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ABSTRACT

Merenkov, Sergiy A.. Ph.D., Purdue University, August, 2003. Determining Biholo-
morphic Type of a Manifold Using Combinatorial and Algebraic Structures . Major
Professor: Alexandre Eremenko.

We settle two problems of reconstructing a biholomorphic type of a manifold.

In the first problem we use graphs associated to Riemann surfaces of a particular

class. In the second one we use the semigroup structure of analytic endomorphisms

of domains in Cn.

1. We give a new proof of a theorem due to P. Doyle. The problem is to determine

a conformal type of a Riemann surface of class Fq, using properties of the associated

Speiser graph. Sufficient criteria of type have been given since 1930’s when the

class Fq was introduced. Also there were necassary and sufficient results which have

theoretical value, but which are hard to apply.

P. Doyle’s theorem states that a non-compact Riemann surface of class Fq has

a hyperbolic (parabolic) type, if and only if its extended Speiser graph is hyper-

bolic (parabolic). By a hyperbolic graph we mean a locally-finite infinite connected

graph, which admits a non-constant positive superharmonic function with respect to

the discrete Laplace operator. Otherwise a graph is parabolic. The usefulness of

this criterion stems from the possibility of applying Rayleigh’s short-cut method for

graphs.

We apply Doyle’s theorem to give a counterexample to a conjecture of R. Nevan-

linna that relates the type to an excess of a Speiser graph. More explicitely, the

conjecture was that if the (upper) mean excess of a surface of class Fq is negative,

then the surface is hyperbolic. We provide an example of a parabolic surface of class

Fq with negative mean excess.
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2. If there is a biholomorphic or antibiholomorphic map between two domains in

Cn, then it gives rise to an isomorphism between the semigroups of analytic endo-

morphisms of these domains.

Suppose, conversely, that we are given two domains in Cn with isomorphic semi-

groups of analytic endomorphisms. Are they biholomorphically or antibiholomor-

phically equivalent? This question was raised by L. Rubel. Similar questions were

studied in the setting of topological spaces.

The case n = 1 was investigated by A. Eremenko, who showed that if we require

that the domains are bounded, then the answer to the above question is positive. It

was shown by A. Hinkkanen that the boundedness condition cannot be dropped.

We prove that two bounded domains in Cn with isomorphic semigroups of analytic

endomorphisms are biholomorphically or antibiholomorphically equivalent. Moreover,

we generalize this by requiring only the existence of an epimorphism between the

semigroups.
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1. INTRODUCTION

We study two problems, one of which deals with a class of Riemann surfaces rep-

resented by Speiser graphs, and the other one with bounded domains in C
n. Their

settings and the methods we use to solve these problems are different, but there is a

unifying theme. Namely, in both cases we determine a type, conformal in the case of

Riemann surfaces, or biholomorphic in the case of domains in Cn, using an underlying

combinatorial, respectively algebraic structure. As an application to the first problem

we give an example showing that a conjecture of R. Nevanlinna relating the type of

a surface to its excess is false. A more detailed description of the problems follows.

1.1 P. Doyle’s Theorem

A well-known theorem of Complex Analysis, the Uniformization Theorem, says

that every simply-connected Riemann surface is conformally equivalent to either the

sphere, complex plane, or the unit disc. In the first case the surface is said to be of

elliptic type, in the second of parabolic type, and in the third of hyperbolic type. When

we come up with a concrete Riemann surface, say by glueing together pieces of the

sphere along boundary parts, we would like to know how the combinatorial pattern of

glueing influences the type. One example of such a construction of Riemann surfaces

is known in classical literature as class Fq. These are the pairs (X, f), where X is

a topological manifold, and f a continuous open and discrete map from X into the

sphere C, so that f is a covering map onto the sphere with finitely many punctures.

A surface of this class is uniquely represented by a combinatorial object, called a

Speiser graph, also known as a line complex, which is essentially the rule of pasting

together two complementary domains on the sphere, which share a Jordan curve

as a common boundary. A Speiser graph is a homogeneous bipartite planar graph.
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The components of its complement that are bounded by a finite number of edges

correspond to critical points, and those that are bounded by an infinite number of

edges correspond to assymptotic spots. Thus we come to the question of recovering

the type from properties of a Speiser graph. This problem has attracted a lot of

attention since the 1930’s when the class Fq was introduced. Many results relating

properties of a graph to the type of the corresponding Riemann surface have been

obtained. Usually the criteria fall into one (and only one) of two categories: sharp

but not useful, or useful but not sharp.

In 1984 Peter Doyle suggested a criterion of type which is sharp, and, at the same

time, seems to be useful (at least we were able to use it, unlike other known sufficient

conditions, to provide a counterexample to R. Nevanlinna’s conjecture). The original

proof due to Doyle, which is probabilistic in nature, is very intuitive and enlightening,

but might be hard to understand to non-specialists.

Doyle’s proof is based on the observation that the Brownian motion on a Riemann

surface is transient if and only if there is a system of currents out to infinity having

finite dissipation rate. A system of currents out to infinity is a vector field, which is

divergenceless outside of a sufficiently large compact set, and such that the total flux

through the boundary of this set is positive. The dissipation rate of the flow is the

integral of the square of the current density, i.e. the square of the Hilbert-space norm

of the vector field. Similarly, the random walk on a graph is transient if and only if

there is a system of currents through the edges of the graph out to infinity having

finite dissipation rate. The dissipation rate in this case is the sum of the squares of

the currents through the edges. Now, to prove the theorem one needs to show how a

system of currents could be transfered from the surface to the associated graph and

vice versa, without destroying the finiteness of the dissipation rate (see [1] for similar

arguments).

We supply a new proof of Doyle’s theorem. The methods we use are geometrical,

and rely on the results due to M. Kanai that assert the stability of type under rough

isometries, when the underlying spaces have bounded geometry. In accordance with
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this result, we construct a suitable conformal metric on a given surface so that the

surface equipped with this metric is roughly isometric to the extended Speiser graph,

introduced by Doyle. An obvious choice for the metric would be the pullback of

the spherical metric, but unfortunately the surface equipped with this metric is not

roughly isometric to neither the Speiser graph, nor the extended Speiser graph. In

fact, no pullback metric can be suitable, since the orders of critical points are in

general unbounded.

In Section 2.1, we give the definition of a class of surfaces spread over the sphere,

formulate the type problem, and provide background information on graphs, Rieman-

nian surfaces, and rough isometries. In Section 2.2, we give a definition of the class

Fq and examples. Speiser graphs are introduced in Section 2.3. In Section 2.4, the

extended Speiser graph is introduced and the formulation of Doyle’s theorem is given.

Section 2.5, is devoted to the proof of Doyle’s theorem.

1.2 R. Nevanlinna’s Conjecture

We give a counterexample to a conjecture of R. Nevanlinna that relates the type

to the excess of a graph.

For a Speiser graph Γ, R. Nevanlinna introduces the following characteristic. Let

V Γ denote the set of vertices of the graph Γ. To each vertex v ∈ V Γ we assign the

excess

E(v) = 2−
∑

f : v∈V f

(1− 1/k),

where f is a face with 2k edges, k = 1, 2, . . . ,∞, and V f is the set of vertices on

its boundary. This notion is motivated via integral curvature, and thus reflects the

geometric properties of the surface.

Nevanlinna also defines the mean excess of a Speiser graph Γ. We fix a vertex

v ∈ V Γ, and consider an exhaustion of Γ by a sequence of finite graphs Γ(i), where

Γ(i) is the ball of combinatorial radius i, centered at v. By averaging E over all the

vertices of Γ(i), and taking the limit, we obtain the mean excess , if the limit exists.
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We denote it by Em. If the limit does not exist, we consider upper or lower excess,

given by the upper, respectively lower, limit. The upper mean excess of every infinite

Speiser graph is ≤ 0.

R. Nevanlinna suggested a conjecture ([2], p. 312) that a surface (X, f) of the class

Fq is of a hyperbolic or a parabolic type, according to whether the angle geometry of

the surface is “Lobachevskyan” or “Euclidean”, i.e. according to whether the mean

excess Em is negative or zero.

O. Teichmüller gave an example of a surface of the hyperbolic type, whose mean

excess is zero, thus contradicting a part of Nevanlinna’s conjecture. We supply three

examples contradicting the other part of the conjecture, i.e. we construct parabolic

surfaces with negative mean excess. In the first example of a surface (X, f), the

function f is analytic, and in the second and third, f does not have asymptotic

values. Thus we prove the following theorem.

Theorem 1.2.1 There exists a parabolic surface (X, f) ∈ F3 for which the upper

mean excess is negative.

In Section 3.1, we recall definitions of the excess and the mean excess, illus-

trate these notions using integral curvature, and review extremal length. In Sec-

tions 3.3, 3.4, and 3.5, we provide the counterexamples. In Section 3.6, we construct

an example of a simply connected, complete, parabolic surface of nowhere positive

curvature, and such that its integral curvature in a disc around a fixed point is less

than −ǫ times the area of the disc, for some ǫ > 0 independent of the radius of the

disc.

1.3 Analytic Endomorphisms

A classical theorem of L. Bers says that every C-algebra isomorphism H(A) →

H(B) of algebras of holomorphic functions in domains A and B in the complex plane

has either the form f 7→ f ◦ θ, where θ : B → A is a conformal isomorphism, or

f 7→ f ◦ θ with anticonformal θ. In particular, the algebras H(A) and H(B) are
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isomorphic if and only if the domains A and B are conformally or anticonformally

equivalent. H. Iss’sa [3] obtained a similar theorem for fields of meromorphic functions

on Stein spaces. A good reference for these results is [4].

In 1990, L. Rubel asked whether similar results hold for semigroups (under compo-

sition) E(D) of holomorphic endomorphisms of a domain D. A question of recovering

a topological space from the algebraic structure of its semigroup of continuous self-

maps has been extensively studied [5].

A. Hinkkanen constructed examples [6] which show that even non-homeomorphic

domains in C can have isomorphic semigroups of endomorphisms. An elementary

counterexample is a plane with 3 points removed and a plane with 4 points removed.

They are obviously not biholomorphically equivalent (they are not even homeomor-

phic for that matter), but if the removed points are in general position, the corre-

sponding semigroups consist of the unit and constant maps, and hence isomorphic.

The reason for such examples is that the semigroup of endomorphisms of a domain

can be too small to characterize this domain.

However, in 1993, A. Eremenko [7] proved that for two Riemann surfaces D1,

D2, which admit bounded nonconstant holomorphic functions, and such that the

semigroups of analytic endomorphisms E(D1) and E(D2) are isomorphic with an

isomorphism ϕ : E(D1) → E(D2), there exists a conformal or anticonformal map

ψ : D1 → D2 such that ϕf = ψ ◦ f ◦ ψ−1, for all f ∈ E(D1). We investigate the

analogue of this result for the case of bounded domains in Cn. The theorems of Bers

and Iss’sa, mentioned above, do not extend to arbitrary domains in Cn.

For a bounded domain Ω in Cn we denote by E(Ω) the semigroup of analytic

endomorphisms of Ω under composition. We will write that a map is (anti-) biholo-

morphic, if it is biholomorphic or antibiholomorphic. We prove that if Ω1, Ω2 are

bounded domains in Cn, Cm respectively, and there exists ϕ : E(Ω1) → E(Ω2), an

isomorphism of semigroups, then n = m and there exists an (anti-) biholomorphic

map ψ : Ω1 → Ω2 such that

ϕf = ψ ◦ f ◦ ψ−1, for all f ∈ E(Ω1). (1.1)
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The existence of a homeomorphism ψ follows from simple general considerations

(Section 4.3). The hard part is proving that ψ is (anti-) biholomorphic. In dimension

1 this is done by linearization of holomorphic germs of f ∈ E(Ω) near an attracting

fixed point. In higher dimensions such linearization theory exists ([8], pp. 192–

194), but it is too complicated (many germs with an attracting fixed point are non-

linearizable, even formally). In Sections 4.4, 4.5, we show how to localize the problem.

