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Abstract

We consider Constant Proportion Portfolio Insurance (CPPI) and its dynamic exten-
sion, which may be called Dynamic Proportion Portfolio Insurance (DPPI). It is shown
that these investment strategies work within the setting of Föllmer’s pathwise Itô calcu-
lus, which makes no probabilistic assumptions whatsoever. This shows, on the one hand,
that CPPI and DPPI are completely independent of any choice of a particular model for
the dynamics of asset prices. They even make sense beyond the class of semimartingale
sample paths and can be successfully defined for models admitting arbitrage, including
some models based on fractional Brownian motion. On the other hand, the result can be
seen as a case study for the general issue of robustness in the face of model uncertainty
in finance.

1 Introduction

The purpose of this paper is twofold. On the one hand, it deals with Constant Proportion
Portfolio Insurance (CPPI) and its dynamic extension, which may be called Dynamic Propor-
tion Portfolio Insurance (DPPI). On the other hand, it deals with the general issues of model
uncertainty and model risk in finance by presenting a case study in which a problem of dynamic
trading can be solved in a probability-free manner.

Constant Proportion Portfolio Insurance (CPPI) was first studied by Perold [24], Black and
Jones [6], and Black and Perold [7]. It provides a strategy that yields superlinear participation
in future asset returns while retaining a security guarantee on a part of the invested capital
(“the floor”). In the Black & Scholes framework, which is the basis for most academic studies on
CPPI, constructing a CPPI strategy is equivalent to hedging a certain power option. Moreover,
in this framework, the CPPI strategy has no gap risk in the sense that its value stays above
the floor with probability one. On the other hand, Cont and Tankov [12], Balder et al. [2], and
Paulot and Lacroze [23] show that the CPPI strategy may break through the floor in incomplete
market models in which asset prices may jump or in which the portfolio may only be rebalanced
at a finite number of trading dates. In this sense, the CPPI strategy may fail in these settings,
and one is faced with the question of quantifying the resulting gap risk, which is important in
practice [2, 12, 23].
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The failure of the CPPI strategy in the incomplete market models of [2, 12, 23] on the one
hand, and the absence of gap risk in the complete Black & Scholes framework on the other
hand, raise the question whether the completeness of the underlying market model is related
to the possible nonexistence of gap risk. More generally, one may ask which model features are
crucial for setting up a CPPI strategy:

• Can one choose every general semimartingale model?

• What is the role of arbitrage? In particular, must the underlying market model be
arbitrage-free to set up the CPPI strategy?

• If absence of arbitrage is not essential, can one even go beyond the class of general
semimartingale models and allow for fractal or fractional models such as those in [4, 10,
25, 27]?

• Are there other sources for gap risk apart from jumps in asset prices or discrete rebalancing
times?

In this paper, we address all these questions by considering CPPI in the probability-free
setting of Föllmer’s pathwise Itô calculus [15]; see also [3, 5, 14, 16, 18, 26, 28]. In this frame-
work, the dynamics of asset prices are simply described by a single trajectory satisfying a few
basic assumptions. In particular, this framework does not postulate any probabilistic mecha-
nism that governs the choice of a particular price evolution. All that is required from the price
trajectory of a risky asset is that it is continuous and admits a continuous quadratic variation
in a pathwise sense. These two conditions are satisfied, in particular, by the typical sample
paths of any continuous semimartingale, regardless of whether the semimartingale admits an
equivalent martingale measure or not. A continuous quadratic variation exists even for a much
larger class of trajectories than the class of semimartingale sample paths. An example are
the typical sample paths of fractional Brownian motion with Hurst index H > 1

2
, which have

vanishing quadratic variation. It is perhaps interesting to note here that vanishing quadratic
variation immediately yields the existence of arbitrage opportunities via a simple application
of Föllmer’s pathwise Itô formula to the function f(x) = x2; see [16] or [18, Section 5.1].

Our first main result will show that, in this very general context, CPPI can be defined as
a self-financing trading strategy and that CPPI has no gap risk in the the sense that its value
always stays above the floor. This means in particular that neither the completeness nor the
absence of arbitrage play any role in the definition of CPPI and for the possible existence of
gap risk. Gap risk is therefore exclusively generated by jumps in the asset price dynamics or
by constraints on the rebalancing times of the portfolio.

Our second main result concerns a dynamic extension of the CPPI strategy in which the
multiplier level may depend on quantities including time and price evolution. While the pos-
sibility of such a Dynamic Proportion Portfolio Insurance (DPPI) has been mentioned several
times in the literature, the author was unable to find any corresponding mathematical analysis.
Here we treat DPPI in the same strictly pathwise framework as CPPI. We show that in this
framework DPPI can always be defined as a self-financing trading strategy and that its value
never breaks through the floor.

The beauty of Föllmer’s pathwise approach to continuous-time trading lies in the fact that
just one single price trajectory is needed. This corresponds to the reality of financial markets,
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where prices are given only once and the “experiment” of pricing a given asset in a specific
state of the world can never be repeated. A proponent of the frequentist interpretation of
probability may thus argue that it is therefore anyway impossible to measure the “objective”
probability law according to which market scenarios are selected. But even if one does not
share such a strong view on the interpretation of probabilistic models of price evolutions,
one will still feel compelled to acknowledge that the complexity of economic dynamics will
make it practically impossible to accurately describe the probability law of the price evolution.
That is, probabilistic models are subject to Knightian uncertainty and the resulting model
risk [21]. In recent years, the issue of Knightian uncertainty in finance has received increasing
attention; see, e.g., [8, 11, 13, 17, 19, 20, 22] and [18, Section 5]. In this context, the pathwise
approach is remarkable as it completely avoids the choice of a probabilistic model. It was known
previously that, for example, hedging strategies for variance swaps and related derivatives could
be constructed within this pathwise framework [14, 18]. The present paper now adds that also
CPPI strategies can be constructed in a purely pathwise manner, so that our result can also
be viewed as a case study in model uncertainty.

