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Abstract

Strongly magnetized symmetric nuclear matter is investigated within the context of effective

baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole

moment of the baryons by including the appropriate terms in the Lagrangian density. The satu-

ration density of magnetized, symmetric nuclear matter ρ0(B) was calculated for magnetic fields

of the order of 1017 gauss. For the calculated range of ρ0(B) the binding energy, symmetry energy

coefficient a4 and compressibility K of nuclear matter were also calculated. It is found that with

an increasing magnetic field ρ0(B) increases, while the system becomes less bound. Furthermore,

the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The

calculations were also performed for increased values of the baryon magnetic dipole moment. By

increasing the dipole moment strength ρ0(B) is found to decrease, but the system becomes more

tightly bound while the fluctuations in K and a4 persist.
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I. INTRODUCTION

Extremely strong magnetic fields cannot be produced in laboratories, but these condi-

tions can be found in stellar environments. All stars are magnetized and the strongest

magnetic fields are found in the stars generically known as neutron stars. They are ob-

served as rapidly rotating, strongly radio-emitting objects called pulsars with magnetic

fields of between 108 and 9 × 1013 G [1]. However, x-ray or γ-ray emitting pulsars are also

observed. They are assumed to be highly magnetized neutron stars with magnetic fields be-

tween 1014 and 1015 G and are called magnetars. For a review of their properties see Ref. [2].

The current model of magnetars assumes that the star’s magnetic field is formed in the

interior of the progenitor through dynamo action [3]. Since the observed magnetic field

strengths are those on the surface of the star, the interior magnetic field may well be larger.

Using realistic equations of states as well as a general relativistic description of rotating

magnetized stars Kuichi and Kotake [4] calculated that a magnetar surface magnetic field

of about 1016 G would increase to a maximum of over 1017 G in the interior. Frieben and

Rezzolla, using a similar approach, found the average magnetic field in the magnetar interior

to be of the order of 1017 G while the maximum value would be between 3.26× 1017 G and

8.05 × 1017 G, depending on the equation of state [5]. The current consensus seem to be

that a magnetar cannot sustain a magnetic field larger than between 1018 and 1019 G, as

summarized in Ref. [6].

It is an open question whether, and in what way, these strong magnetic fields can in-

fluence the properties of the matter in the magnetar interior. One assumption that is made

about the neutron star interior is that it contains nuclear matter in charge and beta equilib-

rium [7]. Peña Arteaga et al. concluded that, depending on the specific nucleus, magnetic

field strengths of about 5 × 1016 G and larger could affect the nuclear shell structure [8].

Although nuclear matter is homogeneous and thus does not have a shell structure, the

expected range of the magnetic field in the magnetar interior could influence its various

other properties.

Due to the nuclear interaction being short ranged it saturates at higher densities and
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favors isospin symmetry [7]. However, owing to the condition of charge neutrality imposed

on the neutron star interior and the short half-life of free neutrons, perfectly symmetric

matter would not occur in the neutron star interior. On the other hand, the equation of

state and characteristics of high density asymmetric nuclear matter is unknown (see Ref. [9]

for a recent review). Thus, in order to get a first approximation of the behavior of nuclear

matter in strong magnetic fields, we turn our attention to symmetric nuclear matter, since

it has definite properties which are related to finite nuclei and nuclear matter [7].

In this paper we investigate the impact that a very strong, external magnetic field has

on the properties of cold, saturated symmetric nuclear matter for a range of the baryon

magnetic dipole moment strengths. In particular we calculate the saturation density as a

function of the magnetic field strength. Furthermore the binding energy, the compressibility,

and the symmetry energy, all at saturation, will also be investigated. These characteristic

properties have been established as indicators of the behavior of dense nuclear matter and

are generally used to constrain nuclear matter models, such as quantum hadrodynamics (or

QHD, which is also known as the Walecka-model) [10] and its extensions [11].