In Sections 4.6, 4.7 we describe, using only the semigroup structure, a large enough

class of linearizable germs. Linearization of these germs permits us to reduce the

problem to a matrix functional equation, which is solved in Section 4.8. In Section 4.9,

we complete the proof that ψ is (anti-) biholomorphic.

The above mentioned result can be slightly generalized, namely one may assume

that ϕ is an epimorphism. In Section 4.10, we prove that if ϕ : E(Ω1) → E(Ω2) is

an epimorphism between semigroups, where Ω1, Ω2 are bounded domains in Cn, Cm

respectively, then ϕ is an isomorphism.
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2. P. DOYLE’S THEOREM

In this chapter we give an alternative proof of a theorem due to P. Doyle [9] on the

type of a Riemann surface of class Fq.

2.1 Background and Preliminaries

2.1.1 Uniformization Theorem

A Riemann surface is a 1-dimensional complex manifold, or, in other words, it is

a 2-real-dimensional manifold endowed with a maximal atlas in which all transition

maps are conformal. It is simply-connected if the fundamental group is trivial.

The following well-known fact is called the Uniformization Theorem [10].

Theorem 2.1.1 For every simply-connected Riemann surface X there exists a con-

formal map ϕ : X0 → X, where X0 is one of the three model surfaces:

1. the open unit disc D1;

2. the complex plane C;

3. the extended complex plane C.

The map ϕ is called the uniformizing map. The Uniformization Theorem has a

number of applications, the main of which is that on every Riemann surface there

exists a conformal metric of constant Gaussian curvature -1, 0, or 1.

Definition 2.1.1 A simply-connected Riemann surface X is said to have a hyper-

bolic, parabolic, or elliptic type, according to whether it is conformally equivalent to

D1, C, or C respectively.

Sometimes we simply say that X is hyperbolic, parabolic, or elliptic. Also, we refer

to the type of a simply-connected Riemann surface as a conformal type.
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2.1.2 Surfaces Spread over the Sphere

We are interested in the application of the Uniformization Theorem to the follow-

ing construction. A map between two topological spaces is called open, if the image of

every open set is open. It is called discrete, if the preimage of every point is discrete,

i.e. every point of the preimage has a neighborhood that does not contain any other

points of the preimage.

Definition 2.1.2 A surface spread over the sphere is a pair (X, f), where X is a

topological surface and f : X → C a continuous, open and discrete map.

The map f is called a projection. Two such surfaces (X1, f1), (X2, f2) are equivalent ,

if there exists a homeomorphism φ : X1 → X2, such that f1 = f2 ◦ φ. A theorem

of Stöılow [11] implies that for every continuous open and discrete map f from a

topological surface (i.e. a 2-real-manifold) to the Riemann sphere there exists a

homeomorphism φ of X onto a Riemann surface Y , so that the map f ◦ φ−1 is

meromorphic. The Riemann surface Y is unique up to conformal equivalence. This

tells us that there exists a unique conformal structure on X (i.e. X becomes a

Riemann surface), which makes f into a meromorphic function. Near each point

x ∈ X the function f is conformally equivalent to a map z 7→ zk, with k depending

on x. The number k = k(x) is called the local degree of f at x. If k 6= 1, x is called a

critical point and f(x) a critical value. The set of critical points is a discrete subset

of X .

The surface X can be endowed with a metric that is the f -pullback of the spherical

metric 2|dw|/(1 + |w|2). The pullback metric is singular, i.e. it is degenerate on a

discrete set in X . The surface X , endowed with the pullback metric, is a particular

case of spherical polyhedral surfaces [12], [13].
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2.1.3 Type Problem

If X is simply-connected, what is the type of the Riemann surface obtained as in

the previous section, if (X, f) is a surface spread over the sphere? More precisely, how

does the conformal type depend on the properties of the function f that are invariant

under homeomorphic changes of the independent variable? This is the formulation of

the type problem.

By uniqueness of the conformal structure, equivalent surfaces have the same type.

We notice that it is easy to single out the elliptic type as consisting of compact

Riemann surfaces. So we are down to the choice between hyperbolic and parabolic

types.

The dependence of type on curvature properties has been studied in [10], [14],

[15]. We study the type problem for surfaces of so called class Fq in Section 2.2. To

surfaces of this class one can naturally associate a planar graph, Section 2.3, called

a Speiser graph. We are interested in the dependence of type of properties of this

graph.

2.1.4 Graphs

By a graph G we mean a pair (V,E), where V is an at most countable set, whose

elements are called vertices, and E a set of pairs of elemets from V . Elements of E

are called edges. We say that e ∈ E connects v1, v2 ∈ V , or that e is an edge between

v1 and v2, if e = (v1, v2). Multiple edges between two vertices are allowed, but loops,

i.e. edges of the form (v, v) are not.

Given a connected graph G, we denote by V G, EG the sets of its vertices and

edges respectively. If two vertices v1, v2 of G are connected by an edge, we write

v1 ∼ v2. We denote by degv G, the number of edges of G emanating from v. A

graph G is said to have a bounded degree, if sup{degvG : v ∈ V G} < ∞. If G′ is a

connected subgraph of G, the boundary of G′ is the set of vertices v ∈ V G′, such that

degvG
′ < degvG. A path in G is a connected subgraph, which has degree 2 at all of



- 10 -

its vertices with at most two exceptions, where it has degree 1. A connected graph

G is a metric space with a combinatorial distance on it, i.e. the distance between

two vertices is the number of edges of a shortest path connecting them. If G is a

connected graph embedded in a topological surface X , the connected components of

X \ G are called faces of G; the set of faces of G is denoted by FG. For a graph G

embedded in the plane, we denote by G∗ its dual.

If a graph G is locally-finite, a linear operator ∆, acting on functions u on V G, is

defined by

∆u(v) = 1/ degv G
∑

v′∼v

u(v′)− u(v), v ∈ V G.

It is well-known that the operator ∆ enjoys many properties that the Laplace operator

possesses [16]. A locally-finite infinite connected graph G is called hyperbolic, if

there exists a positive non-constant superharmonic function on V G. Otherwise it is

called parabolic. The hyperbolicity (parabolicity) for a locally-finite infinite graph is

equivalent to the transience (recurrence) of the simple random walk on it.

2.1.5 Riemannian Surfaces

A conformal metric ds on a Riemann surface X is a metric whose length element

is given in local coordinates by ρ(z)|dz|, where ρ is a positive smooth function. Often

one considers a more general conformal metric, by allowing ρ to vanish on a discrete

set. For example, spherical polyhedral surfaces mentioned above carry such a metric.

For our purposes conformal metrics with everywhere positive ρ will be sufficient.

The Gaussian curvature of a conformal metric ρ(z)|dz| is given by−ρ(z)−2δ log ρ(z).

It is isometry invariant.

We denote by Y = (X, ds) a pair, where X is a Riemann surface and ds is a

conformal metric on X . We call such a Y a Riemannian surface. A Riemannian

surface Y , not necessarily simply-connected, is said to be hyperbolic, if there exists a

positive non-constant superharmonic function on it. Otherwise it is called parabolic.

Since the metric is conformal, a superharmonic function on Y is the same as a su-
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perharmonic function on X . Therefore, a simply-connected Riemann surface X is

conformally equivalent to D1 (C), if and only if Y = (X, ds) is hyperbolic (parabolic)

as a Riemannian surface with an arbitrary conformal metric ds on it. Moreover, the

following fact holds.

Fact 1 If A is an arbitrary discrete subset of an open simply-connected Riemann

surface X, and ds is a conformal metric on X \A, then Y = (X \A, ds) is hyperbolic,

if and only if X is conformally equivalent to D1.

This is because every positive superharmonic function on X \ A extends to a super-

harmonic function on X [17].

A Riemannian surface is complete if it is complete as a metric space. A radius

of injectivity of a Riemannian surface Y is the infimum over all points x of Y of the

supremum over all non-negative r such that for all t ≤ r the ball centered at x of

radius t is homeomorphic to a Euclidean ball.

We say that a Riemannian surface Y satisfies the geometric uniformness condition,

if

Y is complete, the Gaussian curvature is bounded

from below, and the radius of injectivity is positive.
(2.1)

2.1.6 Rough Isometry

Let (X1, d1) and (X2, d2) be two metric spaces.

Definition 2.1.3 A map Φ : X1 → X2, not necessarily continuous, is called a rough

isometry, if the following two conditions are satisfied:

1. for some ǫ > 0, the ǫ-neighborhood of the image of Φ in X2 covers X2;

2. there are constants C1 ≥ 1, C2 ≥ 0, such that for all x1, x2 ∈ X1,

C−1
1 d1(x1, x2)− C2 ≤ d2(Φ(x1),Φ(x2)) ≤ C1d1(x1, x2) + C2.
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A metric space (X1, d1) is said to be roughly isometric to a metric space (X2, d2),

if there exists a rough isometry from X1 into X2. This is an equivalence relation. The

notion of rough isometry was introduced by M. Kanai [18] and M. Gromov [19].

An immediate consequence of Kanai’s results [18], [20] is the following theorem.

Theorem 2.1.2 If a non-compact Riemannian surface Y satisfying (2.1) is roughly

isometric to a connected locally-finite graph G of bounded degree, then Y is hyperbolic,

if and only if G is hyperbolic.

In fact, Kanai proves that a Riemannian surface Y = (X, ds) is hyperbolic, if and

only if an ǫ-net in Y is hyperbolic. An ǫ-net in Y is a maximal ǫ-separated set Q

in D with a structure of a graph, so that vertices are points of Q; two vertices v1, v2

are connected by an edge, if and only if d(v1, v2) ≤ 2ǫ. The graph Q has a bounded

degree and is roughly isometric to Y . A graph G, roughly isometric to Y is, by

transitivity, roughly isometric to Q. Since both graphs have bounded degree, they

are [21] simultaneously hyperbolic or parabolic.

2.2 Class Fq

2.2.1 Definition

We study the type problem for a particular, but rather broad, subclass of surfaces

spread over the sphere, the so called class Fq. For a surface of this class we investigate

the dependance of type on the properties of the associated Speiser graph (see 2.3).

In this respect see [22], [23], [2], [24], [25], [26], [27], [28].

Let {a1, . . . , aq} be distinct points in C.

Definition 2.2.1 A surface (X, f), where X is open and simply-connected, belongs

to class Fq = F (a1, . . . , aq), if

f : X \ {f−1(ai), i = 1, . . . , q} → C \ {a1, . . . , aq}

is a covering map.
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Analytically surfaces of class Fq can be characterized as those for which the func-

tion f has only finitely many critical and asymptotic values. An asymptotic spot is

an open arc contained in X that escapes from every compact subset of X , and such

that the limit of f along this arc exists. An asymptotic value is the limit of f at an

asymptotic spot.

For each i, let (Vi, ψi) be a coordinate neighborhood of ai, centered at zero, so that

ψi(Vi) = D1, and Vi ∩ Vj = ∅, i 6= j. The restriction of f to a connected component

U of f−1(Vi \ ai) is a covering map. Therefore [29] this map is conformally equivalent

to either D∗
1 → D∗

1, z 7→ zk, or H → D∗
1, z 7→ exp(z), where D∗

1 denote the punctured

open unit disc, and H an open left half-plane. In particular, U does not contain any

critical points of f .

