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1. Introduction

Let (M, gαβ) be a 4 dimensional Lorentzian manifold. In this paper we study the dispersive properties of
two-forms Fαβ in terms of their divergences when (M, gαβ) is both stationary and spherically symmetric, and
satisfies additional local and global assumptions which are natural generalizations of the special properties
held by asymptotically flat solutions for the Einstein vacuum equations Rαβ = 0. Specifically, we make the
following definition:

Definition 1.1 (Spherically symmetric stationary “black holes”). Let M ≈ R
2 × S

2 be a spherically sym-
metric Lorentzian manifold with metric:

(1.1) g = habdx
adxb + r2δABdx

AdxB , a = 0, 1, A = 2, 3,

where δAB is the standard round metric on S
2, and where the 2 dimensional Lorentzian metric hab de-

pends only on the (xa, xb) variables. Denote by 〈·, ·〉 the inner product of g. Then we say that (M, g) is a
(generalized) “spherically symmetric stationary black hole” if the following conditions hold:

The first author was partially supported by the NSF grant DMS-1001675. The second author was partially supported by
the NSF grant DMS-0801261 and by the Simons Foundation.
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i) (Stationary asymptotic flatness) There exists a spherically symmetric time function t defined on all of
M, i.e. t = t(xa) and 〈dt, dt〉 < 0, such that (t, r) forms a system of coordinates in the xA = const.
plane and one has hab = diag(−1, 1) + O(r−1) as r → ∞. Furthermore, in this system of coordinates
one has ∂thab ≡ 0 and ∂krhab = O(r−1−k) for k > 1.

ii) (Non-degenerate forward global hyperbolicity) There exists a value r0 > 0 such that r = r0 is also space-
like, and the sign of grr = 〈dr, dr〉 changes only once in r > r0. We define the value r = rM to be the
unique hypersurface where grr = 0. In addition we assume ∂rg

rr never vanishes.
iii) (Strictly hyperbolic trapping) There is a one and only one value rT in the region where 〈dr, dr〉 > 0

such that the time-like surface r = rT is a trapped set for all null geodesics initially tangent to it.
Furthermore, this trapped set is normally hyperbolic in the sense of dynamical systems.1

A number of remarks about this definition are in order:

Remark 1.2. a) The time coordinate of part i) above is regular and should not be confused with the (sin-
gular) Schwarzschild t coordinate in the standard metric ds2 = −(1− 2M

r
)dt2 + (1 − 2M

r
)−1dr2 + r2dω2.

b) The assumptions i) and ii) above imply that ∂t (computed in (t, r) coordinates) is timelike on r > rM ,
null for r = rM , and space-like on r < rM . This can immediately be seen via Cramer’s rule which gives
〈∂t, ∂t〉 = det(h)grr where det(h) ≈ −1 because it is a regular (1 + 1) Lorentzian metric in the (t, r)
plane. In particular this shows that the phenomena of super-radiance is absent for the case of (general)
spherically symmetric black holes.

c) Since grr = 0 at r = rM this hypersurface is null, and by the previous remark ∂t|r=rM is the null
generator. The assumption ∂rg

rr 6= 0 implies this null hypersurface enjoys a red shift effect similar to that
of Schwarzschild and non-extremal Reissner-Norström, and this is one of the main stability mechanisms
we exploit in our work here (we refer the reader to [7] and [10] for further information regarding this
issue).

d) It turns out that condition iii) also implies there are no trapped null geodesics in the region r > rM other
than those tangent to r = rT (e.g. no null geodesics which oscillate in a band r1 < r < r2). Furthermore,
it turns out this condition has a simple geometric description which is V ′(rT ) = 0 and V ′′(rT ) < 0, where
we have set V = −r−2〈∂t, ∂t〉g.

Now orient (M, gαβ) so that (dt, dr, dx2, dx3) is a positive basis of T ∗(M), where r = const is given the
outward (i.e. towards r → ∞) orientation on each 3-surface t = const. Recall that given such an oriented
Lorentzian manifold there is a unique isomorphism ⋆ : Λp → Λ4−p such that 〈ω, σ〉gdVg = ω ∧ ⋆σ where

dVg =
√
|g|dt ∧ dr ∧ dVS2 , and dVS2 is the standard (outward oriented) volume form on S

2.
Let Fαβ be an antisymmetric two-tensor on M, and define F ⋆ = ⋆F . We label its divergences as follows:

(1.2) ∇βF ⋆
αβ = Iα , ∇βFαβ = Jα .

We call Iα the magnetic source and Jα the electric source of Fαβ . On physical grounds one usually sets
I ≡ 0, but for mathematical purposes we will not do so here. If both I ≡ 0 and J ≡ 0, we say Fαβ is a free
Maxwell field.

It is well known that the first order system (1.2) is hyperbolic, so it makes sense to estimate the values
of Fαβ in the wedge t > 0 and r > r0 in terms of the values of (I, J) in t > 0 and r > r0 and the initial
restriction of components Fαβ |t=0. Based on experience with the scalar wave equation on backgrounds such
as (M, gαβ), see e.g. [16] and [20], one would expect to prove local energy decay estimates which are roughly
of the form2

(1.3) ‖ r− 1
2
−ǫF ‖L2(dVg)[0,T ] 6 Cǫ

(
‖F |t=0 ‖L2(dVg|t=0

) + ‖ r 1
2
+ǫI ‖L2(dVg)[0,T ] + ‖ r 1

2
+ǫJ ‖L2(dVg)[0,T ]

)
,

where the components of F, I, J are written with respect to regular basis such as (∂a, r
−1∂A). Unfortunately,

such a naive estimate is false due to the presence of finite energy bound state solutions to (1.2). These arise
as follows:

1See Lemma 5.21 below for a precise formulation of this condition.
2In the sequel we will prove a scale invariant version which corresponds to ǫ = 0. In addition one needs a logarithmic weight

on the trapped set r = rT . The precise version will be given shortly.
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Let S ⊆ M be a compact space-like two surface homotopic to some sphere t = const, r = const, and
define the quantities (in terms of pull-backs of F ):

(1.4) QS =

∫

S

F |S , Q⋆
S = −

∫

S

F ⋆|S ,

where we give the integrals the outward orientation induced by dVg by first restricting t and then r. We call
Q⋆

S and (resp QS) the electric (resp magnetic) charge contained within S. Let S ′ be some other space-like
two surface such that there exists a tube Σ(S ′,S) with boundary ∂Σ(S ′,S) = S ′⊔S and the positive outward
orientation through S ′. Then by Stokes theorem and the properties of the ⋆ operator (see equation (1.10)
below) one has:

(1.5) QS′ −QS = −
∫

Σ(S′,S)

(⋆I)|Σ , Q⋆
S′ −Q⋆

S = −
∫

Σ(S′,S)

(⋆J)|Σ .

In particular if Fαβ is a free Maxwell field then QS and Q⋆
S are constants equal to:

(1.6) Q∞ = lim
r→∞

∫

St,r

F
ÂB̂

(t, r)dVS2 , Q⋆
∞ = lim

r→∞

∫

St,r

Ftr(t, r)dVS2 ,

where St,r are the spheres t = const, r = const, and e
Â
, e

B̂
is an orthonormal basis of St,r with respect to the

restriction of g.3 If either of these values is non-zero it represents a finite energy non-dispersing component
of Fαβ , i.e. an obstruction to estimate (1.3).

1.1. Statement of the main theorem. The main result of the present paper is that in the class of finite
energy solutions to (1.2) the (local) charges (1.4) represent the only obstruction to local energy decay. To
state this result properly, it is necessary to compute the finite energy stationary free Maxwell fields. These
turn out to be spanned by the pair:

F
electric

=
1

4πr2

√
|h|dt ∧ dr , F

magnetic
=

1

4π

√
|δ|dx2 ∧ dx3 .

If F is a general solution to (1.2), we project it dynamically onto the span of F
electric

and F
magnetic

as
follows:

(1.7) F = Q⋆(t, r)F
electric

+Q(t, r)F
magnetic

,

where Q⋆(t, r) and Q(t, r) denote the integrals (1.4) taken over the spheres St,r, and can be viewed as the
radial components of F .

To state our main theorem we need one additional bit of notation concerning our choice of norms. Let
Rj = {(t, r, xA, xB)

∣∣ r ∼ 2j} for j ∈ Z. Let r0 be a fixed value of r such that 〈dr, dr〉 < 0 as in Definition
1.1. Then for a value T > 0 we set:

(1.8) ‖F ‖LE[0,T ] = sup
j

‖ r− 1
2F ‖L2(Rj)[r0,∞)×[0,T ] , ‖ J ‖LE⋆[0,T ] =

∑

j

‖ r 1
2J ‖L2(Rj)[r0,∞)×[0,T ] ,

where the integrals are taken with respect to the volume form dVg . The main result of this paper is the
following:

Theorem 1.3 (Local energy decay for Maxwell fields). Let F be a solution to (1.2) on a space-time (M, g)
which satisfies the axioms of Definition 1.1, and define F according to (1.4) and (1.7). Then one has the
uniform bound:

(1.9) ‖ (wln)
−1(F − F ) ‖LE[0,T ] . ‖F (0) ‖L2(dVg|t=0

) + ‖wln(I, J) ‖LE∗[0,T ] ,

where wln(r) = (1+
∣∣ ln |r− rT |

∣∣)/(1+ | ln(r)|). Here the components of F, I, J are taken with respect to any
regular coordinate system (t, r) as in Definition 1.1, and any normal frame e

Â
, e

B̂
on the spheres St,r.

3It is not hard to see that under conditions i) and ii) of Definition 1.1 these values do not depend on the choice of t.
Here e

Â
, e

B̂
are bounded coefficient linear combinations of r−1∂2, r

−1∂3; we will reserve the notation eA, eB to denote an

orthonormal basis with respect to the (fixed) round metric δAB on S2, i.e. a bounded coefficient linear combination of ∂2, ∂3.
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1.2. The charge equations. A preliminary reduction of the main theorem. In this section we derive
some further equations for the charges (1.4). This will allow us to give an alternate version of Theorem 1.3,
which is what we will actually prove in the sequel.

Recall that on a 4 dimensional Lorentian manifold with oriented volume form dVg , the Hodge ⋆ operator
can be written in an arbitrary basis as follows:

⋆1 = dVg , (⋆J)αβγ = −ǫ δ
αβγ Jδ , (⋆F )αβ =

1

2
ǫ γδ
αβ Fγδ ,

(⋆G)α = −1

6
ǫ βγδ
α Gβγδ , ⋆ω =

1

24
ǫαβγδωαβγδ ,

for 0 through 4 forms, where ǫαβγδ are the components of dVg. One also has ⋆2 = (−1)p+1 on each class of
forms Λp (again in the 4 dimensional case).

It will also be useful for us to have 2 dimensional versions of the above formulas in both the Lorentzian
and Riemannian cases, in particular for the factor metrics hab and δAB of (1.1). We label their volume forms
and Hodge star operators by ǫab, ǫAB, ⋆h, and ⋆δ (resp). In the Riemannian case we have ⋆2δ = (−1)p while
in the Lorentzian case ⋆2h = (−1)p+1 as usual. The dual of 0 through 2 in is given by:

⋆h 1 = dVh , (⋆hJ)a = −ǫ b
a Jb , ⋆ω =

1

2
ǫabωab ,

with identical formulas for ⋆δ. In the sequel we will follow the convention that if I or J is some 1 form on
M then ⋆h (resp ⋆δ) act on it by contraction in the a (resp A) indices.

Next, we have the L2 adjoint of d with respect to the inner product 〈ω, σ〉L2 =
∫
M ω ∧ ⋆σ, which in

the 4 dimensional case is simply d⋆ = ⋆d⋆. This operator also has a convenient expression in terms of the
connection Levi-Civita connection ∇ of g which is:

d⋆J = −∇αJα , (d⋆F )α = ∇βFαβ , (d⋆G)αβ = −∇γGαβγ ,

on 1 through 3 forms.
One also has analogs of the previous formulas in the 2D case (both Riemannian and Lorentzian). To avoid

confusion we set d to denote the exterior derivative in the (t, r) plane, and /d to denote exterior differentiation
on the spheres S2 given by t = const, r = const. Then one also has co-derivative operators d⋆ and /d

⋆
, with

similar formulas to the last line above, where now the divergences involve the Levi-Civita connections of h
and δ.

Using the above formulas one may write the Maxwell equations (1.2) as follows:

(1.10) dF ⋆ = ⋆J , dF = − ⋆ I .

This allows us to give a useful characterization of the charges (1.4).

Proposition 1.4 (The charge equations). Let Fαβ solve (1.10), and define Fαβ as on lines (1.4) and (1.7).
Then one has:

(1.11) ∇βF
⋆

αβ = Iα , ∇βFαβ = Jα ,

where IA = JA ≡ 0 for A = 2, 3, and for a = 0, 1:

(1.12) Ia =
1

4π

∫

S2

IadVS2 , Ja =
1

4π

∫

S2

JadVS2 .

