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We apply the method of ratios to search for geometrical scaling in the charm production in deep
inelastic scattering. To this end we use recent combined data from H1 and ZEUS experiments.
Two forms of geometrical scaling are tested: originally proposed scaling which results from Golec-
Biernat–Wüsthoff model and scaling motivated by a dipole representation which takes into account
charm mass. It turns out that in both cases some residual scaling is present and charm mass
inclusion improves scaling quality.

I. INTRODUCTION

Geometrical scaling (GS) is a well-known property of
Deep Inelastic Scattering (DIS) for low Bjorken x vari-
able. Introduced in Ref. [1] GS is defined as dependence
of virtual photon – proton cross section σγ∗p only on one
dimensionless variable τ while in principle σγ∗p depends
on two independent variables:

σγ∗p(x,Q
2) = σγ∗p(τ). (1)

Since the discovery of GS several forms of scaling vari-
able were postulated. In this paper we use historically
first and the simplest one:

τ0 =
Q2

Q2
0

(
x

x0

)λ
. (2)

Here subscript in τ0 refers to zero quark mass (see
Eq. (3)). In Ref. [2] we showed that more sophisticated
forms of scaling variable discussed in the literature are
disfavored by inclusive DIS data.

Geometrical scaling is connected to the existence of the
energy scale Qs(x) (so-called saturation scale) which is a
border between dense and dilute gluonic systems (for re-
view see e.g. Refs. [3, 4]). Since masses of light quarks
are negligible, Qs is the only intermediate energy scale
and one can argue that scaling variable, as dimensionless
quantity, should be a ratio Q2/Q2

s (x). In charm produc-
tion GS is expected to be violated due to large quark mass
mc ≈ 1.3 GeV. One can, however, modify (2) to take into
account mc and obtain approximate scaling (following
Ref. [5]):

τc =

(
1 +

4m2
c

Q2

)1+λ
Q2

Q2
0

(
x

x0

)λ
. (3)

Main purpose of this article is to assess the quality
of GS in the charm production. To this end we apply
method of ratios developed in Ref. [6] to data on F cc̄2

(we use combined data from ZEUS and H1 experiments
[7]). Analysis is performed parallelly for τ0 and τc. Our
findings can be summarized as follows: for τ0 (2) some
residual scaling can be observed but its quality is low;
for τc (3) scaling is clearly better but not as good as for
inclusive DIS.

In Sect. II we briefly present dipole description of DIS
for small x. In Sect. III we describe the method of ratios
and define the criteria for GS to hold. Results for HERA
data are presented in Sect. IV. In Summary (Sect. V) we
compare our results with Ref. [8] where different method
was applied.

II. DIS AT LOW X

Dipole representation provides a convenient descrip-
tion of DIS at small x. There, a virtual photon γ∗ splits
into quark-antiquark pair of the transverse size r which
then interacts with the proton. Cross section for γ∗–
proton interaction can be written as:

σγ∗p(x,Q
2) =

∫
d2r

∫ 1

0

dz|ψ(r, z,Q2)|2σdp(x, r) (4)

where z is a fraction of longitudinal photon momentum
carried by quark.

First factor of the integrand in (4), so-called photon
wave function |ψ|2, describes photon dissociation into a
dipole and can be calculated perturbatively. It is conve-
nient to consider photon with given polarization (trans-
verse or longitudinal): |ψ|2 = |ψT |2 + |ψL|2. In the lead-
ing order:

|ψT (r, z,Q2)|2 =
3αem

2π2

∑
f

e2
f

{[
z2 + (1− z)2

]
× ξf (z,Q2)Q2K2

1

(√
ξf (z,Q2)r2Q2

)
+m2

fK
2
0

(√
ξf (z,Q2)r2Q2

)}
(5)

and

|ψL(r, z,Q2)|2 =
3αem

2π2

∑
f

e2
f

{
4Q2z2(1− z)2

×K2
0

(√
ξf (z,Q2)r2Q2

)}
(6)

where K0,1 are the Bessel functions, sum
∑
f runs over

all quark flavors with charge ef and mass mf ; we have
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also introduced:

ξf (z,Q2) = z(1− z) +
m2
f

Q2
. (7)

Dipole cross section σdp in (4) characterizes the inter-
action of quark-antiquark dipole with the proton. Golec-
Biernat and Wüsthoff (GBW) [9, 10] postulated that
in σdp dipole size r is scaled by saturation scale Qs:
σdp(x, r) = σdp (rQs(x)) and

Q2
s (x) = Q2

0

(
x

x0

)−λ
. (8)

Parameters Q0 and x0 set dimension and absolute value
of the saturation scale. Exponent λ governs x behavior
of Q2

s (λ ∼ 0.3).

Changing integration variable r → u/Qs(x) in Eq. (4)
one obtains:

σγ∗p(x,Q
2) =

3αem

π

∑
f

e2
f

∫ ∞
0

du

∫ 1

0

dz u

{[
z2 + (1− z)2

]
ξf (z,Q2)

Q2

Q2
s (x)

K2
1

(√
ξf (z,Q2)

Q2

Q2
s (x)

u

)

+

[
4z(1− z) · z(1− z) +

m2
f

Q2

]
Q2

Q2
s (x)

K2
0

(√
ξf (z,Q2)

Q2

Q2
s (x)

u

)}
σdp(u) (9)

For inclusive DIS one can neglect quark masses mf

since contribution to the cross section coming from light
quarks (with m2

f � Q2) is dominant. Then ξf (z,Q2) =

z(z − 1) and the right hand side of (9) depends only on
one dimensionless quantity:

τ0 =
Q2

Q2
s (x)

=
Q2

Q2
0

(
x

x0

)λ
. (10)

This is exactly definition of GS with the explicit form of
saturation scale (8).

In the case of charm production, when a dipole consists
of charm quarks, mass cannot be neglected any more.
The cross section in this case, which we denote as σcc̄,
corresponds to one term from the sum in (9). It is clear
that now left hand side of (9) depends not only on τ0 but
also on the ratio m2

c/Q
2 and GS is violated. However,

since for large Q2 this ratio is small one can general-
ize scaling variable to obtain approximate scaling. In-
deed, for z = 1/2 factor 4z(1 − z) equals 1 and square
bracket in the second term is equal ξc(z,Q

2) (see Eq.
(7)). Therefore, for z ≈ 1/2 integrand in (9) depends on
[z(1−z)+m2

f/Q
2]Q2/Q2

s (x) what suggests the following
scaling variable:

τ =

(
1 +

4m2
c

Q2

)
Q2

Q2
s (x)

(11)

In saturation model for low Q2 one should take into
account quark mass. To this end we shall follow Ref. [9]
and replace

x→
(

1 +
4m2

c

Q2

)
x (12)

in the formula for saturation scale (8).
Finally, substituting (8) into (11) and raplacing

Bjorken-x according to (12) one obtains scaling variable
for charm production:

τc =

(
1 +

4m2
c

Q2

)1+λ
Q2

Q2
0

(
x

x0

)λ
. (13)

Let us emphasize that in this case scaling is not exact
since we fixed z = 1/2, whereas the cross section contains
integration over dz.

III. METHOD OF RATIOS

Geometrical scaling hypothesis for charm production
means that

σcc̄(x,Q2) =
1

Q2
0

f(τ) (14)

where f is a universal, dimensionless function of scaling
variable. Constant Q2

0 sets the dimension.
Photon-proton cross section for charm production

is related with structure function by simple relation:
σcc̄(x,Q2) = 4π2αemF

cc̄
2 (x,Q2)/Q2. For F cc̄2 we shall

use most recent results from HERA [7]. Measured val-
ues (in Ref. [7] denoted as σred) are not exactly F cc̄2 –
contribution from longitudinally polarized photons is not
included and production of charm in final state is not ex-
cluded. These corrections are at most of the order of
a few percent [11, 12] i.e. smaller than F cc̄2 errors and
should not affect our findings.
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W ′min [GeV] 62.7 81.6 106 137.9 179.2 233
W ′max [GeV] 81.6 106 137.9 179.2 233 302.9
W [GeV] 72.2 93.8 122 158.5 206.1 267.9

Number of points 7 6 10 9 11 3

TABLE I. Limiting values for energy bins, values of energies
and number of points in bins for charm production.

