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We derive local microscopic optical potentials U systematically for polarized proton scattering
at 65 MeV using the local-potential version of the Melbourne g-matrix folding model. As target
nuclei, we take 6He and neutron-rich Ne isotopes in addition to stable nuclei of mass number A = 4–
208 in order to clarify mass-number and isotope dependence of U . The local potentials reproduce
the experimental data systematically and have geometries similar to the phenomenological optical
potentials for stable targets. The target density is broadened by the weak-binding nature and/or
deformation of unstable nuclei. For the real spin-orbit part of U the density broadening weakens
the strength and enlarges the radius, whereas for the central part it enlarges both of the strength
and the radius. The density-broadening effect is conspicuous for halo nuclei such as 6He and 31Ne.
Similar discussions are made briefly for proton scattering at 200 MeV. We briefly investigate how
the isovector and the non spherical components of U affect proton scattering.

PACS numbers: 25.40.Cm, 24.10.Ht, 24.70.+s

I. INTRODUCTION

Understanding of nucleon-nucleus (NA) and nucleus-
nucleus (AA) interactions is one of the most important
subjects in nuclear physics. The interactions (optical po-
tentials) are necessary to describe not only elastic scat-
tering but also more complicated reactions. Actually, the
interactions are inputs of theoretical calculations, such as
the distorted-wave Born approximation (DWBA) and the
continuum discretized coupled-channels method (CDCC)
[1–3], to analyze inelastic scattering and transfer and
breakup reactions.

In general, NA elastic scattering is less absorptive and,
hence, more sensitive to nuclear interior than AA scat-
tering. Furthermore, one can determine not only the cen-
tral part but also the spin-orbit part of the NA interac-
tion, when the incident particle is polarized. Systematic
measurements of polarized proton (p) elastic scattering
have been made for stable target nuclei. As an outcome
of the measurements, some global NA optical potentials
have been constructed phenomenologically; see for exam-
ple Refs. [4–7]. In most of the cases, the potentials are
assumed to be local and thereby quite practical in many
applications such as DWBA and CDCC calculations.

Elastic scattering of a polarized proton on unstable
nuclei are a quite good tool used to investigate not only
nuclear structures of unstable nuclei but also interactions
between a proton and unstable nuclei, but the measure-
ments are not easy. The first measurement on the vector
analyzing power Ay was made by Uesaka and his collab-
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orators for p+6He elastic scattering at 71 MeV with the
inverse kinematics [8]. The g-matrix folding model yields
reasonable agreement with the measured vector analyz-
ing power [8]. The nuclear-medium effect included in the
model is thus important for the observable. Recently, the
effects of 6He breakup on the elastic scattering were inves-
tigated with the eikonal approximation [9]. The medium
effect is more significant than the breakup effect, as far
as Ay is concerned.

The g-matrix folding model is a powerful tool to de-
scribe NA and AA interactions [10–19]. Particularly
when the Melbourne g-matrix nucleon-nucleon (NN) in-
teraction [17] is used, the model is successful in reproduc-
ing polarized proton elastic scattering from stable tar-
get nuclei systematically with no free parameter [17]. In
the model, target-excitation and projectile-breakup ef-
fects are taken into account within the local-density ap-
proximation in addition to the medium effect. The mi-
croscopic optical potential derived by the model is non-
local and thereby not so practical in many applications.
It is, however, possible to localize the potential with the
Brieva-Rook approximation [12]. Recently the validity of
the approximation was shown in Ref. [20].

From a theoretical viewpoint based on the multiple
scattering theory [21–23], a multiple NN scattering se-
ries in AA collisions [23] is more complicated than that
in NA collisions [21, 22]. In this sense, microscopic un-
derstanding of AA interaction is relatively more difficult
than that of NA interaction. Very recently, however, for
AA elastic scattering the local microscopic optical poten-
tial was derived from the Melbourne g-matrix interaction
by using both the folding model and the Brieva-Rook lo-
calization [24–26]. When the local-potential version of
the Melbourne g-matrix folding model was applied to
12C+12C scattering at 6.2, 135, and 250 MeV/nucleon
and 20−32Ne+12C scattering at 240 MeV/nucleon, the
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local potentials reproduced the measured elastic cross
sections and reaction cross sections σR with no free pa-
rameter [24–26]. In the calculations, densities of unsta-
ble nuclei 20−32Ne were evaluated by use of antisym-
metrized molecular dynamics (AMD) [27, 28] with the
Gogny-D1S interaction [29], whereas the phenomenolog-
ical density [30] was taken for 12C. The AMD wave func-
tions successfully describe low-lying spectra of Ne iso-
topes [27]. The microscopic approach shows that 30−32Ne
in the “island of inversion” have large deformation and
particularly 31Ne is a deformed halo nucleus with spin-
parity 3/2− [24–26]. The local-potential version of the
Melbourne g-matrix folding model is thus a powerful tool
to determine structures of unstable nuclei. The success
of the local-potential version of the Melbourne g-matrix
folding model for proton scattering from stable nuclei and
20−32Ne+12C scattering implies that the model is reliable
also for proton scattering from unstable nuclei such as Ne
isotopes.
In this paper, we derive local microscopic optical po-

tentials U systematically for polarized proton scattering
at 65 MeV, using the local-potential version of the Mel-
bourne g-matrix folding model. This local nature of U
makes it easy to clarify global properties of U for both
stable and unstable targets. As the targets, we consider
6He and neutron-rich Ne isotopes in addition to stable
nuclei of mass numberA = 4–208. Throughout the global
analyses, we clarify A and isotope dependence of U . Tar-
get densities are broadened much in 6He and neutron-rich
Ne isotopes compared with stable nuclei with the same
A by the weak-binding nature and/or the nuclear defor-
mation. We clarify how the density broadening affects
the shape and the strength of U . This analysis is inter-
esting particularly for 6He and 31Ne, since 6He is a typ-
ical two-neutron halo nucleus and 31Ne is a one-neutron
halo nucleus with large deformation. Similar analyses
are briefly made for proton scattering at 200 MeV. Fi-
nally, we briefly investigate how the isovector and the
non-spherical components of U affect proton scattering.
We recapitulate the local-potential version of the Mel-

bourne g-matrix folding model in Sec. II and show nu-
merical results in Sec. III. Section IV is devoted to a
summary.