Furthermore, if the source components Ia and Ja, for a = 0, 1 have sufficiently fast decay as r → ∞ we have:

(1.13) Q(t, r) = Q∞ +

∫ ∞

r

∫

S2

(⋆hI)r(t, s)s
2dVS2 , Q⋆(t, r) = Q⋆

∞ +

∫ ∞

r

∫

S2

(⋆hJ)r(t, s)s
2dVS2 ,

where Q∞, Q
⋆
∞ are given on line (1.6).

An immediate consequence of the last proposition is that Theorem 1.3 is reduced to the following result.
Furthermore, to understand arbitrary Fαβ one only needs to add to this the formulas (1.13).
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Theorem 1.5 (Local energy decay estimates for chargeless fields). Let Fαβ be a solution to (1.2) in the
region r > r0 and 0 6 t 6 T with uniformly vanishing charges Q(t, r) = Q⋆(t, r) ≡ 0. Then one has:

∫

S2

IadVS2 =

∫

S2

JadVS2 ≡ 0 , a = 0, 1,

in r > r0 and 0 6 t 6 T as well, and in addition there is a local energy decay estimate:

(1.14) ‖ (wln)
−1F ‖LE[0,T ] . ‖F (0) ‖L2(dVg|t=0

) + ‖wln(I, J) ‖LE∗[0,T ] ,

with the same notation as in (1.9) above.

Remark 1.6. The equations (1.13) show that if the charges Q∞ and Q⋆
∞ vanish (initially) then one may

obtain a local energy decay estimate for the full field Fαβ in terms of initial data ‖F (0) ‖L2(dVg|t=0
), and

certain integrals of I and J . However, to estimate the local energy decay contribution of the averages I, J
requires a RHS norm with a different scaling. Precisely, we have the estimate

(1.15) ‖ (wln)
−1F ‖LE[0,T ]+ ‖ rF ‖LE[0,T ] . ‖F (0) ‖L2(dVg|t=0

)+ ‖wln(I, J) ‖LE∗[0,T ]+ ‖ r(I, J) ‖LE∗[0,T ] .

1.3. Background and further remarks. The motivation for Theorem 1.3 is its relation to stability prob-
lems in general relativity, in particular the problem of proving non-linear stability of the Kerr family of
metrics (see [13] and [10] for a survey). It is generally accepted wisdom that the proof of such a stability
theorem will be strongly predicated on the theory of L∞ decay estimates for first order hyperbolic systems.
It is also well known that for hyperbolic (and even other dispersive) PDE the assumption of local energy
decay estimates of the form (1.9) allows one to prove much more refined decay estimates in higher Lp and
weighted L2 spaces (e.g. Strichartz, conformal energy, and uniform L∞ estimates).

While there has been great progress lately towards understanding the local energy decay and higher Lp

behavior of solutions to the scalar wave equation ✷g = ∇α∇α on black-hole backgrounds (e.g. see [5], [7],
[8], [9], [14], [15], [16], [17], [20], [21], [23]) relatively little has been done for the case of higher spin equations
such as Maxwell fields. The main estimates we are aware of to date are of conformal energy and uniform
L∞ type in the case of Schwarzschild space due to work of P. Blue [4], and similar estimates in the case of
Kerr with |a| ≪ M more recently due to Andersson-Blue [1]. In a companion to our paper [18] it is also
shown that local energy decay estimates of the form (1.9) imply much more refined L∞ estimates of the
form studied in [21] and [17] for general solutions to (1.2) on a broad class of non-symmetric backgrounds.
This puts additional emphasis on generalizing Theorem 1.3 to a wider class of space-times.

We remark here that the problem of showing local energy decay for higher spin fields such as Maxwell’s
equations is fundamentally different from the case of scalar fields due to the presence of finite energy bound
state solutions (i.e. charges). A somewhat better model for this type of behavior would be the scalar wave
equation ✷g on a black-hole background plus a possibly negative potential; a problem which is completely
open. The method of the present paper is simplified to a certain extent by the happy coincidence that
for Maxwell fields on spherical backgrounds the only finite energy bound state solutions can be eliminated
by subtraction of the spherical average from the sources (I, J) and then removing the charge from r = ∞
(this latter process essentially “removes the charge from initial data”). In a sequel to this paper we plan
to show that an analog of Theorem 1.3 holds for the case of arbitrary small and sufficiently well localized
perturbations of the metric given by Definition 1.1. The proof of this more general result involves a number
of complications not present here.

Finally, we remark that it is not hard to check the Schwarzschild and family of non-extremal4 Reissner-
Nordström metrics all obey the general requirements of Definition 1.1. Furthermore, if gαβ satisfies such
assumptions, so does any sufficiently small and well localized stationary spherically symmetric perturbation
of it. In general we believe that small (not necessarily symmetric or stationary) perturbations of such metrics
give rise to a general class of space-times with “good dispersive properties” not only for ✷g, but for a variety
of first and second order wave equations. We plan to address this in future works.

4For recent work on local energy decay type estimates for scalar fields in the extremal case we refer the reader to work of
Aretakis [2] and [3].
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1.4. Organization of the paper. This paper is organized as follows. In the remainder of this section we
give a quick proof of Proposition 1.4, followed by some basic notation that will be useful in the sequel.

In the Section 2 we recall the basic energy estimates for Maxwell fields. These will allow us to reduce
Theorem 1.5 to a spatially localized from. However, beyond this simple localization, energy estimates at the
level of Fαβ are not used in the remainder of the proof.

Section 3 reduces the proof of estimate (1.14) to the spin-zero components of Fαβ . There are two of
these, which represent the two dynamical degrees of freedom in an electro-magnetic field. The proof of this
reduction follows from elliptic Hodge theory and does not rely on any time dependent analysis.

In Section 4 we introduce the main estimate of the paper which is contained in Theorem 4.12. This is
a local energy decay estimate for a certain second order wave equation which is satisfied by the spin-zero
components of Fαβ . Reduction of first order relativistic systems to such second order wave equations is
standard in the literature (e.g. see [22], [4], and [12] for the case of the full Einstein equations). However,
our work is the first to provide sharp local energy decay estimates for general inhomogeneous solutions to
such equations (in the case of Maxwell), with weights that correspond to local energy decay at the level
of the physical energy of the original fields. Specifically, our estimates have a sharp L2 scaling as opposed
to an Ḣ1 scaling, so in particular they contain more information at low frequencies. To accomplish this
one must keep track of a remnant of the tensorial character of the original first order system which resides
in the (inhomogeneous) second order equation. It turns out this feature of the second order equation is
intimately connected to the issue of estimating “dynamic charges” which come from the source terms (I, J)
on RHS(1.2).

Sections 5 and 6 are the technical heart of the paper. In Section 5 we prove a preliminary local energy
decay estimate for our spin-zero Teukolsky equation. This estimate is a direct analog of the local energy
decay estimate in [16]. Our proof combines ideas from [5], [7], and [16]. More specifically, we use red-shift
estimates similar to those of [7] along with certain “energy estimates” to obtain a local energy decay estimate
close to |r − rM | ≪ 1 with a source error at r ≈ rM + ǫ. We then introduce an analog of Regge-Wheeler
coordinates in r > rM and prove a local energy decay estimate in the exterior along the lines of [5], but with
sharp norms as introduced in [16]. Interestingly, we are able to show that one can directly glue together the
exterior and horizon estimates because the conservation of (degenerate) energy close to r = rM controls the
worst part of the error coming from truncation of the Regge-Wheeler estimate. In effect this allows one to
work in two convenient coordinate systems simultaneously, one of them singular, and to still obtain a regular
global estimate.

In Section 6 we upgrade the preliminary scalar local energy decay estimate of Section 5 to an estimate
which has a non-local character and takes into account the structure of the source terms (I, J) to the original
first order system (1.2). To accomplish this we use a certain “gauge transformation” of the inhomogeneous
spin-zero wave equation which is analogous to a space-time Coulomb gauge for Maxwell fields. This allows us
to directly estimate the portion of the spin-zero components of Fαβ which depend elliptically on the sources
(I, J), the remainder being estimated by the dispersive local energy decay estimate explained above.

In an Appendix we list some auxiliary estimates that come up in the bulk of the proof. These are isolated
for the convenience of the reader, and so they don’t interrupt the flow of the main argument.

1.5. Proof of Proposition 1.4. Here we give a quick demonstration. More general formulas which also
imply this proposition will be given in Lemma 3.10 below.
Step 1:(Proof of formulas (1.13)) Using the identities (1.5) we have

Q∞ −Q(t, r) = −
∫

Σt,r

(⋆I)|Σt,r
, Q⋆

∞ −Q⋆(t, r) = −
∫

Σt,r

(⋆J)|Σt,r
,

where Σt,r = {(x0, x1, x2, x3)
∣∣x0 = t, x1 > r}. One also has that with the positive orientation:

(⋆I)|Σt,r
= −1

2
ǫ a
rAB Iadr ∧ dxA ∧ dxB = −r2(ǫh) b

a Ibdr ∧ dVS2 ,

with a similar formula for (⋆J)|Σt,r
. The result follows.

Step 2:(Variation of the charge) From equations (1.13) we compute the exterior derivatives of Q,Q⋆ in the
(t, r) variables. Since the formulas (1.13) are identical, it suffices to compute things for the magnetic charge

6



Q. We claim that:

(1.16) dQ = −r2
∫

S2

(⋆hI)adVS2dx
a .

For the ∂r derivative this is immediate from (1.13).
On the other hand, to compute the derivative with respect to t we use the continuity equation d ⋆ I = 0,

which follows immediately from (1.10). In terms of covariant derivatives one has:

∇a(r2I)a + /∇AIA = −d⋆(r2I)− /d⋆I = 0 ,

where ∇a (resp /∇A) is the Levi-Civita connection of hab (resp δAB). Using the identity d⋆ = ⋆hd⋆h we may
write the continuity equation in the mixed form:

(1.17) ⋆h d(r
2 ⋆h I) = −/d⋆I .

In term of (t, r) derivatives, and with our choice of orientation, this gives:

∂t(r
2 ⋆h I)r = ∂r(r

2 ⋆h I)t − /d
⋆
(
√

|h| ⋆δ I) .
Since an angular divergence integrates to zero on S

2, after applying the fundamental theorem of calculus in
the radial variable we are left with:

∂tQ = −r2
∫

S2

(⋆hI)tdVS2 ,

which proves (1.16).

Step 3:(Computing dF ) First note that d
(
Q⋆(t, r)F

electric)
= 0 for any function Q⋆(t, r). On the other

hand, by line (1.16) we have:

d
(
Q(t, r)F

magnetic)
= − 1

4π
r2
(
⋆h

∫

S2

IdVS2
)
a
· dxa ∧ dVS2 = − ⋆

( 1

4π

∫

S2

IadVS2 · dxa
)
.

Adding these identities, and noting the second idenitity of line (1.10), gives the second equation on line
(1.11).

The first identity on line (1.11) follows from the previous calculation and duality.

1.6. Some notation. We list here several notational conventions that will be used in the sequel.
As usual we denote A . B (resp A ≪ B; A ≈ B) if A 6 CB for some fixed C > 0 which may change

from line to line (resp A 6 ǫB for a small ǫ > 0; both A . B and B . A).
For a collection of non-commutative operators we often denote their ordered product without parenthesis.

A typical example of this would be a mixture of pseudodifferential operators such as ∂r∆
−1f∂r, where f is

a function of (r, xA).
If φ(t, r, xA) is a space-time function we denote by φ[t0] the restriction of the gradient dφ to the hypersur-

face t = t0. This notation is context sensitive as the components of dφ will be given with respect to different
frames depending on the application. In practice there are only two frames used here, either (∂t, ∂r, eÂ) or
(∂t, ∂r, eA). The choice (i.e. normalization of angular derivatives) will be clear from context.

A basic estimate that will be used many times in the sequel is the following: If f is a sufficiently smooth
function on S

2 we denote by f = (4π)−1
∫
S2
fdVS2 its spherical average. Then Poincare’s estimate says that:

(1.18) ‖ f − f ‖L2(dV
S2

) . ‖ /df ‖L2(dV
S2

) .

2. Energy Estimates for Maxwell Fields

In this section we recall the basic energy estimates for Maxwell fields on a Lorentzian background. These
will be used in a auxiliary manner in the sequel, but are not necessary for the core part of the proof of local
energy decay.5 For any antisymmetric two-form on a (3 + 1) space-time we define:

Qαβ [F ] = FαγF
γ

β − 1

4
gαβFγδF

γδ =
1

2

(
FαγF

γ
β + F ⋆

αγF
⋆ γ
β

)
.