In the subsequent Section 2 we first recall some basic facts about Föllmer’s pathwise Itô
calculus and its financial implementation. Our main results on CPPI and DPPI strategies
are stated in Theorems 5 and 7, respectively. The proofs of these results are based on the
associativity of Föllmer’s pathwise Itô integral, which is a result of independent interest. It is
stated, among some other facts on pathwise Itô calculus, in Section 3. The proofs of Theorems 5
and 7 are given in Section 4.

2 Statement of results

Constant Proportion Portfolio Insurance (CPPI) is a self-financing investment strategy that
allows for a superlinear participation in future assert returns while simultaneously retaining a
guaranteed capital level. In the academic literature, this strategy has so far been discussed
within various probabilistic models for the evolution of the price process. A common feature of
these studies is that price processes are assumed to be semimartingales and market models are
often taken as complete. Yet, it is a well-known fact that in a financial context the choice of a
probabilistic model is typically itself subject to Knightian uncertainty; see, e.g., [18, Section 5].
Our goal in this paper is to show that this restriction to probabilistic semimartingale models
is unnecessary in the case of CPPI strategies. We will show that the strategy works in a
strictly pathwise setting that not only includes all continuous semimartingales but also applies
to the sample paths of many stochastic processes that are not semimartingales such as price
processes based on fractional Brownian motion. More precisely, we will work in a probability-
free framework that is based on Föllmer’s pathwise Itô calculus [15]. In the context of a financial
market model, this pathwise Itô calculus has been applied to the hedging of derivatives in [5]
and [16]; see also [28] for an introduction and [18, Section 5.1] for a short, recent survey.

The beauty of the probability-free framework is to assume just one price trajectory as given.
We assume that this trajectory includes two assets, a locally riskless bond and a risky asset.
Bond prices are described by

Bt = exp
(∫ t

0

rs ds
)
, (1)
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where r : [0,∞) → R is measurable and satisfies
∫ t

0
|rs| ds < ∞ for all t > 0. Prices of the risky

asset are modeled by a single continuous function S : [0,∞) → (0,∞).
In discrete time, trading is possible at time points 0 = t0 < t1 < · · · , and we assume

that limn tn = +∞. The set T = {t0, t1, . . . } is the corresponding time grid. Continuous-time
trading needs to be defined in terms of an approximation from discrete time. To this end, we fix
a sequence (TN)N∈N of time grids satisfying T1 ⊂ T2 ⊂ · · · and limN supti∈TN

|ti+1− ti| = 0. An
example of such a sequence is provided by the dyadic time grids, TN = {k2−N | k = 0, 1, . . . }.
Following Föllmer [15], we will say that a continuous trajectory X : [0,∞) → R has continuous
quadratic variation [X ] along the sequence (TN) if for each t > 0 the limit

[X ]t := lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

(
Xti+1

−Xti

)2
(2)

exists, and if t 7→ [X ]t becomes a continuous function on [0,∞) for the choice [X ]0 = 0. Note
that t 7→ [X ]t is nondecreasing and hence locally of finite variation. The existence of the
continuous quadratic variation [X ] along (TN) guarantees that X can serve as an integrator in
Föllmer’s pathwise Itô calculus [15]. We state below the corresponding pathwise Itô formula in
the form in which it will be needed for the statement of our results on CPPI. Their proofs will
require a more general, multidimensional version, which is given in Section 3.

The class C1,2(Rn×R) will consist of all functions f(a, x) that are continuously differentiable
in (a, x) ∈ R

n × R and twice continuously differentiable in x ∈ R. We will write fak for the
partial derivative of f with respect to the kth coordinate of the vector a = (a1, . . . , an) and fx
and fxx for the first and second partial derivatives with respect to x.

Theorem 1 (Föllmer [15]). Suppose that the continuous trajectory X admits the continuous
quadratic variation [X ] along (TN ), that A : [0,∞) → R

n is a continuous function whose
components are locally of finite variation, and that f ∈ C1,2(Rn × R). Then

f(At, Xt) − f(A0, X0) =

n∑

k=1

∫ t

0

fak(As, Xs) dA
k
s +

∫ t

0

fx(As, Xs) dXs +
1

2

∫ t

0

fxx(As, Xs) d[X ]s,

where
∫ t

0
fak(As, Xs) dA

k
s and

∫ t

0
fxx(As, Xs) d[X ]s are taken in the usual sense of Riemann–

Stieltjes integrals and the pathwise Itô integral
∫ t

0
fx(As, Xs) dXs is given by the following limit

of nonanticipative Riemann sums:
∫ t

0

fx(As, Xs) dXs = lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

fx(Ati , Xti)(Xti+1
−Xti). (3)

The preceding theorem implies in particular the existence of the pathwise Itô integral (3).
We therefore can define a class of admissible integrands:

Definition 2. Suppose that the continuous trajectory X admits the continuous quadratic
variation [X ] along (TN). A real-valued function t 7→ ξt is called an admissible integrand for
X if for each T > 0 there exists n ∈ N, a function g ∈ C1(Rn+1), and a continuous function
A : [0,∞) → R

n whose components are of finite variation on [0, T ] such that ξt = g(At, Xt) for
0 ≤ t ≤ T .
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When ξ is an admissible integrand for X and g and A are as in Definition 2, then f(a, x) :=∫ x

0
g(a, y) dy belongs to C1,2(Rn × R), and Theorem 1 implies that the Itô integral

∫ t

0

fx(As, Xs) dXs =

∫ t

0

g(As, Xs) dXs =

∫ t

0

ξs dXs

can be defined through the limit on the right-hand side of (3).