II. THEORETICAL FRAMEWORK

Proton elastic scattering can be described by the one-
body Schrödinger equation,

(TR + U − E)Ψ(+) = 0, (1)

with a proton optical potential U , where E is an inci-
dent energy of proton and TR is a kinetic-energy operator
concerning the relative coordinateR between an incident
proton and a target. The optical potential U can be di-
vided into the central (CE), the spin-orbit (LS), and the
Coulomb (Coul) component as follows:

U = UCE + ULSL · σ + VCoul. (2)

In the g-matrix folding model, U consists of the direct
and exchange parts [31]. The exchange part is nonlocal,
but it can be localized with the Brieva-Rook approxima-
tion [12]. Validity of the approximation is shown in Ref.
[20]. We take this approximation in the present paper,
since the localized U make it possible to make systematic
analyses of U over stable and unstable targets. In addi-
tion to the merit, the local microscopic optical potential
is quite useful in many applications, particularly when
potentials between stable and unstable nuclei are needed
in the applications.
The central part UCE is then described by the sum of

the direct component UDR
CE and the localized exchange

component UEX
CE [12, 15, 18],

UCE ≡ VCE + iWCE = UDR
CE + UEX

CE (3)

with

UDR
CE (R) =

∑

α=p,n

∫

ρα(r)g
DR
pα (s; ρα)dr, (4)

UEX
CE (R) =−

∑

α=p,n

∫

ρα(r, r − s)gEX
pα (s; ρα)j0(K(R)s)dr, (5)

where VCE (WCE) is the real (imaginary) part of UCE and
s = r −R, and r is the coordinate of an interacting nu-
cleon from the center-of-mass (c.m.) of target. The local

momentum ~K(R) ≡
√

2µR(E − UCE − VCoul) present
in Eq. (5) is obtained self-consistently, where µR is the
reduced mass of the proton+target system.
Usually the direct part gDR

pα and the exchange part gEX
pα

of the g-matrix interaction are assumed to be a function
of the local density ρα = ρα(r − s/2) at the midpoint
of the interacting nucleon pair. The direct and exchange
parts are described as

gDR,EX
pp (s; ρp) =

1

4

(

±g01 + 3g11
)

, (6)

gDR,EX
pn (s; ρn) =

1

8

(

g00 ± g01 ± 3g10 + 3g11
)

, (7)

in terms of the spin-isospin component gST of the g-
matrix interaction.
Similar derivation is possible for the spin-orbit part

ULS [18],

ULS ≡ VLS + iWLS = UDR
LS + UEX

LS (8)

with

UDR
LS (R) =− 1

4R2

∑

α=p,n

∫

R·sρα(r)gDR
LS,pα(s; ρα)dr, (9)

UEX
LS (R) = −π

∑

α=p,n

∫

ds s3
[

2j0(K(R)s)

R
ρ
(α)
1 (R, s)

+
j1(K(R)s)

2k
δ
(α)
0 (R, s)

]

, (10)

where VLS (WLS) is the real (imaginary) part of ULS

[see Appendix A for the definition of ρ
(α)
1 (R, s) and
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δ
(α)
0 (R, s)]. As a g-matrix interaction, we take the Mel-
bourne interaction [17] constructed from the Bonn-B
nucleon-nucleon potential [32].

As target densities ρ, we consider three kinds of mat-
ter densities. For all the targets analyzed here, the
matter densities are evaluated by spherical Hartree-Fock
(HF) calculations with the Gogny-D1S interaction [29] in
which the spurious center-of-mass motions are removed
in the standard manner [26]. For lighter stable nuclei
of A ≤ 40, we also use the phenomenological proton-
density [30] determined from electron scattering in which
the finite-size effect of proton charge is unfolded in the
usual way [33]. For each nucleus with A ≤ 40, the neu-
tron density is assumed to have the same geometry as
the proton one, since the deviation of the neutron root-
mean-square (rms) radius from the proton one is about
1% in the spherical HF calculation.

For 20−32Ne, the matter densities are evaluated also
by AMD [27, 28] with the Gogny-D1S interaction [29].
This provides deformed matter densities. The AMD
wave functions successfully describe low-lying spectra of
Ne isotopes [27] and σR of 20−32Ne+12C scattering at
240 MeV/nucleon [24–26], and it is free from the spuri-
ous center-of-mass motion; see Ref. [26, 27] for the details
of AMD calculations.

Particularly for 31Ne with a quite small one-nucleon
separation energy, we have to do a sophisticated calcula-
tion to make a tail correction to the AMD density, since
the AMD density is inaccurate in its tail region. In prin-
ciple, the ground state of 31Ne can be described by the
30Ne+n cluster model with core (30Ne) excitations, and
one can solve coupled equations for the model with the
resonating group method (RGM) in which the ground
and excited states of 30Ne are constructed by AMD. This
was done in Refs. [25, 26]. This method is referred to as
AMD-RGM in this paper.

The matter density ρImIm′(r) is obtainable from the
ground state wave function ΦImπ

g.s. with spin I, its z-
component m and parity π as

ρImIm′(r) = 〈ΦImπ
g.s. |

∑

i

δ(ri −X − r)|ΦIm′π
g.s. 〉, (11)

=
2I
∑

λ=0

ρ
(λ)
II (r)(Im′λµ|Im)Y ∗

λµ(r̂), (12)

where X is the center-of-mass coordinate and ri is the
coordinate of the i-th nucleon, and the summation over
λ in Eq. (12) runs for even numbers. As the standard
manner in the folding model, only the spherical (λ = 0)

component of ρ
(λ)
II is taken. This approximation makes

the folding potential U spherical. This procedure is exact
for even nuclei with I = 0, but approximate for odd nuclei
with I 6= 0. The procedure is a good approximation for
reaction cross sections of AA scattering at high incident
energies [26]. We will examine in Sec. III E how accurate
this procedure is for NA scattering.

III. RESULTS

In this section we analyze polarized proton scattering
at E = 65 and 200 MeV, using the local-potential version
of the Melbourne g-matrix folding model, although the
analysis is mainly focused on the case of E = 65 MeV.
In the folding model, we also consider the Franey-Love
t-matrix NN interaction [34]. As target nuclei of proton
scattering, we consider stable nuclei of 4He, 12C, 16O,
20Ne, 24Mg, 40Ca, 90Zr, 208Pb, and unstable nuclei of
6He and neutron-rich Ne isotopes.