5Our proof of local energy decay uses energy conservation in an essential way, but only for certain components of Fαβ . For

these specific components we will only need to show certain spatially localized versions of the conservation of energy.
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Then with the notation of line (1.2) we have the divergence identity:

(2.19) ∇αQαβ[F ] =
1

2
(FαβJ

α + F ⋆
αβI

α) .

To measure energy contributions we use the following definition:

Definition 2.7 (Regular space-like hypersurfaces). Fix (t, r) coordinates as in Definition 1.1. We say a
space-like hypersurface S in (M, gαβ) is “regular” if there exists a constant c > 0 such that:

T = b+ℓ+ b−ℓ , b± > c ,

where T is the future directed (with respect to −∇t) normal to S and ℓ, ℓ, are future directed null vector-fields
such that:

ℓ = −∇t+ a∂r , ℓ = −∇t− a∂r , a > 0 .

In the usual way we have the following:

Proposition 2.8 (Energy estimates for Maxwell fields). Let R ⊆ M be an open set bounded by two regular
space-like hypersurfaces C1 and C2, where C2 is to the future of C1 (with respect to −∇t). If Fαβ solves (1.2)
on R then one has the following uniform bound in ǫ > 0:

(2.20) ‖F |C2
‖L2(dVg|C2

) . ǫ‖ (wln)
−1F ‖LE(R) + ‖F |C1

‖L2(dVg|C1
) + ǫ−1‖wln(I, J) ‖LE∗(R) .

Here the components of F, I, J are computed in any regular frame such as {∂t, ∂r, eÂ, eB̂}, and the notation
F |Ci

denotes the restriction of such scalar components to Ci (not the pull-back of forms).

Proof. The proof is standard. First contractQαβ above with the vector-field−∇t. Then using the divergence
identity (2.19) one employs Stokes theorem and Cauchy-Schwartz. The key observation is that:

−Q(T,∇t) ≈
∑

α<β

|Fαβ |2 ,

where T is the (future) normal to Ci and the RHS sum is taken over the frame {∂t, ∂r, eÂ, eB̂}. See [11] for
more details. �

3. First Order Formulation of the Equations. Reduction of the Main Theorem to a

Spin-Zero Local Energy Decay Estimate

We begin with some first order equations for components of Fαβ when (1.2) holds. First we introduce
some notation:

(3.21) φ =
1

2
ǫABFAB , φ⋆ = −1

2
ǫABF ⋆

AB , /FaA = FaA /F
⋆
aA = F ⋆

aA .

Note that the quantities φ, φ⋆ are scalars. Here we think of /F , /F ⋆ as sections of T ∗(R2) ⊗ T ∗(S2), in other
words /F is a tensor with four components F02, F03, F12, F13 and similarly for /F

⋆
. We let ⋆h, d, d

⋆ (resp
⋆δ, /d, /d

⋆
) act on /F , /F

⋆
in the obvious way, by touching only the first (resp second) set of components. It

turns out that by Hodge duality the second tensor /F ⋆ is redundant, specifically:

(3.22) /F
⋆
aA =

1

2
ǫ γδ
aA Fγδ = −(ǫh)

b
a (ǫδ)

B
A FbB = −(⋆h ⋆δ /F )aA .

In particular notice that the 6 scalar quantities φ, φ⋆ and /FaA for a = 0, 1, A = 2, 3 span the values of Fαβ .

Remark 3.9. One may compare the quantities listed on line (3.21) to the standard null decomposition of
an electromagnetic field on Minkowski space as defined by Christodoulou-Klainerman [6]. Then we have
φ = r2σ, φ⋆ = r2ρ, and /FaA is a linear combination of rαA and rαA. We remark that since all components
are on an equal footing with respect to the natural L2 energy (2.20), there is no need to further decompose
/FaA in proving our estimates.

Our main result here is to relate the (t, r) derivatives of φ, φ⋆ to the angular derivatives of /F and the
sources I, J . This will generalize (1.16) above.
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Lemma 3.10 (Gradient identities for φ, φ⋆). Let Fαβ satisfy the equations (1.2), and define the quantities
on line (3.21) from it. Then one has:

dφ = ⋆δ/d /F − r2 ⋆h I ,(3.23)

dφ⋆ = − ⋆δ /d /F
⋆ − r2 ⋆h J ,(3.24)

⋆hdφ
⋆ = /d

⋆
/F − r2J .(3.25)

Proof. Notice that line (3.24) follows from (3.23) and Hodge duality which sends φ → −φ⋆, /F → /F
⋆
, and

I → −J .
Next, we see that line (3.25) follows by applying ⋆h to line (3.24), using [⋆h, ⋆δ/d] = 0, and then using the

identity (3.22) with /d
⋆
= − ⋆δ /d⋆δ.

To show (3.23) we expand the second member of line (1.10) in the basis (∂a, ∂A, ∂B) which gives:

∂aFAB − /∇AFaB + /∇BFaA = −(⋆I)aAB ,

where /∇ is the standard round connection on S
2. Tracing the last line with 1

2ǫ
AB and using the identity:

1

2
ǫAB(⋆I)aAB = −1

2
ǫABr2ǫ b

a ǫABIb = −r2ǫ b
a Ib = r2(⋆hI)a ,

we have the desired result. �

3.1. Reduction of the main theorem. The equations (3.23) and (3.25) completely determine the values
of /F in terms of φ, φ⋆. This may be quantified as follows:

Proposition 3.11 (Reduction to spin-zero components). Let /F , φ, φ⋆, and I, J solve the system (3.23) and
(3.25). Suppose in addition that:

(3.26)

∫

S2

φdVS2 =

∫

S2

φ⋆dVS2 =

∫

S2

IadVS2 =

∫

S2

JadVS2 ≡ 0 , a = 0, 1.

Then one has the L2 estimate:

(3.27) ‖ (wln)
−1 /F ‖LE[0,T ] . ‖ (wln)

−1r−1(− /∆)−
1
2 (dφ, dφ⋆) ‖LE[0,T ] + ‖ (I, J) ‖LE∗[0,T ] ,

where − /∆ = /d
⋆
d is the scalar Laplace-Beltrami operator on S

2. Here the components of /F are taken in a
normalized basis (∂a, r

−1∂A).

Proof. This follows immediately from L2 Hodge estimates on S
2. Recall that the operators /div = −/d⋆ and

/curl = ⋆δ/d on T ∗(S2) give rise to a double sided singular integral L2 estimate:

(3.28) ‖ω ‖L2(S2) ≈ ‖ (− /∆)−
1
2 /divω ‖L2(S2) + ‖ (− /∆)−

1
2 /curlω ‖L2(S2) .

Setting (ωa)A = /FaÂ to be a one form on S
2 indexed by a = 0, 1 with values the normalized components of

/F , we may write (3.23) and (3.25) as:

/divω = − r−1 ⋆h dφ
⋆ − rJ , /curlω = r−1dφ+ r ⋆h I .

The estimate (3.27) follows at once from this, the boundedness of (− /∆)−
1
2 on L2(S2) functions with zero

average, and the inclusion r−1LE∗ ⊆ LE. �

4. Second Order Wave Equations and Local Energy Decay Estimates. Proof of the First

Order Decay Estimate

In this section we reduce the estimation of the first term on RHS (3.27) to the following Theorem, which
one may view as the main technical result of the paper. To state it we introduce the following operator,
which we call the spin-zero wave equation:

(4.29) ✷
0 = ✷h + r−2 /∆ = ∇a∇a + r−2 /∇A /∇A .

For this operator we have:
9



Theorem 4.12 (Inverse angular gradient local energy decay estimates). Let φ(xa, xA) be a scalar function
defined on the slab [0, T ]× [r0,∞)× S

2. In addition let Ga(x
a, xA) be a one form in the xa variables, whose

coefficients also depending on xA ∈ S
2, such that ⋆hdG = K. Finally let H(xa, xA) be another scalar function

Suppose that all of these objects obey the moment condition:

(4.30)

∫

S2

φ(xa)dVS2 =

∫

S2

Gb(x
a)dVS2 =

∫

S2

H(xa)dVS2 ≡ 0 , b = 0, 1 ,

throughout [0, T ]× [r0,∞). If φ,G,H are all supported in {r 6 CT } and

(4.31) ✷
0φ = ∇aGa +H ,

then one has the local energy decay type estimate:

‖ (wln)
−1r−1

(
d(− /∆)−

1
2φ, r−1φ

)
‖LE[0,T ] . ‖ (− /∆)−

1
2 r−1

(
dφ(0)−G(0)

)
‖L2(dVg|t=0

) + ‖ r−2φ(0) ‖L2(dVg|t=0
)

+ ‖wlnr
−1

(
r−1G, (− /∆)−

1
2K, (− /∆)−

1
2H

)
‖LE∗[0,T ] .

(4.32)

Here wln(r) = (1 +
∣∣ ln |r − rT |

∣∣)/(1 + | ln(r)|) as usual.

The proof of this theorem will occupy the second portion of the paper. First, we use it to prove Theorem
1.5. In light of the energy estimates (2.20) the main step is to show the following:

Proposition 4.13 (Local energy decay estimates for spin-zero components). Let /F , φ, φ⋆, and I, J satisfy
the assumptions of Proposition 3.11, and in addition suppose each of these quantities is supported in the
region r < CT for C a sufficiently large fixed constant. Then one has the uniform (in T ) bound:

(4.33) ‖ (wln)
−1r−1(− /∆)−

1
2 (dφ, dφ⋆) ‖LE[0,T ] + ‖ (wln)

−1r−2(φ, φ⋆) ‖LE[0,T ] . ‖F |t=0 ‖L2(dVg|t=0
)

+ ‖wln(I, J) ‖LE∗[0,T ] + ‖
(
⋆h I0(r0), ⋆hJ0(r0)

)
‖L2(dV

S2
dt)[0,T ] .

Proof that Theorem 4.12 implies Proposition 4.13. This boils down to a direct algebraic calculation, whose
point is to derive a second order equation of the form (4.31) for φ, φ⋆, where Ga and H can be estimated in
terms of I and J .
Step 1:(Derivation of the second order equation) All of our computations here are more easily done with
respect to a conformal metric. Let Ω be a weight function and set g̃ = Ω2g. We denote by ⋆̃ the corresponding
Hodge operator, which obeys the identity ⋆̃ = Ω4−2p⋆ on each Λp. In particular notice that the quantity F ⋆ is
conformally invariant. With respect to the new metric the Maxwell system can be written as (alternatively):

dF = −Ω−2⋆̃I , dF ⋆ = Ω−2⋆̃J ,

d⋆̃F = Ω−2J , d⋆̃F ⋆ = Ω−2I .

Combining these formulas we have:

✷
hodgeF = d⋆̃(Ω−2⋆̃I)− d(Ω−2J) , ✷

hodgeF ⋆ = −d⋆̃(Ω−2⋆̃J)− d(Ω−2I) ,

where ✷
hodge = −(dd⋆̃ + d⋆̃d) is the Hodge Laplacian of g̃.

In terms of the connection ∇̃ of g̃ we may write ✷
hodge as follows:

✷
hodgeFαβ = ∇̃γ(∇̃αFβγ + ∇̃γFαβ + ∇̃βFγα)− ∇̃α∇̃γFβγ + ∇̃β∇̃γFαγ ,

= ∇̃γ∇̃γFαβ + [∇̃α, ∇̃γ ]F
γ
β + [∇̃β , ∇̃γ ]F

γ
α ,

= ✷g̃Fαβ − R̃ γ
α Fγβ − R̃ γ

β Fαγ − R̃ γδ
αβ Fγδ ,

where ✷g̃ is the covariant wave equation acting on two-forms, R̃αβγδ is the Riemann curvature tensor of g̃,

and R̃αβ = g̃γδR̃αγδβ is its Ricci curvature. Here our curvature convention is [∇α,∇β ]ωγ = R δ
αβ γωδ for

one-forms.
We now choose Ω in order to simplify the form of ✷hodge above. This is done by choosing Ω = r−1

so g̃ becomes a pure direct sum metric instead of a warped product. For this new metric the curvatures
10



diagonalize into pure a, b and A,B components. It is the latter which is important for us here, which is
simply the Riemann and Ricci curvature of S2, that is:

R̃ABCD = δADδBC − δACδBD , R̃AB = δAB .

For the D’Alembertian this gives the simple formula:

✷
hodgeFAB = ✷g̃FAB .

Tracing this with respect to 1
2ǫ

AB gives us:

✷g̃φ =
1

2
ǫABd⋆̃(r2⋆̃I)AB − 1

2
ǫABd(r2J)AB , ✷g̃φ

⋆ =
1

2
ǫABd⋆̃(r2⋆̃J)AB +

1

2
ǫABd(r2I)AB ,

where ✷g̃ = ∇̃a∇̃a + /∆ = r2✷0 is now the scalar covariant wave equation of g̃.
It remains to compute the traces on the two RHS of the last line above. For the exterior derivative terms

we immediately have:

1

2
ǫABd(r2I)AB = r2 ⋆δ /dI ,

1

2
ǫABd(r2J)AB = r2 ⋆δ /dJ .