2.2.2 Examples

The following are examples of surfaces of class Fq.

1. (C, sin) ∈ F3(−1, 1,∞).

2. (D1, λ) ∈ F3(0, 1,∞), where λ is a modular function.

2.3 Speiser Graphs

2.3.1 Definition

We fix a Jordan curve L, containing the points a1, . . . , aq. The curve L is usually

called a base curve. It decomposes the sphere into two simply-connected regions

H1, H2, called half-sheets . We assume that the indices of ai’s are cyclically ordered

modulo q, and the curve L is oriented so that the region H1 is to the left. We denote

by Li the arc on L between ai and ai+1. Let us fix points p1 in H1 and p2 in H2, and

choose q disjoint Jordan arcs γ1, . . . , γq in C, such that each arc γi has p1 and p2 as

its endpoints, and has a unique point of intersection with L, which is on Li. Let Γ′

denote the graph embedded in C, whose vertices are p1, p2, and edges γi, i = 1, . . . , q,
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and let Γ be the f -pullback of the graph Γ′. We identify Γ with its image in R2 under

a sense-preserving homeomorphism of X onto R2. Clearly it does not depend on the

choice of the points p1, p2, and the curves γi, i = 1, . . . , q. The graph Γ has the

following properties: 1. Γ is infinite, connected, 2. Γ is homogeneous of degree q, and

3. Γ is bipartite.

A graph, properly embedded in the plane and satisfying properties 1, 2, and 3, is

called a Speiser graph, also known as a line complex . The vertices of a Speiser graph

Γ are traditionally denoted by × and ◦. Each face of Γ, i.e. a connected component

of R2 \ Γ, has either 2k edges k = 1, 2, . . . , in which case it is called an algebraic

elementary region, or infinitely many edges, called a logarithmic elementary region.

Two Speiser graphs Γ1, Γ2 are said to be equivalent , if there is a sense-preserving

homeomorphism of the plane, which takes Γ1 to Γ2. Below we refer to an equivalence

class as a Speiser graph.

2.3.2 Examples

x o x o x o x o

o x o x o x o x

Fig. 2.1. Speiser graph of sine

x

o
x x

o o

Fig. 2.2. Speiser graph of λ
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2.3.3 Reconstructing a surface from a Speiser Graph

The above construction of a Speiser graph of a surface (X, f) ∈ Fq is reversible.

Suppose that the faces of a Speiser graph Γ are labelled by a1, . . . , aq, so that when

going counterclockwise around a vertex ×, the indices are encountered in their cyclic

order, and around ◦ in the opposite cyclic order. A labelling of faces induces the

one of edges: we assign a label i to an edge, if it is the common boundary for faces

labelled ai and ai+1. We fix a base curve L in C passing through a1, . . . , aq in the

order of increasing indices, and denote by H1 and H2 the half-sheets, so that H1 is

to the left. Then one constructs a surface (X, f) ∈ F (a1, . . . , aq) in the following

way. Let Γ∗ be the cell decomposition of R2, dual to Γ. Each 2-dimensional cell

has q 1-dimensional cells on its boundary. The 2-dimensional cells are labelled by

× and ◦, and the 0-dimensional cells by a1, . . . , aq. We map each 2-dimensional cell

of Γ∗ labelled by × to H1, and each 2-dimensional cell labelled by ◦ to H2, so that

the maps agree on common boundary 1-dimensional cells and a 0-dimensional cell

labelled by ai is mapped to ai. Thus we obtain a continuous, open and discrete map

f : R2 → C, such that R2 \ {f−1(ai), i = 1, . . . , q} → C \ {a1, . . . , aq} is a covering

map. So, (R2, f) ∈ F (a1, . . . , aq), and its Speiser graph is clearly Γ.

It is natural to ask whether (X, f) ∈ Fq is hyperbolic if and only if its Speiser graph

Γ is hyperbolic. The intuition behind this question is in viewing the simple random

walk on Γ as a discrete approximation of the Brownian motion on the Riemann surface

[30], [31]. Unfortunately, as we show in Appendix A, the hyperbolicity of a surface of

the class Fq is not equivalent to the hyperbolicity of its Speiser graph.

2.4 P. Doyle’s Theorem

2.4.1 Extended Speiser Graph

P. Doyle [22] suggested to use an extended Speiser graph to study the type prob-

lem.
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Let Z denote the set of integers, and Z+ the set of non-negative integers.

A half-plane lattice Λ is the graph embedded in R
2, whose vertices form the set

Z × Z+. Two vertices (x′, y′), (x′′, y′′) are connected by an edge, if and only if

(x′′ − x′, x′′ − x′) = (±1, 0) or (0,±1). The boundary of the half-plane lattice is the

infinite connected subgraph, whose set of vertices is Z×{0}. There is an action of Z

on Λ by horizontal shifts. A half-cylinder lattice Λn is Λ/nZ. The boundary of Λn is

the induced boundary from Λ.

Let n ≥ 1 be given. If we replace each face of a Speiser graph Γ with 2k edges,

k ≥ n, by the half-cylinder lattice Λ2k, and each face with infinitely many edges by

the half-plane lattice Λ, identifying the boundaries of the faces with the boundaries

of the corresponding lattices along the edges, we obtain the extended Speiser graph

Γn. The graph Γn is an infinite connected graph, embedded in R2, and containing

Γ as a subgraph. It has a bounded degree, and all faces of Γn have no more than

max{2(n− 1), 4} edges.

2.4.2 Statement of the Theorem

Theorem 2.4.1 For every n ≥ 1, a surface (X, f) ∈ Fq = F (a1, . . . , aq) has a

hyperbolic (parabolic) type, if and only if Γn is hyperbolic (parabolic), where Γ is the

Speiser graph of (X, f).

Theorem 2.4.1 is a slight generalization of the theorem by P. Doyle [22]. The latter

states that (X, f) ∈ Fq is hyperbolic, if and only if the McKean-Sullivan random walk

on its Speiser graph Γ is transient. In plain terms, the McKean-Sullivan random walk

on Γ comes from the simple random walk on Γ1, when we observe it only as it hits

Γ. Doyle’s arguments are probabilistic and electrical, whereas we employ geometric

methods. We use the results of M. Kanai [18], [20] to prove Theorem 2.4.1.
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2.5 Proof of P. Doyle’s Theorem

According to Fact 1 and Theorem 2.1.2, to prove Theorem 2.4.1, we need to

find a conformal metric ds on X \ A, where A is a discrete subset of X , such that

Y = (X \ A, ds) satisfies (2.1), and is roughly isometric to Γn.

2.5.1 Conformal Metric

For each i = 1, . . . , q, let (Vi, ψi) be a local coordinate neighborhood of ai, centered

at zero, so that ψi(Vi) = D1, and V i ∩ V j = ∅, i 6= j. Consider an open covering

{Vi : i = 0, . . . , q} of C, where V0 = C \ {ψ−1
i (D1/2) : i = 1, . . . , q}; let ψ0 be

a conformal map of V0 onto a domain in C. Further, let {gi, i = 0, . . . , q} be a

partition of unity on C, subordinate to the covering. This partition of unity pulls

back to a partition of unity on X as follows. Let W be a connected component of

f−1(Vi). We define gW = gi◦f , a function onW , that we extend to a smooth function

on X , by letting it to be 0 outside W . It is clear that {gW}, a family of functions

indexed by connected components of f−1(Vi), i = 0, 1, . . . , q, forms a partition of

unity on X . Every component W contains at most one singular point. If (W, f) is

a k-sheeted covering of Vi, k = 1, 2, . . . ,∞, we denote W by Wk. The connected

component of f−1(V0) is denoted by W0.

We choose A to be the set of all critical points x ∈ X , so that the local degree

k = k(x) of f at x is at least n. Now we define a conformal metric ds on X \ A:

ρ(z)|dz| = gW0f
∗(ψ∗

0(|dw|)) +
∑

i>0

{

∑

Wk: k≥n

gWk
f ∗(ψ∗

i (|dw|/|w|))

+
∑

Wk: k<n

gWk
f ∗(ψ∗

i (|dw|/|w|
(k−1)/k))

}

.

The function ρ smoothly extends to a neighborhood of every critical point that does

not belong to A.

We need to show that Y = (X \ A, ds) satisfies (2.1), and is roughly isometric to

Γn.
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2.5.2 Geometric Uniformness Condition

Every curve going out to a point in A has infinite length in the metric ds, thus

Y is complete. The Gaussian curvature is bounded. Indeed, suppose that it is not.

Then there exists a sequence of points in X \ A, on which the Gaussian curvature

tends to ∞. We project this sequence to C. The projected sequence has either finitely

many points, or accumulates to a point in C. Since in a neighborhood of each point

in C there are at most n + 1 choices for the metric, each with a bounded curvature,

we get a contradiction.

The radius of injectivity is positive. Assume the contrary, i.e. there exists a

sequence of points {xn} in X \ A, such that if rn is the radius of injectivity at xn,

then rn → 0. To derive a contradiction, we follow the same argument as in the

proof that the Gaussian curvature is bounded. The most interesting case is when the

projected sequence accumulates at a point ai. Every component W ′
k ⊂ Wk, k < ∞,

of the preimage ψ−1
i (D1/2) is isometric to D(1/2)1/k with the length element k|dz|/|z|,

if k ≥ n, or k|dz|, when k < n. A connected component W ′
∞ ⊂ W∞ of ψ−1

i (D1/2) is

isometric to {z,ℜz < 1/2} with the metric |dz|. In any case we obtain a contradiction.

2.5.3 Rough Isometry

It remains to show the rough isometry. The Speiser graph Γ of (X, f) is the

preimage of Γ′ under f , where Γ′ is embedded in C \ {ai, i = 1, . . . , q}. The graph Γ′

is finite, and otherwise satisfies all the properties that a Speiser graph does. Therefore

we can form the extended graph Γ′
1. Since each face of Γ′ contains a unique ai, we

can assume that the extended graph Γ′
1 is embedded in C \ {a1, . . . , aq} in such a

way, that with respect to the local coordinate (Vi, ψi), the edges of the lattice of Γ′
1

are Euclidean semicircles and orthogonal to them family of straight segments, which

have length 1 in the metric ψ∗
i (|dw|/|w|).

Let J : Γn → X\A be the embedding, whose image is contained in the pullback of

Γ′
1. For this embedding properties 1, 2, and 3 of Lemma 1 below are readily verified,
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using the fact that there is a finite number of choices for the metric in f(X \ A).

Theorem 2.4.1 follows.

For a Riemannian surface Y we denote by dY (x1, x2) the distance between x1, x2 ∈

Y , and by lY (C), the length of a curve C ⊂ Y . Similarly, for a graph G, we denote

the combinatorial distance between v1, v2 ∈ V G by dG(v1, v2), and the combinatorial

length of a path C by lG(C). A curve in Y joining points x1 and x2 is denoted by

Cx1,x2.

Lemma 1 Suppose that for a connected graph G properly embedded in a complete

Riemannian surface Y the following conditions are satisfied:

1. there exists a constant ǫ, such that for every point x ∈ Y ,

inf{d(x, v) : v ∈ V G} < ǫ,

2. there exist constants B1, B2, 0 < B1 < B2, such that for every edge e ∈ EG,

B1 ≤ lY (e) ≤ B2, and

3. there exists a constant B3 > 0, such that for every face f ∈ FG, and every two

points x1, x2 on the boundary ∂f of f ,

inf{lY (Cx1,x2) : Cx1,x2 ⊂ f} ≥ B3 inf{lY (Cx1,x2) : Cx1,x2 ⊂ ∂f}.