A. Proton scattering from stable nuclei at 65 and

200 MeV

In this subsection, we mainly consider proton scatter-
ing at 65 MeV and briefly discuss the case of 200 MeV
at the end of this subsection.
Figure 1 shows elastic cross sections dσ/dΩ and vec-

tor analyzing powers Ay as a function of the scattering
angle θc.m. for proton scattering at E = 65 MeV from
4He, 12C, 40Ca, and 208Pb targets. The solid lines de-
note the results of the local microscopic potentials de-
rived from the Melbourne g-matrix interaction. The re-
sults are consistent with those [17] of the nonlocal micro-
scopic potentials derived from the Melbourne g-matrix
interaction, although target wave functions used in two
calculations differ. The g-matrix folding model shown
by the solid lines yields better agreement with the ex-
perimental data [35–42] than the t-matrix folding model
denoted by the dashed lines. The medium effect shown
by the difference between the solid and dashed lines are
more significant for Ay. For lighter targets of 4He, 12C
and 40Ca, the agreement of the g-matrix folding model
with the data is better for the phenomenological densi-
ties denoted by the solid lines than for the HF densi-
ties shown by the dotted lines. However, the g-matrix
folding model with the HF density still keeps reasonable
agreement with the data. The HF density based on the
Gogny-D1S interaction [29] is thus quite useful to derive
the microscopic optical potentials U systematically.
Figure 2 shows A dependence of the reaction cross

sections σR for proton scattering. The closed circles
(crosses) denote the results of the g-matrix (t-matrix)
folding model with the phenomenological target densi-
ties for A ≤ 40 and the HF target densities for A > 40.
The g-matrix folding model yields better agreement with
the data than the t-matrix folding model. The results of
the g-matrix folding model agree with the data [43–47]
within 10% error in a wide range of 4 ≤ A ≤ 208. Since
σR is sensitive to WCE, the part is thus derived with at
least 90% accuracy.
As a merit of deriving the local microscopic optical po-

tential U , we can directly compare U with phenomeno-
logical optical potentials. Here we take two types of
phenomenological optical potentials. One is the Koning-
Delaroche (KD) optical potential [4] based on the stan-
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FIG. 1: (Color online) Angular distributions of (a) the elastic
cross sections dσ/dΩ and (b) the vector analyzing powers Ay

for proton scattering at E = 65 MeV from 4He, 12C, 40Ca, and
208Pb targets. The solid (dotted) lines represent the results of
the g-matrix folding model with the phenomenological (HF)
density, whereas the dashed lines correspond to the results of
the t-matrix folding model with the phenomenological density.
Experimental data are taken from Refs. [35–42].

dard potential search in the framework of the Schrödinger
equation, and another is the Dirac phenomenology opti-
cal potential [5, 6] based on the standard potential search
in the framework of the Dirac equation. As an exam-
ple, we compare the three optical potentials for p+40Ca
scattering at E = 65 MeV in Fig. 3. The microscopic
optical potential is calculated from the phenomenologi-
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FIG. 2: (Color online) A dependence of the reaction cross
sections σR for proton scattering at E ≈ 65 MeV. The closed
circles (crosses) stand for the results of the g-matrix (t-matrix)
folding model with the phenomenological densities for A ≤ 40
and the HF ones for A > 40. Experimental data are taken
from Refs. [43–47], where E = 47.9 MeV for 4He, 65.5 MeV
for 12C, 16O, 40Ca, and 208Pb; 47.0 MeV for 20Ne; 48.0 MeV
for 24Mg; and 60.8 MeV for 90Zr.

cal target density. The imaginary spin-orbit part WLS is
about 10 times as small as VLS, so it hardly affects the
present elastic scattering. We then compare the three op-
tical potentials for VCE, WCE and VLS. The KD optical
potential denoted by the dashed lines has R dependence
similar to that of the Dirac phenomenology optical poten-
tial shown by the dotted lines. In the peripheral region,
furthermore, R dependence of the two phenomenological
optical potentials is similar to that of the microscopic one
shown by the solid lines. At small R, the deviations of
the microscopic optical potential from the phenomeno-
logical ones are small for VCE, but become sizable for
VLS and WCE. For VLS the deviations little affect dσ/dΩ
and Ay up to 90◦ where the experimental data is avail-
able, but for WCE the deviations slightly enhance σR and
consequently overestimate the measured σR by several
percentages.
For the p+4He system, the g-matrix folding model does

not reproduce the measured elastic cross sections at back-
ward angles θc.m. >∼ 90◦. A possible origin of this devi-

ation is the heavy-ion (3H) exchange process that is not
included in the folding model. The process generates a
parity-dependent potential [48]. We then rewrite VCE as

VCE → VCE(1 + α(−1)L) (13)

to incorporate the effect in the folding model phenomeno-
logically. The parameter α is fitted to the experimental
data [35, 36], and the resulting value is α = 0.13. In
Fig. 4, the solid (dashed) lines show dσ/dΩ and Ay cal-
culated by the g-matrix folding model with α = 0.13
(α = 0). Effects of the parity-dependent potential are
appreciable at intermediate angles 60◦ <∼ θc.m. <∼ 90◦ and
significant at backward angles at θc.m. >∼ 90◦.
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FIG. 3: (Color online) R dependence of the microscopic op-
tical potential, the Koning-Delaroche (KD) optical potential
and the Dirac phenomenology optical potential for p+40Ca
scattering at E = 65 MeV. The microscopic optical poten-
tial is denoted by the solid lines, the Koning-Delaroche (KD)
optical potential [4] by the dashed lines and the Dirac phe-
nomenology optical potential by the dotted lines. Panels (a),
(b), (c), and (d) correspond to VCE, WCE, VLS, and WLS,
respectively.
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FIG. 4: (Color online) Effects of the parity-dependent poten-
tial on (a) the elastic cross section dσ/dΩ and (b) the vector
analyzing power Ay for p+4He scattering at E = 65 MeV.
The solid (dashed) lines stand for the results of the g-matrix
folding model with α = 0.13 (α = 0), where the phenomeno-
logical density is taken for 4He. Experimental data are taken
from Refs. [35, 36].