For the co-derivative expressions we compute:

d⋆̃(r2⋆̃I)AB = ⋆d(r2I)AB = r2ǫAB · 1
2
ǫabd(r2I)ab = r2ǫAB ⋆h d(r

2I) = −r2ǫAB∇a(r2 ⋆h I)a ,

with an identical formula for d⋆̃(r2⋆̃J)AB. All together this yields:

(4.34) ✷
0φ = −∇a(r2 ⋆h I)a − ⋆δ/dJ , ✷

0φ⋆ = −∇a(r2 ⋆h J)a + ⋆δ/dI .

Step 2:(Application of estimate (4.32)) It suffices to treat the first equation on line (4.34) as the second is
of the same form. To set up for estimate (4.32) we define:

G := −r2 ⋆h I , H := − ⋆δ /dJ , K := /d
⋆
I .

Using the continuity equation (1.17) we have ⋆hdG = K as required. Notice also the the moment conditions
(4.30) are all satisfied thanks to (3.26).

It remains to bound the terms occurring on the RHS of (4.32) for these choices in terms of RHS (4.33). For
the terms H and K this is an immediate consequence of (3.28). Notice that the extra factor r−1 disappears
when one switches from the S

2 basis eA to the regular basis e
Â
= r−1eA.

Next, the estimate for the one form G is also immediate due to the truncation condition which implies
(
√
rT )−1 . r−1. Likewise we have r−2φ = F

ÂB̂
in an ordered g orthonormal basis e

Â
, e

B̂
of St,r, which gives

the desired bound for the undifferentiated initial data on RHS (4.32).
Finally, we dispense with the gradient terms in the initial data on RHS (4.32). Using equations (3.23)

above and the definition of G we have:

dφ(0)−G(0) = ⋆δ/d /F (0) ,

and the desired L2 bound follows again from (3.28) and writing the components of /F in a regular basis. �

4.1. Proof of the main theorem. We are now ready to show Theorem 1.5, which follows easily by
combining estimates (2.20), (3.27), and (4.33).

In order to use (4.33) we must first dispense with estimate (1.14) in the region r > CT for some sufficiently
large C > 0. To do this we will use (2.20) to prove (1.5) in a slightly larger region, namely r > Ct. The
desired estimate for 0 6 t 6 1 follows easily from local considerations. For larger values of t we can integrate
the LHS of estimate (2.20) over a family of uniformly space-like hyper-surfaces such as r = Ct which upon
bootstrapping the first term on RHS (2.20) gives:

(4.35) ‖F ‖LE(r>Ct)[0,T ] . ‖F (0) ‖L2(dVg|t=0
) + ‖ (I, J) ‖LE∗(r>Ct)[0,T ] .

Note that this estimate only uses the simple bound ‖F ‖LE(r>Ct)[1,T ] . sup16t6T ‖F |Ct
‖L2(dVg|Ct

) where Ct
is the family of hypersurfaces given by r = Ct.

It remains to estimate F in the region r < Ct which we enlarge to the region r < CT . After truncating
Fαβ by a smooth cutoff of the form χ(r/T ) we can immediately reduce matters to proving (1.14) for fields
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Figure 1. Penrose diagram of the regions described in the proof.

supported in r < 2CT , as the error generated by differentiation of the cutoff χ on the RHS of (1.14) is
handled by T−1‖χ′(r/T )F ‖LE∗[0,T ] . ‖F ‖LE(r>Ct)[0,T ] and then using (4.35).

To proceed further we average estimates (3.27) and (4.33) on the slabs [0, T ] × {r > r∗} for r∗ in the
band r0 < r∗ < r1 < rM . The purpose of this averaging is simply to trade the resulting error terms
‖
(
⋆h I0(r∗), ⋆hJ0(r∗)

)
‖L2(dV

S2
dt)[0,T ] on RHS (4.33) for ‖ (I, J) ‖LE∗(r>r0)[0,T ]. Combining the result with

estimate (2.20) yields (again for F supported where r < 2CT ):

‖F (r1) ‖L2(dVg|r=r1
) + ‖ (wln)

−1F ‖LE(r>r1)[0,T ] . ‖F (0) ‖L2(dVg|t=0
) + ‖wln(I, J) ‖LE∗(r>r0)[0,T ] .

Finally, to fill in the remaining quantity ‖ (wln)
−1F ‖LE(r0<r<r1)[0,T ] it suffices to integrate the LHS of

estimate (2.20) over the family of uniformly space-like hypersurfaces r = r∗ for r∗ in the band r0 6 r∗ 6 r1.

5. Local Energy Decay for Spin-Zero Fields Part I: A Preliminary Estimate

In this section we begin our estimates for the spin-zero wave equation (4.29). It is best to think of this as
a (1+1) wave equation plus a potential, which is literally true after decomposition into spherical harmonics.

There is a natural volume form dV = dVh∧dVS2 for which ✷
0 becomes self adjoint. Here dVh =

√
|h|dx0∧dx1

and dVS2 is the standard volume on S
2. There is also a natural (but not exactly conserved) energy type

norm:

E(φ[t]) =

∫

[r0,∞]×S2

(φ2t + φ2r + r−2|/dφ(t)|2)drdVS2 , |/dφ|2 = gAB /∇Aφ/∇Bφ ,

where /∇ is the gradient on S
2. Here we take (t, r) to be any regular set of coordinates as in Definition 1.1.

We also set up local energy decay norms as follows:

‖φ ‖LE0
= sup

j>0
2−

j

2 ‖χjφ ‖L2(dV ) , ‖G ‖LE∗
0

=
∑

j>0

2
j

2 ‖χjG ‖L2(dV ) ,

for some overlapping set dyadic cutoffs χj(r). Here the integrals are implicitly constrained to the region
r > r0 which we assume is covered by j > 0. The main result of this section can now be written as:

Theorem 5.14 (Local energy decay for ✷0). Let ✷0φ = G, then one has:

(5.36) ‖ ∂rφ ‖LE0[0,T ] + ‖ (wln)
−1(∂tφ, r

−1/dφ) ‖LE0[0,T ] . E
1
2 (φ[0]) + ‖wlnG ‖LE∗

0
[0,T ] ,

where wln(r) = (1 +
∣∣ ln |r − rT |

∣∣)/(1 + | ln(r)|), and where we assume 〈∂r, ∂t〉h = 0 at r = rT .

Remark 5.15. By Duhamel’s principle (note g00 ≈ −1 in regular coordinates) one may replace the norm
for G on the RHS of (5.36) with the following:

(5.37) |||G |||N0[0,T ] = inf
G1+G2=G

(
‖wlnG1 ‖LE∗

0
[0,T ] + ‖G2 ‖L1(L2)[0,T ]

)
,

where L1(L2) is with respect to dt and drdVS2 as above.
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Remark 5.16. The estimate (5.36) is true for a general φ even if it is spherically symmetric. On the other
hand, if

∫
S2
φ(t, r)dVS2 ≡ 0 then by Poincare’s estimate one can also add an LE estimate for r−1φ. However,

a bound for r−1φ in the spherical symmetric case is impossible due to constant solutions which have finite
energy even after truncation outside a large dyadic set. Note that this is in stark contrast to the LE estimates
for the scalar wave equation ✷g for which one can estimate r−1φ even in the spherical case (see [16]).

Remark 5.17. The condition that 〈∂r, ∂t〉 = 0 at r = rT is essential if one wishes to gain an unweighted
estimate for ∂rφ. There is an alternate geometric description of this requirement which is that the unweighted
derivative must correspond to quantizations of the defining functions for the stable and unstable manifolds
of the trapped set.

The remainder of this section will be devoted to the proof of Theorem 5.14. The method we employ is
to estimate separately the contributions coming from the region 〈dr, dr〉 ≈ 0 (event horizon), and the region
〈dr, dr〉 > 0 (domain of outer communication). This allows us to build estimates in a modular way, which
we believe should also be useful for further applications.

Close to r = rM our estimates are purely multiplier based, and boil down to the construction of well
chosen null frames. There are two key estimates here: (5.51) and (5.52) below. The first captures the
contribution of waves parallel to r = rM , and is simply a version of the “red shift” estimates first introduced
in [7] (see also [10] for a more general exposition). The second bounds the contribution of waves transverse
to r = rM , and turns out to be a version of the conservation of energy.

The region r > rM involves the most work, and is handled by estimate (5.53) below. To prove it we
introduce a generalized “Regge-Wheeler” type coordinate condition to put the radial part hab of the metric
in conformal form. After a little bit of work to show that the truncated estimate (5.53) follows from an
untruncated version in Regge-Wheeler coordinates, the analysis follows along the lines of [5] and [16] which
is essentially microlocal in nature.

5.1. Description of the geometry. In this section we compute some special coordinate systems in the
regions where 〈dr, dr〉 ≈ 0 and where 〈dr, dr〉 > 0.

First, recall that according to part ii) of Definition 1.1 there exists a unique rM > r0 with the property
that grr = 〈dr, dr〉|r=rM = 0. Furthermore, the assumption that ∂rg

rr 6= 0 throughout r > r0 implies
∂rg

rr|r=rM > 0. This is the key non-degeneracy condition which leads to good estimates in the region
〈dr, dr〉 ≈ 0. To capture it we make the following definition:

Definition 5.18 (Negatively N-boosted null pairs). Let 〈·, ·〉 denote the (1 + 1) Lorenztian inner product of
h. For a fixed number N > 0 we call a pair of vector-fields L,L, defined over a time independent neighborhood
H of r = rM , a “negatively N-boosted null pair” if there exists a fixed c = c(N) > 0 such that the following
hold:

i) (Basic relations) One has the relations 〈L,L〉 = 〈L,L〉 = 0 and 〈L,L〉 = −2. Both L and L are future
directed in the sense that Lt, Lt > 0. In addition L is incoming in the sense that Lr < −c < 0.

ii) (Stationarity) The frame is stationary, that is [∂t, L] = [∂t, L] = 0.
iii) (Boosting condition) One has ∇LL = 2NχL, where N > 0 is as above and χ = Lr.

Remark 5.19. Condition iii) above is malleable in the sense that one can construct pairs of vector-fields
L,L which satisfy i) and ii), and which have ∇LL = σ L, where σ is an arbitrary function of r. Our choice
of constant in iii) is for later convenience when constructing multipliers.

In terms of such null pairs close to r = rM we have the following result, which follows closely the
presentation of Dafermos-Rodnianski in [10]:

Lemma 5.20 (Description of the geometry close to r = rM ). Fix a number N > 0. Then under the
assumptions of Definition 1.1 there exists a (time independent) neighborhood H of r = rM and a negatively
N-boosted null pair defined over H as in Definition 5.18 above. Furthermore, for any such null pair there
exists a constant c = c(N) > 0 such that:

i) (Relation to ∂t) One may write ∂t = q+L + q−L where q+ > c, and where q− = λgrr for some weight
function λ(r) with λ > c as well.

ii) (Red Shift) One has the identity ∇LL = σL for some smooth function σ > c.
13



iii) (Area variations) Define χ = Lr and χ = Lr. Then in addition to χ < −c, one also has χ = γgrr for
some smooth function γ > c.

It remains to discuss the geometry in the region r > rM . For this we have:

Lemma 5.21 (Conformal coordinates in r > rM ). Let hab = gab denote the radial part of the Lorentzian
metric from Definition 1.1. For the statement of this lemma we also set |h| = |det(h)|, where the determinant
is computed in regular (t, r) coordinates. Then there exist two functions s = t+ b(r) and r∗ = r∗(r) defined
in the region r > rM , such that r∗(rT ) = 0, and such that (s, r∗) are smooth coordinates in r > rM with:

r∗ → −∞ as r → rM , r∗ → ∞ as r → ∞ .

Furthermore the following properties hold:

i) (Asymptotics in rM < r < C) One has (note grr = hrr):

∂rs = −|h|− 1
2 (grr)−1 + s̃(r) , ∂rr∗ = |h|− 1

2 (grr)−1 ,

where s̃ is uniformly bounded with all of its derivatives on r > rM . Here all derivatives are taken with
respect to regular (t, r) coordinates as in Definition 1.1.

ii) (Asymptotics as r → ∞) As r → ∞ one has the asymptotics:

∂kr s = O(r−k) , k > 1 ,

as well as:
∂rr∗ = 1 +O(r−1) , ∂kr r∗ = O(r−k) , k > 2 .