Let us now return to our financial context, in which bond prices are given by (1) and prices
of the risky asset are modeled by a continuous path S : [0,∞) → (0,∞). We will assume from
now on that S admits the continuous quadratic variation [S] along (TN). A trading strategy
will be a pair (ξ, η) of of functions [0,∞), where ξt describes the number of shares in the risky
asset that are held at time t, while ηt stands for the number of shares in the bond. Using
pathwise Itô calculus, we can now define the notion of a self-financing trading strategy:

Definition 3. Let (ξ, η) be a pair of real-valued measurable functions such that ξ is an admis-
sible integrand for S and

∫ t

0
|ηsrs| ds < ∞ for all t ≥ 0. The pair (ξ, η) is called a self-financing

strategy if the corresponding portfolio value,

Vt := ξtSt + ηtBt, t ≥ 0,

satisfies the identity

Vt = V0 +

∫ t

0

ξs dSs +

∫ t

0

ηs dBs, t ≥ 0.

Remark 4. In the preceding definition, trading strategies are based on the notion of admis-
sible integrands introduced in Definition 2. It is worth pointing out that this notion allows
for a large class of integrands, which, for instance, includes the delta hedging strategies for
many practically relevant exotic and plain-vanilla options in Markovian market models such
as geometric Brownian motion or local volatility; see [26]. Moreover, for A in Definition 2
one can take a continuous function of moving averages, t 7→

∫ t

(t−δ)+
Ss ds, or running maxima,

t 7→ max(t−δ)+≤s≤t Ss, because these are continuous functions of t with finite variation on every
interval [0, T ].

We can now proceed toward defining the CPPI strategy in our model-free setting. At time
t = 0, one is given the initial capital V0 > 0, a security level α ∈ [0, 1], and a multiplier m > 0.
The security level specifies the proportion of the initial capital that one is not willing to risk.
That is, the portfolio value should never fall below the floor αV0Bt, which one would have
attained by investing the fraction αV0 of the initial capital into the bond right from the start.
Now suppose that the portfolio value Vt of the CPPI strategy at time t is already given. The
amount

Ct := Vt − αV0Bt (4)

by which the portfolio value exceeds the floor αV0Bt is called the cushion. The cushion should
always be nonnegative so that the amount Vt is indeed bounded from below by αV0Bt at any
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time. In executing a CPPI strategy we invest a multiple m > 0 of the cushion into the risky
asset. That means that we should have

ξt :=
mCt

St

. (5)

The remaining capital is invested into the riskless asset, i.e.,

ηt =
Vt − ξtSt

Bt

=
Vt −mCt

Bt

. (6)

Note that we can have mCt > Vt, which means that it is possible that the CPPI strategy does
not include any risk-free investment and, instead, is short in cash. The formulas (5) and (6)
provide a feedback description of the CPPI strategy. It is, however, not clear a priori that
this feedback description gives rise to a self-financing strategy. More precisely, the following
question arises:

• Does there exist a self-financing strategy (ξ, η) whose portfolio value Vt = ξtSt + ηtBt is
such that the identities (4), (5), and (6) hold?

When this question can be answered affirmatively, the following two questions arise:

• Is the CPPI strategy free of gap risk? That is, does the portfolio value Vt of the CPPI
strategy always exceed the floor αV0Bt or, equivalently, do we have Ct ≥ 0 for all t ≥ 0?

• Are CPPI strategies unique in the sense that there can be at most one unique self-financing
strategy (ξ, η) such that (4), (5), and (6) hold?

Our first main results yields that all three questions can be answered affirmatively. In view of
the generality of our setup, this result implies in particular that notions of market completeness
or absence of arbitrage are not needed for CPPI to work. It also follows that gap risk is not
caused by issues such as market incompleteness. Gap risk only results when one is not able
to instantaneously adjust the portfolio in response to asset price changes, as it occurs in the
presence of jumps [12] or under constraints on the available trading dates [2, 23].

Theorem 5. For given V0 ≥ 0, α ∈ [0, 1], and m > 0, we define

Ct = (1 − α)V0

(St

S0

)m

B1−m
t e−

1

2
m(m−1)[log S]t (7)

and
Vt := Ct + αV0Bt. (8)

Then the equations (4), (5), and (6) define a self-financing strategy (ξ, η) with associated port-
folio value V . In particular the CPPI strategy has no gap risk in the sense that its portfolio
value always stays above the floor:

Vt ≥ αV0Bt for all t ≥ 0.