For the p+12C system, the g-matrix folding model does
not reproduce the measured Ay around θc.m. = 100◦.
Even the phenomenological optical potentials [4–6] can-
not reproduce it. The parity-dependent potential does
not solve this problem, since the potential enhances the
elastic cross section largely at θc.m. > 90◦. Therefore this
is an open problem. Except for the measured Ay around
θc.m. = 100◦ for the p+12C system, the g-matrix folding
model yields good agreement with the data for targets of
A = 4–208.
Now we briefly analyze proton scattering at E =

200 MeV as an example of intermediate energies and
a typical case of beam energies in Radioactive Isotope
Beam Factory (RIBF).
Figure 5 shows angular distributions of dσ/dΩ and Ay

for proton scattering from stable nuclei 4He, 12C, 40Ca,
and 208Pb. The definition of lines is the same as in Fig. 1.
The g-matrix folding model with the phenomenological
density, shown by the solid lines, reproduces the data [51–
54] particularly at forward angles θc.m. <∼ 60◦. If Fig. 5
is compared with Fig. 1 as a function of the transferred
momentum, θc.m. = 60◦ in Fig. 5 corresponds to θc.m. =
128◦ in Fig. 1. Therefore, the angle region θc.m. > 60◦ in
Fig. 5 corresponds to very backward angles θc.m. > 128◦

in Fig. 1. In this sense, it is natural that in Fig. 5
the solid lines are deviated from the data at θc.m. >∼ 60◦

particularly for lighter targets of A ≤ 12. Even at θc.m. >∼
60◦ for lighter targets of A ≤ 12, the g-matrix folding
model with the phenomenological density, shown by the
solid lines, yields better agreement with the data than
that with the HF density denoted by the dotted lines.
The medium effect, shown by the difference between the
solid and dashed lines, is still significant at E = 200 MeV.

B. p+6He scattering at 71 and 200 MeV

As a typical example of proton scattering from unsta-
ble targets, we first consider p+6He scattering at 71 MeV,
since the experimental data are available not only for
dσ/dΩ but also for Ay. The 6He density is obtained by
the 4He+n+n orthogonality-condition model; see Refs.
[49, 50] for the details. As a 4He density in the model,
we take either the phenomenological or the HF density.
In Fig. 6, the solid (dashed) lines show dσ/dΩ and Ay cal-
culated by the g-matrix (t-matrix) folding model with the
phenomenological 4He density, whereas the dotted lines
correspond to the results of the g-matrix folding model
with the HF 4He density. The g-matrix folding model
shown by the solid lines yields better agreement with
the data [8, 55] than the t-matrix folding model denoted
by the dashed lines. The solid lines are consistent with
the results of the nonlocal microscopic optical potential
derived from the Melbourne g-matrix interaction [8], al-
though 6He wave functions used in two calculations differ.
In Fig. 6, the differences between the solid and dotted

lines come from the difference between the phenomeno-
logical and HF 4He densities. Comparing Fig. 6 with
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FIG. 5: (Color online) Angular distributions of (a) the elastic
cross sections dσ/dΩ and (b) the vector analyzing powers Ay

for proton scattering at E = 200 MeV from 4He, 12C, 40Ca,
and 208Pb targets. See Fig. 1 for the definition of lines.
Experimental data are taken from Refs. [51–54].

Fig. 1, one can see that the difference in the 4He density
yields smaller effects on dσ/dΩ and Ay in p+6He scatter-
ing than in p+4He scattering. The difference in the 4He
density is thus partly masked by densities of extra two
neutrons in the p+6He scattering.

In Fig. 6, the nuclear-medium effect is shown by the
differences between the solid and dashed lines, and the
effect is much more significant for Ay than dσ/dΩ. The
differences mainly come from the fact that WCE calcu-
lated with the g-matrix folding model is much less ab-

sorptive than that with the t-matrix folding model; see
Fig. 7 for R dependence of U .
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FIG. 6: (Color online) Angular distributions of (a) the elastic
cross section dσ/dΩ and (b) the vector analyzing power Ay

for p+6He scattering at E = 71 MeV calculated by the folding
model with the 4He+n+n model density. The solid (dotted)
lines represent the results of the g-matrix folding model with
the phenomenological (HF) 4He density, whereas the dashed
lines correspond to the results of the t-matrix folding model
with the phenomenological 4He density. Experimental data
are taken from Ref. [8, 55].

As mentioned above, the g-matrix folding model yields
better agreement with the data than the t-matrix folding
model. The agreement is, however, not perfect particu-
larly for Ay. The parity-dependent potential little works
at forward angles θ < 90◦ in which the experimental data
are available. We then make a potential search to see
what causes the difference between the theoretical and
experimental results. Here we change the strength of U
as

U → (fCE
V VCE + ifCE

W WCE)

+ (fLS
V VLS + ifLS

W WLS)L · σ + VCoul (14)

with adjustable parameters fCE
V , fCE

W , fLS
V , fLS

W . A best fit
is obtained at (fCE

V , fCE
W , fLS

V , fLS
W ) = (0.7, 0.7, 0.9, 4.0),

but dσ/dΩ and Ay are not so sensitive at θ > 40◦ to
variations of fCE

W and fLS
V and hence these parameters

are not determined sharply.
Figure 8 shows the potential search for p+6He scatter-

ing at E = 71 MeV. The solid lines represent the results
of the potential search, whereas the dashed lines mean
the results of the g-matrix folding model with the phe-
nomenological 4He density. A small reduction of dσ/dΩ
from the dashed to the solid line at θ > 50◦ mainly comes
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FIG. 7: (Color online) R dependence of the microscopic op-
tical potential for p+6He scattering at E = 71 MeV. See Fig.
6 for the definition of lines. Panels (a), (b), (c), and (d) cor-
respond to VCE, WCE, VLS, and WLS, respectively.

from the reduction of VCE, and a large change of Ay from
the dashed to the solid line at θ > 40◦ is mainly origi-
nated in the increase of WLS. Thus the large enhance-
ment of WLS is necessary, but it is not clear what causes
the large enhancement of WLS. This is an interesting
question to be solved in the future.
Now we briefly analyze proton scattering from 6He at

E = 200 MeV. Any experimental data is not available for
this energy at the present stage, but the measurements
particularly of Ay are planned in RIBF. Figure 9 shows
angular distributions of dσ/dΩ and Ay for proton scat-
tering from 6He at E = 200 MeV. The definition of line is
the same as in Fig. 6. As shown in Fig. 5, the g-matrix
folding model shown by the solid lines yields consistent
results with the data for stable target nuclei. Hence, the
model prediction, shown by the solid lines in Fig. 9, is ex-
pected to be reliable also for 6He, particularly at forward
angles θc.m. <∼ 60◦. At backward angles θc.m. >∼ 60◦, the
solid lines differ from the dashed and dotted lines. This
means that it is necessary to include the medium effect
and use the phenomenological 4He density there.