Again everything is computed with respect to regular (t, r) coordinates.
iii) (Conformal form) With respect to (s, r∗) the (1+ 1) dimensional Lorentzian metric h can be written as:

h = Ω2(−ds2 + dr2∗) , Ω2 = −g00 = |h|grr .
iv) (Trapped set) The unique trapped set of part iii) of Definition 1.1 is at r∗ = 0. At r∗ = 0 one has

V ′(0) = 0 and V ′′(0) < 0, where V = V (r∗) is the effective potential V = r−2Ω2. Moreover, V ′ 6= 0 for
r∗ 6= 0.

v) (Asymptotics of V (r∗)) Finally, V (r∗) has the following asymptotic formulas some fixed c > 0:

∂kr∗V (r∗) ≈ (r−rM ) ≈ ecr∗ as r∗ → −∞ , (−1)k∂kr∗V (r∗) ≈ r−2−k ≈ r−2−k
∗ as r∗ → ∞ .

Proof of Lemma 5.20. We proceed in a series of steps:
Step 1:(Construction of the null pair with boosting condition) First we show the existence of L,L according
to Definition 5.18. We denote by (t, r) any regular system of coordinates as in Definition 1.1, and by hab = gab
the components of the radial part of g. Set T = −∇t the future directed time function gradient. Then we
have:

〈T, T 〉 = h00 < 0 , 〈T, ∂r〉 = 0 , 〈∂r, ∂r〉 = hrr > 0 .

From these one can form a pair of null vectors:

ℓ = T +
√
−h00/hrr∂r , ℓ = T −

√
−h00/hrr∂r .

Immediately we have ℓt = ℓt = −h00 > 0. In addition note that 〈ℓ, ∂r〉 > 0, thus ℓ is the outgoing null
direction and in particular ℓr|r=rM = 0. This also shows Tr|r=rM < 0. Choosing L = λℓ and L = ℓ for
an appropriate positive weight function λ(r) we immediately have the inner product and future direction
properties and of part i) of Definition 5.18, as well as the stationarity condition ii). Furthermore, one

computes Lr = Tr −
√
−h00/hrr < 0 where the inequality holds in a neighborhood of r = rM .

To establish part iii) of Definition 5.18 we remark that any null pair obeying parts i)-ii) is invariant with
respect to boosting L→ q−1L and L→ qL for a smooth positive weight function q. There exists a function

σ such that ∇LL = σ L. Set L̃ = qL and define σ̃ accordingly. Then a quick computation shows that:

σ̃ = χq′ + σq , where χ = Lr .

Setting σ̃ = 2NL̃r = 2Nqχ gives the following ODE for q(r):

q′ =
(
2N − (χ)−1σ

)
q ,
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which is well defined on account of the condition χ 6= 0. Such an equation can always be solved on H subject
to the constraint q > 0.
Step 2:(Relation to ∂t) To prove part i) of Lemma 5.20 we set q± to be the coefficients of ∂t in the basis
{L,L}, and note that q± > 0 where ∂t is time-like. Then one has:

(5.38) q+q− = −1

4
h00 = −1

4
det(h)grr .

By assumption ii) of Definition 1.1 the RHS is a function with simple zero at r = rM . Thus only one
of q± can vanish, and it does so with a simple zero at r = rM . But r = rM is a null hypersurface with
generator proportional to L and on this hypersurface ∂t is also null (see part b) of Remark 1.2). Thus
∂t|r=rM = cL|r=rM for some c > 0, which shows that q− must have a simple zero at r = rM and q+ > 0
throughout H. Referring back to (5.38) gives the formula for q− in terms of grr and a non-vanishing weight.
Step 3:(The “red shift”) Using the results of the previous steps we have:

σ = −1

2
〈∇LL,L〉 =

1

2
〈∇LL,L〉 =

1

2
q2+〈∇∂t

L, ∂t〉+O(r − rM ) =
1

4
q2+Lh00 +O(r − rM ) .

For the first term on the RHS we further compute:

Lh00 = L(r)∂r
(
det(h)−1hrr

)
= L(r) det(h)−1∂rg

rr +O(r − rM ) > 0 , if |r − rM | ≪ 1 .

Step 4:(Area variation) In the construction of L,L we have already shown that Lr < −c. Using Step 2

above we compute:

0 = ∂tr = q+Lr + λgrrLr .

The desired result follows by solving for Lr and using the already established properties of λ, q+, Lr. �

Next, we construct conformal coordinates in the region r > rM .

Proof of Lemma 5.21. Recall that our (1 + 1) metric h as the form h = gabdx
adxb with the conditions of

Definition 1.1. We let g00, g0r, grr denote the components of h in the original (non-singular) (t, r) coordinates.
As in the statement of Lemma 5.21 we also set |h| = |det(h)| computed with respect to (t, r).
Step 1:(Normalized coordinates) To normalize things in the region grr > 0 we first introduce a singular time
function whose level sets are perpendicular to the Killing field ∂t. Setting t = s− b(r) we have in the (s, r)
coordinates:

h = g00ds
2 + 2(g0r − g00b

′)dsdr + (grr + g00(b
′)2 − 2g0rb

′)dr2 .

Now choose b(r) so that g00b
′ = g0r and b(rT ) = 0, so our metric takes the diagonal form:

(5.39) h = hssds
2 + hrrdr

2 ,

where:

(5.40) hss = g00 , hrr = grr − (g0r)
2/g00 ,

which is now only defined in the region g00 < 0 ⇔ r > rM . We remark that this change of coordinates
does not affect the determinant of the metic, and in either case we have:

(5.41) |h| = −hsshrr = (g0r)
2 − g00grr .

We refer to (5.39) as the “Schwarzschild form” of the metric h.
Next, we make an additional transformation to put the metric in conformal form by defining r∗ = r∗(r)

according to the ODE:

(5.42)
dr∗
dr

=
√
−hrr/hss , r∗(rT ) = 0 .

Using the identity hss = −|h|grr and the fact that hrr = 1/grr the first identity on this last line becomes

∂rr∗ = |h|− 1
2 (grr)−1, which gives the second formula in part i) of the Lemma and immediately yields the

rough asymptotics:

dr∗
dr

≈ 1/grr ≈ 1/(r − rM ) , r → rM ,
dr∗
dr

≈ 1 , r → ∞ .
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Thus r∗ → −∞ as r → rM and r∗ → ∞ as r → ∞, and our metric takes the final form:

(5.43) h = Ω2(−ds2 + dr2∗) , Ω2 = −〈∂t, ∂t〉g , −∞ < r∗ <∞ ⇐⇒ r > rM .

We call this the “Regge-Wheeler form” of h.
Step 2:(Asymptotics of s as r → rM ) Here we derive the first formula in i) of the Lemma. From the formulas
of the previous step we have:

∂rs = g0r/g00 , where g00 = −|h|grr , and g0r =
√
|h|+ g00grr .

This allows us to write:

∂rs = −|h|− 1
2 (grr)−1 ·

(
1− f(r, grr)

)
, f(r, θ) = 1−

√
1− θgrr .

Thus f(r, θ) = θf̃(r, θ) when θ ≈ 0, for some other smooth f̃ , and the desired result follows.
Step 3:(Asymptotics of (s, r∗) as r → ∞) The result for s follows immediately from ∂kr (gab) = O(r−k) and
(gab − ηab) = O(r−1), where η = diag(−1, 1). The result for r∗ also follows from these asymptotics for gab
and the formulas on lines (5.40) and (5.42).
Step 4:(Description of the trapped set at r = rT ) The Regge-Wheeler form (5.43) is particularly convenient
for discussing the trapped null geodesics of g in the region r > rM . Since conformal metrics have the same
null geodesic flow, it suffices to analyze the direct sum metric:

g̃ = −ds2 + dr2∗ +Ω−2r2dω2 , dω2 = δABdx
AdxB .

The projections of unit speed null geodesics for this metric onto the space parametrized by (r∗, x
A), where

A = 2, 3 denote coordinates on S
2, are exactly the unit speed geodesics of the three dimensional Riemann-

ian surface of rotation dl2 = dr2∗ + Ω−2r2dω2. The Hamiltonian for the corresponding geodesic flow is
p(r∗, x

A, ξr∗ , ξA) =
1
2 (ξ

2
r∗

+ Ω2r−2|/ξ|2), where |/ξ|2 = δABξAξB is the Hamiltonian of the standard geodesic

flow on S
2.

The equations for a trapped sphere of unit speed geodesics at r = r0 now take the form:

ṙ∗|r=r0 = {p, r∗}|r=r0 = 0 ,

where {p, f} = ∂ξp∂xf − ∂xp∂ξf is the Poisson bracket. In general we have:

ṙ∗ = ξr∗ , ξ̇r∗ = −1

2
∂r∗(V )|/ξ|2 , where V = Ω2r−2 ,

and thus r = r0 is trapped iff ξr∗ = ξ̇r∗ = 0 at r = r0, which can happen iff V ′(r0) = 0. Therefore, condition
iii) of Definition 1.1 implies that ∂r∗V = 0 iff r∗ = 0 in the region −∞ < r∗ <∞. It is also manifestly clear
that V > 0 in that region with V → 0 as r∗ → ±∞. In other words V (r∗) is a positive repulsive potential
with unique maximum at r∗ = 0.6 Finally, the non-degeneracy condition in iii) of Definition 1.1 means that
V ′′(0) 6= 0, so in fact V ′′(0) < 0. Summarizing this, we may write the normal part of the geodesic flow at
r = rT in the form of a standard planar hyperbolic7 fixed point:

ṙ∗ = ξr , ξ̇r = λ0|/ξ|2r∗ +O(|/ξ|2r2∗) , λ0 = −1

2
V ′′(0) > 0 .

Step 5:(Asymptotics of V ) Finally the asymptotic formulas of part v) for V (r∗) as r∗ → ±∞ follows from the
explicit formula above and the fact that r∗ = A ln(r−rM )+O(1) as r∗ → −∞, and r∗ = r+B ln(r)+O(r−1)
as r∗ → ∞, where A > 0 and B are constant. Further details are left to the reader. �

5.2. The multiplier method for ✷0. Before embarking on the proof of Theorem 5.14 we pause to introduce
some notation and identities that will be useful for the remainder of the section. For the wave equation ✷

0

one has a (1 + 1) energy momentum tensor:

Qab[φ] =

∫

S2

[
∂aφ∂bφ− 1

2
hab(∂

cφ∂cφ+ r−2|/dφ|2)
]
dVS2 .

In terms of any null pair basis L,L one can write its components as:

(5.44) QLL[φ] =

∫

S2

(Lφ)2dVS2 , QLL[φ] =

∫

S2

(Lφ)2dVS2 , QLL[φ] =

∫

S2

|/dφ|2dVS2 .

6This also immediately implies there are no other trapped geodesics except at r = rT .
7In particular the assumption of a unique non-degenerate trapped set implies such a trapped set must be normally hyperbolic.
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This object behaves similarly to the energy momentum tensor for ✷h + V where V = −k2r−2. Specifically
one has:

∇aQab[φ] =

∫

S2

✷
0φ∂bφdVS2 + r−3∂b(r)

∫

S2

|/dφ|2dVS2 .

In the usual way this leads to momentum identities for any (spherically symmetric) vector-field X = Xa∂a:

(5.45) ∇a(X)Pa[φ] =
1

2

∫

S2

Qab[φ]
(X)πabdVS2+r

−3X(r)

∫

S2

|/dφ|2dVS2+
∫

S2

✷
0φXφdVS2 ,

(X)Pa[φ] = Qab[φ]X
b ,

where (X)πab = LXhab = ∇aXb +∇bXa is the (1 + 1) deformation tensor of X .
There are two types of multipliers we will work with:

(5.46) X = X−L , Y = Y 0∂t ,

for given weight functions X−(r), Y 0(r). We record their raised deformation tensors here:

Lemma 5.22 (Deformation tensors). Let X,Y be the multipliers defined on line (5.46). Then with the
notation of Definition 5.18 and Lemma 5.20 we have:

(X)πLL = 0 , (X)πLL = −χ · (X−)′ + σX− (X)πLL = −1

2
χ · (X−)′ −NχX−(5.47)

(Y )πLL = −χ · q+(Y 0)′ , (Y )πLL = −χ · q−(Y 0)′ , (Y )πLL = 0 .(5.48)

and where we have set χ = Lr and χ = Lr. Close to r = rM one has the sign relations:

(5.49) χ ≈ (r − rM ) , χ ≈ −1 , σ ≈ 1 , q+ ≈ 1 , q− ≈ (r − rM ) .

Proof of Lemma 5.22. By raising indices we have (X)πLL = 1
4
(X)πLL,

(X)πLL = 1
4
(X)πLL, and

(X)πLL =
1
4
(X)πLL. Similarly for (Y )πab. For X = X−L we have:

(X)πab = ea(X
−)〈L, eb〉+ eb(X

−)〈L, ea〉+X−〈∇eaL, eb〉+X−〈∇ebL, ea〉 .