Moreover, (ξ, η) is the unique self-financing trading strategy for which (4), (5), and (6) are
satisfied.
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Remark 6. It is interesting to analyze the various terms in (7) in regards of their contributions
to the return of the CPPI strategy. In a Black–Scholes setting, which provides the framework
for most academic studies on CPPI strategies, Bt and [logS]t are deterministic quantities and
can be treated as constants when t is fixed. Therefore the performance of the CPPI strategy can
be described as a constant times the mth power, (St/S0)

m, of asset returns. This view, however,
conceals some of the downside risks that are associated with volatile model parameters. The
impact of volatile interest rates is described by the term B1−m

t , which, for the common case
m > 1, will decrease returns when interest rates go up. Next, the term e−

1

2
m(m−1)[log S]t describes

the influence of volatility on the return of the CPPI strategy, because

[log S]t = lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

(
log Sti+1

− logSti

)2
(9)

is often called the realized variance of S. The reason for this terminology is the fact that an
approximating sum on the right-hand side of (9) can be regarded as the payoff of a variance swap
with maturity t; see [9]. Moreover, it follows from [28, Proposition 2.2.10] that [log S]t =

∫ t

0
σ2
s ds

when d[S]t = σ2
tS

2
t dt. Formula (7) thus states that an increase in realized variance adversely

impacts returns by way of the exponential function x 7→ e−
1

2
m(m−1)x.

Theorem 5 is in fact a corollary of our following, more general result. It deals with the
situation in which the multiplier m is not chosen as a constant but may vary in time. Such an
extension to Dynamic Proportion Portfolio Insurance (DPPI) is natural, because the multiplier
m in the CPPI strategy can be regarded as a measure for the leverage of the CPPI investment
strategy, and one may wish to choose varying amounts of leverage over time. For instance for
a pension fund with a fixed retirement date it can make sense to start off with a high leverage
and to revert to a more conservative, lower leverage factor as retirement approaches. Moreover,
leverage should be allowed to depend on the current spot, interest rates, and on performance
indicators such as realized variance, moving averages, or running maxima. We model this
dynamic adjustment of leverage by a continuous multiplier function mt ≥ 0. As before, when
a security level α ∈ [0, 1] and the value of the investment strategy Vt at time t are given, we
define the cushion Ct by

Ct = Vt − αV0Bt ≥ 0 (10)

and make the following respective allocations into risky asset and bond:

ξt =
mtCt

St

and ηt =
Vt − ξtSt

Bt

=
Vt −mtCt

Bt

. (11)

Theorem 7. Suppose that α ∈ [0, 1] and V0 ≥ 0 are given and that mt is an admissible
integrand for S. Then mt/St is an admissible integrand for S. If we define

Ct := (1 − α)V0 exp

(∫ t

0

ms

Ss

dSs −
1

2

∫ t

0

m2
s

S2
s

d[S]s +

∫ t

0

(1 −ms)rs ds

)
(12)

and
Vt := Ct + αV0Bt, (13)
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then (10) and (11) defines a self-financing trading strategy with portfolio value V . In particular,
the DPPI strategy has no gap risk in the sense that its value never breaks through the floor:

Vt ≥ αV0Bt for all t ≥ 0.

Moreover, (ξ, η) is the unique self-financing trading strategy for which (10) and (11) are satis-
fied.

3 Complements on Föllmer’s pathwise Itô calculus

Pathwise Itô calculus goes back to Föllmer [15], where a strictly pathwise Itô formula was
proved. This topic was further developed in the lectures of Hans Föllmer, some of which
form the basis of the book [28]. The proofs of Theorems 5 and 7 require some techniques
in pathwise Itô calculus that go beyond the material in [15, 28]. In particular, we need the
so-called associativity of the pathwise Itô integral. This property is stated in Theorem 13 and
is of independent interest.

The statements of Theorems 5 and 7 involve only the pathwise Itô formula in the one-
dimensional form of Theorem 1; their proofs and Theorem 13 require a d-dimensional integrator
Xt = (X1

t , . . . , X
d
t ). So let us recall the pathwise Itô formula in the multidimensional form in

which it will henceforth be needed. To enhance the readability, we will write multidimensional
objects in boldface type.

We fix a sequence (TN )N∈N of time grids satisfying T1 ⊂ T2 ⊂ · · · and limN supti∈TN
|ti+1−

ti| = 0. We moreover suppose that X : [0,∞) → R
d is continuous and that for all k and m the

real-valued path Xk
t + Xm

t has continuous quadratic variation [Xk + Xm]. This assumption is
equivalent to the existence of the covariation of Xk and Xm defined by

[Xk, Xm]t :=
1

2

(
[Xk + Xm]t − [Xk]t − [Xm]t

)

= lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

(
Xk

ti+1
−Xk

ti

)(
Xm

ti+1
−Xm

ti

)
. (14)

Here the latter identity follows by polarization of the corresponding sums in (2). Clearly, [Xk]
exists as 1

4
[Xk +Xk]. Note that [Xk, Xm]t is locally of finite variation as a function of t, because

it is the difference of the nonincreasing functions [Xk + Xm]t and [Xk]t + [Xm]t.

Remark 8. We will need the following facts that easily follow from Propositions 2.2.2, 2.2.9,
and 2.3.2 in [28]. Suppose that Y is continuous and admits the continuous quadratic variation
[Y ] along (TN ) and A is continuous and locally of finite variation. Then both [A] and [Y + A]
exist along (TN ) and are given by [A] = 0 and [Y + A] = [Y ]. By means of the polarization
identity (14) we get moreover that [Y,A] = 0.

The class C1,2(Rn × R
d) will consist of all functions f(a,x) that are continuously differen-

tiable in (a,x) ∈ R
n×R

d and twice continuously differentiable in x ∈ R
d. We will write fak for
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the partial derivative of f with respect to the kth component of a = (a1, . . . , an). The gradient
of f in direction x = (x1, . . . , xd) will be denoted by

∇xf =
( ∂f

∂x1
, . . . ,

∂f

∂xd

)
,

and we will write fxkxm for the second partial derivatives with respect to the components xk

and xm of the vector x. The Euclidean inner product of two vectors x and y will be denoted
by x · y.