C. A dependence of microscopic optical potentials

The g-matrix folding model is successful in reproduc-
ing the data on polarized proton scattering for targets
of A = 12–208. In general, the g-matrix folding model
is considered to be less accurate for light targets such
as 4,6He, since the g-matrix interaction is evaluated in
nuclear matter and the local density approximation used
seems to be more reliable for heavier targets. Neverthe-
less, the agreement of the model calculations with the
data is still reasonable for light targets 4,6He. We then
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FIG. 8: (Color online) Potential search for p+6He scattering
at E = 71 MeV in (a) the elastic cross sections dσ/dΩ and (b)
the vector analyzing powers Ay. The solid lines represent the
best-fit result with (fCE

V , fCE

W , fLS

V , fLS

W ) = (0.7, 0.7, 0.9, 4.0),
whereas the dashed lines correspond to the original results.
Experimental data are taken from Refs. [8, 55].

10-6
10-4
10-2
100
102
104

 0  30  60  90  120  150  180

dσ
/d

Ω
 [

m
b
/s

r]

θ c.m. [deg]

(a)

g( ρ(Phen.)
α core )

t( ρ(Phen.)
α core )

g( ρ(HF)
α core )

-1

-0.5

0

0.5

1

 0  30  60  90  120  150  180
θ c.m. [deg]

A
y

(b)

FIG. 9: (Color online) Angular distributions of (a) the elastic
cross section dσ/dΩ and (b) the vector analyzing power Ay

for proton scattering from 6He at E = 200 MeV. See Fig. 6
for the definition of lines.
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a1 a2 a3 a4

VCE -0.0023 0.0104 0.8508 1.0578

WCE -0.0076 0.0473 0.8732 1.332

VLS -0.0033 0.0137 1.2305 -0.0682

TABLE I: Parameter fitting for A dependence of the rms ra-
dius of U with a functional form a1A+ a2A

2/3 + a3A
1/3 + a4.

All the parameters are presented in units of fm.

derive global properties of the local microscopic optical
potentials for proton scattering at 65 MeV. The poten-
tials are calculated with the g matrix folding model with
the phenomenological target densities for A ≤ 40 and the
HF densities for A > 40.
Since the microscopic optical potentials do not have

any simple shape, we consider the volume integral J and

the rms radius 〈R2〉
1
2 for each part of U :

J =

∫

F (R)dR,
〈

R2
〉

1
2 =

√

∫

R2F (R)dR/J, (15)

where F (R) represents each part of U . As shown in Figs.
3 and 7, WLS is much smaller than VLS and hence yields
no significant effect on the present systems. Furthermore,
meanings of the volume integral and the rms radius are
not clear for WLS, since WLS is an oscillating function
of R. For these reasons, we do not consider the volume
integral and the rms radius of WLS here.
Figure 10 shows the rms radius of U as a function of

A. For each part of U , A dependence of the rms radius
is determined for stable targets of A = 4–208 by a curve

a1A+ a2A
2/3 + a3A

1/3 + a4; (16)

see Table I for the results of the fitting. The fitting line is
referred to as the stable-nucleus line. For each panel, the
lower figure shows a ratio of the rms radius to the stable-
nucleus line. Since 6He has a halo structure, the 6He
rms radius is enlarged by the structure from the stable-
nucleus line by ∼18% for VCE, ∼25% for WCE and ∼12%
for VLS. The large enhancement of 6He rms radius in
WCE means that the reaction cross section is a good tool
of searching for halo nuclei and determining their radii.
We consider the reason why the enhancement of 6He

rms radius is larger in VCE than in VLS. For this purpose,
we show A dependence of rms radii of ρ and dρ/dr in Fig.
11. In the short-range limit of the g-matrix interaction,
the shape of VCE (VLS) is approximately determined by
that of ρ (dρ/dr). The enhancement of 6He rms radius
from the stable-nucleus line is smaller for dρ/dr than for
ρ, as shown in Fig. 11; see Table II for the stable-nucleus
(dotted) line.
Figure 12 shows the volume integral of U as a function

of A, and the parameters of the fits for the stable nuclei
are shown in Table III. The volume integral is also en-
hanced at A = 6 from the stable nucleus line by the halo
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FIG. 10: (Color online) A dependence of the rms radius of the
microscopic optical potential at 65 MeV. The A dependence
is shown by the circles for stable targets and by the squares
for 6He target. Panels (a), (b), and (c) correspond to VCE,
WCE, and VLS, respectively. See Table I for the parameter set
of the stable-nucleus (dotted) line.

a1 a2 a3 a4

ρ -0.0074 0.0378 0.9578 -0.0022

dρ/dr -0.0079 0.0402 1.2478 -0.2322

TABLE II: Parameter fitting for A dependence of rms radii of
ρ and dρ/dr with a functional form a1A+a2A

2/3+a3A
1/3+a4.

All the parameters are presented in units of fm.
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FIG. 11: (Color online) A dependence of rms radii of (a) ρ
and (b) dρ/dr. See Fig. 10 for the definition of symbols and
Table II for the parameter set of the stable-nucleus (dotted)
line.

a1 a2 a3 a4

VCE 301.28 -59.695 272.22 -125.78

WCE 81.082 92.201 301.22 -439.22

VLS 0.093 6.24 95.645 105.11

TABLE III: Parameter fitting for A dependence of the volume
integral of U with a functional form a1A+a2A

2/3+a3A
1/3+a4.