In QHD the nuclear interaction between the baryons stems from various meson exchanges,

where each exchange describes a different feature of the nuclear interaction. The free param-

eters are the meson-baryon coupling constants, as well as the meson self-coupling constants.

We will make use of the QHD1 [10], NL3 [12], FSU (or FSUGold) [13], and the more recent

IU-FSU [14] parameter sets. QHD1 is one of the earliest parameter sets and includes only

the scalar sigma and vector omega mesons in its description [10]. NL3 also includes the

isovector rho meson and introduces a self-coupling in the scalar meson field to improve the

description of nuclear matter [12]. FSU was parametrized to investigate, among others, the

nuclei away from nuclear symmetry. It introduces a self-coupling in the vector field, as well

as a coupling between the vector and isovector mesons [13]. FSU and IU-FSU share the

same couplings, but the latter was constrained to also satisfy astrophysical requirements

[14]. Despite the fact that all QHD parameter sets are constrained to reproduce the same

nuclear matter properties at nuclear saturation, they have very different behavior at densi-

ties above saturation [11].
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In order to perform calculations the system is approximated using the relativistic mean-field

(RMF) approximation. In the RMF approximation the meson fields operators are replaced

by their ground state expectation values and become classical fields [10]. As noted in Ref.

[6], the RMF approximation is at best a phenomenological description of nuclear matter.

The RMF approximation is very good when the meson interaction length is much larger than

the spacing between the baryons. However, for the densities at which the approximation

is applied the distance between baryons is actually of the order of the meson interaction

length. Despite this inconsistency, the calculated RMF nuclear properties have shown good

agreement with experimentally known properties of nuclei and nuclear matter [11].

Various aspects of magnetized nuclear matter have already been investigated using QHD

in the RMF approximation, most recently by Dong et al. [15]. In the latter work the

density-dependence of the symmetry energy of magnetized matter was investigated with

the FSU parameter set at various densities as well as proton and neutron ratios, while

also adjusting some of the coupling strengths in the parameter set. The authors concluded

that the parabolic isospin dependence on the energy per nucleon remains valid for strong

magnetic fields. An overview of previous studies is also provided in Ref. [15] and references

therein.

Casali et al. [16] investigated the impact of magnetic fields of 1017 and 1018 G on the

symmetry energy coefficient at densities below nuclear saturation using the NL3 and FSU

QHD parameter sets. They found that the Landau levels give rise to discontinuities in

the symmetry energy and influence the composition of the neutron star crust. They also

investigated the effect of including the coupling between the magnetic field and the baryon

dipole moments and concluded that it will only be appreciable in very strong magnetic

fields at subsaturation nuclear densities. However, it would appear that the contribution of

the magnetic field was not included in the energy density of the neutron star matter. As

pointed out by Broderick et al. in Ref. [17], the magnetic contribution should be included

since it influences the equation of state and thus the composition of the matter.

Broderick et al. [17] were also the first to point out the importance and impact of in-

cluding the coupling between the dipole moment of the baryons and the magnetic field,
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in addition to the coupling of the proton’s charge to the magnetic field, in the description

of magnetized matter. In Ref. [17] this coupling is referred to as the anomalous magnetic

moment or “AMM” coupling with the coupling strength of the applicable baryon’s magnetic

dipole moment. We believe this to be a somewhat misleading term since baryons are not

point particles like electrons, but have an internal structure of quarks and gluons. The

anomalous contribution to the electron dipole moment arises from higher order photon cou-

plings to the electron charge. On the other hand, the baryon’s dipole moment (partially or

fully, depending on whether the baryon is charged or not) arises from the photons coupling

to the baryon’s charged internal structure. Thus these “anomalous” contributions to the

baryon dipole moment are not higher order contributions of the electromagnetic coupling,

but an expression of the fact that the baryons have internal structure. However, not to

confuse the reader we will also adopt this naming convention.

