinϕ cosϕ} − τh̄2

2µ

+ 2iωLτh̄ρ
2 sinϕ cosϕ+ ih̄ωLτ{sin3 ϕ cosϕ

∂

∂ρ
+ imρ3 sin2 ϕ

cos2 ϕ} − h̄ωLθ{sin2 ϕ
∂2

∂ρ2
− m2

ρ2
cos2 ϕ− 2i

m

ρ2
sinϕ cosϕ

+ 2i
m

ρ
sinϕ cosϕ

∂

∂ρ
+

cos2 ϕ

ρ

∂

∂ρ
} (21)

Using the wave function:

Ψnρ,m(ρ, ϕ) =

√

(nρ)! ξ
2|m|+2

π(nρ + |m|)! ρ
|m|L|m|

nρ
(ξ2ρ2)eimϕe−1/2ξ2ρ2

; ξ2 =
µωL

h̄

we calculate the energy spectrum of the ground state:

Em=0,nρ=0 = h̄ωL +
1

4µξ4
[τµ2ω2

L + τξ4h̄2 + 2h̄µθωLξ
6] = 0.25

τh̄2

µ
+

1

2
h̄θωLξ

2

(22)
For the first excited state we have:

Em=0,1;nρ=1 = 3h̄ωL+























1

4µξ4
[7τµ2ω2

L + 7τξ4h̄2 + 6h̄µθωLξ
6] = 1.75

τh̄2

µ
+ 1.5h̄θωLξ

2

1

8µξ4
[(6τ − θξ4)µ2ω2

L + 6τξ4h̄2 + h̄µωLξ
2(−τ + 4θξ4)] = 0.7

τh̄2

µ
+

0.5h̄θωLξ
2 − 0.125µθω2

L

(23)
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By setting τ = 0, we obtaion the results of non-dynamical spaces, for instance
Eqs.(22) and (23) give the same values for the energy of the ground and first
excited states of the system as Eq.(20) in [6].

4 Hydrogen atom

In this section we study the Hydrogen atom in a two dimensional dynamical
noncommutative spaces. Electronic bound states around charged impurities
in two dimensional systems can be described in terms of a two dimensional
Hydrogen atom.
The Hamiltonian of the system is as follows:

H(x, y, px, py) =
1

2m
(p2x + p2y)−

ze2
√

x2 + y2
(24)

In terms of the θ-noncommutative variables it takes the following form:

h(x0, y0, px0
, py0

) =
1

2m
[p2x0

+ (1 + τy20)
1/2py0

(1 + τy20)py0
(1 + τy20)

1/2]

− ze2[(1 + τy20)
1/2x0(1 + τy20)x0(1 + τy20)

1/2 + y20 ]
−1/2

=
1

2m
[p2x0

+ (1 + τy20)
2p2y0

]− 2ih̄τ

m
y0(1 + τy20)py0

− τ2h̄2

m
y20 −

τh̄2

2µ
− ze2[(1 + τy20)

2x2
0 + 4 iθτy0

(1 + τy20)x0 − τθ2 − 2τ2θ2y20 + y20 ]
−1/2 (25)

In standard commutative space we have:

H(xs, ys, pxs
, pys

) =
1

2m
(p2xs

+ p2ys
)− ze2

(x2
s + y2s)

1/2
+

ze2

2(x2
s + y2s)

3/2

× [2τxs
2ys

2 − θ

h̄
Lzs ] +

τ

m
y2sp

2
ys

− 2i
τ h̄

m
yspys

− τh̄2

2m

= Hs +Hθ,τ (26)

If we take τ = 0 we obtain Hθ = −ze2Lzθ

2h̄r3
, which is in agreement with the

results of non-dynamical case presented in Eq.(2.5) of Ref.[7](note that in [7],θij

is defined through θij =
1

2
ǫijkθk but we have chosen θij = ǫijkθk).

Using the wave functions of two dimentional Hydrogen atom [8], The energy
spectrum for the ground state and the first degenerate excited states are obtain:

△E = 0.125
τh̄2

m
(27)
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and

△E =







































0.875
τh̄2

2m

0.75
τh̄2

m
−
√

0.06
τ2h̄4

m2
+ 0.04

(ze2)2θ2

a60

0.75
τh̄2

m
+

√

0.06
τ2h̄4

m2
+ 0.04

(ze2)2θ2

a60

(28)

5 The Zeeman effect

The Zeeman effect is very important in applications such as nuclear magnetic
resonance spectroscopy, electron spin resonance spectroscopy, magnetic reso-
nance imaging ( MRI ) and Mössbaure spectroscopy. To study the effects of
dynamical noncommutativity on Zeeman effect we consider the relevant Hamil-
tonian:

H(x, y, px, py) =
1

2m
(p2x + p2y)−

ze2
√

x2 + y2
− ωLz

=
1

2m
(p2x + p2y)−

ze2
√

x2 + y2
− ω[xpy − ypx] (29)

In terms of the θ-noncommutative variables it takes the following form:

H(x0, y0, px0
, py0

) =
1

2m
[p2x0

+ (1 + τy20)
2p2y0

]− 2ih̄τ

m
y0(1 + τy20)py0

− τ2h̄2

m
y20 −

τh̄2

2m
− ze2[(1 + τy20)