All the parameters are presented in units of MeV fm3.

structure of 6He. This enhancement is larger in WCE

than in VCE. In VLS, meanwhile, the volume integral is
suppressed at A = 6 from the stable nucleus line. The
halo structure of 6He makes ρ broader and, hence, sup-
presses dρ/dr and, consequently, weakens the strength of
VLS.
Finally, we show A dependence of σR in Fig. 13 for

proton scattering at E = 65 MeV. The reaction cross
section is enhanced for 6He by ∼ 35% from the stable-
nucleus (dotted) line; see Table IV for the parameter set.
This enhancement is a result of the corresponding en-
hancement of WCE in its rms radius and volume integral.
Throughout all the analyses in this subsection, one can

find that the broadening of 6He density due to halo struc-
ture (weak-binding nature) yields significant effects on U .
The effect differs between the central and spin-orbit parts
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FIG. 12: (Color online) A dependence of the volume integral
of the microscopic optical potential at 65 MeV. Panels (a),
(b), and (c) correspond to VCE, WCE, and VLS, respectively.
See Fig. 10 for the definition of symbols and Table III for the
parameter set of the stable-nucleus (dotted) line.

of U . For the central part, it enhances the strength and
the rms radius by about 20% ∼ 40%. For VLS, mean-
while, the broadening enlarges the rms radius by about
10% but weakens the strength by about 20%.

D. Isotope dependence of microscopic optical

potential

The broadening of matter densities is induced by the
weak-binding nature for unstable nuclei and by the de-
formation for largely deformed nuclei. Deformation is a
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FIG. 13: (Color online) A dependence of the reaction cross
sections for proton scattering at E = 65 MeV. See Fig. 10 for
the definition of symbols and Table IV for the parameter set
of the stable-nucleus (dotted) line.

a1 a2 a3 a4

σR -0.6797 45.534 122.34 -170.78

TABLE IV: Parameter fitting for A dependence of σR with a
functional form a1A+a2A

2/3+a3A
1/3+a4. All the parameters

are presented in units of mb.

picture in the body-fixed frame. Hence, the deformed
density in the body-fixed frame should be transformed
into the corresponding ground-state density in the space-
fixed frame by making the angular-momentum projec-
tion. This was done properly in Eq. (12). The projec-
tion makes the spherical (λ = 0) part of the ground-state
density broad.

The local-potential version of the Melbourne g-
matrix folding model is successful in reproducing both
20−32Ne+12C scattering and proton scattering from sta-
ble nuclei at 65 MeV. This indicates that the model is
reliable also for proton scattering from 20−32Ne at 65
MeV. Now we analyze the proton scattering with the
local-potential version of the folding model in order to in-
vestigate how large weak-binding and deformation effects
are on U and σR. The analysis is particularly interesting
for 31Ne, since it is a one-neutron halo nucleus with large
deformation.

Figure 14 shows isotope dependence of σR for
p+20−32Ne scattering at 65 MeV. The dotted line denotes
the stable-nuclei line for σR; see Table IV for the results
of the fitting. The triangles represent the results of the
g-matrix folding model with the spherical HF densities,
whereas the closed circles correspond to those with the
AMD densities in which Ne isotopes are deformed. The
deviation of the triangles from the dotted line represents
the weak-binding effect, whereas that of the closed circles
from the triangles shows the deformation effect. Here,
the weak-binding effect includes the effects of neutron

skin. These effects are more apparent in the lower panel
where the σR for ANe are normalized by those for stable
nuclei with the same A. At 20 ≤ A ≤ 23, the defor-
mation effect is more significant than the weak-binding
effect. Since the weak-binding effect becomes large as A
increases, the effect is more important than the deforma-
tion effect at 24 ≤ A ≤ 30. For A = 31, 32, Ne isotopes
have no bound state in the spherical HF calculation. In
this sense, both the deformation and the weak-binding
effect are important there.
For 31Ne, the one-neutron separation energy is quite

small. We then do a AMD-RGM calculation to make a
tail correction to the AMD density. The closed square
denotes the result of the AMD-RGM density, and the
deviation of the closed square from the stable-nucleus line
represents a net effect of halo structure and deformation.
This effect is detectable from the measurements of σR

or the one-neutron removal cross section. Actually, this
was done for the 31Ne + 12C system at 240 MeV/nucleon
[24–26, 56, 57].
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FIG. 14: (Color online) Isotope dependence of the reaction
cross sections for p+20−32Ne scattering at 65 MeV. The cir-
cles (triangles) show the results of the AMD (HF) densities,
and the square for 31Ne is the result of the AMD-RGM den-
sity. See Table IV for the parameter set of the stable-nucleus
(dotted) line.

Figures 15 and 16 show the volume integral and the
rms radius of U for p+20−32Ne scattering at 65 MeV, re-
spectively. The weak-binding and nuclear-deformation
effects play the same role between U and σR. Actu-
ally, the deformation effect is more important than the
weak-binding effect at 20 ≤ A ≤ 23, whereas the lat-
ter is more significant than the former at 24 ≤ A ≤ 30.
The density-broadening effect due to weak-binding na-
ture and deformation in Ne isotopes is the same as that
due to weak-binding nature in 6He. For 31Ne as a typical
case, it suppresses the volume integral by about 10% and
enlarges the rms radius by about 5% for VLS, whereas
it enlarges both the volume integral and the rms radius
by about 10% for VCE and WCE. The imaginary central
part WCE is more sensitive to the density-broadening ef-
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fect than the other parts. Thus σR is a good quantity to
investigate the density broadening.
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FIG. 15: (Color online) A dependence of the volume integral
of the microscopic optical potential for p+20−32Ne scattering
at 65 MeV. Panels (a), (b) and (c) correspond to VCE, WCE

and VLS, respectively. See Fig. 14 for the definition of sym-
bols and Table III for the parameter set of the stable-nucleus
(dotted) line.

E. Nuclear deformation effects on elastic scattering

If a target nucleus is strongly deformed, the defor-
mation affects proton elastic scattering. For example,
22,30Ne and their neighborhood nuclei are known to be
well deformed. For even target nuclei with I = 0, nuclear
deformation yields two kinds of effects. First, it enlarges
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FIG. 16: (Color online) A dependence of the rms radius of
the microscopic optical potential for p+20−32Ne scattering at
65 MeV. Panels (a), (b) and (c) correspond to VCE, WCE and
VLS, respectively. See Fig. 14 for the definition of symbols and
Table I for the parameter set of the stable-nucleus (dotted)
line.

the spherical part of the target density and then the
spherical part of U , as mentioned in Sec. III D. Second,
the deformation enhances target excitations and then
the back reactions to the elastic channel. The target-
excitation effects are investigated in this subsection.
We consider proton elastic scattering from 22,30Ne, and

rotational excitations to the 2+ excited states are treated
with the coupled-channel method. Transition densities
between the elastic and inelastic channels are constructed
by the deformed Woods-Saxon (DWS) model [26] with
the quadrupole deformation parameter (β2) evaluated by
AMD; here the other parameters of the DWS model are
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already determined to reproduce spectroscopic properties
of high-spin states from light to heavy deformed nuclei,
e.g., the quadrupole moments, the moments of inertia
and the rms radii. Coupling potentials between the elas-
tic and inelastic channels are obtained by folding the Mel-
bourne g-matrix interaction with the transition densities.