Theorem 9 (Föllmer [15]). Suppose that the continuous trajectory X : [0,∞) → R
d admits

for all k and m the continuous covariation [Xk, Xm] along (TN ), that A : [0,∞) → R
n is a

continuous function whose components are locally of finite variation, and that f ∈ C1,2(Rn×R
d).

Then

f(At,Xt) − f(A0,X0) =

∫ t

0

∇xf(As,Xs) dXs +

n∑

k=1

∫ t

0

fak(As,Xs) dA
k
s

+
1

2

d∑

k,m=1

∫ t

0

fxkxm(As,Xs) d[Xk, Xm]s,

where
∫ t

0
fak(As,Xs) dA

k
s and

∫ t

0
fxkxm(As,Xs) d[Xk, Xm]s are taken in the usual sense of

Stieltjes integrals and the pathwise Itô integral is given by the following limit of nonantici-
pative Riemann sums:

∫ t

0

∇xf(As,Xs) dXs = lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

∇xf(Ati ,Xti) · (Xti+1
−Xti). (15)

Proof. For f ∈ C2(Rn+d) the result follows from Remarque 1 in [15] and by noting that the
quadratic variations [Ak] and covariations [Ak, Aℓ] and [Ak, X i] (k, ℓ = 1, . . . , n, i = 1 . . . , d)
vanish identically according to Remark 8. The extension to f ∈ C1,2(Rn ×R

d) is obtained just
as in the proof of our Theorem 13 below by using Taylor development of f(a,x) up to first
order in a and up to second order in x.

Remark 10. In (15) it is typically not possible to write

∫ t

0

∇xf(As,Xs) dXs =

d∑

i=1

∫ t

0

fxi(As,Xs) dX
i
s,

because the integrals
∫ t

0
fxi(As,Xs) dX

i
s on the right-hand side need not exist individually as

the limits of nonanticipative Riemann sums.

Theorem 9 implies in particular that the pathwise Itô integral
∫ t

0
ξs dXs can be defined

via (15) when the integrand ξ is of the form ξt = ∇xf(As,Xs) for some continuous function
A : [0,∞) → R

n whose components are locally of finite variation and for f ∈ C1,2(Rn × R
d).

Since in the case d > 1 not every C1-function g : Rn × R
d → R

d is of the form g = ∇xf for
some f ∈ C1,2(Rn × R

d), the following definition of d-dimensional admissible integrands needs
to be slightly more complicated than its one-dimensional counterpart, Definition 2.
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Definition 11. Suppose that the continuous trajectory X : [0,∞) → R
d admits the continuous

covariations [Xk, Xm] along (TN ), k,m = 1, . . . , d. A function t 7→ ξt ∈ R
d is called an

admissible integrand for X if for each T > 0 there exists n ∈ N, a function f ∈ C1,2(Rn ×R
d),

and a continuous function A : [0,∞) → R
n whose components are of finite variation on [0, T ]

such that ξt = ∇xf(At, Xt) for 0 ≤ t ≤ T .

The following result is a straightforward extension of [28, Proposition 2.3.3], and its proof
is left to the reader.

Proposition 12. Suppose that X is as in Theorem 9, that ξ(1), . . . , ξ(ν) are admissible inte-
grands for X, and that

Y ℓ
t :=

∫ t

0

ξ(ℓ)
s dXs, ℓ = 1, . . . , ν.

Then Yt = (Y 1
t , . . . , Y

ν
t ) is a continuous trajectory that admits the continuous covariations

[Y k, Y ℓ]t =

d∑

i,j=1

∫ t

0

ξ(k),is ξ(ℓ),j d[X i, Xj]s, k, ℓ = 1, . . . , ν.

The preceding proposition implies in particular that Yt = (Y 1
t , . . . , Y

ν
t ) is again an admissible

integrator for pathwise Itô calculus. The following associativity rule for the pathwise Itô integral
shows that one can express a pathwise Itô integral with respect to Y as a pathwise Itô integral
with respect to X.

Theorem 13 (Associativity of the pathwise Itô integral). Suppose that X, ξ(1), . . . , ξ(ν) and
Y are as in Proposition 12, and let η = (η1, . . . , ην) be an admissible integrand for Y . Then∑ν

ℓ=1 η
ℓξ(ℓ) is an admissible integrand for X and

∫ t

0

ηs dYs =

∫ t

0

ν∑

ℓ=1

ηℓsξ
(ℓ)
s dXs.

Proof of Theorem 13. We fix T ≥ 0. For t ≤ T , let ξ(ℓ) be of the form ξ
(ℓ)
t = ∇xf

ℓ(A
(ℓ)
t ,Xt)

for nℓ ∈ N, continuous A(ℓ) : [0, T ] → R
nℓ with components of finite variation, and f ℓ ∈

C1,2(Rnℓ × R
d). We also define

A
(ℓ),nℓ+1
t :=

nℓ∑

k=1

∫ t

0

f ℓ
ak(A(ℓ)

s ,Xs) dA
k
s +

1

2

d∑

k,m=1

∫ t

0

f ℓ
xkxm(A(ℓ)

s ,Xs) d[Xk, Xm]s. (16)

Then A(ℓ),nℓ+1 is continuous and of finite variation on [0, T ] by standard properties of Stieltjes
integrals (see [29, Theorem I.5c]). Moreover, the pathwise Itô formula from Theorem 1 implies
that

Y ℓ
t = f ℓ(A

(ℓ)
t ,Xt) − f ℓ(A

(ℓ)
0 ,X0) −A

(ℓ),nℓ+1
t = F ℓ(Ã

(ℓ)
t ,Xt) (17)

where
Ã

(ℓ)
t := (A

(ℓ),1
t , . . . , A

(ℓ),nℓ

t , A
(ℓ),nℓ+1
t )
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and
F ℓ(ã,x) := f ℓ(a,x) − f ℓ(A0,X0) − anℓ+1 for ã = (a, anℓ+1) ∈ R

nℓ × R.