Due to this particular origin of the baryon magnetic dipole moment, more than anec-

dotal evidence would suggest that it should not be constant under all conditions. One

would expect that the internal baryon structure would be affected by the baryon density,

especially at high densities. Since this structure is the origin of the dipole moment, by

extension the baryon magnetic dipole moment would also be influenced. As discussed by

Berryman [18], experimental investigations would also suggest the proton dipole moment is

altered at higher densities. It is shown in Ref. [18] (based on data from Ref. [19]) that the

dipole moment of copper, which has one proton outside the closed Z=28 proton shell, with

an even number of valence neutrons increases by about 50% over a mass number range of

10. Furthermore, Ryu et al. in Ref. [20] investigated the neutron star equation of state with

density-dependent dipole moments for the baryon octet using the quark-meson coupling

(QMC) models and extensions thereof. They found that the neutron star equation of state

is dependent on both the strength of the magnetic field as well as that of the baryon mag-

netic dipole moment. Unfortunately the density-dependence of the baryon dipole moment

at high densities is not known, either experimentally or theoretically, which complicates the

calculations.

To achieve our stated goals the following calculations were performed. First, the saturation

density of symmetric nuclear matter ρ0(B) was calculated at the density that minimizes the
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Model ms mω mρ g2s g2v g2ρ κ λφ ζ Λv

QHD1 520 783 0.0 109.6 190.4 0.0 0.0 0.0 0.0 0.0

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 -0.015 905 0.00 0.00

FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.06 0.030

IU-FSU 491.500 782.500 763.000 99.4266 169.8349 184.6877 3.3808 +0.000 296 0.03 0.046

TABLE I. Coupling constants of different QHD parameter sets from Refs. [11] and

[14]. All coupling constants are dimensionless, except for κ which is given in MeV.

The baryon mass m is taken as 939 MeV, while ms, mω and mρ are given in MeV.

binding energy per nucleon for a range of magnetic field strengths B. Then the compression

modulus and the symmetry energy coefficient were calculated at these densities. Since the

density dependence of the baryon magnetic dipole moment is not known, these calculations

were repeated for a range of values of the baryon magnetic dipole moment. Our results are

presented and discussed at the end of the paper. To start off we present an overview of our

formalism.

II. FORMALISM

The interacting part of the QHD RMF Lagrangian for magnetized matter together with

the free electromagnetic component is [14, 15]

Lint = ψ̄

[

gsφ0 − γµ
(

qb
1 + τ3

2
Aµ + gvV0 +

gρ

2
τ3b0

)]

ψ −
κ

3!

(

gsφ0

)3
−
λφ

4!

(

gsφ0

)4

+
ζ

4!

(

gvV0
)4

+ Λv

(

gvV0
)2

(gρb0)
2 − ψ̄

gb

2
F µνσµνψ −

1

4
F µνFµν , (1)

where ψ =





ψp

ψn



 is the isodoublet baryon field operator where subscript p and n indicate the

proton and neutron components, while φ0, V0, and b0 indicate the scalar, vector, and isovector

mesons. The mesons couple to the baryons via gs, gv, and gρ while κ, λφ, ζ , and Λv are

the meson self-coupling strengths. The values of the couplings and meson masses are given

in Table I. Furthermore, τ3 is the isospin operator, Aµ = (0, 0, Bx, 0) with B = |B|, while

σµν = i
2
[γµ, γν ] are the generators of the Lorentz group [21]. The strength of the coupling
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between the baryons and Aµ is the baryon charge qb =





qp 0

0 qn



, while gb =





gp 0

0 gn



 is the

strength of the coupling between the magnetic and baryon fields (with units of the baryon

magnetic dipole moment). Under normal conditions the proton dipole moment is 2.793µN

while the neutron’s is −1.913µN (expressed in units of the nuclear magneton µN) [22]. In