Figure 17 shows angular distributions for p+22Ne scat-
tering at 35 MeV. In this case, AMD yields β2 = 0.4 [26].
The solid lines denote the results of the coupled-channel
calculations, while the dotted and dot-dashed lines cor-
respond to the results of the single-channel calculations
with and without deformation, respectively. The solid
line reproduces the experimental data [58] on both the
elastic and the inelastic scattering with no adjustable
parameter. The deviation of the solid line from the dot-
ted line shows target-excitation effects, while the devi-
ation of the dotted line from the dot-dashed one corre-
sponds to density-broadening effects due to deformation.
These effects are small at forward angles θc.m. <∼ 60◦,
but become appreciable at middle and backward angles
θc.m. >∼ 60◦, although the target-excitation effects are
relatively larger than the density-broadening effects. As
for σR, the target-excitation effects are 4 %, whereas the
density-broadening effects are about 5 %. The two effects
are thus comparable for σR at this lower incident energy.

Similar analyses are made in Fig. 18 for p+30Ne scat-
tering at 65 MeV; here AMD yields β2 = 0.4 [26].
Target-excitation and density-broadening effects become
appreciable at intermediate and backward angles θc.m. >∼
50◦, the two effects are comparable there. As for σR,
the target-excitation effects are 2 %, while the density-
broadening effects are about 4 %. At relatively higher
incident energies such as 65 MeV, target-excitation ef-
fects are thus as small as density-broadening effects due
to deformation, whereas density-broadening effects due
to weak binding are about 20 % as shown in Fig. 14.
Density-broadening effects due to weak binding thus be-
come most significant for unstable target nuclei.

For odd target nuclei with I > 0, nuclear deformation
induces another effect in addition to density-broadening
and target-excitation effects. Namely the deformation
makes the folding potential U non spherical, as seen in
Eq. (12), and consequently induces a reorientation of tar-
get spin in proton scattering. We briefly investigate the
reorientation effects here.

For targets with I = 1/2±, we numerically confirmed
that the reorientation effects are quite small on both reac-
tion cross sections and differential elastic cross sections.
Then we consider the case of I = 3/2

−
here. Figure 19

shows differential cross sections for proton elastic scat-
tering from a 31Ne(3/2

−
) target at 65 MeV. Here the

deformed target density, which is calculated by the DWS
model with β2 = 0.42 evaluated by AMD, is transformed
into the corresponding ground-state density by the angu-
lar momentum projection. For simplicity, we neglect the
spin-orbit interaction. The solid and dotted lines are the
results of the folding-model calculations with and with-
out reorientation effects, respectively. The effects are
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FIG. 17: (Color online) Angular distributions of the differ-
ential cross sections for proton elastic and inelastic scatter-
ing from 22Ne at 35 MeV. The solid lines are the results of
the coupled-channel calculations, while the dotted and dot-
dashed lines correspond to the results of the single-channel
calculations with and without deformation. The experimen-
tal data are taken from Ref. [58].

10-6

10-4

10-2

100

102

104

 0  30  60  90  120  150  180

dσ
/d

Ω
 [

m
b
/s

r]

θc.m. [deg]

0
+
 ➛  2

+
 ( ×10

-2
 )

0
+
 ➛  0

+

Coupled ch. (β = 0.40)
Single ch. (β = 0.40)

Single ch.  (β = 0)

FIG. 18: (Color online) Angular distributions of the differen-
tial cross sections for proton elastic and inelastic scattering
from 30Ne at 65 MeV. See Fig. 17 for the definition of lines.



13

quite small at forward angles θc.m. <∼ 50◦ and become
significant at middle and backward angles θc.m. >∼ 50◦.
Meanwhile, the effects are less than 1% on reaction cross
sections. Reorientation effects are thus important for dif-
ferential cross sections at middle and backward angles,
but quite small for reaction cross sections.
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FIG. 19: (Color online) Angular distribution of the elastic
cross section dσ/dΩ for p+31Ne elastic scattering at 65 MeV.
The solid (dotted) line shows the result of the folding-model
calculation with (without) reorientation effects.

F. Isovector components of optical potentials

In this subsection, we discuss effects of the isovector
component of U briefly. For simplicity, we neglect the
spin-orbit part of U , since the effect is negligible for the
p+20−32Ne systems at 65 MeV analyzed here. In gen-
eral, the central part of nucleon optical potentials can be
decomposed into the isoscalar and isovector components,
U0 and U1, as

U(R) = U0(R) + 4U1(R)
t · T
A

, (17)

where t and T denote the projectile and target isospins,
respectively. Proton and neutron optical potentials, Up

and Un, can be described by the isoscalar and isovector
components as

Up = U0 −
N − Z

A
U1, (18)

Un = U0 +
N − Z

A
U1, (19)

and hence

U0 =
Up + Un

2
, (20)

