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HECKE GRIDS AND CONGRUENCES FOR
WEAKLY HOLOMORPHIC MODULAR FORMS

SCOTT AHLGREN AND NICKOLAS ANDERSEN

ABSTRACT. Let U(p) denote the Atkin operator of prime index p. Honda and Kaneko
proved infinite families of congruences of the form f‘U(p) = 0 (mod p) for weakly holo-
morphic modular forms of low weight and level and primes p in certain residue classes, and
conjectured the existence of similar congruences modulo higher powers of p. Partial results
on some of these conjectures were proved recently by Guerzhoy. We construct infinite fami-
lies of weakly holomorphic modular forms on the Fricke groups I'* (V) for N = 1,2, 3,4 and
describe explicitly the action of the Hecke algebra on these forms. As a corollary, we obtain
strengthened versions of all of the congruences conjectured by Honda and Kaneko.

1. INTRODUCTION

For a prime number p, let U(p) denote Atkin’s operator, which acts on power series via

(3 atma) [U) =3 alpn)a™

In recent work, Honda and Kaneko [4] generalize a theorem of Garthwaite [2] in order to
establish infinite families of congruences of the form

flU() =0 (mod p)

for weakly holomorphic modular forms of low weight and level. For example, it is shown
that for any prime p =1 (mod 3) and any k € {4,6,8,10,14} we have

U
For another example, if p=1 (mod 4), k € {4,6}, and f € M;(I'o(2)) has p-integral Fourier
expansion, then it is shown that

f(4z)
17?(42)1%(82)
Honda and Kaneko conjecture that these extend to congruences modulo higher powers of

p. For example, they conjecture that for any p = 1 (mod 3), the congruence (LI) can be
replaced by

0 (mod p). (1.1)

‘U(p) =0 (mod p). (1.2)

0 (mod p"*=3) for any n > 1. (1.3)

=
i
=
I
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In recent work, Guerzhoy [3] studies the conjectures (L3]) using the p-adic theory of weak
harmonic Maass forms. In the case when k = 4, he shows that if p =1 (mod 6), then there
exists an integer A, such that for all n we have

E4(6Z) _A
") = d pt 14
(62) |U(p") =0 (mod p"~*), (1.4)
and that if p =5 (mod 6), then there exists an integer A, such that for all n we have
E4(6Z) LQJ_A
") = ?). 1.
o UGN =0 (mod plE) (15)

In this paper, we show that the congruences conjectured by Honda and Kaneko result
from the existence of “Hecke grids” of weakly holomorphic modular forms on Fricke groups.
These are infinite families of forms on which the Hecke algebra acts in a systematic way.
These are similar to the well-known grid of Zagier [7] which encodes the traces of singular
moduli; a similar Hecke action on this grid [I] explains the many congruences among these
traces.

Since the congruences are straightforward consequences of identities involving the Hecke
operators we will focus here on the identities themselves. As an example of the results, we
consider the case related to (IL4)) and (IL5]). Using Theorem 2] below with & = r = 4, we see
that there is an infinite family of forms Fy(z) € M}(Tz(36)) with p-integral coefficients, and

with Fi(z) = E4(GZ = > ay1(n)q", such that

F|T(p"

{p Fyn if p» =1 (mod 6), (1.6)

P Fpn + a1 (pt)n*(62) ifp"=5 (mod 6).

Using relations among the Hecke operators (we sketch the proof in Section Bl below), we
conclude that

" :{0 (modp2 ifp=1 (mod 6), (17)

R|U(p") = By ifp=5 (mod 6).

In other words, (L4]) and (L3]) are true with A, = 0 for every n.

In some cases, (L.6) and (7)) can be strengthened. For example, if Gy(z) = %,
Theorem 2] gives a family G4 with the property that GI‘T(p") = p*"Gpn for all p > 5.
We conclude that G;|U(p") = 0 (mod p*"), as shown in [3]. This phenomenon will occur
whenever the parameter ¢ in Theorem [2] is non-zero.