Clearly, Ã(ℓ) : [0, T ] → R
nℓ+1 is continuous and has finite total variation on [0, T ], and F ℓ

belongs to C1,2(Rnℓ+1 × R
d). Moreover,

∇xF
ℓ(ã,x) = ∇xf

ℓ(a,x) for ã = (a, anℓ+1) ∈ R
nℓ × R. (18)

Let us denote

F (a,x) :=
(
F 1(ã(1),x), . . . , F ν(ã(ν),x)

)
for a = (ã(1), . . . , ã(ν)) ∈ R

n1+···+nν+ν .

By writing At := (Ã(1), . . . , Ã(ν)), the identity (17) becomes

Yt = F (At,Xt). (19)

Since η is an admissible integrand for Y , there are m ∈ N, h ∈ C1,2(Rm × R
ν), and

continuous D : [0, T ] → R
m with finite variation such that ηt = ∇yh(Dt,Yt) for 0 ≤ t ≤ T .

Using (19), (18), and the notation ∇xF (a,x) for the Jacobi matrix of x 7→ F (a,x), we get

ν∑

ℓ=1

ηℓtξ
(ℓ)
t =

ν∑

ℓ=1

hyℓ(Dt,Yt)∇xf
ℓ(A

(ℓ)
t ,Xt) = ∇yh(Dt,F (At,Xt)) · ∇xF (At,Xt)

= ∇xh̃(D̃t,Xt),

where D̃t = (Dt,At), and h̃((d,a),x) := h(d,F (a,x)) belongs to C1,2(RK × R
d) for K =

m + n1 + · · · + nν + ν. It follows in particular that
∑ν

i=1 η
ℓξ(ℓ) is an admissible integrand for

X.
The definition (15) of the Itô integral and (19) imply that

∫ t

0

ηs dYs = lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

ηti ·
(
F (Ati+1

,Xti+1
) − F (Ati,Xti)

)

= lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

ν∑

ℓ=1

ηℓti
(
F ℓ(Ati+1

,Xti+1
) − F ℓ(Ati,Xti)

)
,

(20)

where, by abuse of notation, we write F ℓ(Ati,Xti) instead of F ℓ(Ã
(ℓ)
ti
,Xti). Using multidimen-

sional Taylor development up to first order in a and up to second order in x, we get

F ℓ(Ati+1
,Xti+1

) − F ℓ(Ati ,Xti)

= F ℓ(Ati+1
,Xti+1

) − F ℓ(Ati ,Xti+1
) + F ℓ(Ati ,Xti+1

) − F ℓ(Ati ,Xti)

= ∇aF
ℓ(Ati ,Xti) · (Ati+1

−Ati) + δℓ
i · (Ati+1

−Ati)

+∇xF
ℓ(Ati,Xti) · (Xti+1

−Xti)

+
1

2
(Xti+1

−Xti) · ∇
2
x
F ℓ(Ati,Xti)(Xti+1

−Xti) + (Xti+1
−Xti) · ε

ℓ
i(Xti+1

−Xti),

11



where

δℓ
i =

∫ 1

0

∇aF
ℓ
(
Ati + s(Ati+1

−Ati),Xti+1

)
ds−∇aF

ℓ(Ati,Xti),

∇2
x
F ℓ is the Hessian of F ℓ with respect to x, and, for some θ ∈ [0, 1],

εℓi =
1

2

(
∇2

x
F ℓ

(
Ati,Xti + θ(Xti+1

−Xti)
)
−∇2

x
F ℓ(Ati,Xti)

)
.

The continuity of ∇aF
ℓ and ∇2

x
F ℓ implies that

max
ti,ti+1∈TN

ti+1≤T

(
|δℓ

i | + ‖εℓi‖
)
−→ 0 as N ↑ ∞,

where | · | denotes the Euclidean norm and ‖εℓi‖
2 := max|x|=1 x · εℓix. When denoting the total

variation of Ak over the interval [0, T ] by ‖Ak‖var, we thus get

∣∣∣
∑

ti,ti+1∈TN

ti+1≤t

δℓ
i · (Ati+1

−Ati)
∣∣∣ ≤ max

ti,ti+1∈TN

ti+1≤T

|δℓ
i |

K∑

k=1

‖Ak‖var −→ 0,

as N ↑ ∞. Furthermore,
∣∣∣

∑

ti,ti+1∈TN

ti+1≤t

(Xti+1
−Xti) · ε

ℓ
i(Xti+1

−Xti)
∣∣∣ ≤ max

ti,ti+1∈TN

ti+1≤T

‖εℓi‖
2

∑

ti,ti+1∈TN

ti+1≤t

(Xti+1
−Xti) · (Xti+1

−Xti).

Since the rightmost sum converges to the finite limit [X1]t + · · · + [Xd]t, the right-hand side
above tends to zero as N ↑ ∞.