Ref. [23] it is shown that the values of gn and gp equal to

gn =
1.913

2
µN = g(0)n and gp = −

0.793

2
µN = g(0)p (2)

reproduce the normal values of the dipole moments in the nonrelativistic limit. To adjust

the baryon dipole moments by a factor of x, gn and gp should become [23]

gn =
1.913x

2
µN = xg(0)n , and (3a)

gp = −
2.793x− 2

2
µN = xg(0)p . (3b)

The second and ninth terms of Lint (1) can be expanded to

− qpψ̄pγ
µAµψp −

gp

2
ψ̄pΣ ·Bψp −

gn

2
ψ̄nΣ ·Bψn, (4)

where Σ =





σ 0

0 σ



 are the baryon spin operators. The first term in (4) leads to the

well-known Landau problem, where the single particle proton energy spectrum is quantized

and consecutive levels differ in energy by factor of |qpB|. The last two terms represent the

“AMM” coupling between the magnetic field and the dipole density ψ̄Σψ of each of the

baryons. As shown in Ref. [23] and references therein, the magnetized proton spectrum is

e(kz, λ, n) =

√

k2z +

(

√

m∗2 + 2|qpB|n+ λgpB

)2

+ gvV
0 +

gρb0

2
, (5)

while the magnetized neutron spectrum is

e(k, λ) =

√

k2z +

(

√

k2⊥ +m∗2 + λgnB

)2

+ gvV
0 −

gρb0

2
, (6)

where k2⊥ = k2x + k2y , m
∗ = (m− gsφ0) is the reduced mass, λ = ±1, and n =

(

n′ + 1
2
− α λ

2

)

with n′ = 0, 1, 2, 3... and α = sgn(qpB) are integers labeling the Landau levels.

When the magnetic field is orientated in the z direction (in the 3-dimensional Landau
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problem) only the kz momentum contributes to the proton energy. As in the nonrelativistic

case, the proton spectrum is degenerate and independent of the choice of Aµ [24]. For

neutrons the usual spherical symmetry of the ground state is broken by the magnetic field

and replaced with cylindrical symmetry.

In (5) and (6) λ indicates the possible orientations of the baryon dipole moment along

ẑ. Since the Pauli matrices do not commute, the Hamiltonian of magnetized matter does

not commute with the baryon spin operator Σ. Hence spin is not a good quantum number

and we rather refer to the orientation of the dipole moment to distinguish between the two

types of baryons which are usually referred to as spin up or down. Therefore, the “AMM”

coupling induces a relative shift in the energy spectrum of both protons and neutrons with

opposite values of λ.

For a system consisting of symmetric nuclear matter the density of protons and neutrons

must be equal. Furthermore it is assumed to be at zero temperature and so the ground

state will consist of completely filled energy levels with energies up to the Fermi energy.

The deformation of the neutron Fermi surface can be accounted for in the calculation of any

neutron density, or ground state expectation value, by considering the directional momen-

tum dependence of the Fermi energy (see Ref. [23] for more details).

Due to the Landau quantization, any magnetized proton density is expressed as a sum

over the occupied Landau levels. The degeneracy of each proton level is incorporated by

adding a pre-factor |qpB|
4π2 to the contribution of the level. The prefactor follows from a com-

parison of the fundamental magnetic flux per particle to the total magnetic flux through

the level [24] (also see Ref. [23] and references therein).

Consequently the energy density of magnetized symmetric nuclear matter, including the

contribution of the magnetic field, is [23]
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FIG. 1. (Color online) Plots of (a) the saturation density normalized with regards to the B = 0

values, and (b) the binding energy at saturation for different QHD parameter sets with gb = g
(0)
b .

ǫ =
∑

λ,n

|qpB|

4π2

∫

ep(kz, λ, n) Θ
[

µp − ep(kz, λ, n)
]

dkz +
∑

λ

∫

dk

(2π)3
en(k, λ) Θ[µn − en(k, λ)]

+
1

2
m2

sφ
2
0 +

κ

3!

(

gsφ0

)3
+
λφ

4!

(

gsφ0

)4
−

1

2
m2

ωV
2
0 −

ζ

4!