Using the orthogonality of L to itself we immediately have (X)πLL = 0, while:

(5.50) (X)πLL = −4L(X−)− 2X−〈∇LL,L〉 , (X)πLL = −2L(X−) +X−〈∇LL,L〉 .

This immediately implies (5.47).
Now let Y = Y 0∂t, for which we have:

(Y )πab = ea(Y
0)〈∂t, eb〉+ eb(Y

0)〈∂t, ea〉 ,

where we have used (∂t)πab = 〈∇a∂t, eb〉 + 〈∇b∂t, ea〉 = 0. Using the decomposition ∂t = q+L + q−L this
immediately gives the first two identities on (5.48). For the last term on that line we have:

L(Y 0)〈∂t, L〉+ L(Y 0)〈∂t, L〉 = −2
(
q+L(Y

0) + q−L(Y
0)
)

= −2∂tY
0 = 0 .

�

5.3. Local energy decay component estimates for ✷
0. Proof of Theorem 5.14. We break our proof

of Theorem 5.14 down into the three constituents in the next proposition. For this purpose we consider
thresholds

r0 6 r1 < rM < r2 < r3 < rT

We think of r3 as fixed, away from rM and rT . On the other hand r1 and r2 are free to float, and we
reserve the right to choose them arbitrarily close to rM . For the statement of our main technical result we
let χ[a,b](r) denote the indicator function (sharp cutoff) of the interval a 6 r 6 b.

Proposition 5.23 (Three modular local energy decay estimates). Let r1, r2, r3 be three parameters such
that r0 6 r1 < rM < r2 < r3 < rT . Then there exists a fixed value of r3 such that for every k > 1 one has

17



the following three estimates for test functions φ, where the implicit constants are uniform in r1, r2 (but may
depend on r3, k):

‖χ[r1,r3](Lφ, /dφ) ‖LE0[0,T ] . ‖χ[r3,rT ](r − rT )/dφ ‖LE0[0,T ] + E
1
2

>r1
(φ[0]) + ‖χ[r1,rT ]✷

0φ ‖LE∗
0
[0,T ] ,(5.51)

‖χ[r1,r2]wkLφ ‖LE0[0,T ] . ǫ‖χ[r1,∞)(wln)
−1∂tφ ‖LE0[0,T ] + ‖χ[r1,r2]wk(r − rM )Lφ ‖LE0[0,T ](5.52)

+ (rM − r1)
1
2 ‖χ[r3,rT ](r − rT )/dφ ‖LE0[0,T ] + E

1
2

>r1
(φ[0]) + ǫ−1‖χ[r1,∞)wln✷

0φ ‖LE∗
0
[0,T ] .

In addition there exists a Cr2 > 0 such that (again with implicit constant uniform in r1, r2):

(5.53) ‖χ[r2,r3]wk

(
Lφ, (r − rM )Lφ

)
‖LE0[0,T ] + ‖χ[r2,r3]/dφ ‖LE0[0,T ]

+ ‖χ[r3,∞)∂rφ ‖LE0[0,T ] + ‖χ[r3,∞)(wln)
−1(∂tφ, r

−1/dφ) ‖LE0[0,T ]

. | ln(r2−rM )|k‖χ[rM ,r2]wk

(
Lφ, (r−rM )Lφ) ‖LE0[0,T ]+Cr2

(
‖χ[rM ,∞)wln✷

0φ ‖LE∗
0
[0,T ]+E

1
2

>rM
(φ[0])

)
.

The weight functions wk and wln in estimates (5.52) and (5.53) are:

wln = (1 +
∣∣ ln |r − rT |

∣∣)/(1 + | ln(r)|) , wk(r) = (1 +
∣∣ ln |r − rM |

∣∣)− 1
2
k|r − rM |− 1

2 .

In estimate (5.53) one must also take 〈∂t, ∂r〉 = 0 when r = rT .

Remark 5.24. The purpose of the weight wln is to account for the degeneracy of local energy decay near the
trapped set r = rT . On the other hand the weight wk is only used in a neighborhood of the horizon r = rM
and accounts for the fact that the “good component” Lφ has a non-degenerate energy there.

Before giving a proof of the above three estimates, we use them to give a short demonstration of Theorem
5.14.

Proof that Proposition 5.23 implies estimate (5.36). First note that while the LE0 estimate in (5.36) takes
place over the region r > r0, one can easily reduce it to showing the same bound for r > r1, as the region
r0 6 r 6 r1 is easily covered by known LE0 bounds on r > r1 and energy estimates.

For constants c, C > 0 we add together:

c× (5.51) + C| ln(r2 − rM )|k × (5.52) + (5.53) .

Then choose c, C, ǫ, r1, r2 so that:

c+ C−1 ≪ 1 , followed by |r1 − r2|
1
2 + ǫ≪ cC−1| ln(r2 − rM )|−k .

This allows one to move all local energy decay errors for φ to the LHS of the resulting inequality. �

We now give a proof of the first two estimates in Proposition 5.23. These are based directly on the
multiplier calculations of the previous subsection. The last estimate (5.53) is more involved and will be the
topic of the next subsection.

Proof of estimate (5.51). For the purposes of showing estimate (5.52) next, it will help to prove a slightly
more informative version of (5.51). Let L,L be a negatively N-boosted null pair (according to Definition
5.18), and r1, r3 sufficiently close to rM so that Lemma 5.20 holds on a time independent neighborhood H
of Rt × [r1, r3] with r = rT to the exterior of H.

Next, we choose the X multiplier from line (5.46) with X−(r) = ϕ(r) where ϕ(r) is a smooth non-negative
function with ϕ ≡ 1 on [r1, r3], ϕ

′ 6 0, and ϕ ≡ 0 for r outside of H. Denote by S the space-time slab
{r > r1} × {0 6 t 6 T }, and by S(t0) the section {t = t0} ∩ S and similarly for S(r0). Then forming the
momentum density (X)P as on line (5.45), and integrating over the S, we have from Stokes’ theorem the
identity:

∫

S(t0)

ϕQTL

√
|h|drdVS2 +

∫

S(r1)

QRL

√
|h|dVS2dt+

1

2

∫

S

(X)πLL(Lφ)2
√
|h|drdVS2dt

+

∫

S

ϕr−2(−χ)(N − r−1)|/dφ|2
√
|h|drdVS2dt =

∫

S(0)

ϕQTL

√
|h|drdVS2 +

1

2

∫

S

r−2χϕ′|/dφ|2
√
|h|drdVS2dt

−
∫

S

ϕ✷0φLφ
√

|h|drdVS2dt .
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where we have set T = −∇t and R = ∇r = − 1
2χL− 1

2χL, which are the future pointing normals to t = 0, t0
and r = r1. Because the level sets t = const are uniformly space-like we also know that T = T+L + T−L
where T± ≈ 1 on the support of ϕ. Thus, for N > 0 sufficiently large, the previous identity yields the
following uniform estimate where the implicit constant does not depend r1, r2:

(5.54) ‖χ[r1,r3](Lφ, /dφ)|t=T ‖L2(drdV
S2

) + ‖
(
(rM − r1)

1
2Lφ, /dφ

)
|r=r1 ‖L2(dV

S2
dt)[0,T ]

+ ‖χ[r1,r3](Lφ, /dφ) ‖L2(drdV
S2
dt)[0,T ] . ‖χ[r3,rT ](r − rT )/dφ ‖L2(drdV

S2
dt)[0,T ]

+ ‖χ[r1,rT ](Lφ, /dφ)|t=0 ‖L2(drdV
S2
) + ‖χ[r1,rT ]✷

0φ ‖L2(drdV
S2

dt)[0,T ] .

Disregarding the first two terms on the LHS yields the desired result. �

Proof of estimate (5.52). Here we use the same setup as in the first paragraph of the previous proof. This
time we use the Y multiplier from line (5.46) with Y − = q(r) where q is a non-negative function such that
q′ = w2

kχ[r1,r2]. Thus we have the global bound C > q > c > 0 for some set of constants c, C. Applying

(5.45) with (Y )P yields:
∫

S(t0)

qQT0

√
|h|drdVS2 +

∫

S(r1)

qQR0

√
|h|dVS2dt+

1

2

∫

S

(−χ)q+w2
kχ[r1,r2](Lφ)

2
√
|h|dVS2drdt

=
1

2

∫

S

χq−w
2
kχ[r1,r2]|Lφ|2

√
|h|drdVS2dt+

∫

S(0)

qQT0

√
|h|drdVS2 −

∫

S

q✷0φ∂tφ
√

|h|drdVS2dt .

Expanding the boundary terms using part i) of Lemma 5.20 we get:

‖χ[r1,r2]wkLφ ‖L2(drdV
S2
dt)[0,T ] . ‖χ[r1,r2]wk(r − rM )Lφ ‖L2(drdV

S2
dt)[0,T ]

+ (rM − r1)
1
2 ‖χ[r1,rM ]Lφ|t=T ‖L2(drdV

S2
) + (rM − r1)

1
2 ‖

(
(rM − r1)

1
2Lφ, /dφ

)
|r=r1 ‖L2(dV

S2
dt)[0,T ]

+ ‖ (dφ, r−1/dφ)|t=0 ‖L2(drdV
S2

) + ǫ−1‖χ[r1,∞)wln✷
0φ ‖LE∗

0
[0,T ] + ǫ‖χ[r1,∞)(wln)

−1∂tφ ‖LE0[0,T ] .

By itself this estimate is not yet of the form (5.52). However, upon combination with (rM − r1)
1
2×(5.54)

the future boundary terms at t = T and r = r1 on the RHS of the last line above can be traded for the

space-time error (rM − r1)
1
2 ‖χ[r3,rT ](r − rT )/dφ ‖L2(drdV

S2
dt)[0,T ] which then yields the desired result. �

5.4. Proof of the main component estimate (5.53). This estimate is most easily recast in terms of the
Regge-Wheeler type coordinates of Lemma 5.21. We define the space LERW and ERW by:

‖φ ‖LERW [0,T ] = sup
j>0

‖ 2− 1
2
jχjφ ‖L2(dr∗dVS2

ds)[0,T ] ,

ERW (φ[s0]) = ‖
(
∂sφ, ∂r∗φ, r

− 3
2 (r − rM )

1
2 /dφ

)
|s=s0 ‖2L2(dr∗dVS2

) ,

where χj for j > 1 cuts off smoothly where |r∗| ≈ 2j , and where χ0 is supported where |r∗| . 1. For this
section all estimates will be in terms of a rescaled version of ✷0, which in Regge-Wheeler coordinates is:

✷
0
RW = −∂2s + ∂2r∗ + V (r∗) /∆ = −〈∂t, ∂t〉h✷0 , V = −r−2〈∂t, ∂t〉h .

Then our main estimate here reads:

Proposition 5.25 (Local energy decay estimates for ✷0
RW ). Let φ be a smooth function which vanishes for

r∗ → ±∞. Then one has the uniform bound:

(5.55) ‖
(
∂r∗φ, (wln)

−1∂sφ
)
‖LERW [0,T ] + ‖ (wln)

−1r−2(r − rM )
1
2 /dφ ‖L2[0,T ]

. E
1
2

RW (φ[0]) + ‖wln✷
0
RWφ ‖LE∗

RW
[0,T ] ,

where wln = (1 +
∣∣ ln |r∗|

∣∣)/
∣∣ ln(2 + |r∗|)

∣∣.
In addition, if φ is any spherically symmetric function, one has the following estimate uniform in r0∗ < −1:

(5.56) ‖χ[r0∗,∞)(∂sφ, ∂r∗φ) ‖LERW [0,T ] . ‖χ[2r0∗,r
0
∗]
(∂sφ, ∂r∗φ) ‖LERW [0,T ]

+ E
1
2

RW,r∗>2r0∗
(φ[0]) + ‖χ[2r0∗,∞)✷

0
RWφ ‖LE∗

RW
[0,T ] ,
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Before giving a proof we use these estimate to establish (5.53).

Proof that estimates (5.55) and (5.56) implies (5.53). Given a solution of✷0φ = G, will treat the spherically
symmetric part φ separately from the non-spherical part φ− φ.
Step 1:(Control of the spherical part) That (5.56) implies (5.53) for φ is an immediate consequence of the
coordinate asymptotics in parts i) and ii) of Lemma 5.21. First notice that by the asymptotic formulas of
part i) of Lemma 5.21 the null vector-field ∂s+∂r∗ is regular and non-vanishing up to r = rM in the original
(t, r) coordinates. Therefore we have that:

L = ∂s + ∂r∗ , L = Ω−2(∂s − ∂r∗) = O
(
r(r − rM )−1

)
(∂s − ∂r∗) ,

is a regular null pair throughout r > rM . Next, note that one has:

dsdr∗ =
dr∗
dr

dtdr = O
(
r(r − rM )−1

)
dtdr = O

(
Ω−2

)
dtdr .