Then the graph G is roughly isometric to Y .

Proof. Let J : G → Y be the embedding map. In view of condition 1, the

first property of rough isometry for J is satisfied, so it remains to prove the second

property.

Let v1, v2 ∈ V G ⊂ Y , and C be a path in G, joining these two points, and having

the minimal combinatorial length. Then, by condition 2,

dG(v1, v2) = lG(C) ≥ (1/B2)lY (C) ≥ (1/B2)dY (v1, v2). (2.2)
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Conversely, let v1, v2 ∈ V G ⊂ Y , and C be a curve in Y , joining v1 and v2. Let

f be a face of G, such that C ∩ f 6= ∅, and Cf be a curve which is a connected

component of C ∩ f . If x1, x2 are endpoints of Cf , x1, x2 ∈ ∂f , then, by condition 3,

lY (Cf) ≥ B3 inf{lY (Cx1,x2) : Cx1,x2 ⊂ ∂f}.

Since this holds for every face f and every component Cf , we conclude that there

exists a path C ′ in G, joining v1 and v2, such that

lY (C) ≥ B3lY (C
′) ≥ B1B3dG(v1, v2),

where the last inequality holds by condition 2. Taking the infimum with respect to

curves C joining v1 and v2, we obtain that

dY (v1, v2) ≥ B1B3dG(v1, v2). (2.3)

Combining inequalities (2.2), (2.3),

B1B3dG(v1, v2) ≤ dY (v1, v2) ≤ B2dG(v1, v2),

we conclude that J is a rough isometry. The lemma is proved. ✷

An immediate corollary of Lemma 1 is the fact that a surface of the class Fq,

endowed with the pullback of a spherical metric, is roughly isometric to the dual of

its Speiser graph. However we could not use this rough isometry in studying the type

problem due to the presence of vertices of infinite degree on the dual of a Speiser

graph. Also, even if we assume that there are no asymptotic values, i.e. there are no

vertices of infinite degree on a dual of the Speiser graph, the degrees of the vertices of

the dual can be unbounded, and we cannot conclude that the type of a surface agrees

with the type of the dual graph.

The only case when we can use the dual graph to determine the type of a surface

is when the degrees of the vertices of this graph are bounded. This is first of all too

restrictive, and second, if this happens, we can use the Speiser graph itself for this

purpose, i.e. we do not need to consider the extended graph.
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In the next chapter we apply Doyle’s theorem to show that R. Nevanlinna’s con-

jecture is false. We could not use any other known criteria of type to show the

parabolicity of the surface constructed below.
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3. R. NEVANLINNA’S CONJECTURE

In this chapter we provide three examples of a parabolic surface with negative mean

excess, contradicting Nevanlinna’s conjecture. We also give an example of a parabolic

surface with “a lot of negative curvature”, Section 3.6. The third example and the

surface in Section 3.6, are due to O. Schramm and I. Benjamini.

3.1 Background and Preliminaries

3.1.1 Excess

For a Speiser graph Γ, R. Nevanlinna introduces the following characteristic. To

each vertex v ∈ V Γ we assign the number

E(v) = 2−
∑

f : v∈V f

(1− 1/k),

where f is a face with 2k edges, k = 1, 2, . . . ,∞, and V f is the set of vertices on its

boundary. The function E : V Γ → R, v 7→ E(v) is called the excess of Γ.

3.1.2 Integral Curvature

The motivation for the definition of excess uses a notion of integral curvature. The

integral curvature ω on X is a signed Borel measure, so that for each Borel subset

B ⊂ X , ω(B) is the area of B with respect to the pullback metric minus 2π
∑

(k−1),

where the sum is over all critical points x ∈ B, and k is the local degree of f at x.

Each vertex of Γ represents a hemisphere, and each face of Γ with 2k edges,

k = 2, 3, . . . , represents a critical point, where k is the local degree of f at this point.

Therefore, each vertex of Γ has positive integral curvature 2π, and each face with 2k

edges has negative integral curvature −2π(k − 1). We spread the negative curvature
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evenly to all the vertices of the face. A face with infinitely many edges contributes

−2π to each vertex on its boundary. The curvature mass obtained by every v ∈ V Γ

is exactly 2πE(v).

3.1.3 Mean Excess

Nevanlinna also defines the mean excess of a Speiser graph Γ. We fix a vertex

v ∈ V Γ, and consider an exhaustion of Γ by a sequence of finite graphs Γ(i), where

Γ(i) is the ball of combinatorial radius i, centered at v. By averaging E over all the

vertices of Γ(i), and taking the limit, we obtain the mean excess , if the limit exists.

We denote it by Em. If the limit does not exist, we consider the upper or lower excess,

given by the upper, respectively lower, limit. The upper mean excess of every infinite

Speiser graph is nonpositive (see Appendix B).

3.1.4 Extremal length

In this section we give the definition of the extremal length of a family of paths

and derive one of its properties that we are going to use below. The general reference

for this section is [21].

Let G be a locally-finite connected graph. For a path t in G we denote by Et the

edge set of t. Similarly, by ET we denote the edge set of a family of paths T in G.

The extremal length of a family of paths T in G, λ(T ), is defined as

λ(T )−1 = inf

{

∑

e∈ET

µ(e)2
}

,

where the infimum is taken with respect to all density functions µ defined on the edge

set ET , such that for all t ∈ T ,

∑

e∈Et

µ(e) ≥ 1.

The extremal length of the family of paths connecting two vertices or a vertex

to infinity, is equal to (a scalar multiple of) the effective resistance between the two
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vertices, respectively the vertex and infinity. It is known that a locally-finite graph

G is hyperbolic (parabolic) if and only if λ(Tv) is finite (infinite) for some, and hence

every, vertex v ∈ V G, where Tv is the family of paths connecting v to infinity.

Let T, Ti, i ∈ I, be families of paths in G, where I is at most countable. We

assume that ETi ∩ ETj = ∅, i 6= j. Suppose that for every t ∈ T and every i ∈ I,

there exists ti ∈ Ti, which is a subpath of t. Then (see Appendix C)

λ(T ) ≥
∑

i∈I

λ(Ti). (3.1)

3.2 Conjecture

We recall that the conjecture of R. Nevanlinna ([2], p. 312) states that a surface

(X, f) of the class Fq is of a hyperbolic or a parabolic type, according to whether the

angle geometry of the surface is “Lobachevskyan” or “Euclidean”, i.e. according to

whether the mean excess Em is negative or zero.

3.3 Counterexample 1

In what follows, we mean by a ≍ b that there are absolute positive constants c1, c2,

such that c1a ≤ b ≤ c2a; similarly a . b means that there is an absolute positive

constant c, such that ac ≤ b.

3.3.1 Speiser Graph

First we consider an infinite linear graph, i.e. an infinite connected graph where

each vertex has degree 2. Next, we fix a vertex of this graph, and denote it by 0. To

a vertex of this graph that is at a distance i from 0, we attach a binary tree of (i+1)

generations (see Fig. 3.1). We denote this graph by Tr.

The vertices of Tr of degree one we call leaves . To obtain a Speiser graph Γ

we replace each vertex of Tr by a hexagon. Adjacent hexagons correspond to the

vertices of Tr that are connected by an edge. The hexagons corresponding to leaves
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.  .  . .  .  .

Fig. 3.1. Graph Tr

of Tr, which we call free hexagons, should be completed with two edges, to preserve

the degree. We add the edges to each of these hexagons, so that the pair of opposite

vertices of degree 2 is connected by an edge inside the hexagon, and the remaining

vertices of degree 2 are connected by an edge. The resulting graph Γ has degree 3 at

all of its vertices (see Fig. 3.2).
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Fig. 3.2. Graph Γ

We label the faces by 0, 1, and ∞. There are exactly two faces with infinitely

many edges, both labelled by ∞. Let (X, f) denote the surface corresponding to Γ,

(X, f) ∈ F3 = F (0, 1,∞); we chose the extended real line as the base curve. Notice
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that the function f is analytic. We need to show that the surface is parabolic and

the mean excess is negative.

3.3.2 Parabolicity

To prove parabolicity, we make use of Theorem 2.4.1. For this we consider the

graph Γ4. It is easier to deal with its dual Γ∗
4 (see Fig. 3.3) though.

Fig. 3.3. Dual Graph Γ∗
4

Since all faces of Γ4 have a uniformly bounded (by 6) number of sides, and the

degree of Γ4 is bounded (it is 4), Γ4 is roughly isometric to Γ∗
4, and hence they are

simultaneously hyperbolic (parabolic). To simplify further, we pass from Γ∗
4 to a

roughly isometric graph Γ∗ of bounded degree. The graph Γ∗ (see Fig. 3.4) consists

of a coarse lattice in the upper half-plane, a fine lattice in the lower half-plane, and

edges, which we call bridges , that connect vertices on the real line. The bridges are

chosen in such a way, that identification of vertices connected by them gives a rough

isometry Γ∗ → Γ∗
4. We denote by v the vertex on the real line with respect to which
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Γ∗ is symmetric, and by Tv the family of paths connecting v to infinity. We show that

λ(Tv) = ∞, which implies that the surface is parabolic.

Fig. 3.4. Graph Γ∗

Let Ai be a finite subgraph of Γ∗, which is an annulus of combinatorial width 1 in

the upper half-plane, of combinatorial width ≍ 2i in the lower half-plane, and which

contains bridges. In Figure 3.4 the inner and outer boundaries of the first annulus

are marked by dashed lines.

Let Ti denote the family of paths in Ai that connect the inner and outer bound-

aries. We consider a density function µi, which assigns the value 1/2i to every edge of

Ai in the lower half-plane, and the value 1 to every edge in the upper half-plane. To

the bridges we assign values as follows. We say that a bridge has size k, if it connects

the vertices that are at a distance k with respect to the real line. Now, to a bridge of

size k we assign the value 1/2l−1, where l = l(k) is the number of bridges of size k in

Ai. We notice that for each l there are at most 4 different sizes k for which l(k) = l.

For every path ti ∈ Ti we have

∑

e∈Et

µi(e) & 1.
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From the definition of the extremal length we get

λ(Ti)
−1 ≤

∑

e∈ETi

µi(e)
2. (3.2)

Since there are ≍ i edges of Ai in the upper half-plane and ≍ 22i in the lower half-

plane, these two parts combined contribute ≍ i×1+22i×(1/22i) ≍ i to the right-hand

side of (3.2). The bridges of Ai contribute

∑

k

l(k)
1

22(l(k)−1)
. 1.

Combining the above estimates, we conclude that

∑

e∈ETi

µi(e)
2 ≍ i,

and hence

λ(Ti) &
1

i
.

Therefore λ(Tv) &
∑∞

i=1 1/i = ∞.

3.3.3 Mean Excess

Now we show that the (upper) mean excess is negative.

To each vertex of Tr there corresponds a hexagon of Γ. There are 3 types of

hexagons, according to the excess assigned to their vertices. We call these types

a, b, and c (see Fig. 3.5, where the numbers next to the vertices of hexagons are the

corresponding values of the excess).

In order to compute the mean excess of Γ, we look at the graph Tr, whose vertices

are labelled by a, b, and c (due to the symmetry of Tr, we can consider only the part

of it which is to the right of 0, see Fig. 3.6).