In a similar way, we obtain strengthened versions of the other conjectures in [4]. For
example, consider the congruence ([L2)) in the case k = 4. Any form f € M,(I'¢(2)) can be
written uniquely as the sum f = aft + bf~, where fT(2) =1+ 48¢+ ... and f(2) =
1 —80q + ... are eigenforms for the Fricke involution f(z) — 272274 f(—1/2z).

Define

f(4z2) - ST (42) _

Ff(z) = ——"— F ==t = "
O ey O Ees T2

Using Theorem [3| below, we conclude that for positive odd d there are p-integral forms

FF € Mj(Ty(32)) with the following properties: For all prime powers p" we have

FH|TG") = p" .
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If p" =1 (mod 4) then
Fr[T(") = p" .

If p" =3 (mod 4) then
Fr|T(p") = p"Fpu + a1 (p) - 0 (42)7°(82).
We conclude as above that

" :{0 (mod p™) ifp=1 (mod4),

Fr|U
U 0 (mod plz)) if p=3 (mod 4).

(1.8)
For all odd primes p, any f € M,(I'¢(2)) having p-integral coefficients is a p-integral linear
combination of f* and f~. It follows that (L8) holds for 772(4];()%' this establishes a
stronger version of the conjecture of [4].

The following strengthened versions of these conjectures for I'y(3) and I'g(4) arise from
the identities of Theorems [ and [ below. Let p > 5 be prime and let N € {3,4}. Suppose
that f € My(I'o(N)) has p-integral coefficients and define

Hs(2) == n*(32)n%(92) = q¢ — 2¢* — ¢" +5¢"® + 4¢" —7¢" +--- |
Hy(2) == n*(62) = q — 4¢" + 2¢"® + 8¢ — 5¢* + - --

Then we have

Hy(z) — |10 (mod plzl) ifp=2 (mod 3).

Finally, we mention that similar results will hold if the initial forms F} are replaced by other
members of the grid.

f(32) _ {0 (mod p") ifp=1 (mod 3),

2. PRELIMINARIES

We begin with some brief background and a proposition about the action of the Hecke
operators on the spaces in question. It will be most natural to work with the Fricke groups
['*(N) for N € {1,2,3,4} (see [0, Section 1.6] for background). For these levels, the groups
are generated by the translation

11
T (0 1)

0 -1
WN::<N 0)

Let k be a positive integer. If v = (¢ %) € GL] (Q), define the slash operator ‘k by

and the Fricke involution

o= (et 44 (250,

Define I'y(M, N) := {(2%) € T'o(1) : M|c and N|b}. For primes p, define the Hecke operator
Ty (p) by

FITe(p) = FlU )+ f(p2) = (Zf\k< )+f}k(p O)) (2.1)
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For (¢,p) = 1, define the conjugated operator T,gt) (p) := ATy (p)A; ", where

t 0
At:: (0 1)

EaC k) e
and if f = S ay(n)g"", then

AT ) =" (as(pn) +p*as(n/p) 4" (2.3)

For prime powers p" we have T,gt) (p") = A T(p")A; ! and the recurrence relation

Then

NI»

FIT(p) == p

T ™Y = 1 ()T (0) — P T (Y. (2.4)

We suppress the subscript k& when it is clear from context.

We say that v is a multiplier system for a group I' if v is a character on I' of absolute value
1 (see [6, Section 1.4] for details). Then M} (T, v) is the space of holomorphic functions f on
H whose poles are supported at the cusps of I', and which satisfy

floy=v)f (2.5)

for all y e T
The multiplier system v, on I'*(1) for the Dedekind 7 function

w10 =a)

u>|"'

is given by

—

o (5 ((a-+ de = bl ~ 1) ~ 30) if cis odd,

. 2.6
, 6Xp (% ((a+d)c—bd(c>—1)+3d—3 — 3cd)) if ¢ is even (2:6)

AN
—
—
RS}
o
S~—
S~—
—
—
o ol
S—

(see [0, Chapter 4]). The symbols (%)* and (%), denote extensions of the Jacobi symbol to
negative integers, and take the values £1.