(

gvV0
)4

−
1

2
m2

ρb
2
0 − Λv

(

gvV0
)2(

gρb0
)2

+
1

2
B2,

(7)

where Θ is the Heaviside step function. A simplified expression for ǫ can be found in Ref.

[17].

III. RESULTS

Since the nuclear interaction is short ranged it saturates at high densities. The saturation

density is defined as the density at which the binding energy per nucleon is at a minimum

(we follow the convention of the binding energy being negative) and the system is most

strongly bound. The binding energy per nucleon is [10]

Eb =
ǫ

ρ
−m, (8)

and most QHD parameter sets reproduce the unmagnetized saturation density ρ0(0) at

0.148 fm−3 with a binding energy of about −16.3 MeV [14]. We calculated the saturation

density as function of a strong magnetic field with gb = g
(0)
b . The results are shown in Fig. 1.

From these plots we note that Eb(B) behaves very similarly for all parameter sets: As
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FIG. 2. (Color online) Nuclear matter observables at saturation as a function of B: (a) the Fermi

energy of the protons and neutrons (although only the neutron Fermi energy is shown since it does

not noticeably differ from the proton values), while in (b) n(λ) labels the Landau level occupation

of the protons for each value of λ. Since gp = g
(0)
p < 0 the difference between n(1) and n(−1) is

1. Furthermore, since B > 0 the λ = 1 protons have the lowest energies and thus occupy the most

levels. In (c) and (d) the values of gvV0 and m∗ are plotted respectively.

the magnetic field increases the system becomes less strongly bound. At B ≈ 3 × 1017

G, which corresponds to a density of between 1.2 and 1.4 times ρ0(0) (depending on the

parameter set), the system becomes unbound. Thus, albeit more weakly bound, the system

can accommodate much denser matter as it becomes magnetized. The increase in ρ0(B)

with B was first noted by Chakrabarty et al. in Ref. [25]. However, in this paper the effect

of the “AMM” coupling was not studied and the authors found that the system becomes

more tightly bound with increasing B.
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FIG. 3. (Color online) The compression moduli of magnetized nuclear matter for gb = g
(0)
b for

various QHD parameter sets are shown in (a), while in (b) the normalized values with regard to

their values at ρ0(0) are shown.

While the various Eb(B) curves are similar, the rate by which ρ0(B) increases differs.

As shown in Fig. 2, the various baryon Fermi energies µb as well as the Landau occupation

numbers n(λ) do not differ significantly. Hence the Eb(B) curves would also be similar since

from Eq. (8) we deduce that the binding energy goes like the Fermi energy. However, m∗

and gvV0 do vary significantly between the parameter sets. Since the underlying mechanisms

are the same, these differences stem from the parametrization and must be the source of the

variation in ρ0(B).

For QHD1 gsφ0 (from m∗ = m − gsφ0) and gvV0 have the largest values and so, since

the Fermi energies are essentially the same, the QHD1 densities will be the lowest with the

fewest number of occupied Landau levels, as we see from the n(λ) plot. Applying the same

logic to the rest of the plots, it is deduced that the FSU parameter set will have the highest

values of ρ0(B). This is not surprising since in Ref. [14] (and references therein) it has been

well established that FSU has the softest equation of state (EoS). Since the EoS relates

the energy density to the pressure a stiffer EoS exhibits a more rapid increase in pressure

with density. Thus it can accommodate higher (energy) densities with the (comparatively)

smallest increase in the pressure of the system.

Related to the stiffness of the EoS is the compression modulus K of nuclear matter which

gives an indication of the compressibility of the matter. For magnetized matter the com-
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FIG. 4. (Color online) Analysis of NL3 K/K0 plot from Fig. 3(b) of which a section is shown in

(a), while (b) shows the Landau level occupation. The vertical guidelines denote the same values

of the magnetic field in both plots.

pression modulus K(B) of the various QHD parameter sets was calculated using [7]

K(B) = 9

[

ρ2
d2

dρ2

(

ǫ

ρ

)]

ρ=ρ0(B)

. (9)

We note that Eq. (9) is essentially the derivative of the pressure as a function of density and

thus an indication of the stiffness of the EoS. Since ρ0(B) increases with B, so too should

K(B) since the higher the density the more incompressible the system becomes. From Fig.