Next, the standard existence result for Stieltjes integrals (e.g., [29, Theorem I.4a]) implies
that

lim
N↑∞

∑

ti,ti+1∈TN

ti+1≤t

ηℓti∇aF
ℓ(Ati ,Xti) · (Ati+1

−Ati)

=
K∑

k=1

∫ t

0

ηℓsF
ℓ
ak(As,Xs) dA

k
s

=

nℓ∑

k=1

∫ t

0

ηℓsf
ℓ
ak(A(ℓ)

s ,Xs) dA
(ℓ),k
s −

∫ t

0

ηℓs dA
(ℓ),nℓ+1
s

= −
1

2

d∑

k,m=1

∫ t

0

f ℓ
xkxm(A(ℓ)

s ,Xs) d[Xk, Xm]s,

where we have used (16) and the associativity of the Stieltjes integral [29, Theorem I.6b] in the
final step.

Next, as observed in [15], taking X = Xk in (2), the convergence in (2) can be interpreted
as vague convergence of the point measures

∑

ti,ti+1∈TN

(Xk
ti+1

−Xk
ti

)2δti

12



toward the continuous and nonnegative Radon measure d[Xk]t. Therefore,

∑

ti,ti+1∈TN

ti+1≤t

ϕ(ti)(X
k
ti+1

−Xk
ti

)2 −→

∫ t

0

ϕ(s) d[Xk]s

holds for any continuous function ϕ due to the portmanteau theorem (e.g., [1, Theorem 14.3]).
Via the polarization identity in (14), we get the analogous result for the covariation [Xk, Xm]
replacing [Xk]. This implies

∑

ti,ti+1∈TN

ti+1≤t

ηℓti(Xti+1
−Xti) · ∇

2
x
F ℓ(Ati ,Xti)(Xti+1

−Xti)

=
d∑

k,m=1

∑

ti,ti+1∈TN

ti+1≤t

ηℓtiF
ℓ
xkxm(Ati ,Xti)(X

k
ti+1

−Xk
ti

)(Xm
ti+1

−Xm
ti

)

−→

d∑

k,m=1

∫ t

0

ηℓsF
ℓ
xkxm(Ati,Xti) d[Xk, Xm]s

=
d∑

k,m=1

∫ t

0

ηℓsf
ℓ
xkxm(A

(ℓ)
ti
,Xti) d[Xk, Xm]s.

Moreover, ∇xF
ℓ(Ati ,Xti) = ∇xf

ℓ(A
(ℓ)
ti
,Xti) = ξ

(ℓ)
t , and so

ν∑

ℓ=1

∑

ti,ti+1∈TN

ti+1≤t

ηℓti∇xF
ℓ(Ati,Xti) · (Xti+1

−Xti) =
∑

ti,ti+1∈TN

ti+1≤t

ν∑

ℓ=1

ηℓtiξ
(ℓ)
ti

· (Xti+1
−Xti)

−→

∫ t

0

ν∑

ℓ=1

ηℓsξ
(ℓ)
s dXs.

Putting everything together, we see that the limit on the right-hand side of (20) is given by

−
1

2

d∑

k,m=1

∫ t

0

f ℓ
xkxm(A(ℓ)

s ,Xs) d[Xk, Xm]s +
1

2

d∑

k,m=1

∫ t

0

f ℓ
xkxm(A(ℓ)

s ,Xs) d[Xk, Xm]s

+

∫ t

0

ν∑

ℓ=1

ηℓsξ
(ℓ)
s dXs =

∫ t

0

ν∑

ℓ=1

ηℓsξ
(ℓ)
s dXs.

This concludes the proof.

4 Proofs of Theorems 7 and 5

Proof of Theorem 7. We note first that mt/St is an admissible integrand for S, because mt is
an admissible integrand, and 1/St can locally for t ∈ [0, T ] be written as f(St) for some function

13



f ∈ C1(R) since St is bounded away from zero for 0 ≤ t ≤ T . In particular, formula (12) is
well-defined. Let us write

Ct = XtAt,

where

Xt := exp

(∫ t

0

ms

Ss

dSs −
1

2

∫ t

0

m2
s

S2
s

d[S]s

)

and

At := (1 − α)V0 exp

(∫ t

0

(1 −ms)rs ds

)
.

Using the function f(a, x) := ax in Theorem 1 yields the integration by parts formula

Ct − C0 = XtAt −X0A0 =

∫ t

0

As dXs +

∫ t

0

Xs dAs. (21)

We now define

Yt :=

∫ t

0

ms

Ss

dSs and Lt :=
1

2

∫ t

0

m2
s

S2
s

d[S]s.

Then L is continuous and of locally finite variation by standard properties of the Stieltjes
integral (see [29, Theorem I.5c]), and Y has the continuous quadratic variation [Y ]t = 2Lt by
Proposition 12. Moreover, applying Theorem 1 to the function g(a, y) = ey−a yields

Xt −X0 = g(Lt, Yt) − g(L0, Y0)

=

∫ t

0

gy(Ls, Ys) dYs +

∫ t

0

ga(Ls, Ys) dLs +
1

2

∫ t

0

gyy(Ls, Ys) d[Y ]s

=

∫ t

0

Xs dYs,

where we have applied Theorem 13 to the Stieltjes integral
∫ t

0
gℓ(Ls, Ys) dLs (instead of Theo-

rem 13 one can here also apply [29, Theorem I.6b]). We also have

At − A0 =

∫ t

0

As(1 −ms)rs ds =

∫ t

0

As(1 −ms)

Bs

dBs.