Let us define σcc̄x (Q2) := σcc̄(x,Q2)
∣∣
x

i.e. cross sec-

tion as a function of Q2 with fixed x. Eq. (14) means
that functions σcc̄x (τ) for different x follow one curve. In
fact instead of fixing x one can use any other kinematical
variable v and consider σv evaluated in terms of Q2 or τ .
It turns out that here the most convenient choice for v is
a photon-proton center of mass energy:

W =

√
Q2

x
− (Q2 −M2

p ) (15)

where Mp is a proton mass.
We define:

σcc̄W (Q2) := σcc̄(x,Q2)
∣∣
W=
√
Q2/x−(Q2−M2

p )
(16)

i.e. cross section as a function of Q2 with fixed W . As
previously, GS is satisfied when functions σcc̄W evaluated
in terms of τ follow one curve for all W ′s (see Fig. 4).
This observation is essential in our method: one can con-
struct ratios σcc̄W1

(τ)/σcc̄W2
(τ) and check whether they are

equal 1.
Before we proceed, let us discuss the choice of kine-

matical variable v which we fix to construct the ratios.
In Ref. [6] we performed analysis of GS in inclusive DIS
both with fixed x (so-called Bjorken x binning) and W
(energy binning). Although both approaches give simi-
lar results the latter is disfavored since HERA data are
provided in (x,Q2) bins – changing bins into (W,Q2) in-
troduces additional errors. In Ref. [13] details of bins
change has been presented. On the other hand points
with fixed energy span over much wider Q2 range what
simplifies analysis significantly. Moreover, it has been
shown that GS is exhibited by pT spectra in high-energy
hadronic collisions (see Refs. [14–16]) where the energy
binning is natural.

HERA data for charm production are much poorer
than for inclusive DIS. σcc̄x (Q2) consist of few points and
ratios cannot be constructed. This force us to use energy
binning even though data are provided in (x,Q2) bins.
Here we use the same binning as in Refs. [6] and [13].
Limiting values W ′min, W ′max are shown in Table I. En-
ergy W is taken as a mean of these values. Number of
points in each bin is also displayed.

To construct ratios of spectra (16) we choose reference
energy Wref and divide σcc̄Wref

by spectrum with different
energy Wi:

RWi
(λ; k) :=

σcc̄Wref
(τk)

σcc̄Wi
(τk)

with τk = τ(Wi, Q
2
k,i;λ) (17)

where τ(Wi, Q
2
k,i;λ) is a value of scaling variable eval-

uated for k-th point of σcc̄Wi
. Note that in general

τ(Wref, Q
2
k,ref;λ) 6= τ(Wi, Q

2
k,i;λ) so to evaluate numera-

tor of (17) one needs to interpolate σcc̄Wref
to Q2

k,int such

that τ(Wref, Q
2
k,int;λ) = τk (see Ref. [6] for details). In

what follows we use Wref = 206 GeV because it gives the
widest range of τ values and therefore ratios RWi

(λ; k)
can be calculated for all Wi’s.

Uncertainty of ratio (17) is given by:

∆RWi(λ; k) =

=

√√√√(∆σcc̄Wref
(τk)

σcc̄Wref
(τk)

)2

+

(
∆σcc̄Wi

(τk)

σcc̄Wi
(τk)

)2

RWi
(λ; k) (18)

where ∆σcc̄ = ∆F cc̄2 /Q2 are experimental errors. Here
we neglect interpolation errors and theoretical uncer-
tainty δ = 3%, introduced in Refs. [2, 6] for inclusive
DIS, as small comparing to experimental errors.