3(a) it is clear that QHD1 has the stiffest EoS while FSU has the softest. In Fig. 3(b) the

normalized values of K(B), with respect to K(0), are shown.

However, the increase in K(B) does not happen smoothly, but rather it fluctuates with

an increasing amplitude (for small B these fluctuations are not visible on the scale of the

figure). These fluctuations imply that as B increases the system varies the degree to which

it is compressible. This behavior is related to the number of Landau levels occupied by the

system.

In Fig. 4 the relation between the fluctuations of the NL3 K(B) and the depopulation

[26] of the occupied Landau levels are shown. Variable behavior in a magnetized system

of charged particles is not unexpected, since in a (two dimensional) quantum Hall system

one observes dramatic variation of the conductivity due to the population of the Landau

levels [24]. Consequently the influence of the Landau levels on K should not be entirely
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surprising. However, in this case the variability stems from the fact that the magnetic field

influences the proton densities in two ways: through the degeneracy factor |qpB|

4π2 and the

spacing between Landau levels which, from Eq. (5), goes like gpB.

Therefore, as the magnetic field increases the degeneracy factor also increases which makes

the system more compressible, but at the same time the energy gap between the Landau

levels becomes bigger which makes the system more incompressible. Since the system is

at its saturation density (hence in its lowest energy configuration), the Landau levels are

depopulated one by one. As the occupation of the level with energy closest to the Fermi

energy decreases the system becomes more compressible, since the particles from this level

are absorbed by the Landau levels at lower energies.

For neutrons B 6= 0 only induces a relative shift in the energy of particles with differ-

ent orientations of their dipole moments. For B > 0 the λ = −1 neutrons (gn > 0) become

the dominant particle since the λ = 1 neutrons will flip their dipole moments in order to

attain a lower energy λ = −1 state. This contributes to the increase in K(B), but has no

influence on its fluctuations.

To establish the asymmetric tendencies of a magnetized system the symmetry energy coef-

ficient a4 is calculated. It gives an indication of whether symmetric or asymmetric matter

is preferred [7]. This coefficient is calculated at ρ0(B) from

a4 =
1

2

∂2

∂t2
ǫ

ρb

∣

∣

∣

∣

t=0

with

(

t ≡
ρn − ρp

ρb

)

. (10)

Since a4 is the coefficient of the (N−Z)2

N+Z
term in the semiempirical mass formula [7], the

larger a4 becomes, the more symmetric matter is preferred in order to keep the energy at a

minimum.

The expression for a4 can be simplified, but care should be taken since the baryon Fermi

energies are also dependent on the magnetic field. A simplified expression for a4 of magne-

tized matter is given in Ref. [23]. The results of the calculation are displayed in Fig. 5.

Similar to the other nuclear matter properties, a4 increases with B which indicates that
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FIG. 5. (Color online) The nonnormalized (a) and normalized (b) values of a4 of magnetized

nuclear matter for different QHD parameter sets.

more symmetric nuclear matter system is favored than when B = 0. The increase in a4 is

intermittently interrupted by a slight decrease, signaling a preference for more asymmetric

matter. Again this fluctuating nature of a4 is related to the depopulation of Landau levels.

Its origin is best illustrated by considering the density of the two types of protons (λ = ±1),

in particular the difference between the proton densities ∆ρp(λ) = ρp(1)− ρp(−1) which is

shown in Fig. 6(b).