Plugging these results into (21) and applying Theorem 13 several times yields that

XsAsms

Ss

=
msCs

Ss

= ξs

is an admissible integrand for S and that

Ct − C0 =

∫ t

0

AsXs dYs +

∫ t

0

XsAs(1 −ms)

Bs

dBs

=

∫ t

0

msCs

Ss

dSs +

∫ t

0

Cs(1 −ms)

Bs

dBs. (22)
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It follows that Vt := Ct + αV0Bt satisfies

Vt − V0 =

∫ t

0

msCs

Ss

dSs +

∫ t

0

Cs(1 −ms) + αV0Bs

Bs

dBs =

∫ t

0

ξs dSs +

∫ t

0

ηs dBs,

where ξ and η are as in (11). Finally, we clearly have

Vt = ξtSt + ηtBt,

which shows that (ξ, η) is indeed a self-financing strategy with portfolio value V .

Now we turn toward the proof of the uniqueness of the DPPI strategy. To this end, let
(ξ, η) be the self-financing strategy constructed above, with portfolio value Vt = ξtSt + ηtBt

and cushion Ct = Vt − αV0Bt. Suppose moreover that (ξ̃, η̃) is another self-financing strategy

with portfolio value Ṽt = ξ̃tSt + η̃tBt and cushion C̃t = Ṽt − αV0Bt such that Ṽ0 = V0 and
ξ̃t = mtC̃t/St.

From the self-financing condition we necessarily have that

η̃t =
Ṽt − ξ̃tSt

Bt

=
C̃t + αV0Bt −mtC̃t

Bt

and hence

C̃t − C̃0 = Ṽt − V0 − αV0(Bt −B0)

=

∫ t

0

msC̃s

Ss

dSs +

∫ t

0

C̃s + αV0Bs −msC̃s

Bs

dBs −

∫ t

0

αV0 dBs

=

∫ t

0

msC̃s

Ss

dSs +

∫ t

0

(1 −ms)C̃srs ds

In the preceding part of the proof we showed that Ct satisfies the same Itô integral equation;
see (22). When letting

Y
(1)
t := e−

∫ t

0
(1−ms)rs dsC̃t and Y

(2)
t := e−

∫ t

0
(1−ms)rs dsCt,

one easily checks via (21) that Y (i) satisfies

Y
(i)
t = Y

(i)
0 +

∫ t

0

msY
(i)
s

Ss

dSs, 0 ≤ t ≤ T, i = 1, 2. (23)

Here, the pathwise Itô integral exists since, e.g., mtY
(1)
t /St = e−

∫ t

0
(1−ms)rs dsξ̃t is clearly an

admissible integrand for S.
It follows from equation (23), Remark 8, and Proposition 12 that the quadratic variations

[Y (i)] and the covariation [Y (1), Y (2)] exist and are given by

[Y (i)]t =

∫ t

0

m2
t (Y

(i)
t )2

S2
t

d[S]t and [Y (1), Y (2)]t =

∫ t

0

m2
tY

(1)
t Y

(2)
t

S2
t

d[S]t. (24)

In particular, Yt = (Y
(1)
t , Y

(2)
t ) can be used as integrator in the pathwise Itô formula.
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Now let T > 0 be given. Then by (12) there exists ε > 0 such that Y
(2)
t ≥ ε for 0 ≤ t ≤ T .

Let f ∈ C2(R2) be a function such that f(y1, y2) = y1/y2 for y2 ≥ ε/2. Theorem 9 then yields
that

f(Yt) − f(Y0) =

∫ t

0

∇f(Ys) dYs +
1

2

∫ t

0

fy1y1(Ys) d[Y (1)]s

+
1

2

∫ t

0

fy2y2(Ys) d[Y (2)]s +

∫ t

0

fy1y2(Ys) d[Y (1), Y (2)]s.

(25)

Applying Theorem 13 with ν = 2, ηt = ∇f(Ys), ξ
(ℓ)
t := msY

(ℓ)
s /Ss, d = 1, and X = S yields

that the Itô integral above is given by

∫ t

0

∇f(Ys) dYs =

∫ t

0

(
fy1(Ys)

msY
(1)
s

Ss

+ fy2(Ys)
msY

(2)
s

Ss

)
dSs.

Since fy1(Ys) = 1/Y
(2)
t and fy2(Ys) = −Y

(1)
t /(Y

(2)
t )2, we see that the integrand of the right-

hand integral vanishes. Hence
∫ t

0
∇f(Ys) dYs = 0 for 0 ≤ t ≤ T . Moreover, fy1y1 = 0 and

so also the second integral on the right-hand side of (25) vanishes. Finally, one easily shows
with (24) and the associativity of the Stieltjes integral that the remaining two integrals on the

right-hand side of (25) add up to zero. Thus, Y
(1)
t /Y

(2)
t = f(Yt) = f(Y0) = Y

(1)
0 /Y

(2)
0 = 1 and

so C̃t = Ct for all t ∈ [0, T ]. Therefore the uniqueness of the DPPI strategy follows.

Proof of Theorem 5. Take T > 0 and let ε > 0 be such that St ≥ ε for 0 ≤ t ≤ T . Then we
take f ∈ C2(R) such that f(x) = log x for x ≥ ε/2. When m is constant, an application of the
pathwise Itô formula to mf(St) yields that

∫ t

0

m

Ss

dSs = m logSt −m logS0 +
m

2

∫ t

0

1

S2
s

d[S]s.

Moreover, [28, Proposition 2.2.10] yields that

[log S]t =

∫ t

0

1

S2
s

d[S]s.

Hence, formula (12) becomes

Ct = (1 − α)V0 exp

(
m logSt −m logS0 −

m(m− 1)

2

∫ t

0

1

S2
s

d[S]s + (1 −m)

∫ t

0

rs ds

)

= (1 − α)V0

(
St

S0

)m

e−
1

2
m(m−1)[log S]tB1−m

t .

This concludes the proof.
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