GS is expected to be present at low x so it is profitable
to introduce a parameter xcut i.e. cut-off on Bjorken
variable x ≤ xcut. Our aim is to find such λ (for given
energy Wi and cut-off xcut) that deviations RWi

(λ; τk)−1
are minimal. For this purpose we define the chi-square
function:

χ2
Wi

(xcut;λ) =
1

NWi,xcut − 1

∑
k∈Wi; x≤xcut

(RWi
(λ; τk)− 1)2

∆RWi(λ; τk)2

(19)
where k ∈ Wi; x ≤ xcut means that we sum over points
corresponding to given energy Wi, with x values not
larger than xcut. NWi,xcut

is a number of such points.
Function (19) is a main tool of quantitative study of

GS. Let us denote the minimum of χ2
Wi

as λmin (Wi, xcut).
Uncertainty ∆λmin can be estimated by the condition:

χ2
Wi

(xcut;λmin±∆λmin)−χ2
Wi

(xcut;λmin) =
1

NWi,xcut − 1
.

(20)
It is clear that GS is satisfied when λmin does not depend
on energy W and values of χ2

Wi
(xcut;λmin) are around 1.

Moreover, since exponent λ governs behavior of satura-
tion scale it should not depend on quark flavor. This
means that the value of λ for charm production should
be similar to its value for inclusive DIS. This is yet an-
other criterion for GS.

To investigate GS for charm cross section we shall com-
pare results obtained using scaling variables τ0 (2) and τc
(3). Note that τ0 is obtained from τc by setting mc = 0.
In what follows we shall treat τc and τ0 as the same scal-
ing variable with masses 1.3 GeV and 0 respectively.

Finally, we set for simplicity Q0 = 1 GeV and x0 = 1.
This can be done since the method of ratios is sensitive
only to the relative values of scaling variable and multi-
plication by constant factor does not change ratios (17).
Note that Q0 and x0 determine value of the saturation
scale (8) and can be found only using some model for
σdp.
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FIG. 1. Exponents λmin as functions of xcut for energies W < Wref = 206 GeV: obtained with mc = 0 (black full squares) and
mc = 1.3 GeV (red open circles).
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FIG. 2. Plots of χ2
Wi

for different energies as functions of xcut: obtained with mc = 0 (left panel) and mc = 1.3 GeV (right
panel).

IV. RESULTS

In Fig. 1 we show λmin (xcut) for four energy bins (we
omitt W = 268 GeV since it has only 3 points and very
large uncertainties). One can see that λmin’s obtained
for mc = 1.3 GeV are smaller and more flat than those
for mc = 0. Values of χ2

Wi
evaluated for these λmin’s are

shown in Fig.2. For zero charm mass χ2
Wi

’s are greater
than 1.5 and reach 3 while for mc = 1.3 GeV do not
exceed 1.5. This clearly shows that quality of GS is better
if one include quark mass in definition of scaling variable.
A word of warning is here in order. Even though χ2

Wi
’s for

mc = 1.3 GeV are quite small (i.e. < 1.5) the statistical
reliability of these values is low since number of points in
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FIG. 3. Exponents λave as functions of xcut obtained for
charm production data with mc = 0 (black squares), mc = 1.3
GeV (red open circles) and for inclusive DIS data (blue tri-
angles).

χ2
Wi

’s is 10 at most.
In order to check whether λmin is the same for all en-

ergies we define another chi-square function

χ̃2(xcut;λ) =
1

3

∑
Wi

(λmin (Wi, xcut)− λ)2

∆λmin (Wi, xcut)
2 (21)

where the sum goes over four energies Wi =
72, 94, 122, 159 GeV. Minimum of (21) with respect to
λ is an averaged value of λmin over energies which we de-
note by λave(xcut). The error is calculated similarly like
in (20) i.e. by demanding that 3 · χ̃2(xcut;λ) changes by
1 when λ is varied around λave.