Combining this with the asymptotics r∗ = A ln(r − rM ) +O(1) as r∗ → −∞ and r∗ = r +B ln(r) +O(r−1)
as r∗ → ∞, we see that:

‖wkχ[rM ,rT ]ψ ‖LE0
. ‖χ(−∞,0]ψ ‖LERW

. ‖w−kχ[rM ,rT ]ψ ‖LE0
,

‖χ[rT ,∞)ψ ‖(LE0,LE∗
0
) ≈ ‖χ[0,∞)ψ ‖(LERW ,LE∗

RW
) , ‖χ(−∞,0]ψ ‖LE∗

RW
. ‖w−kχ[rM ,rT ]ψ ‖LE∗

0
,

where the implicit constants depend on k > 1. In addition note that the logarithmic part of wk is essentially
constant when r∗ ≈ −2j, so it may be removed from the integral in the first term on the RHS of (5.56) above.
Finally, note that by standard local estimates one can control ERW,r∗>2r0∗

(φ[0]) in terms of the standard
energy Er>rM (φ[0]).
Step 2:(Control of the non-spherical part) For this we use exactly the same estimates as above with a slight
twist. We claim that for C > 0 sufficiently large one has the analogous bound to (5.56):

(5.57) ‖χ[r0∗,∞)

(
∂r∗(φ− φ), (wln)

−1∂s(φ− φ)
)
‖LERW [0,T ] + ‖χ[r0∗,∞)(wln)

−1r−2(r − rM )
1
2 /d(φ− φ) ‖L2[0,T ]

. ‖χ[2Cr0∗,r
0
∗]
∂r∗(φ− φ) ‖LERW [0,T ] + E

1
2

RW,r∗>2Cr0∗

(
(φ− φ)[0]

)
+ ‖χ[2Cr0∗,∞)✷

0
RW (φ− φ) ‖LE∗

RW
[0,T ] .

To prove it first apply (5.55) to the quantity χr∗>2Cr0∗
(φ − φ), where χr∗>2Cr0∗

≡ 1 for r∗ > Cr∗0 with
standard derivative bounds. This generates the above estimate modulo two errors:

(5.58) Error1 = ‖χ[2Cr0∗,Cr0∗]
〈r∗〉−1(φ−φ)(0) ‖L2 , Error2 = ‖χ[2Cr0∗,Cr0∗]

〈r∗〉−1(φ−φ) ‖LERW [0,T ] .

To handle these terms we use the sharp Hardy type estimates (7.72) and (7.73) of the Appendix respectively.
By an immediate application of (7.72) with s = 1 and p = 2, followed by the spherical Poincare estimate

(1.18) to control the undifferentiated term on the RHS, we have:

Error1 . E
1
2

RW,r∗>2Cr0∗

(
(φ− φ)[0]

)
.

To handle Error2 apply (7.73) with C = 2j−i and s = 1 which yields:

Error2 . C
1
2 ‖χ[−2Cr0∗,−r0∗]

∂r∗(φ− φ) ‖LE[0,T ] + C− 1
2

(
‖χ0/dφ ‖LE[0,T ] + ‖χ[−r0∗,−1]∂r∗(φ− φ) ‖LE[0,T ]

)
.

For C ≫ 1 the second term of the RHS above may safely be absorbed into the LHS of estimate (5.57). �

We now give the proofs for Proposition 5.25.

Proof of estimate (5.55). In light of the second estimate (5.56), which is independently proved below, we
may assume that φ = 0. The method is to combine the analysis of [5] with [16].
Step 1:(Proof of a degenerate local energy decay estimate) First we show that for all k > 1:

(5.59) ‖ 〈r∗〉−
1
2
k∂r∗φ ‖L2[0,T ] + ‖ (w1)

−1r−2(r − rM )
1
2 /dφ ‖L2[0,T ]

. C−1‖ ∂r∗φ ‖LERW [0,T ] + sup
06s6T

E
1
2

RW (φ[s]) + C‖✷0
RWφ ‖LE∗

RW
[0,T ] ,

where the implicit constant depends on k but is uniform in C > 0, and w1 = r(r − rT )
−1.
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For a C1(R) (but not necessarily smooth) function a(r∗) we form the operatorA = opw(iaξr∗) = a∂r∗+
1
2a

′.

Then for test functions φ we integrating the quantity ✷
0
RWφ ·Aφ over the space-time slab 0 6 t 6 T . After

some integration by parts we arrive at the Virial type identity (see Section 3 of [5] for further details):
∫ T

0

∫

R×S2

(
a′φ2r∗ − 1

4
a′′′φ2 − 1

2
aV ′|/dφ|2

)
dr∗dVS2ds = −

∫

R×S2

∂sφAφdr∗dVS2
∣∣∣
T

0
−
∫ T

0

∫

R×S2

✷
0
RWφAφdr∗dVS2ds .

Here a′′′ is interpreted in the sense of distributions if necessary. If we choose a so that:

(Assumption 1) a(r∗) ≈ r∗
1 + |r∗|

, a′(r∗) .
1

1 + |r∗|
,

then using the Hardy/Poincare estimate (7.72) with s = 1 and p = 2 the boundary terms at t = 0, T are
estimated by the energy. In addition, the non-negative weight −aV ′ is then consistent with estimate (5.59).
Thus, by using Young’s inequality to split the last term in the previous identity above, and then estimate
(7.72) with s = 3

2 and p = ∞ to bound a′φ in terms of ∂r∗φ and a local /dφ contribution (which may be
absorbed to the LHS), we have:

(5.60)

∫ T

0

∫

R×S2

(
a′φ2r∗ −

1

4
a′′′φ2

)
dr∗dVS2ds+ ‖ r−3(r − rT )(r − rM )

1
2 /dφ ‖2L2[0,T ]

. C−2‖ ∂r∗φ ‖2LERW [0,T ] + sup
06s6T

E(φ[s]) + C2‖✷0
RWφ ‖2LE∗

RW
[0,T ] .

To deal with the ∂r∗φ terms on the LHS of (5.60) we need to further constrain a. To see what is the
correct choice, first note that one has the following Hardy type inequality for smooth a and fixed λ > 0:

(5.61)

∫ (
a′′′ − λ

(a′′)2

a′

)
φ2dr∗ 6 λ−1

∫
a′φ2r∗dr∗ .

This follows at once from integrating ∂r∗(a
′′φ2) and then applying Young’s inequality to the term containing

φr∗ . From this we see that an ideal set of assumptions would be:

(Assumption 2) a′ ≈ 〈r∗〉−k ,

(Assumption 3)
(a′′)2

a′
6 γa′′′ , 0 < γ < 1 .

Taken together, and setting λ−1 = 2γ in (5.61), these assumptions would give the lower bound:

(5.62) cγ‖ 〈r∗〉−
1
2
k∂r∗φ ‖2L2(dr∗)

6 (1− γ)

∫
a′φ2r∗dr∗ 6

∫
(a′φ2r∗ −

1

4
a′′′φ2)dr∗ ,

which would be sufficient for our purposes.
Unfortunately it turns out that Assumptions 2 and 3 as stated are inconsistent with each other due to

inflections of a′. A natural way around this is to eliminate inflection points by working with a singular weight
a(r∗). In other words we trade Assumption 3 for the modification:

(Assumption 3’) a′(r∗) =
1

(1 + |ǫr∗|)k
,

in which case the original Assumption 3 holds for r∗ 6= 0 with γ = k
k+1 , and (5.61) still holds in the sense of

distributions. The difference now is that a′′′ contains a delta function, so (5.62) must be replaced by:

(1− γ)

∫
a′φ2r∗dr∗ 6

∫
(a′φ2r∗ − 1

4
a′′′φ2)dr∗ + ǫkφ2|r∗=0 .

The last term on the RHS is easily eliminated by the assumption that φ = 0 which gives:
∫

S2

φ2|r∗=0dVS2 . ‖χ0(∂r∗φ, r∗/dφ) ‖2L2(dr∗dVS2
) .

For ǫ≪ 1 sufficiently small this allows us to absorb φ2|r∗=0 and we arrive at (5.59).
Step 2:(Improvement of the weights on ∂r∗φ as r∗ → ±∞) Next, we improve estimate (5.59) to the following:

(5.63) ‖ ∂r∗φ ‖LERW [0,T ] + ‖ (w1)
−1r−2(r − rM )

1
2 /dφ ‖L2[0,T ] . sup

06s6T

E
1
2

RW (φ[s]) + ‖✷0
RWφ ‖LE∗

RW
[0,T ] .
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To prove this we integrate the quantities ✷
0
RWφ · a±j ∂r∗φ over the slabs 0 6 s 6 T , where we choose

(a±j )
′ = ±2−jχjχ±r∗>1 for j > 1 and a±j ≡ 0 in a neighborhood of r∗ = 0. This gives the bound:

‖χ|r∗|>2∂r∗φ ‖LERW [0,T ] . ‖χ|r∗|>1r
−2(r − rM )

1
2 /dφ ‖L2[0,T ]

+ ‖χ|r∗|<1∂r∗φ ‖L2[0,T ] + sup
06s6T

E
1
2 (φ[s]) + ‖✷0

RWφ ‖LE∗
RW

[0,T ] ,

which can be added safely into (5.59) in order to produce (5.63).
Step 3:(Removal of the future energy and addition of ∂sφ) Our goal here is the more complete estimate:

(5.64) ‖ ∂r∗φ ‖LERW [0,T ] + ‖ (w1)
−1∂sφ ‖LERW [0,T ] + ‖ (w1)

−1r−2(r − rM )
1
2 /dφ ‖L2[0,T ]

. E
1
2

RW (φ[0]) + ‖w1✷
0
RWφ ‖LE∗

RW
[0,T ] .

To prove this bound first note that by the usual calculations used to produce the conservation of energy
one has:

sup
06s6T

ERW (φ[s]) . ‖w1✷
0
RWφ ‖LE∗

RW
[0,T ]‖ (w1)

−1∂sφ ‖LERW [0,T ] .

On the other hand, to control the quantity ∂sφ one integrates 2−j(w1)
−2χjφ✷

0
RWφ over the slabs 0 6 s 6 T .

After some integration by parts, using Poincare/Hardy type estimates to bound undifferentiated terms and
boundary contributions, and then supping over j > 0, one has:

‖ (w1)
−1∂sφ ‖LERW [0,T ] . ‖ ∂r∗φ ‖LERW [0,T ] + ‖ (w1)

−1r−2(r − rM )
1
2 /dφ ‖L2[0,T ]

+ sup
06s6T

E
1
2

RW (φ[s]) + ‖✷0
RWφ ‖LE∗

RW
[0,T ] .

Adding the last two lines together with (5.63) yields (5.64).
Step 4:(Improvement of the local weight) Our final task is to establish (5.64) with the local weight w1

replaced by the weight wln as written in estimate (5.55) above. To do this we recall the main local estimate
of [16] which can be stated in the following form:

Proposition 5.26. The following two statements hold:

a) Let φ be a space-time function which is supported in the region |r∗| 6 C for some fixed C > 0. Then one
has the bound:

‖ ∂r∗φ ‖L2[0,T ] + ‖ (wln)
−1(∂sφ, /dφ) ‖L2[0,T ] . E

1
2 (φ[0]) + ‖wln✷

0
RWφ ‖L2[0,T ] .

b) Let f be a space-time supported in the region |r∗| 6 C for some fixed C > 0 with the property that
wlnf ∈ L2[0, T ]. Then there exists a function φ defined for s ∈ [0, T ] and supported in the region
|r∗| 6 2C such that ✷0

RWφ− f is supported away from |r∗| 6 1
2C and such that:

(5.65) sup
06s6T

E
1
2 (φ[s])+ ‖ ∂r∗φ ‖L2[0,T ]+ ‖ (wln)

−1(∂sφ, /dφ) ‖L2[0,T ]+ ‖✷0
RWφ− f ‖L2[0,T ].‖wlnf ‖L2[0,T ] .

For a proof of these bounds refer to parts a) and b) of Proposition 3.3 in [16]. Note that in both cases the
analysis is purely local and relies only on the structural assumption that the potential V (r∗) in the definition
of ✷0

RW has a unique positive non-degenerate local maximum at r∗ = 0.
To show that parts a) and b) of Proposition 5.26 imply (5.59) with local weight wln involves a series of

steps. First, one employs part b) to produce a φ̃ such that ✷0
RW φ̃−χ0✷

0
RWφ is supported away from r∗ = 0

with good L2 bounds, and such that (5.64) holds for φ̃ with w1 replaced by wln. Then one may apply (5.64)

to the remainder φ− φ̃ to show that (5.64) holds for φ with RHS norm containing wln instead of w1. Finally,
one replaces the weight (w1)

−1 on the LHS of this last bound with (wln)
−1 by applying part a) above to

χ0φ.
This concludes the proof of (5.55). �

Proof of estimate (5.56). Note that the spherical part of ✷0
RW is simply the 1D wave equation ✷ = −∂2s+∂2r∗ ,

for which it is easy to produce estimates of the form (5.56) via the multipliers χ(r0∗,±2j)∂r∗ , where r
0
∗ 6 −2j.