- 30 -

b ca

−1/3 −1/3

−1/3

−1/3 −1/3

−1/3

−1/3 −1/3

−1/6 −1/6

−1/6 −1/6

−1/6 −1/6

0 0

1/2 1/2
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Fig. 3.6. Tree

We split the sequence Γ(i) of balls into 4 subsequences, according to the index

mod 4, and compute the mean excess in each case, counting how many hexagons of

every type a, b, c are included:

1)
[4(−1

3
)(2k+1 − 2)− 2(−1

3
)2k−1] + [6(−1

6
)2k−1] + [21

2
(2k − 2)]

[4(2k+1 − 2)− 2(2k−1)] + [6(2k−1)] + [4(2k − 2)]
∼ −

11

84
;

2)
[4(−1

3
)(2k+1 − 2)] + [4(−1

6
)2k] + [21

2
(2k − 2)]

[4(2k+1 − 2)] + [4(2k)] + [4(2k − 2)]
∼ −

7

48
;

3)
[4(−1

3
)(3(2k)− 2)− 2(−1

3
)2k] + [4(−1

6
)2k] + [21

2
(2k+1 − 2− 2k)]

[4(3(2k)− 2)− 2(2k)] + [4(2k)] + [4(2k+1 − 2)− 2(2k)]
∼ −

3

20
;

4)
[4(−1

3
)(3(2k)− 2)] + [4(−1

6
)2k] + [23

2
(2k+1 − 2)]

[4(3(2k)− 2)] + [4(2k)] + [4(2k+1 − 2)]
∼ −

1

9
.

Since the limits of all the subsequences are < 0, the mean excess Em is also < 0.



- 31 -

3.4 Counterexample 2: No Asymptotic Values

A face of a Speiser graph with infinitely many edges on the boundary corresponds

to an asymptotic spot of f , and a face with finitely many edges corresponds to a

critical point. In the previous example we had two asymptotic spots of f with the

same value ∞. Hence the function is analytic. We give another example where the

function is meromorphic, but it does not have asymptotic values.

We notice that the graph Γ4, which is an extended Speiser graph of Γ, is itself

a Speiser graph of degree 4. It provides us with an example of a parabolic surface

(X, f) ∈ F4, whose mean excess is negative. The new feature is that Γ4 does not

have logarithmic elementary regions, and, moreover, all algebraic critical points have

bounded order.

3.5 Counterexample 3

P. Doyle [22] proved that the surface (X,ψ) is parabolic if and only if a certain

modification of the Speiser graph is recurrent. (See [22] and [21] for background

on recurrence and transience of infinite graphs.) In the particular case where kf

is bounded, the recurrence of the Speiser graph itself is equivalent to (X,ψ) being

parabolic. Though we will not really need this fact, it is not too hard to see that in a

Speiser graph satisfying Em < 0 the number of vertices in a ball grows exponentially

with the radius. Thus, we may begin searching for a counterexample by considering

recurrent graphs with exponential growth. A very simple standard example of this

sort is a tree constructed as follows. In an infinite 3-regular tree T3, let v0, v1, . . . be

an infinite simple path. Let T be the set of vertices u in T3 such that d(u, vn) ≤ n for

all sufficiently large n. Note that there is a unique infinite simple path in T starting

from any vertex u. This implies that T is recurrent. It is straightforward to check

that the number of vertices of T in the ball B(v0, r) grows exponentially with r.

Our Speiser graph counterexample is a simple construction based on the tree T .

Fix a parameter s ∈ {1, 2, . . . }, whose choice will be discussed later. To every leaf
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(a) (b)

Fig. 3.7. The surfaces S(v).

(degree one vertex) v of T associate a closed disk S(v) and on it draw the graph

indicated in Figure 3.7.(a), where the number of concentric circles, excluding ∂S(v),

is s. If v is not a leaf, then it has degree 3. We then associate to it the graph indicated

in Figure 3.7.(b), drawn on a triply connected domain S(v). We combine these to form

the Speiser graph Γ as indicated in figure 3.8, by pasting the outer boundary of the

surface corresponding to each vertex into the appropriate inner boundary component

of its parent. Here, the parent of v is the vertex v′ such that d(v′, vn) = d(v, vn)− 1

for all sufficiently large n.

Every vertex of Γ has degree 4 and every face has 2, 4, or 6 edges on its boundary.

Therefore, Γ is a Speiser graph. Consequently, as discussed above, there is a surface

spread over the sphere X = (R2, ψ) whose Speiser graph is Γ. It is immediate to verify

that Γ is recurrent, for example, by the Nash-Williams criterion. Doyle’s Theorem [22]

then implies that X is parabolic. Alternatively, one can arrive at the same conclusion

by noting that there is an infinite sequence of disjoint isomorphic annuli on (R2,Γ)

separating any fixed point from ∞, and applying extremal length. (See [10], [32] for

the basic properties of extremal length.)

We now show that Em < 0 for Γ. Note that the excess is positive only on vertices

on the boundaries of 2-gons, which arise from leaves in T . On the other hand, every

vertex of degree 3 in T gives rise to vertices in Γ with negative excess. Take as a

basepoint for Γ a vertex w0 ∈ S(v1) with negative excess. It is easy to see that there
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S(v1)

S(v2)

S(v3)

Fig. 3.8. The Speiser graph with s = 2.

are constants a > 1, c > 0, such that the number n−
r of negative excess vertices in the

combinatorial ball B(w0, r) about w0 satisfies c ar ≤ n−
r ≤ ar/c.

If w is a vertex with positive excess, then there is a unique vertex σ(w) with

negative excess closest to v; in fact, if w ∈ S(v), then σ(w) is the closest vertex to w

on ∂S(v), and the (combinatorial) distance from w to σ(w) is our parameter s. The

map w 7→ σ(w) is clearly injective. This implies that the number n+
r of positive excess

vertices in B(w0, r) satisfies n
+
r+s ≤ n−

r , r ∈ {0, 1, 2, . . .}. By choosing s sufficiently

large, we may therefore arrange to have the total excess in B(w0, r) to be less than

−ǫ ar, for some ǫ > 0 and every r ∈ {0, 1, 2, . . . }. It is clear that the number of

vertices with zero excess in B(w0, r) is bounded by a constant (which may depend on

s) times n−
r . Hence Em < 0 for Γ.

By allowing s to depend on the vertex in T , if necessary, we may arrange to have

Em = Em; that is, Em exists, while maintaining Em < 0. We have thus demonstrated

that the resulting surface is a counterexample in F4 to the second implication in

Nevanlinna’s problem.
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3.6 A Non-Positive Curvature Example

We now construct an example of a simply connected, complete, parabolic surface

Y of nowhere positive curvature, with the property

∫

D(a,r)

curvature < −ǫ area
(

D(a, r)
)

, (3.3)

for some fixed a ∈ Y and every r > 0, where D(a, r) denotes the open disc centered

at a of radius r, and ǫ > 0 is some fixed constant.

Consider the surface C = R2 with the metric |dz|/y in P = {z = x+ iy : y ≥ 1},

and exp (1− y)|dz| in Q = {y < 1}. We denote this surface by Y . Let β denote the

curve {y = 1} in Y , i.e., the common boundary of P and Q.

Let Q′ denote the universal cover of {z ∈ C : |z| > 1}. Note that Q is isometric to

Q′ via the map z 7→ exp(iz + 1). Hence the curvature is zero on Q, and the geodesic

curvature of ∂Q is −1. The geodesic curvature of ∂P is 1. Consequently, Y has no

concentrated curvature on β. The surface Y is thus a “surface of bounded curvature”,

also known as an Aleksandrov surface (see [33], [15]). The curvature measure of Y is

absolutely continuous with respect to area; the curvature of Y is -1 (times the area

measure) on P and 0 on Q.

The surface Y is parabolic, and the uniformizing map is the identity map onto R2

with the standard metric.

We will now prove (3.3) with a = i. Set βr = D(a, r) ∩ β. Note that the shortest

path in Y between any two points on β is contained in P , and is the arc of a circle

orthogonal to {y = 0}. Using the Poincare disc model, it is easy to see that there

exists a constant c > 0, such that

c er/2 ≤ lengthβr ≤ er/2/c, (3.4)

where the right inequality holds for all r, and the left for all sufficiently large r. By

considering the intersection of D(a, r) with the strip 1 < y < 2 it is clear that

O(1)area
(

P ∩D(a, r)
)

≥ lengthβr, (3.5)
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for all sufficiently large r.

Consider some point p ∈ Q, and let p′ be the point on β closest to p. It follows

easily (for example, by using the isometry of Q and Q′) that if q is any point in β, then

dQ(p, q) = dQ(p, p
′) + dQ(p

′, q) + O(1). Consequently, if d(p, a) ≤ r, then there is an

s ∈ [0, r] such that p′ ∈ βs and dQ(p, p
′) ≤ r− s+O(1). Furthermore, it is clear that

the set of points p in Q such that p′ ∈ βs and dQ(p, p
′) ≤ t has area O(t2+ t) lengthβs.

Consequently,

area
(

Q ∩D(a, r)
)

≤ O(1)
r

∑

j=0

(j + 1)2lengthβr−j .

Using (3.4), we have

area
(

Q ∩D(a, r)
)

≤ O(1) lengthβr, (3.6)

for all sufficiently large r.

Now, combining (3.5) and (3.6), we obtain (3.3) for all sufficiently large r. It

therefore holds for all r.
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4. ANALYTIC ENDOMORPHISMS

In this chapter we study the question of recovering a domain from its semigroup of

analytic endomorphisms.

4.1 Semigroups

If Ω is a domain in C
n, its analytic endomorphism is an analytic map from Ω

into itself. Analytic endomorphisms of Ω form a semigroup (with the identity map as

the unit), which we denote by E(Ω). It is non-comutative. An isomorphism between

semigroups is a map that preserves the operation and sends the unit to the unit.

A biholomorphic map between two domains is a one-to-one onto analytic map,

whose inverse is also analytic. We say that a map is antibiholomorphic, if its complex

conjugate is biholomorphic. By an (anti-)biholomorphic map we mean a map which

is either biholomorphic or antibiholomorphic. It is obvious that if ψ : Ω1 → Ω2 is

an (anti-)biholomorphic map, then the map between the corresponding semigroups

f 7→ ψ ◦ f ◦ ψ−1 is an isomorphism.

We study the converse implication, namely given an isomorphism between semi-

groups, is there an (anti-)biholomorphic map that conjugates it?

4.2 Statement of the Theorem

Theorem 4.2.1 Let Ω1, Ω2 be bounded domains in Cn, Cm respectively, and suppose

that there exists ϕ : E(Ω1) → E(Ω2), an isomorphism of semigroups. Then n = m

and there exists an (anti-)biholomorphic map ψ : Ω1 → Ω2 such that

ϕf = ψ ◦ f ◦ ψ−1, for all f ∈ E(Ω1). (4.1)
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4.3 Topology

4.3.1 Constant Endomorphisms

To construct the (anti-)biholomorphic map and deduce the desired properties of

it, we need to express certain properties of elements of the semigroup, such as an

element being injective, or constant, in terms of the semigroup structure. This will

allow us to conclude that an element with a property, say being injective, will map

to an element with the same property. The most crucial property for a construction

of the biholomorphic map is constantness of an element.

For a bounded domain Ω in C
n, we denote by C(Ω) the subsemigroup of E(Ω)

consisting of constant maps. An endomorphism cz is constant if it sends Ω to a point

z ∈ Ω. The subset C(Ω) ⊂ E(Ω) can be described using only the semigroup structure

as follows:

c ∈ C(Ω) iff ∀(f ∈ E(Ω)), (c ◦ f = c). (4.2)

In other words, a constant map is a left zero.

It is clear that we have a bijection between constant endomorphisms of Ω and

points of this domain as a set: to each z corresponds a unique cz ∈ C(Ω) and vice

versa, so we can identify the two. Under this identification, a subset of Ω corresponds

to a subsemigroup of C(Ω).