The following proposition describes the effect of the conjugated Hecke operators T,it) (p")
on these spaces.

Proposition 1. Let N € {1,2,3,4} and suppose that t is a positive integer. Suppose that v
is a multiplier system on I'*(N) which takes values among the 2t-th roots of unity, and that
v is trivial on To(Nt,t). Then for primes pt N with p> =1 (mod 2t), we have

T (p") « M(T*(N),v) — M} (T*(N),v"").

Proof. We proceed by induction on n. For n = 1, it is enough to show that for each of the
two generators v we have

FITOp)| v =v"(y) f|TP (p)
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We begin with the translation 7. We have

o= (S 56 )9 6 D)
(S D6 )6 D6 )

Define N by N = X+ (1 —p?)/t (mod p) and 0 < X < p— 1. Then

FTO )| T = p2! CZIO f\k<1 tA) +v7(T) f|, (ﬁ (1)))

= v"(T) [T (p).

Since conjugation by Wy interchanges ( ?) and ( ) we have

p—1
1 tA 0 -1 0
£ 2 (D)ot m)
E_ NtA —1 10
=p2 1( f‘k(Np O)—l—f‘kWN (0 1)—|—f}kWN (0 p))
A=1
+1=0

(mod p) and 1 < X < p—1. Then
NI =1\ _ (RN (1
Np 0) U NN p) MO p)°

By assumption we have
1+ N2 AN A
v P =1
Nt P
Therefore

FITO )] Wy = v(Wy)p? (Zf\k(l M)Jrf\k(p O)+f‘k((1) 2))
=v(Wy) f‘T (p) = "W f‘T(t)(p)

since p is odd and Wy is an involution.

Suppose that n > 1 and recall the recurrence (Iﬂ) satisfied by 7®(p"*1). By induction,
the form f ‘T ‘T ) has multiplier system *" " and the form f }T(t) (p"~1) has multi-
plier system 7" . Slnce the values of v are 2t-th roots of unity and p? = 1 (mod 2t), these
systems are the same. Therefore,

T () MU (), v) = M (T(N), 7). 0



6 SCOTT AHLGREN AND NICKOLAS ANDERSEN

3. HECKE GRIDS ON I'*(1)

We construct Hecke grids on I'*(1) = I'g(1) which begin with the forms Ej(z)/n"(z) for
k € {4,6,8,10,14} and r € {4,8,12,16,20} (similar results hold for all positive integers
r < 24, but to state them would require unwieldy notation).

Let v be the multiplier system for 7%(z) on I'*(1). We compute using (2.6]) that if A =
(a¢%) eTI*(1), then

I/(A) _ éa+d)c—bd(02—1)—3c. (31)
Here (,, 1= e>™/™,
Theorem 2. Suppose that k € {4,6,8,10,14} and that r € {4,8,12,16,20}. Define s/t =

r/24 in lowest terms and let £ € {0,1,2} be the unique integer satisfying 120 + k —r €
{0,4,6,8,10,14}.

(a) If d >0 and d = s (mod t) then there exist unique forms
fo=a™ 4 Y aa(n)gt € My, (I(1), 7). (3.2)

n>0
n=-—s mod t

(b) There exists a unique form

froes = @ 4 € Sy (TH(1), 0771, (3-3)
Furthermore, if d > tl — s and d = —s (mod t) then there exist unique forms
fo=a "+ Y agn)gt € My, 5 (T(1), 07/, (3.4)
n>s—tl

n=s mod t

(¢) Suppose that p is an odd prime. If p" =1 (mod t) then we have
fs}T(t) (p") = p(k_r/%l)nfp”s- (3.5)
If p* = —1 (mod t) then we have

p(k_r/2_l)nfp"s + as(pn)f—s Zf£ = 07

3.6
p(k—r’/2—1)nfpns otherwise. (3.6)

o T ") = {

Remark. An analogue of Theorem 2with 1 < r < 23 is also true, with the following modifica-
tions. When r = 2 (mod 4) the multiplier system of 7"(z) includes the character (=!), and
the case k —r = 12 needs to be treated separately. When r is odd, one uses the half-integral
weight Hecke operators, and there are fewer cases since p** =1 (mod t) for all n.