This is analogous to step 2 and step 3 of the previous proof. Further details are left to the reader. �

22



6. Local Energy Decay for Spin-Zero Fields Part II: Proof of the Main Estimate

Our main goal here is to prove Theorem 4.12 which we state again here for the convenience of the reader.

Theorem 6.27 (Inverse angular gradient local energy decay estimates). Let φ(t, r, xA) and H(t, r, xA) be
scalars, and let Ga(t, r, x

A) be a one form in (t, r) variables which also depends on the S
2 coordinates.

Suppose all of these quantities have no radial component::
∫

S2

φ(t, r)dVS2 =

∫

S2

H(t, r)dVS2 =

∫

S2

G(t, r)dVS2 ≡ 0 ,

throughout the region [0, T ]× [r0,∞). Finally, set ⋆hdG = K. If φ,G,H are all supported in {r 6 CT } and

(6.66) ✷
0φ = ∇aGa +H ,

then one has the estimate:

‖ (wln)
−1

(
d(− /∆)−

1
2φ, r−1φ

)
‖LE0[0,T ] . ‖ (− /∆)−

1
2

(
dφ(0)−G(0)

)
‖L2(drdV

S2
) + ‖ r−1φ(0) ‖L2(drdV

S2
)

+ ‖wln

(
r−1G, (− /∆)−

1
2K, (− /∆)−

1
2H

)
‖LE∗

0
[0,T ] .

(6.67)

The main step in the proof is the following elliptic result:

Proposition 6.28. Let G be as in the theorem. Then there exists a function φ̃ in [0, T ]× [r0,∞), with no
radial component, satisfying the following estimates:

‖ r−1
(
dφ̃, r−1φ̃, r−1/dφ̃

)
‖LS∗

0
[0,T ] + ‖ (− /∆)−

1
2∇r,t(G− dφ̃) ‖LS∗

0
[0,T ] . ‖

(
r−1G, (− /∆)−

1
2K

)
‖LS∗

0
[0,T ],(6.68)

‖wlnr
−2/dφ̃ ‖LS∗

0 [0,T ] + ‖wln(− /∆)−
1
2∇r,t(G− dφ̃) ‖LS∗

0 [0,T ] . ‖wln

(
r−1G, (− /∆)−

1
2K

)
‖LS∗

0 [0,T ].(6.69)

We first use the proposition to prove Theorem 6.27. This is achieved by applying the bound (5.36) to the

function ψ = ∆− 1
2 (φ − φ̃). The left hand side of (6.67) is controlled by the left hand side of (5.36) applied

to ψ and the first term on the left hand side of (6.68). It remains to estimate the right hand side of (5.36)
applied to ψ.

For the energy part E
1
2 (ψ[0]) we use the trace estimate (7.74) of Lemma 7.30 below. Note it is precisely

here that truncation to r 6 CT is used. Estimating φ̃ and dφ̃ − G in this way we obtain from (6.68) the
following bound:

‖ (− /∆)−
1
2

(
dφ̃(0)−G(0)

)
‖L2(drdV

S2
) + ‖ r−1φ̃(0) ‖L2(drdV

S2
) . ‖

(
r−1G, (− /∆)−

1
2K

)
‖LE∗

0
[0,T ] ,

which is combined with the energy component of the right hand side of (6.67). It remains to estimate
‖✷0ψ‖LE∗

0
, for which we compute:

✷
0ψ = (− /∆)−

1
2 (∇aGa +H)− (− /∆)−

1
2 (∇a∇a + r−2 /∆)φ̃ ,

= (− /∆)−
1
2∇a(Ga −∇aφ̃) + r−2(− /∆)

1
2 φ̃+ (− /∆)−

1
2H .

and use the bound (6.69) for the first two terms.

Proof of Proposition 6.28. We observe that the proposition has no reference to the metric h. We begin with
several simplifications.
Step 1: Using a radial partition of unit, we reduce the problem to the case when we know that G is
supported in a dyadic annulus {r ≈ R}, R & 1, and we seek ψ̃ with support in a slightly enlarged annulus.
Step 2: Secondly, given R & 1, we use a partition of unit in time on the R scale to reduce the problem to
the case when G is supported in a dyadic annulus {r ≈ R} and a time interval of size δT ≈ R and we seek

ψ̃ with support in a similar but slightly enlarged region.
Step 3: We rescale the problem to the unit scale in t and r. Then matters are reduced to the next lemma.

�
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Lemma 6.29. Let G be a one form in (t, r) variables in [0,∞)× [0,∞)× S
2 which is supported in [0, 1]×

[0, 1]× S
2. Then there exists a function ψ̃ in [0,∞)× [0,∞)× S

2, supported in [0, 2]× [0, 2]× S
2, so that the

following estimates hold:

‖φ̃‖H1 + ‖(− /∆)−
1
2∇r,t(G− dφ̃)‖L2 . ‖G‖L2 + ‖(− /∆)−

1
2 dG‖L2 ,(6.70)

‖wln(− /∆)
1
2 φ̃‖L2 + ‖wln(− /∆)−

1
2∇r,t(G− dφ̃)‖L2 . ‖wlnG‖L2 + ‖wln(− /∆)−

1
2 dG‖L2 .(6.71)

where the logarithmic weight wln is now centered at r = 1
2 .

We remark that the lemma includes both the case when G is compactly supported, and the cases when
we have either a t = const boundary or an r = const boundary or both.

Proof. In all cases, we reduce the problem to the boundaryless case by taking suitable even/odd extensions
of the components of G to the other three quadrants in the (r, t) plane. Now we have the (t, r) 1-form G
with variables R× R× S

2 supported in [−1, 1]× [−1, 1]× S
2.

Using the euclidean metric in (t, r) we define φ̃ by:

φ̃ = χ(r, t)φ̃0 , φ̃0 = (−∆r,t − /∆)−1d⋆G ,

where χ is a smooth cutoff supported in [−2, 2]× [−2, 2] and which equals 1 in [−1, 1]× [−1, 1].
Then:

G− dφ̃ = χG0 − φ̃dχ ,

where:

G̃ = G− dφ̃0 = (1 +∆r,t(−∆r,t − /∆)−1)G+ (−∆r,t − /∆)−1d⋆dG ,

= − /∆(−∆r,t − /∆)−1G+ (−∆r,t − /∆)−1d⋆dG .

Then we have the straightforward bounds:

‖φ̃0‖H1 . ‖G‖L2 ,

‖(− /∆)−
1
2 G̃‖H1 . ‖G‖L2 + ‖(− /∆)−

1
2 dG‖L2 .

and the estimate (6.70) follows after truncation.
For the bound (6.71) we need the following weighted versions of the above estimates:

‖wln(− /∆)
1
2 φ̃0‖L2 . ‖wlnG‖L2 ,

‖wln(− /∆)−
1
2∇r,tG̃‖L2 . ‖wlnG‖L2 + ‖wln(− /∆)−

1
2 dG‖L2 .

These in turn correspond to the L2
wln

boundedness of the singular integral operators /∆(−∆r,t − /∆)−1,

respectively (− /∆)
1
2∇r,t(−∆r,t − /∆)−1. But this can be easily handled within the context of Ap weights, see

for example Chapter V of [19]. �

7. Appendix: Some Hardy and Poincare Type Estimates

This section contains some auxiliary estimates needed for some of the proofs in the main body of the
paper. They are collected here for the convenience of the reader.

To state the estimates denote by χj the indicator function (sharp cutoff) of 2j 6 |x| 6 2j+1.

Lemma 7.30 (Hardy and Poincare estimates). Let ψ be a function on R × S
2. Then one has the pair of

uniform bounds for 1 6 p 6 ∞ and 0 6 i 6 j, and implicit constant depending on s > 1
2 :

‖ 〈x〉−sψ ‖ℓpL2(|x|62j) . ‖χ0ψ ‖L2 + ‖ 〈x〉1−s∂xψ ‖ℓpL2(|x|62j) ,(7.72)

‖χj〈x〉−sψ ‖L2 . 2(
1
2
−s)(j−i)

(
‖χ0ψ ‖L2 + ‖ 〈x〉1−s∂xψ ‖ℓ∞L2(|x|62i)

)
(7.73)

+ 2(s−
1
2
)(j−i)‖ 〈x〉1−s∂xψ ‖ℓ∞L2(2i6|x|62j+1) .

Here ‖ψ ‖p
ℓpL2 = ‖ψ ‖p

L2(|x|<1) +
∑

j>0 ‖χjψ ‖p
L2 (with standard modification for p = ∞), where the integra-

tion is with respect to dxdVS2 . Similar estimates hold when ψ is also a function of t and the integrals are
with respect to dxdVS2dt.
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In addition, let G be a space-time function (variables (t, r, xA)) defined on the slab r > r0 and 0 6 t 6 T .
Then one has the uniform bound:

(7.74) sup
t∈[0,T ]

‖G(t) ‖L2(drdV
S2

)[r0,∞) . ‖
(
T− 1

2G, r−
1
2G, r

1
2 ∂tG

)
‖L2(drdV

S2
dt)[0,T ]×[r0,∞) .

Proof of estimates (7.72) and (7.73). Set χ according to χ′ = −2−kχk + χ0 and vanishing at infinity. Then
χ ≡ 0 for |x| > 2k+1 and |x| 6 1, and |χ| 6 1 throughout R. Integrating the quantity ∂x(χψ

2) with respect
to dxdVS2 or dxdVS2dt, multiplying the result by 2(1−2s)k, and taking the square root we have the uniform
bound:

‖χk〈x〉−sψ ‖L2 . 2(
1
2
−s)k‖χ0ψ ‖L2 + 2(

1
2
−s)k‖ψ∂xψ ‖

1
2

L1(16|x|62k+1)
, s ∈ R , k > 0 .(7.75)

For the second term on the RHS above we have:

(7.76) 2(
1
2
−s)k‖ψ∂xψ ‖

1
2

L1(16|x|62k+1)
.

∑

06k′6k

2(
1
2
−s)(k−k′)‖χk′〈x〉−sψ ‖

1
2

L2‖χk′〈x〉1−s∂xψ ‖
1
2

L2 .

The proof of (7.72) follows at once by summing (7.75) over 0 6 k 6 j and using then using (7.76). To

bound the RHS of (7.76) summed over k we use Young’s convolution inequality 2(
1
2
−s)|k−k′| ∗ ℓpk′ ⊆ ℓpk for

s > 1
2 and then ‖

√
ab ‖ℓp 6 ǫ‖ a ‖ℓp + ǫ−1‖ b ‖ℓp for sequences a = (ak) and b = (bk). This produces an

estimate for ‖ 〈x〉−sψ ‖ℓpL2(16|x|62j) with upper bound RHS(7.72). To fill in |x| 6 1 one uses a standard
Sobolev embedding.

It remains to show (7.73). Starting with (7.75) for k = j followed by (7.76), we break the sum of RHS(7.76)
into 0 6 k′ 6 i and i 6 k′ 6 j. Following the same procedure of the previous paragraph and using (7.72)
to estimate the resulting undifferentiated term, the sum in the first range is bounded by the first term on
RHS(7.73). For the second range we use the dyadic weight to sum in ℓ1 followed by:

(7.77) ‖ 〈x〉−sψ ‖
1
2

ℓ∞L2(2i6|x|62j+1)‖ 〈x〉
1−s∂xψ ‖

1
2

ℓ∞L2(2i6|x|62j+1)

6 2(
1
2
−s)(j−i)‖ 〈x〉−sψ ‖ℓ∞L2(2i6|x|62j+1) + 2(s−

1
2
)(j−i)‖ 〈x〉1−s∂xψ ‖ℓ∞L2(2i6|x|62j+1) .

For the first term on the RHS above we again use (7.72).
�

Proof of estimate (7.74). By the pigeon-hole principle there exists t0 ∈ [0, T ] such that:

‖G(t0) ‖L2(drdV
S2
)[r0,∞) 6 T− 1

2 ‖G ‖L2(drdV
S2
dt)[0,T ]×[r0,∞) .

Then using the fundamental theorem of calculus and integrating on [t0, t] we have:

‖G(t) ‖2L2(drdV
S2

)[r0,∞) 6 T−1‖G ‖2L2(drdV
S2
dt)[0,T ]×[r0,∞) + 2

∣∣∣
∫ t

t0

∫

[r0,∞)×S2

G∂tGdrdVS2dt
∣∣∣ .

Estimate (7.74) follows immediately from Young’s inequality applied to the last line. �
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