4.3.2 Construction of ψ

Having defined points of a domain in terms of its semigroup structure of analytic

endomorphisms, we can construct a map ψ between Ω1 and Ω2 as follows:

ψ(z) = w iff ϕcz = cw. (4.3)
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So defined, ψ satisfies (4.1). Indeed, let f ∈ E(Ω1), f(z) = ζ . This is equivalent

to

f ◦ cz = cζ . (4.4)

Applying ϕ to both sides of (4.4) we have

ϕf ◦ cψ(z) = cψ(ζ). (4.5)

But (4.5) is equivalent to ϕf(ψ(z)) = ψ(ζ) = ψ(f(z)), which is (4.1).

4.3.3 Continuity of ψ

We describe the topology of a domain Ω using its injective endomorphisms. A

map f ∈ E(Ω) is injective if and only if

∀(c′ ∈ C(Ω)), ∀(c′′ ∈ C(Ω)), ((f ◦ c′ = f ◦ c′′) ⇒ (c′ = c′′)).

We denote the class of injective endomorphisms of Ω by Ei(Ω). For every f ∈

Ei(Ω), fi(Ω) is open [34]. The family {f(Ω), f ∈ Ei(Ω)} of subsets of Ω forms a base

of topology, because every z ∈ Ω has a neighborhood f(Ω), where f(ζ) = z+λ(ζ−z),

f belongs to Ei(Ω) for every λ such that |λ| is small. This is the place where we use

the boundedness of domains.

Thus we described subsets of Ω and the topology on it using only the semigroup

structure of E(Ω). Since this is so, the semigroup structure also defines the notions

of an open set, closed set, compact set, and closure of a set.

Now we can easily prove continuity of the map ψ constructed above. Indeed, let

g(Ω2), g ∈ Ei(Ω2) be a set from the base of topology of Ω2. We take f = ϕ−1g. Then

f ∈ Ei(Ω1) and ψ
−1(g(Ω2)) = f(Ω1), which proves that ψ is continuous. Since ϕ is

an isomorphism, the same argument works to prove that ψ−1 is also continuous, and

thus ψ is a homeomorphism.

Therefore the domains Ω1, Ω2 are homeomorphic, and hence [35] they have the

same dimension, i.e. n = m.
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4.4 Localization

In order to prove that ψ is (anti-)biholomorphic, we will introduce a system of

projections. The main difficulty in extracting any useful information from such a

system is that a projection in general does not have to be an endomorphism. To

overcome this difficulty, the following localization lemma proves useful.

Lemma 2 Suppose H is a semigroup with identity, and f an element of H with the

following two properties:

(i) hf = fh, for every h in H, and

(ii) h1f = h2f implies h1 = h2, for every h1 and h2 in H.

Then there exists a semigroup Sf and a monomorphism i : H → Sf , such that

i(f) is invertible in Sf and commutes with all elements of Sf . Moreover, the semi-

group Sf satisfies the following universal property: for every semigroup S1 with a

monomorphism i1 : H → S1 such that i1(f) is invertible in S1 and commutes with

all elements of S1, there exists a unique monomorphism î1 : Sf → S1 such that

i1 = î1 ◦ i.

Remark 1 Uniqueness of î1 implies that the semigroup Sf with the universal prop-

erty is unique up to isomorphism.

Proof. We construct Sf as follows. First we consider formal expressions of the

form hfk, where h ∈ H and k is an integer (may be positive, negative or zero).

Then we define a multiplication on this set: h1f
k1 ∗ h2f

k2 = h1h2f
k1+k2. Next we

consider a relation on the set of formal expressions: h1f
k1 ∼ h2f

k2 if k1 ≤ k2 and

h1 = h2f
k2−k1 in H , or k2 ≤ k1 and h2 = h1f

k1−k2 in H . It is easy to verify that

this is an equivalence relation and it is compatible with the operation ∗; that is,

x ∼ y, u ∼ v implies x ∗ u ∼ y ∗ v.

Lastly, let Sf be the set of equivalence classes with the binary operation induced

by ∗. For Sf to be a semigroup, we need to show that the binary operation ∗ is

associative. Let h1f
k1 ∼ h′1f

k′1 , h2f
k2 ∼ h′2f

k′2, and h3f
k3 ∼ h′3f

k′3. We need to show
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that (h1f
k1 ∗h2f

k2)∗h3f
k3 ∼ h′1f

k′1 ∗(h′2f
k′2 ∗h′3f

k′3). By the definition of the operation

∗, the last equivalence is the same as h1h2h3f
k1+k2+k3 ∼ h′1h

′
2h

′
3f

k′1+k
′

2+k
′

3. Assuming

that k1 + k2 + k3 ≤ k′1 + k′2 + k′3, we have essentially one possibility to consider (the

others are either similar or trivial): k1 ≤ k′1, k2 ≤ k′2, and k′3 ≤ k3. In this case,

h1h2h3f
k3−k′3 = h′1h

′
2h

′
3f

k′1−k1+k
′

2−k2. Now we can use the cancellation property (ii) to

get the desired equivalence.

The semigroupH is embedded into Sf via i : h 7→ [hf 0]. The element i(f) = [idf ],

where id is the identity in H , is invertible in Sf with the inverse [idf−1]. Clearly,

[idf ] commutes with all elements of Sf .

Now suppose that S1, i1 : H → S1, is a semigroup and a monomorphism, such

that i1(f) is invertible in S1 and commutes with all elements of S1. Then we define

î1([hf
k]) = i1(h)(i1(f))

k.

This definition does not depend on a representative of [hfk]. Indeed, suppose h1f
k1 ∼

h2f
k2 and assume k1 ≤ k2. Then h1 = h2f

k2−k1 , and thus i1(h1) = i1(h2)i1(f)
k2−k1.

Hence i1(h1)i1(f)
k1 = i1(h2)i1(f)

k2.

So defined, î1 is a homomorphism:

î1([h1f
k1][h2f

k2]) = î1([h1h2f
k1+k2])

= i1(h1h2)i1(f)
k1+k2 = i1(h1)i1(h2)i1(f)

k1i1(f)
k2

= i1(h1)i1(f)
k1i1(h2)i1(f)

k2 = î1([h1f
k1])̂i1([h2f

k2 ]).

The relation î1 ◦ i = i1 holds, since î1([hf
0]) = i1(h) for all h ∈ H .

Uniqueness of î1 is clear, and Lemma 2 is proved. Box

We are going to apply this lemma to get an extension of the isomorphism ϕ

restricted to the commutant of an element f to a larger semigroup that would contain

a system of projections.
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4.5 Extending ϕ

4.5.1 Good Elements

Here we introduce a subsemigroup, whose elements, following [7], we call to be

‘good’. They are termed ‘good’ because, first of all, their analytic properties will

be useful for us when extending the restricted isomorphism ϕ, and second, all these

properties can be expressed in terms of the semigroup structure.

We say that for a bounded domain Ω an element f ∈ E(Ω) is good at z ∈ Ω,

denoted by f ∈ Gz(Ω), if

1. z is a unique fixed point of f ,

2. f(Ω) has compact closure in Ω, and

3. f is injective in Ω.

Property 3 of a good element was already stated in terms of the semigroup struc-

ture. Since the topology on Ω was described using only the semigroup structure,

Property 2 can also be stated in these terms. Property 1 can be expressed in terms

of the semigroup structure as

(f ◦ cz = cz) ∧ ((f ◦ cζ = cζ) ⇒ (cζ = cz)).

Since f is an endomorphism of a domain, all eigenvalues λ of its linear part at

z satisfy |λ| ≤ 1 [36]. Moreover, |λ| < 1 because the closure of f(Ω) is a compact

set in Ω. The injectivity of f implies [34] that it is biholomorphic onto f(Ω) and the

Jacobian determinant of f does not vanish at any point of Ω.

It is clear that for every z ∈ Ω a good element f at z exists. For example, we can

take f(ζ) = z + λ(ζ − z) with sufficiently small |λ|.
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4.5.2 Extending a Comutant

Consider a good element f ∈ Gz(Ω) and its commutant Hf(Ω) in E(Ω):

Hf (Ω) = {h ∈ E(Ω) : hf = fh}.

Clearly Hf(Ω) is a subsemigroup of E(Ω). The element f , being good (hence injec-

tive), satisfies the cancellation property (ii) of Lemma 2 inHf(Ω). Thus, by Lemma 2,

we have the extension Sf of Hf(Ω) in which f is invertible and commutes with all

elements of Sf . In the case of analytic endomorphisms we can embed Hf (Ω) into

the subsemigroup of Az, the semigroup of germs of analytic mappings at z under

composition, consisting of elements that commute with the germ of f and containing

the germ of f−1. We use the universal property of Lemma 2 to conclude that Sf is

isomorphic to a subsemigroup of Az. We identify Sf with this semigroup, i.e. we

consider elements of Sf as germs of analytic mappings at z.

4.5.3 Extending the Isomorphism

In proving that ψ is (anti-) biholomorphic we need to show that it is so in a

neighborhood of every point of Ω1. Since an (anti-) biholomorphic type of a domain

is preserved by translations in Cn, it is enough to show that ψ is (anti-) biholomorphic

in a neighborhood of 0 ∈ C
n, assuming that Ω1 and Ω2 contain 0 and ψ(0) = 0.

Let ϕ : E(Ω1) → E(Ω2) be an isomorphism of the semigroups, f a good element,

f ∈ G0(Ω1), and Hf(Ω1) the commutant of f . Then clearly Hg(Ω2) = ϕ(Hf(Ω1)) is

the commutant of g = ϕf . By Lemma 2, we have the extensions Sf , Sg ofHf(Ω1) and

Hg(Ω2) respectively, and by the universal property of this lemma the isomorphism ϕ

extends to an isomorphism

Φ : Sf → Sg.
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4.6 System of Projections and Linearization

4.6.1 Very Good Elements

Let Ω be a bounded domain in Cn. We say that a good element f ∈ G0(Ω) is

very good at 0, and write f ∈ V G0(Ω), if the corresponding semigroup Sf ⊂ A0

constructed in Section 4.5 contains a system of elements, which we call a system of

projections, {pi}
n
i=1 with the following properties:

(a) ∀ (i = 1, . . . , n), pi 6= 0,

(b) ∀ (i = 1, . . . , n), p2i = pi, and

(c) ∀ (i, j = 1, . . . , n, i 6= j), pipj = 0.

There does exist a very good element, since we can take f to be a homothetic

transformation at 0 with sufficiently small coefficient, and pi a projection on the i’th

coordinate of the standard coordinate system. Clearly, pif = fpi and there exists k

such that pif
k ∈ E(Ω), and hence pi ∈ Sf . From now on, we fix a very good element

f ∈ V G0(Ω), associated semigroups Hf(Ω), Sf and a system of projections {pi}.

We introduce another subsemigroup of E(Ω):

Pf(Ω) = {h ∈ G0(Ω) ∩Hf(Ω), hpi = pih, i = 1, . . . , n},

where the commutativity relations are in Sf ⊂ A0. Notice that Pf(Ω) 6= ∅ since f

belongs to it.

4.6.2 Linearization Lemma

Lemma 3 For every h ∈ Pf(Ω) there exists a biholomorphic germ θh at 0 ∈ Cn such

that θhh = Λθh, where Λ = diag(λ1, . . . , λn) is an invertible diagonal matrix which is

similar to dh(0) in GL(n,C).

Proof. The relations pi 6= 0, p2i = pi, and pipj = 0, i 6= j, imply that for

Pi = dpi(0), the linear part of pi at 0, we have Pi 6= 0, P 2
i = Pi, and PiPj = 0, i 6= j.