Before proving Theorem [2, we sketch the proof of (I.7).

Proof of (1.7). Note that Fy(z) = f4(6z) in the notation of Theorem 2l We have the relation
R|U@") = BT =Y pRUG)|VE). (3.7)
j=1

The case p =1 (mod 3) follows in a straightforward way by induction.
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Suppose that p = 2 (mod 3). If n is even then (Im) gives F1|T(p") = 0 (mod p"). If n
is odd, induction shows that a;(p") = 0 (mod p"z" ), so that F|T(p") =0 (mod pL%J) by
B.6). Using (B.7) we conclude that

FI‘U(p”) =0 (mod p%)
where a = min {|2],j 4+ [%52]} = [2]. O
Proof of Theorem[2. Let A(z) :=n*!(z) and let j(z) denote the Hauptmodul on ['y(1) given
by
DS - G 2 3 !
J(2) = Ry = 7 A4+ 196884q + 21498760g° + 864209970° + - € My(To(1)).
(a) Set fo(2) := Ex(2)/n"(2) = ¢/ + O(¢*=*/*). For d > s with d = s (mod t) define
(d—s)/t
fd(z) = j(z)(d_S)/tfd—t(z) + Z Cmfd—mt(z)>
m=2

where the ¢, are chosen so that f;(2) = ¢~%* + O(q'~*/*). These forms satisfy the require-
ments in (3.2)). For uniqueness, suppose there are two forms f; and f} satisfying (8:2)) and
define ¢(2) := n"(2)(fa(z) — fi(2)) = O(q). Then g(z) is in Sk(I'0(1)). Since this space is
trivial for k € {4,6, 8,10, 14}, we conclude that f; = f).

(b) Set
. E12£+k—7"(2) r _ s/t—L 14+s/t—¢
fro—s = Al (2) =¢"""+0O(q )
where Fy(z) := 1, and set f_y =01if £ # 0. For d > t¢{ — s with d = —s (mod t), define
(d+s)/t—¢
fa(2) = 5@ fai () 4 Y Cmfamm(2),
m=2

where the c,, are chosen so that fy(2) = ¢~¥* + O(q***/!=%). If there are two forms f; and
/7 which each satisfy (8:3) or (3:4) then the form

/
g(z) — Aé(z) fd(z>r fd(z)
1"(2)
has trivial multiplier system, so it is an element of St2,4x(I'o(1)). This space is trivial since
120+ k —r € {0,4,6,8,10,14}, s0 fy = f).
(c) Since rt/24 = s € Z we see from (3.I)) that the multiplier system »'/* is trivial on
[o(t,t) and takes values which are ¢-th roots of unity. Therefore Proposition [] gives

FATE, ") € Mi, o (T7(1), 7777 1%),
It follows from this and (23] that if p” =1 (mod ¢) then
fs}T(t)(pn) _ p(k—r/Q—l)nq_pﬂS/t + O(ql—s/t) c M]!g_r/Q(F*(l)avr/4)a
while if p” = —1 (mod t) then
F|TO(p") = ag(p") fos = pE77270mq 7" 4 O(¢"71) € M, (T (1), 0/,
By uniqueness we obtain ([B.5]) and (3.6)). O

= O(q)