U1 =
Un − Up

2

A

N − Z
, (21)

where N and Z are the neutron and proton numbers
of target nucleus. In the folding model, the difference
Un − Up is proportional to the difference ρn − ρp and
hence the isovector component U1 of Eq. (21) is to the
factor (ρn − ρp)/(N − Z) that little depends on N − Z.
Therefore it follows from Eq. (18) that the contribution
of U1 to Up linearly increases as N −Z becomes large. In
the folding model, the isoscalar part U0 is proportional
to the total density ρn + ρp. Hence the contribution of
U0 to Up also becomes large as N increases with Z fixed,
since so does ρn.
Figure 20 shows reaction cross sections for p+20−32Ne

scattering at 65 MeV. The reaction cross sections are cal-
culated with either Up or U0. The closed (open) circles
denote the results of Up (U0) calculated with the AMD
densities. For neutron-rich Ne isotopes 24−32Ne, the de-
viation of the closed circles from the stable-nucleus (dot-
ted) line stems from density-broadening effects due to
weak binding, although for 20−23Ne the deviation is orig-
inated in density-broadening effects due to deformation.
The deviation of the open circles from the stable-nucleus
line represents the contribution of U0 to the density-
broadening effects, and the deviation of the closed cir-
cles from the open ones does the contribution of U1 to
the density-broadening effects. The contribution of U1

increases linearly as N − Z becomes large, as expected.
Both the contributions are comparable for neutron-rich
Ne isotopes 24−32Ne.
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FIG. 20: (Color online) Effects of the isoscalar and isovector
components, U0 and U1, on reaction cross sections for proton
scattering from 20−32Ne system at 65 MeV. The open (closed)
circles denote the results of U0 (Up) calculated with the AMD
densities. The dotted line means the stable-nucleus line.

Finally, we test the reliability of the isovector compo-
nent U1 of the present folding model by analyzing the
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charge-exchange (p, n) reaction to isobaric analog states
(IAS). The proton- and neutron-channel potentials and
the coupling potentials are calculated from the Lane po-
tential Eq. (17); see Ref. [59] for the details of formula-
tion.
Figure 21 shows the differential cross section of

22Ne(p, n)22FIAS reaction at 35 MeV. The solid and dot-
ted lines represent the results of the folding model cal-
culated with the AMD and HF densities, respectively.
The two lines are close to each other at forward and in-
termediate angles θc.m. <∼ 110◦ where the experimental
data [60] are available. The two lines well reproduce the
data with no adjustable parameter, indicating that the
present model is reliable also for the isovector component.
Further analyses will be made in a forthcoming paper.
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FIG. 21: (Color online) Angular distribution of the differential
cross section for 22Ne(p, n)22FIAS reaction at 35 MeV. The
solid (dotted) line denotes the result of the folding model with
the AMD (HF) density. The experimental data are taken from
Ref. [60].

IV. SUMMARY

We have derived local microscopic optical potentials
systematically for polarized proton scattering at 65 MeV,
using the local-potential version of the Melbourne g-
matrix folding model that was successful in reproducing
nucleus-nucleus scattering [24–26]. The local microscopic
optical potentials for proton scattering well reproduce the
experimental data on stable target nuclei systematically
and have geometries similar to the phenomenological op-
tical potentials such the Koning-Delaroche [4] and the
Dirac phenomenology [5, 6] one. Also for p+6He scatter-
ing at 71 MeV, the g-matrix folding model yields better

agreement than the t-matrix folding model. Therefore we
can say that the local-potential version of the Melbourne
g-matrix folding model is a reliable model to describe
both nucleon-nucleus and nucleus-nucleus scattering.
The local microscopic optical potentials U are also

quite useful in many applications. Furthermore, the local
nature makes it easy to clarify global properties of U over
both stable and unstable target nuclei. As target nuclei,
in this paper we considered 6He and neutron-rich Ne iso-
topes in addition to stable nuclei of mass number A = 4–
208. In particular, it is interesting to compare properties
of U in 6He and 31Ne with general properties of U in
stable nuclei, since 6He is a typical two-neutron halo nu-
cleus and 31Ne is a one-neutron halo nucleus with large
deformation. Throughout the global analyses, we have
clarified the A and N dependence of U . The target den-
sity is broadened in 6He by the weak-binding nature and
in neutron-rich Ne isotopes by both the weak-binding na-
ture and the nuclear deformation. The density broaden-
ing enlarges both the strength and the root-mean-square
radius of the central part of U , but for the real spin-orbit
part it enlarges the root-mean-square radius but weak-
ens the strength. Density broadening effects due to weak
binding and nuclear deformation are conspicuous partic-
ularly for halo nuclei such as 6He and 31Ne. The state-
ment mentioned above is true also for U at intermediate
energies such as 200 MeV.
In proton scattering, target deformation not only

broadens the spherical part of the folding potential but
also enhances target excitations and back reactions to the
elastic channel. For neutron-rich unstable target nuclei
at 65 MeV, both the effects are appreciable, but density-
broadening effects due to weak binding are much more
important than the effects. For odd target nuclei with
finite total spin, a reorientation of the target spin affects
elastic scattering only at middle and backward angles,
so the reorientation effects are small on reaction cross
sections.
As mentioned above, density-broadening effects are

quite important for neutron-rich nuclei. The effects are
separated into the isoscalar and isovector components.
Both the components yield comparable contributions to
the density-broadening effects for neutron-rich nuclei. Fi-
nally, we tested the reliability of the isovector component
of the present folding model by analyzing the charge-
exchange (p, n) reaction to isobaric analog states (IAS).
The model well reproduces the experimental data on
22Ne(p, n)22FIAS reaction at 35 MeV. The present folding
model is thus reliable also for the isovector component.
Further analyses will be made for charge-exchange (p, n)
reactions in a forthcoming paper.
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Appendix A: Definitions of quantities

The explicit forms of δ
(α)
0 (R, s) and ρ

(α)
1 (R, s) are

δ
(α)
0 (R, s)

=
1

2

∫ +1

−1

dω
gEX
LS,pα(s; ρα)

x

×







3

k
(α)
F (x)s

j1(k
(α)
F (x)s)

d

dx
ρα(x)

∣

∣

∣

∣

∣

x=
√

R2+s2/4+Rsω

+sρα(x)
d

dx
k
(α)
F (x)

∣

∣

∣

∣

x=
√

R2+s2/4+Rsω

× d

dy

[

3

y
j1(y)

]∣

∣

∣

∣

y=k
(α)
F

(x)s

}

, (A1)

and

ρ
(α)
1 (R, s)

=
1

2

∫ +1

−1

dω ωgEX
LS,pα(s; ρα)

3

k
(α)
F (x)s

×j1(k
(α)
F (x)s)ρα(y)

∣

∣

∣

y=
√

R2+s2/4+Rsω
, (A2)

where

k
(α)
F = (3π2ρα)

1/3, (A3)

gDR,EX
LS,pp (s; ρp) = g11LS, (A4)

gDR,EX
LS,pn (s; ρn) =

1

2

(

±g10LS + g11LS
)

. (A5)
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