Since the matrices Pi commute, there exists [37] a matrix A ∈ GL(n,C) such that
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P ′
i = APiA

−1 = ∆i = diag(0, . . . , 1, . . . , 0), where the only non-zero entry appears in

the i’th place.

Since p2i = pi, i = 1, . . . , n, we can use the argument given in [36] to linearize pi,

i.e. there exists a biholomorphic germ ξi at 0 such that ξipi = Piξi, dξi(0) = id, i =

1, . . . , n. The map ξi is constructed in [36] as follows:

ξi = id + (2Pi − id)(pi − Pi), i = 1, . . . , n.

If we take ξ′i = Aξi, we have ξ′ipi = P ′
i ξ

′
i. For simplicity of notations, we assume that

ξi itself conjugates pi to a diagonal matrix, that is, Pi = P ′
i (in this case Pi is not

necessarily dpi(0), but rather Adpi(0)A
−1, dξi(0) = A). For every i = 1, . . . , n, we

have hiPi = Pihi, where hi = ξihξ
−1
i . Let Hi = dhi(0). Then HiPi = PiHi, and hence

in the i’th row and the i’th column the matrix Hi has only one non-zero entry, λi,

which is located at their intersection. Thus λi has to be an eigenvalue of Hi, and

hence of the linear part of h. In particular, 0 < |λi| < 1.

Let Ii : C → Cn be the embedding z 7→ (0, . . . , z, . . . , 0), where the only non-zero

entry is z, which is in the i’th place; and πi : C
n → C, a projection (z1, . . . , zn) 7→

zi, corresponding to the i’th axis. For every i = 1, . . . , n, the map πihiIi sends a

neighborhood of 0 in C into C, and its derivative at 0, λi, is an eigenvalue of h.

Hence ([38], p. 31) πihiIi is linearized by the unique solution ηh,i of the Schröder

equation

η(πihiIi) = λiη, η(0) = 0, η′(0) = 1. (4.6)

Since PiIi = Ii, πiPiIi = idC, we can rewrite (4.6) as

ηh,iπihiPiIi = λiηh,iπiPiIi, or ηh,iπihiPi = λiηh,iπiPi.

But hiPi = Pihi, and so

ηh,iπiPihi = λiηh,iπiPi. (4.7)

The equation (4.7), in turn, is equivalent to

ηh,iπiξipih = λiηh,iπiξipi. (4.8)
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We denote

θh,i = ηh,iπiξipi, (4.9)

a map from a neighborhood of 0 ∈ Cn into C. Then (4.8) becomes θh,ih = λiθh,i.

Now we define

θh = (θh,1, . . . , θh,n),

which is a germ of an analytic map at 0. This germ linearizes h:

θhh = (θh,1h, . . . , θh,nh) = (λ1θh,1, . . . , λnθh,n) = Λθh,

where Λ = diag(λ1, . . . , λn) is an invertible diagonal matrix, which has eigenvalues of

dh(0) on its diagonal.

The germ θh is biholomorphic. Indeed,

θh,i = ηh,iπiξipi = ηh,iπiPiξi, i = 1, . . . , n.

Using the chain rule, we see that dθh(0) = A, where A is an invertible diagonal matrix

that diagonalizes Pi. We conclude that θh is biholomorphic, and Lemma 3 is proved.

✷

4.7 Simultaneous Linearization

Using Lemma 3, we can linearize elements of Pf (Ω). Namely, for every h ∈ Pf (Ω)

there exists θh (constructed in Section 4.6), such that θhh = Λhθh, where Λh is an

invertible diagonal matrix. In particular, we can linearize f :

θff = Λfθf ,

where the germ θf is biholomorphic at 0, and Λf is an invertible diagonal matrix.

Lemma 4 For every h ∈ Pf(Ω) we have θh = θf .

Proof. Let us consider the germ

θ = Λ−1
f θhf, (4.10)
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which is clearly biholomorphic. We have

θh = Λ−1
f θhfh = Λ−1

f θhhf = Λ−1
f Λhθhf = ΛhΛ

−1
f θhf = Λhθ.

Using (4.10), we write the equation θh = Λhθ in the coordinate form:

(1/λf,i)θh,ifh = (λh,i/λf,i)θh,if, i = 1, . . . , n.

By (4.9) and the definition of ξi,

(1/λf,i)ηh,iπiPifihi = (λh,i/λf,i)ηh,iπiPifi, i = 1, . . . , n,

where fi = ξifξ
−1
i . Using the commutativity relations fiPi = Pifi, hiPi = Pihi, which

hold since {pi} ⊂ Sf , h ∈ Pf(Ω), we get

(1/λf,i)ηh,iπifihiPi = (λh,i/λf,i)ηh,iπifiPi, or

(1/λf,i)ηh,iπifihiIi = (λh,i/λf,i)ηh,iπifiIi, i = 1, . . . , n.

This is the same as

((1/λf,i)ηh,iπifiIi)(πihiIi) = λh,i((1/λf,i)ηh,iπifiIi), i = 1, . . . , n,

since hi locally preserves the i’th coordinate axis (hiPi = Pihi). It is easily seen that

((1/λf,i)ηh,iπifiIi)(0) = 0,

((1/λf,i)ηh,iπifiIi)
′(0) = 1.

A normalized solution to a Schröder equation is unique though. Thus we have

ηh,i(πifiIi) = λf,iηh,i, ηh,i(0) = 0, η′h,i(0) = 1.

Using the uniqueness argument again, we obtain ηh,i = ηf,i, and hence θh = θf . The

lemma is proved. ✷

According to Lemma 4, the single biholomorphic germ θf conjugates the subsemi-

group Pf(Ω) to some subsemigroup Df of invertible diagonal matrices in Dn, the

set of all n × n diagonal matrices with entries in C. We show that Df contains all
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invertible diagonal matrices with sufficiently small entries. To do this, first we extend

θf to an analytic map on the whole domain Ω using the formula

θf = Λ−l
f θff

l,

where l is chosen so large that Cl{f l(Ω)} is contained in a neighborhood of 0 where

θf is originally defined and biholomorphic; the symbol Cl denotes closure. From the

procedure of extending θf to Ω we see that it is one-to-one and bounded in the whole

domain.

Now, let Λ = diag(λ1, . . . , λn) be a matrix such that Cl{Λθf (Ω)} ⊂ W , where

W is a neighborhood of 0 ∈ Cn for which Cl{θ−1
f W} ⊂ Ω. Such a matrix Λ exists

since θf is bounded in Ω. Consider h = θ−1
f Λθf , which belongs to G0(Ω). The map h

commutes with f and all pi’s. Indeed, using the formula θffθ
−1
f = Λf , we conclude

that hf = fh is equivalent to ΛΛf = ΛfΛ, which is a true relation since both matrices

Λ and Λf are diagonal. The relations hpi = pih, i = 1, . . . , n, are verified similarly,

using the formula θfpiθ
−1
f = Pi, which follows from the definition of θf .

4.8 Solving a Matrix Equation

We proved that for an element f ∈ V G0(Ω) there exists a biholomorphic germ

θf conjugating the semigroup Pf(Ω) to a subsemigroup Df ⊂ Dn, which contains all

invertible diagonal matrices with sufficiently small entries.

4.8.1 Conjugations L and R

Let f ∈ V G0(Ω1), and g = ϕf . Then g ∈ V G0(Ω2), and there is an isomorphism

Φ : Sf → Sg.

For the mappings f and g we have

θff = Λfθf , θgg =Mgθg,
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where Λf , Mg are invertible diagonal matrices.

Let us consider the germ L = θgψθ
−1
f . This germ conjugates the semigroups

Df , Dg:

LΛL−1 = θgψθ
−1
f Λθfψ

−1θ−1
g

= θgψhψ
−1θ−1

g = θgjθ
−1
g =M,

where h ∈ Pf , θfh = Λθf , j = ϕh, and θgj =Mθg .

Define R(Λ) = LΛL−1. Then R : Df → Dg,

R(Λ1Λ2) = R(Λ1)R(Λ2), Λ1, Λ2 ∈ Df .

In what follows, we will identify Dn with the multiplicative semigroup C
n (Dn

∼=

Cn) in the obvious way and consider a topology on Dn induced by the standard

topology on Cn.

4.8.2 Extending R

We are going to extend R to an isomorphism of Dn. First, we denote by Df , Dg

the closures of Df , Dg in Dn, and for Λ ∈ Df we set

R(Λ) = limR(Λk), Λk → Λ, Λk ∈ Df .

This limit exists and does not depend on the sequence {Λk}, which follows from

the fact that ψ±1, θ±1
f , and θ±1

g are continuous. The map R is an isomorphism of

topological semigroups Df and Dg (the inverse of R has a similar representation).

Next, we extend the map R to Dn as

R(Γ) = R(ΓΛ)R(Λ)−1, Γ ∈ Dn,

where Λ ∈ Df is chosen so that ΓΛ ∈ Df . This definition does not depend on the

choice of Λ. Indeed, since all matrices in question are diagonal (hence commute),

the relation R(ΓΛ1)R(Λ1)
−1 = R(ΓΛ2)R(Λ2)

−1 is equivalent to R(ΓΛ1)R(Λ2) =

R(ΓΛ2)R(Λ1), which holds.
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The extended map R is clearly an isomorphism of Dn onto itself. Thus we have

R(Λ′Λ′′) = R(Λ′)R(Λ′′), Λ′, Λ′′ ∈ Dn. (4.11)

Injectivity of R and (4.11) imply that R(∆i) = ∆j for all i, where j = j(i) depends

on i, and j(i) is a permutation on {1, . . . , n} (we recall that ∆i = diag(0, . . . , 1, . . . , 0)).

This is because {∆i}
n
i=1 is the only system in Dn with the following relations: ∆i 6=

0, ∆2
i = ∆i, and ∆i∆j = 0 for i 6= j.

4.8.3 A System of Scalar Equations

Since all matrices Λ and their images R(Λ) are diagonal, we can consider the

matrix equation (4.11) as n scalar equations:

rj(λ
′
1λ

′′
1, . . . , λ

′
nλ

′′
n) = rj(λ

′
1, . . . , λ

′
n)rj(λ

′′
1, . . . , λ

′′
n), j = 1, . . . , n, (4.12)

where rj are components of R. If we rewrite the equation R(∆iΛ) = ∆jR(Λ) in the

coordinate form, we see that rj(λ1, . . . , λn) = rj(0, . . . , λi, . . . , 0) = qj(λi); that is,

each rj depends on only one of the λi’s. For each j the corresponding equation in

(4.12) in terms of the qj ’s becomes

qj(λ
′
iλ

′′
i ) = qj(λ

′
i)qj(λ

′′
i ).

This equation has ([7], p. 130) either the constant solution qj(λi) = 1, or

qj(λi) = λ
αij

i λ
βij
i , αij, βij ∈ C, αij − βij = ±1.

4.8.4 Explicit Expression for L

Going back to the function L, we have

Ldiag(λ1, . . . , λn) = diag(λα1

i(1)λ
β1
i(1), . . . , λ

αn

i(n)λ
βn
i(n))L,

αi − βi = ±1, i = 1, . . . , n,

where i(j) is the inverse permutation to j(i).
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Let us choose and fix (µ1, . . . , µn) such that (1/µ1, . . . , 1/µn) belongs to a neigh-

borhood W0 of 0 ∈ Cn where L is defined, and let W1 be a neighborhood of 0 ∈ Cn

such that (µ1z1, . . . , µnzn) ∈ W0, whenever (z1, . . . , zn) ∈ W1. Then from (4.13) we

have

L(z1, . . . , zn) = Ldiag(µ1z1, . . . , µnzn)(1/µ1, . . . , 1/µn)

= diag((µi(1)zi(1))
α1(µi(1)zi(1))

β1, . . . , (µi(n)zi(n))
αn(µi(n)zi(n))

βn)

× L(1/µ1, . . . , 1/µn) = B(zα1
1 zβ11 , . . . , z

αn
n zβnn ),

where B is a constant matrix. The last formula is the explicit expression for L.