8 SCOTT AHLGREN AND NICKOLAS ANDERSEN

Example 1. Computing as described in the proof above with k£ = 6 and r = 4, we obtain
f1=q % — 500q¢ — 18634qs — 196520¢° — 1277535¢c — 6146028¢5 + - - -
fr=q 6 — 717506 — 86461760g 6 — 13650854021 — 8517554097926 + - - -
fi3 = ¢~ — 24010008 — 24581234095¢° — 19372032655696¢6 + - - -
fr9=q" 6 — 44127125¢¢ — 2445793637760qc — 6837455343912760qc + - - -

-
lw

and

fs = q 6 — 4qs — 196882¢6 — 42199976¢ ¢ — 24213436035 + - - -

fi=q s — ldgs — 22281280¢6 — 40574734265qc — 12603830624640¢ ¢ + - - -

% — 40¢5 — 953031331¢5 — 8662803937424 — 9545716711560680¢® + - - -

2 1

fos = q 6 — 105¢s — 24011843968¢¢ — 837470540062104¢¢ — 2657886912184060160qs + - - - .

4. HECKE GRIDS ON ['*(2)

In this section we construct grids on I'*(2) which lead to the congruences (L.§)). Let
ho(2) = (2)12(22) = g7 — 2q% — 3¢ +6g7% + -+ .
The grids begin with forms f/hy, where f € M,(I'¢(2)). This space is two-dimensional and
is spanned by the forms
Fy () == 1 (AE4(22) 4+ Ey(2)) = 1 4 48q + 624¢” + 1344¢° + - - - |
Fy (z) := 2 (AE4(22) — Ey(2)) = 1 — 80¢q — 400¢> — 2240¢° + - - - .
Here F,f and F}, are eigenforms of W, with eigenvalues 41, respectively. Since Mg(I'o(2))

is also two-dimensional, the results in this section have analogues for £k = 6, using the

eigenforms

€ Mg(To(2)).

The details are similar, and are omitted.
Let 4 denote the multiplier system for hy(z) on I'g(2), extended to I'*(2) via vy (Ws) = £1.
If v = (25) € Ty(2), then a computation involving (2.0]) gives

va(y) =i, (4.1)
which is trivial on I'g(8,4). We have

hy € So(I*(2),v-).
Theorem 3. (a) Ifd >0 and d =1 (mod 4), then there exist unique forms

fr=a+ > aj(n)g* € My(I*(2),7). (4.2)
nzg?n(())d4
(b) If d > 0 and d = 3 (mod 4), then there exist unique forms
fF=a+ > af(n)g"* € My(T*(2), 1) (4.3)

n>0
n=1 mod 4
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and

fi=a+ > aj(n)gt e MyT*(2),v-). (4.4)
n>5
n=1 mod 4

(¢) For all odd prime powers p™ we have
FHTO @) =p" £
If p* =1 (mod 4) then
fT @) =" fn.
If p" =3 (mod 4) then
ITOW") = 9" for +ar (") - ha.
Proof. Let js(2) denote the Hauptmodul on I'*(2) given by

4 A(z) 12A(2Z) 1 2 !
= 24 + 2 = — +4372¢q + 96256 <€ My(T*(2)).
J2(2) A THTY ARG T g TR q + o(I"(2))
Since hs has eigenvalue —1 under W5, we define
oS
i = T =q ~i— 78q4 — 553q4 — 3586q4 — 11325q4 4 € MYT*(2),7,),
Fy !
fi = T =q T4 50q4 + 727q4 + 2942q4 + 12995q4 + e My(T(2),7-).
For d =1 (mod 4) we can construct f; satisfying (£2) as a linear combination of f; 4 j
and fy_4,..., f1. To prove uniqueness, suppose that ff and g; are two forms with these

properties. Let w_ be the multiplier system on I'*(2) which maps 7" to 1 and W5 to —1.
Then

ha(2)(f (2) = 93 (2) = O(q) € M(T*(2),0-).
Since there is only one cusp, this is in fact a cusp form, and is therefore equal to zero.