In Fig. 3 we show comparison of λave(xcut)
′s obtained

using mc = 0 and mc = 1.3 GeV. We added also results
for inclusive DIS data [17] restricted to the same values of
x, Q2 as used in charm production analysis. For inclusive
DIS only scaling variable τ0 (2) was used.

As optimal values of parameters λ we take λave(xcut =
0.032). Charm production values for mc = 0 and mc =
1.3 GeV are respectively:

λ0 = 0.765± 0.06, (22a)

λc = 0.558± 0.038. (22b)

Inclusive DIS value:

λinc = 0.298± 0.011 (23)

Note that errors are purely statistical. For the discussion
of systematic uncertainties see Ref. [6].

One can see that exponents obtained for charm pro-
duction are much larger than for inclusive DIS. This is a
clear sign of GS violation. Notice that λc is closer to λinc

than λ0. This confirms our conclusion that taking into
account quark mass improves GS.

At the end let us comment on values of χ̃2. For
mc = 0 we obtained χ̃2(0.032;λ0) = 2.5, for nonzero mass
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b )

F 2cc  / Q
2

FIG. 4. a) F cc̄
2 /Q2 (which is σcc̄ up to a constant factor) for

fixed W ’s as a function of scaling variable τc (3) with mc = 0.
Two bands of points correspond to parameter λ equal 0 or
0.765 (which was found in Sect. IV as ”optimal” value);
b) the same but for mc = 1.3 GeV.

χ̃2(0.032;λc) = 2.1 and χ̃2(0.032;λinc) = 0.7 for inclusive
DIS. This shows that GS for inclusive DIS is significantly
better than for charm production as expected.

V. SUMMARY

In this paper we have considered existence of geometri-
cal scaling for charm production in deep inelastic scatter-
ing. We have used most recent data from HERA experi-
ment [7]. In a sense this analysis is a continuation of work
presented in Ref. [6] where we applied the same method
to the inclusive DIS data from HERA. There, however,
data are much richer and analysis was performed using
also binning in Bjorken-x variable. In the case of charm
production we were forced to change original x bins into
energy bins what introduces additional errors.

Dipole approach to low x DIS does not predict ex-
act geometrical scaling in the presence of quark mass.
However, since square of charm mass (m2

c ≈ 1.7 GeV2)
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is small comparing to the most of measured Q2 val-
ues one should expect that some residual scaling can
be present. Indeed, even using standard form scaling
variable (2) scaling can be seen in data (upper panel in
Fig. 4). After taking into account charm mass (3) scaling
is improved (lower panel in Fig. 4) as one should expect
knowing formula for cross section (9). Value of exponent:
λc = 0.558 is much larger than one obtained for inclusive
DIS (λinc = 0.298). This difference is not theoretically
motivated and should be treated as a consequence of scal-
ing violation.

Geometrical scaling in charm production (and also in-
clusive DIS) was tested in Ref. [8] with the help of so-
called Quality Factor method. Results obtained there
suggest that GS in charm production is basically the
same as for the inclusive DIS. In particular for stan-
dard form of scaling variable (2) value of exponent λ
is the same for both cases λ ∼ 0.33 (scaling variable
(3) was not considered). These conclusions are far from
those we have drown here. One should note, however,
several important differences between both studies: in

Ref. [8] authors used earlier data from HERA (not com-
bined) and applied additional kinematical cuts to them
(removed points with small Q2). Moreover, values of
Quality Factor as measure of scaling quality are difficult
to interpret.

In Ref. [6] we have established that geometrical scaling
holds up to x ∼ 0.1. This is well above domain of satu-
ration physics (x < 0.01) and can be predicted both by
the DGLAP and BFKL evolution shames (see [18–20]).
Here, for charm production, we have to our disposal only
data with x < 0.05 and no sign of strong scaling violation
is seen. One should expect that, similarly as in inclusive
DIS, x region of strong scaling violation is around 0.1.
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