For neutrons, ∆ρn(λ) increases linearly with B since the difference in the energy of neutrons

with different orientations of their dipole moment is 2gnB. For protons, ∆ρp(λ) is not

directly proportional to B since the difference in energy of protons with opposite signs of λ

depends on both 2gpB as well as the number of filled Landau levels for a given λ. When

∆ρp(λ) is at a local minimum ∆n(λ) = 1 (which is the norm [27]), while at a local maximum

(just before a Landau level depopulates) ∆n(λ) = 2 and one choice of λ proton levels is

preferentially filled. In between these points in ∆ρp(λ), a4 decreases and more asymmetric

matter is preferred since the degenerate proton Landau levels can be filled at a lower energy

cost than the (nondegenerate) neutron energy levels.

Of further interest is to investigate the properties of magnetized saturated nuclear matter

for adjusted values of the baryon magnetic dipole moments, which are adjusted according

to Eqs. (3b) and (3a). The strengths of the dipole moments were changed symmetrically

so that the proton and neutron dipole moments are increased by the same factor; i.e.,
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FIG. 6. (Color online) Comparison of the NL3 a4 graph (a) and the difference in the proton

densities (b). The vertical lines in both plots denote the same values of the magnetic field.

gb = 10g
(0)
b means that the strength of both the dipole moments increased by a factor of 10.

We observe that as gb is adjusted, the responses of the different QHD parameter sets are

very similar. Hence only the results for the NL3 parameter set (an arbitrary choice) will be

plotted.

In Fig. 7 the values of the different properties for gb equal to g
(0)
b , 10g

(0)
b , 20g

(0)
b , and

30g
(0)
b are shown. We do not claim that these values of gb are necessarily feasible or attain-

able for the plotted range of densities and magnetic fields, but rather that they illustrate

the full spectrum of the possible behavior of magnetized matter under extreme conditions.

It is observed that as gb increases the system becomes less dense but more bound. The

density decreases since the gap between different dipole orientations of the protons and the

neutrons, as well as the separation of the proton Landau levels, increases. Hence lower en-

ergies are attained at the cost of the number of particles that the system can accommodate

per unit volume. For very large values of gb the relative shift between the different λ proton

and neutron energy levels is so large that only one choice of λ (the one with the lowest

energy levels) is populated.

The bottom row in Fig. 7 shows a4(B) and K(B) as gb varies for the NL3 parameter

set. For both the fluctuating behavior persists but their respective increases become less

rapid as gb increases, which mimics the manner in which ρ0(B) changes with gb. For
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FIG. 7. (Color online) Magnetized nuclear matter properties for various values of gb, as multiples

of g
(0)
b : (a) the saturation densities, (b) the binding energies, (c) K(B), and (d) a4(B).

gb = 30g
(0)
b the last λ = −1 proton Landau level depopulates at B ≈ 3 × 1017 G . Leading

to this point both K and a4 increase: K increases since the system becomes much more

incompressible because almost only λ = 1 Landau levels are filled. On the other hand a4

shifts from asymmetric (proton-rich) matter to more symmetric matter since only λ = 1

protons are accommodated.

IV. DISCUSSION

From our results we conclude that for B < 1015 G the saturation properties of symmetric

nuclear matter are not substantially influenced. However, as the value of qbB and/or gbB

comes (relatively) close to that of the baryon (reduced) mass the system is undeniably influ-

enced by the magnetic field: For gb = g
(0)
b and B = 1015 G, gbB ≈ 3 keV and qpB ≈ 30 keV
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FIG. 8. (Color online) (a) K(B), and (b) a4(B) as a function of ρ0(B) for gb = g
(0)
b .

while m∗ ranges between 500 and 580 MeV, depending on the parameter set. Consequently

we find that, similar to nuclei [8], magnetic fields of the order of 1016 G and up are needed

to influence the properties of saturated symmetric nuclear matter. However, it is important

to note that this is a question of energy scales (in particular the relation of m∗ to qpB),

rather than absolute value of the magnetic field strength.