The remaining forms are constructed in similar fashion. When d = 3 (mod 4), we begin
with the forms

f+ = F2+F2_
3 h%

foy i =hy= qi —2¢i —3¢i +6q1 +--- € My(T*(2),v_).

= ¢~1 — 26¢1 — 3775¢1 — 92634¢1 + - - € ML(D*(2), ),

We conclude the proof by applying (2.3) and Proposition [ to the forms fi to obtain the
equalities listed in (c). O

Example 2. We have
— ¢ 71— T8q1 — 553¢1 — 3586¢ 1 — 11325¢% + - - -
fi = q % — 2265¢7 — 291480¢7 — 8976715¢ — 155852328¢% + - -
fif = q 7 — 30878¢7 — 16474122¢% — 1629968274¢1 — 71856917725¢% + - - -
fii = ¢ % — 232056¢7 — 44376354447 — 107298900269¢ 1 — 10015296762600¢ 7 + - -
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and
I _3 1 5 9 13 17
fi =q 1 —26q7 — 3775¢7 — 92634¢% — 1005576¢% — 8083772¢% + - - -
ff = q i —79q7 — 208200 — 21181014¢7 — 824132296¢% + - - -
ft =q 7 —326¢% — 4080325¢% — 1333610406¢% — 126807791227¢ % + - - -
fit = q % — T55q7 — 51950776¢1 — 431141506357 — 8679923860920¢ % + - - - |
as well as

T =q h 4501+ T27qE + 29420 + 1299597 + - -
f5 = q i+ 25997 + 2814487 +9097141q + 154926040+ + - --
fo =1 +29154¢% + 1663205447 + 1625776110¢ + 71919500835¢ % + - - -
fra=q 7 + 2387281 + 442272424q7 + 107373850795 ¢ + 10013300068440q % + - -
and
foi=qt —2q7 —3q1 +6q7% +2q7 + -
fi =q 1 +4365¢7 + 8751247 + 1034388¢ % + 7956216¢% + - - -
fr=q 1 +201242¢% 1 213843817 + 8213624500 + 184828156737 + - --
fii=q T +4135599¢1 + 133018125647 + 126806378153¢ T + 6154813025224¢7 + - .

5. HECKE GRIDS ON ['(3)
Let
2 2 1 4 z 13
ha(2) == n*(2)n*(32) = ¢ — 2¢3 — q3 +5q¢3 +--- .
We construct grids on ['*(3) starting with the forms f/hs, where f € M4(I'3(3)). This space
is two-dimensional, spanned by the Wj3-eigenforms

Fif(z) == +(9E4(32) + Ey(z)) = 1+ 24q + 216¢° + 888¢” 4+ 1752¢* + - - - ,
Fy (2) == X(9E4(32) — Ey(2)) = 1 — 30q — 270¢* — 570¢> — 2190¢" + - - - .
Let v4 denote the multiplier system of h3(z) on I'y(3), extended to I'*(3) via vy (W3) = £1.
Using (2.6), we see that if v = (25) € I'y(3), we have

£(a+d)+bd
ve(y) = ¢ : (5.1)

which is trivial on I'y(9, 3).
Theorem 4. (a) Ifd >0 and d =1 (mod 3), then there exist unique forms

fE=a "+ D az(n)g™* € My(I(3), 7).

n>0
n=2 mod 3

(b) If d > 0 and d = 2 (mod 3), then there exist unique forms

FF=a+ Y af(n)g? e MyT*(3),v4)

n>0
=1 mod 3
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and

fo=a P+ D> ag(n)g”? e MyI(3),v-).
n>4
n=1mod 3

(¢) Suppose p > 5 is prime. We have
AT® ) = p" fh.
If p =1 (mod 3) then
fT® (") = p" oo
If p" =2 (mod 3) then
FOTOW") = v f + ar (07) - s,
Proof. Let w_ be the multiplier which maps W3 to —1, and define
G5 (2) = L (E2(32) — Ea(2)) = 1+ 12 4 364 + 12¢° + 84¢" + - - - € M(I'*(3),w_).