4.9 Proving that ψ is (Anti-) Biholomorphic

To prove that ψ is (anti-) biholomorphic is the same as to prove that L is (anti-)

biholomorphic, because the relation L = θg ◦ ψ ◦ θ−1
f holds. We showed that

L(z1, . . . , zn) = B(zα1
1 zβ11 , . . . , z

αn
n zβnn ), αi − βi = ±1, i = 1, . . . , n, (4.13)

in a neighborhood W1 of 0. From the representation (4.13) we see that L is R-

differentiable and non-degenerate in W1 \ ∪nk=1{(z1, . . . , zn) : zk = 0}. Since this

is true for every point in the domain Ω1, the map ψ is R-differentiable and non-

degenerate everywhere, with the possible exception of an analytic set. Let us remove

this set from Ω1, as well as its image under ψ from Ω2. We call the domains obtained

in this way Ω′ and Ω′′. Now the map ψ : Ω′ → Ω′′ is R-differentiable and non-

degenerate everywhere. It is clear that if we prove that ψ is (anti-) biholomorphic

between Ω′ and Ω′′, then it is (anti-) biholomorphic between Ω1 and Ω2 due to a

standard continuation argument [39]. So we can think that ψ is R-differentiable and

non-degenerate in Ω1 itself. The map L thus has to be R-differentiable and non-

degenerate at 0. However, this is the case if and only if αi + βi = 1, i = 1, . . . , n.

Together with the equation αi − βi = ±1 it gives us that either αi = 1, βi = 0, or

αi = 0, βi = 1.
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It remains to show that either αi = 1 and βi = 0, or αi = 0 and βi = 1, simul-

taneously for all i. Suppose, by way of contradiction, that we have L(z1, . . . , zn) =

B(. . . , zi, . . . , zj, . . . ). Then

L−1(w1, . . . , wn) = (. . . , li(w1, . . . , wn), . . . , lj(w1, . . . , wn), . . . ),

where li, lj are linear analytic functions. Let us look at an endomorphism f0 of Ω1

of the form

f0 = θ−1
f λ(. . . , θf,iθf,j , . . . , θf,j , . . . )θf ,

where θf,iθf,j is in the i’th place, θf,j in the j’th, and |λ| is sufficiently small. Using

(4.1) and the definition of L, we have

θgϕf0θ
−1
g = θgψf0ψ

−1θ−1
g = Lθff0θ

−1
f L−1.

Thus,

θgϕf0θ
−1
g (w1, . . . , wn)

= B′(. . . , li(w1, . . . , wn)lj(w1, . . . , wn), . . . , lj(w1, . . . , wn), . . . ),

for some constant matrix B′. This map, and hence ϕf0, is not analytic though in a

neighborhood of 0, which is a contradiction. Thus L, and hence ψ, is either analytic

or antianalytic in a neighborhood of 0.

Theorem 4.2.1 is proved completely. ✷

4.10 Generalization

Theorem 4.2.1 can be slightly generalized. Namely one may assume that ϕ is an

epimorphism. We prove the following theorem.

Theorem 4.10.1 If ϕ : E(Ω1) → E(Ω2) is an epimorphism between semigroups,

where Ω1, Ω2 are bounded domains in Cn, Cm respectively, then ϕ is an isomorphism.
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Proof Since ϕ is an epimorphism, it takes constant endomorphisms of Ω1 to con-

stant endomorphisms of Ω2, which follows from (4.2). Thus we can define a map

ψ : Ω1 → Ω2 as in (4.3). Following the same steps as in verifying (4.1), we obtain

ϕf ◦ ψ = ψ ◦ f, for all f ∈ E(Ω1). (4.14)

We will show that (4.14) implies the bijectivity of ψ. The map ψ is surjective.

Indeed, let w ∈ Ω2, and cw be the corresponding constant endomorphism. Since ϕ

is an epimorphism, there exists f ∈ E(Ω1), such that ϕf = cw. If we plug this f

into (4.14), we get

ψf(z) = w,

for all z ∈ Ω1. Thus ψ is surjective.

To prove that ψ is injective, we show that for every w ∈ Ω2, the full preimage of

w under ψ, ψ−1(w), consists of one point.

Assume for contradiction that Sw = ψ−1(w) consists of more than one point for

some w ∈ Ω2. The set Sw cannot be all of Ω1, since ψ is surjective. For z0 ∈ ∂Sw∩Ω1,

we can find z1 ∈ Sw and ζ /∈ Sw which are arbitrarily close to z0. Let z2 be a fixed

point of Sw different from z1. Consider a homothetic transformation h such that

h(z1) = z1, h(z2) = ζ . Since the domain Ω1 is bounded, we can choose points z1 and

ζ sufficiently close to each other so that h belongs to E(Ω1). Applying (4.14) to h we

obtain

ϕh(w) = ϕh ◦ ψ(z1) = ψ ◦ h(z1) = ψ(z1) = w,

ϕh(w) = ϕh ◦ ψ(z2) = ψ ◦ h(z2) = ψ(ζ) 6= w.

The contradiction shows injectivity of ψ. Thus we have proved that ψ is bijective.

According to (4.14) we have

ϕf = ψ ◦ f ◦ ψ−1, for all f ∈ E(Ω1),

which implies that ϕ is an isomorphism.

Theorem 4.10.1 is proved. ✷
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[9] Peter G. Doyle. Random walk on the Speiser graph of a Riemann surface. Bull.
Amer. Math. Soc. (N.S.), 11(2):371–377, 1984.

[10] Lars V. Ahlfors. Conformal invariants: topics in geometric function theory.
McGraw-Hill Book Co., New York, 1973. McGraw-Hill Series in Higher Mathe-
matics.
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APPENDIX A

SPEISER GRAPH IS NOT ENOUGH

Here we give an example of a hyperbolic surface (X, f) ∈ F3, whose Speiser graph is

parabolic. Thus it is essential to consider the extended Speiser graph to determine

the type of a surface of the class Fq.

First, we consider a tree D, each vertex of which has degree 3. Next, we fix a

vertex v ∈ V D, and substitute each edge of D, whose endpoints are at a distance

(n − 1) and n from v, by ln edges in series, where {ln} is a sequence of odd natural

numbers. We complete the graph obtained in this way by edges, so that every vertex

has degree 3, and there are no algebraic elementary regions. Since all ln are odd, this

is possible. The resulting graph is a Speiser graph Γ. We label the faces of Γ by

0, 1,∞, and consider the surface (X, f) ∈ F (0, 1,∞), corresponding to Γ (the base

curve is the extended real line).

If the sequence {ln} is increasing, then (X, f) has a hyperbolic type, if and only

if ([26], [27], [28])
∞
∑

n=1

log ln
2n

<∞. (A.1)

On the other hand, using (3.1), we conclude that λ(Tv) &
∑∞

n=1 ln/2
n, where Tv

is the family of paths in Γ connecting v to infinity. Therefore, Γ is parabolic if

∞
∑

n=1

ln
2n

= ∞. (A.2)

We choose ln = 2n + 1. Combining (A.1) and (A.2), we obtain a surface of a

hyperbolic type, whose Speiser graph is parabolic.

A straightforward computation shows that the mean excess of the Speiser graph

Γ is 0.
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APPENDIX B

UPPER MEAN EXCESS

Here we show that the upper mean excess of every infinite Speiser graph Γ ∈ Fq is

≤ 0. This proof is due to Byung-Geun Oh.

Let Γ′
(i) be a double of Γ(i), i.e. a graph embedded in a compact Riemann surface

obtained as follows. We take two copies of Γ(i), one located above the other, and join

by s edges every pair of boundary vertices of degree q − s that are located on the

same vertical line. Let nf denotes the number of edges on the boundary of a face

f ∈ FΓ′
(i). A subgraph of Γ′

(i), which is a copy of Γ(i) (say a bottom copy) will again

be denoted by Γ(i). If a face f ′ ∈ FΓ′
(i) is induced by a face f ∈ FΓ, then, clearly

nf ′/2 ≤ kf . Therefore

2−
1

|V Γ(i)|

∑

v∈V Γ(i)

∑

{f∈FΓ: v∈V f}

(

1−
1

kf

)

≤ 2−
1

|V Γ(i)|

∑

v∈V Γ(i)

∑

{f∈FΓ′

(i)
: v∈V f}

(

1−
2

nf

)

.

(B.1)

If we assign the same value
∑

{f∈FΓ′

(i)
: v∈V f}(1−2/nf ) to every vertex v′ ∈ V Γ′

(i) that

lies above v ∈ V Γ(i), then (A.2) is equal to

2−
1

|V Γ′
(i)|

∑

v∈V Γ′

(i)

∑

{f∈FΓ′

(i)
: v∈V f}

(

1−
2

nf

)

= 2−
1

|V Γ′
(i)|

∑

f∈FΓ′

(i)

(

1−
2

nf

)

nf

= 2−
1

|V Γ′
(i)|

∑

f∈FΓ′

(i)

(nf − 2) = 2−
1

|V Γ′
(i)|

(2|EΓ′
(i)| − 2|FΓ′

(i)|)

≤ 2−
1

|V Γ′
(i)|

(2|V Γ′
(i)| − 4) =

4

|V Γ′
(i)|
,

(B.2)
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where the inequality in (A.6) holds by the Euler polyhedron formula (|V |−|E|+|F | ≤

2). Since |V Γ′
(i)| tends to infinity with i, the desired inequality is established. ✷
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APPENDIX C

A PROPERTY OF EXTREMAL LENGTH

Let T, Ti, i ∈ I, be families of paths in G, where I is at most countable. We assume

that ETi∩ETj = ∅, i 6= j. Suppose that for every t ∈ T and every i ∈ I, there exists

ti ∈ Ti, which is a subpath of t. Then

λ(T ) ≥
∑

i∈I

λ(Ti). (C.1)

Proof We can exclude from our consideration the trivial cases when the sum on

the right is zero, or when one of the terms is infinite. For every ǫ > 0, and every

i ∈ I, we choose a density function µi on ETi, such that for every ti ∈ Ti,

∑

e∈Eti

µi(e) ≥ 1,
∑

e∈ETi

µ2
i (e) ≤ λ(Ti)

−1 + ǫ.

We choose a density function µ on ET , so that

µ(e) =
λ(Ti)

∑

j∈I λ(Tj)
µi(e), e ∈ ETi,

and 0 elsewhere. Then for every t ∈ T ,

∑

e∈Et

µ(e) =
∑

i∈I

∑

e∈Eti

λ(Ti)
∑

j∈I λ(Tj)
µi(e) ≥

∑

i∈I

λ(Ti)
∑

j∈I λ(Tj)
= 1.

Also,
∑

e∈ET

µ(e)2 =
∑

i∈I

∑

e∈ETi

λ(Ti)
2

(
∑

j∈I λ(Tj))
2
µi(e)

2

≤
∑

i∈I

λ(Ti)
2

(
∑

j∈I λ(Tj))
2
(λ(Ti)

−1 + ǫ) ≤
1

∑

i∈I λ(Ti)
+ ǫ.

Therefore,

λ(T )−1 ≤
1

∑

i∈I λ(Ti)
+ ǫ,

and since ǫ is arbitrary, the desired inequality is established. ✷
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