To establish the scope of the magnetic field’s influence, it is useful to plot K(B) and

a4(B) as a function of ρ0(B), shown in Fig. 8. Shown there are the properties of saturated

nuclear matter for an increasing magnetic field. As the magnetic field increases, so too

does the saturation density. Although the saturation density is still at the minimum of the

binding energy curve, the matter at this density becomes less bound as the magnetic field

and correspondingly ρ0(B) increase, as was shown in Fig. 1(b).

The overall tendency of saturated matter to become more incompressible as the density

increases is expected, but the smaller scale fluctuations in the increase are surprising. These

correlate with the depopulation of the proton Landau levels. When the Landau levels de-

populate the matter becomes more compressible despite the increase in the density.

As B and ρ0(B) increase, a4 also shows an overall increasing trend. As mentioned pre-

viously, the larger a4 becomes the more symmetric matter is preferred, according to the

semiemperical mass formula [7]. From this we deduce that for higher B nuclear matter

tends to be more symmetric, thus having a larger proton fraction than expected since the

17



degenerate Landau levels can accommodate particles at a lower energy cost. Once again

the increase in a4 is not smooth and there are sections where, despite the increase in ρ0(B),

more asymmetric (neutron rich) matter is preferred. These are also shown to be related to

the depopulation of proton Landau levels.

Hence it is obvious that any sudden change in the magnetic field will drastically alter

the properties of the saturated nuclear matter, since the configuration of the Landau levels

will change. These changes have a direct impact on the compressibility of the system as well

as the preferred mix of protons and neutrons. In Fig. 7 we also showed that the influence

of the magnetic field persists when the magnetic dipole moment increases.

In a naive way Fig. 8 can be seen as indicative of the behavior of nuclear matter in a

section of the magnetar interior, assuming that the magnetic field increases with the depth.

We deduce that the compressibility as well as proton fraction of nuclear matter in the stellar

interior is dependent on the magnetic field. Furthermore, if the magnetic field were to

suddenly change, it could potentially significantly alter its nuclear properties.

Highly magnetized neutron stars (magnetars) are known for various types of flares/bursting

activities (see Ref. [2] for a review), some of which that are accompanied by glitches (sudden

increase in the rotation frequency of the star) [28]. It has been reported by Woods et al. in

Ref. [29] that the flare in magnetar SGR 1900+14 was accompanied by the reconfiguration

of the stellar magnetic field. Hence the changes in the stellar magnetic field, as well as the

accompanying changes in the conditions within neutron star interior, may contribute to the

observed properties of magnetars.

If the reconfiguration of the magnetic field implies a change in the magnetic field strength

throughout the interior, the changes in the compressibility can induce a compression wave

since the compressibility depends on the magnetic field in a nonlinear, fluctuating fashion. If

the changes in the magnetic field happen over a short enough timescale, differential stresses

will build up in the interior due to the varying nature of K.

From a4(B) in Fig. 8(b) changes in B might imply a change in the preferred composi-
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tion of nuclear matter with regards to the ratio of protons and neutrons. Hence a change in

B could induce inverse or normal beta decay in nuclear matter. Not only would such decay

activities change the composition of nuclear matter, but would also release energy which

could be the source of some of the sudden bursts of radiation observed from magnetars.

V. CONCLUSION

We have presented some evidence that the composition and properties of magnetized,

saturated symmetric nuclear matter start to depend on B for B & 1016 G. We have also

shown that the influence of the magnetic field persists even if the strength of the baryon

magnetic dipole moments changes.

We believe that the influence of the magnetic field is important when studying the magnetar

interior. However, since the internal dynamics of the neutron star interior and, in partic-

ular, the time dependence of the nuclear processes are not known it is difficult to model

dynamical behavior. If the origin and behavior of the stellar magnetic field is known, then

we might have a chance of calculating the influence of any changes on the interior. In a

future publication we will consider whether a ferromagnetic phase might be present in the

neutron star interior as the source of the magnetar magnetic field.
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