The four grids are constructed beginning with the forms

Fs 5

£ = h—?; — q73 — 28¢5 — 325¢5 — 1248¢% — 5016¢7 + - -- € MLT*(3),7.),
F;_ 1 2 5 8 11 |

JT = S = 70 2607 + 2697 + 14527 + 49200 + - € M(T(3),7-),

F Gy
£ = % = ¢73 — 14¢% — 652¢% — T462¢% — A7525¢% + - - € ML(T*(3), 1),
3

Fli=hy=q5 —2¢5 — g5 +5¢7 +4qg7 +--- € MYT*(3),v_).
The remaining forms f3 are constructed using the Hauptmodul j3(2) on I'*(3) given by

12 12
3
:12(;2)) +12+ 362;12((;)) — ¢ + 783 +8672¢° +--- € My(T*(3)). O

Example 3. We have

Ja(2) =

fir= g3 — 28¢5 — 325¢% — 1248¢5 — 50163 + - -

fi=q 3% —326¢% — 23600¢7 — 471884¢5 — 5409712¢% + - - -

f = q73 —2132¢% — 513250¢7 — 25773728¢5 — 6365315337 + - - -

fi = ¢~ — 950545 — 6467264¢5 — 67750624045 — 3077337824045 + - -
and

) = g5 — 14¢5 — 652¢% — T462¢3 — 47525¢% + - - -

fi = q 5 — 65¢7 — 18880g5 — 718550¢% — 12034528¢% + - - -

fi = q % — 1563 — 235942¢5 — 22552012¢% — 8468828003 + - - -

fii =% — 45643 — 1967168¢5 — 405065521¢3 — 27975798400 + - - - ,
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as well as
fi = q75 42645 +269¢3 + 145245 + 4920¢ + - --
fi = q75 + 376¢5 + 2348845 + 468634¢5 + 5427008¢3 + - - -
4
T = q % 4202645 + 516638¢5 + 2576743645 + 63634582945 + - - -
fio = a7 +9449g5 + 64564485 + 6777105927 + 30773024128 + - --
10
and
foi= a5 —2¢% — 5 +5¢% +4g7 + -
fy = q 5 +T78¢5 + 71045 + 47245¢5 + 232128¢5 + - --
fo =q73 +18898¢5 + 723347¢5 + 1291289695 + 152125263¢5 + - -
5
fo =473 +234680¢5 + 22546688¢5 + 8471382403 + 18799619328¢% + - - .
8

6. HECKE GRIDS ON ['*(4)
The three-dimensional space M, (Ty(4)) is spanned by {F,(22), F; (2), Fy (2)}, where
Fif(2) :== £(16E4(42) + Ey(2) — 2E4(22)),
Fy (2) = 1= (16E4(42) — Ey(2)).
The forms E4(2z) and F,'(z) have eigenvalue +1 under the Fricke involution Wy, while the
form F, has eigenvalue —1. Let
hy(z) :=n*(22) = q% — 4q% + Qq%3 + 8q% — 5(]%5 +ee

We construct grids on I'*(4) starting with forms f(z)/h4, where f(z) € My(To(4)).

Recall that Ey(z)/n*(2) is the first member of one of the T'*(1) grids. So we need concern
ourselves only with the subspace spanned by {F,", F; }. The distinguishing feature of F}" is
the fact that it vanishes to order 2 at the cusp 1/2.

Let v4 denote the multiplier system for n*(22) on ['y(4), extended to T'*(4) by v4.(W,) =
+1. If v = (2}) € [y(4), then by applying BI) to the matrix ( ./, ) = AyyA;" we obtain

bd(1—(c/2)2)+< (a+d)
ve(7) = G T (6.1)

Note that vy is trivial on I'g(12, 3). Since 174(22’)‘2W4 = —n*(2z), we have hy € Syo(T*(4),v_).