2x2
0 + 4 iθτ

y0(1 + τy20)x0 − τθ2 − 2τ2θ2y20 + y20]
1/2 − ω

[(1 + τy20)
1/2x0(1 + τy20)py0

(1 + τy20)
1/2 − y0px0

] (30)

Using Bopp-shift one can write down the Hamiltonian in standard commutative

space:

H(xs, ys, pxs
, pys

) =
1

2m
(p2xs

+ p2ys
)− ze2

(x2
s + y2s)

1/2
+

ze2

2(x2
s + y2s)

3/2

× [2τxs
2ys

2 − θ

h̄
Lzs ] +

τ

m
y2sp

2
ys

− 2i
τ h̄

m
yspys

− τh̄2

2m

− ω[xspys
− yspxs

] +
θ

2h̄
ω(p2xs

+ p2ys
)

− 2τωy2spys
xs + ih̄ωτysxs (31)
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If we choose τ = 0, Eq.(31) reduces to the Eqs.(24), (25) and (26) of the Ref.[9]
for the case of non-dynamical spaces(to the first order in magnetic field B). The
corrections to the energy for the ground state and degenerate first excited state
are given by:

△E = 2
h̄ωθ

a20
+ 0.125

τh̄2

m
(32)

and

△E =























































































0.22
h̄ωθ

a20
+ 0.875

τh̄2

m
0.5

a60m
2
[−a40h̄m(−1.5a20τh̄− 0.4mθω)− 0.5a30(a

6
0h̄

4m2τ2

+0.64m4(ze2)2θ2 − 17.92ze2a50h̄m
4τθω)1/2] =

0.75
τh̄2

m
+ 0.2

h̄θω

a20
− 0.5[(

τh̄2

m
)2 − 17.92

τh̄2

m

(ze4)θωm2

h̄3
+ 0.64

(ze2)2θ2

a60
]

1

2

0.5

a60m
2
[−a40h̄m(−1.5a20τh̄− 0.4mθω) + 0.5a30(a

6
0h̄

4m2τ2

+0.64m4(ze2)2θ2 − 17.92ze2a50h̄m
4τθω)1/2 =

0.75
τh̄2

m
+ 0.2

h̄θω

a20
+ 0.5[(

τh̄2

m
)2 − 17.92

τh̄2

m

(ze4)θωm2

h̄3
+ 0.64

(ze2)2θ2

a60
]

1

2

(33)

where ω =
eB

2µc
and a0 is the Bohr radius.

6 The Stark effect

Stark effect has become an increasingly important part of atomic, molecular and
optical physics. To study the effects of the external electric field on the spectrum
of the Hydrogen atom in dynamical noncommutative spaces, we consider the
electric field in the x-direction. The Hamiltonian is

H(x, y, px, py) =
1

2m
(p2x + p2y)−

ze2
√

x2 + y2
+ eEx (34)

For the ground state we have :

△E = 0.125
τh̄2

m
(35)

It can be shown that for the first excited state the energy correction to the first

order is also proportional to
τh̄2

m
.

The same results are obtained if the electric field applied in the y-direction.
It is shown in [7] that at tree level the contribution to the Stark effect is zero in
non-dynamical case but we observe that in dynamical noncommutative spaces
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the contribution to the Stark effect is nonzero, therefore the Stark effect can be
employed to determine whether the noncommutativity of space is dynamical or
nondynamical. it is instructive to understand the mechanism intuitively. As we
already mentioned the energy correction due to the external electric field on the
energy spectrum of the Hydrogen ground state in dynamical noncommutative
space is not zero. This means that there is a permanent electric dipole for the
ground state of the hydrogen atom in DNCS. To understand how this electric
dipole is produced, we note that the fundamental objects in DNCS are not point
like but they are string like. On the other hand it is shown in [10] that strings
can act as electric dipoles, so the fundamental particles(strings) in dynamical
noncommutative spaces for instance electrons, quarks (neurons and proto ns)
can have electric dipoles due to dynamical noncommutativity of space which
leads to permanent electic dipole for the ground state of the Hydrogen atom.

7 Conclusions

We have studied some fundamental and interesting quantum systems in dy-
namical noncommutative spaces. The energy shift for the ground state of the
harmonic oscillator due to noncommutativity of space is zero for non-dynamical
case while it has non-vanishing value in DNCS. We have shown that Stark ef-
fect can be used to check whether the noncommutativity of space is dynamical
or non-dynamical. It seems that in the dynamical noncommutative space in-
troduced here, there is a fundamental energy so that the corrections due to
dynamical noncommutativity on the energy of a quantum system can be stated

in terms of g
τh̄2

m
in which

τh̄2

m
is fundamental enegy independent of the sys-

tem and the factor g depends on the kind of the system. For instance, for the
ground state of the harmonic oscillator and quantum Hall effect, the values of g
are −0.5 and 0.25 respectively. For Hydrogen atom, Zeeman and stark effects it
is 0.125. We confirm that in the limit τ → 0, we obtain the results presented in
previous works devoted to non-dynamical noncommutative spaces. Finally one
can use the energy accuracy measurement 10−12eV [11] to impose some bounds

on the value of the noncommutativity parameter τ :
τh̄2

m
< 10−12eV .
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