Theorem 5. (a) If d > 0 and d =1 (mod 3), then there exist unique forms

fE=a"+ Y af(n)g"? € My (4),7,). (6.2)
nEgL;%d?)
Furthermore, there exist unique forms
fr=a"+ Y ag(n)g"? € My(I"(4),7.) (6.3)
n>0
n=2 mod 3

which vanish at the cusp 1/2.
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(b) If 0 <d =2 (mod 3), then there exist unique forms
fF=a+ > af(n)g"? e My (4), 1) (6.4)

n>0
n=1 mod 3

and

fr=a"+ Y ag(n)g* e MyI*(4),v ). (6.5)
n>4
n=1 mod 3

(¢) Suppose p > 5 is prime. We have
FHTO Q") = p" fih
If p* =1 (mod 3) then
FITO0") = p" fyn
If p" =2 (mod 3) then
T W) = p" fon + ai (p") - ha
Proof. Let
G1(2) =1 (4B5(42) — Ex(2)) = 1 4 8q + 24¢% 4 32¢° + 24¢" + - - - € My(I'*(2),w_)

The four grids are constructed beginning with the forms

-
fit = B = ¢ 3 — 165 — 140¢% — 512¢% — 1474¢7 + - -- € MY(T*(4),7,),
Ff |
fi = T =q 5+ 16q3 +116¢3 + 512q3 + 1598¢ = 3 My (T™(4),7-),
. Gy 2 1 4 7 10 P
fo = o =4 + 8¢3 — 240¢g® — 2016¢3 — 10380q s + --- € My(I'™*(4),vy),
4

Frli=hy=qF —4q5 +2q% +8q% —5qF + - € MY(T*(4),v).
The remaining forms f3 are constructed using the Hauptmodul j,(2) on I'*(4) given by

Ja(z) = (%) n°(4z)

() )
For d =1 (mod 3), the forms f; are constructed so that they vanish at 1/2. This property
is necessary to establish uniqueness, for if f; and g, satisty (6.3]) then

hi- (f7 = 92) = Ola)
vanishes at oo and vanishes to order 2 at 1/2. But nonzero weight 4 forms on I'y(4) can have
at most 2 zeros, so f; =g, . O

1
= + 276q + 2048¢% + - - - € My(T*(4)).

Ezxample 4. We have
fit = ¢ 3 — 16¢3 — 140¢3 — 512¢3 — 1474¢3 + - - -
fi=q 3 — 120¢% — 5120¢% — 69872¢% — 585728¢% + - -
Ff=q% — 57645 — 6995045 — 211558445 — 344009603 + - -
fir = % — 2076¢5 — 606208¢% — 34664448¢5 — 955187200¢% + - - -

ol
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and
;'==q_% — 8¢3 — 240¢3 — 2016¢% — 10380¢ % -+ - - -
+ = g% — 28¢5 — 4096¢7 — 97930¢7 — 12124167 + - - -
&= ¢7% — 64g7 — 349365 — 185113647 — 433305607 + - - -
fh=q % —134¢% — 212992¢% — 21891520¢% — 8683520003 + - - - ,
as well as
fr=q % +16q° + 116¢5 + 512¢5 + 1598¢% + - --
fT = q % + 13645 + 512095 + 6939245 + 585728¢F + - - -
f7 =q % +576¢F + 70338¢3 + 211558445 + 343913607 + - - -
fio =q % +2020¢7 + 606208¢3 + 34672640¢3 + 955187200¢ 3 + - -
and

Joi=aF —4q5 +297 +8¢5 — 5% —4g + -

fy = q % 127245 + 2048¢% + 10100¢ + 4096045 + - - -

fo = g3 + 409645 + 98566¢5 + 1212416¢ + 1035155245 + - --

f§ = 7% + 34696¢7 + 1851392¢7 + 43340800q 7 + 64100761647 + - -
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