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COMPACTNESS AND ESSENTIAL NORM PROPERTIES

OF OPERATORS ON GENERALIZED FOCK SPACES

JOSHUA ISRALOWITZ

Abstract. The purpose of this paper is to systematically study com-
pactness and essential norm properties of operators on a very general
class of weighted Fock spaces over C

n. In particular, we obtain rather
strong necessary and sufficient conditions for a wide class of operators
(which includes operators in the Toeplitz algebra generated by bounded
symbols) to be compact and we obtain related estimates on the essential
norm of such operators. Finally, we discuss interesting open problems
related to our results.

1. Introduction

For some α > 0, let F p
α be the classical Fock space of entire functions

on C
n such that f(·)e−α

2
|·| ∈ Lp(Cn, dv) where dv is the ordinary Lebesgue

volume measure. Let K(z, w) = e
α
2
z·w be the reproducing kernel of F 2

α and

let kz(w) = K(z, w)/
√

K(w,w) be the normalized reproducing kernel of
F 2
α. If A is a bounded operator on F p

α for 1 < p < ∞, then let B(A) be the
bounded function on C

n defined by

(B(A))(z) = 〈Akz, kz〉F 2
α
.

It is well known (and very easy to prove, see [25]) that kz ⇀ 0 weakly in F p
α

as |z| → ∞ if 1 < p < ∞. Thus, if A is compact on F p
α and 1 < p < ∞, then

an easy application of Hölder’s inequality immediately tells us that B(A)
vanishes at infinity.

On the other hand, one can easily come up with examples of bounded
operators on F p

α (in fact even bounded Toeplitz operators on F 2
α, see [3])

whose Berezin transform vanishes at infinity but that are nonetheless not
compact. This immediately raises the question of when the Berezin trans-
form of a bounded operator vanishing at infinity implies the compactness of
this operator.

Define the Toeplitz operator Tf on F p
α with f ∈ L∞(Cn) by the usual

formula Tf = PMf where P is the orthogonal projection from L2
α to F 2

α

and Mf is “multiplication by f” (and note that Tf is bounded on F p
α when

1 < p < ∞ since P is bounded on L2
α.) Furthermore, given any class of

measurable functions X on C
n, let T p

α (X) be the F p
α operator norm closure
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of the algebra generated by {Tf : f ∈ X}. Then the following theorem was
recently proved by W. Bauer and J. Isralowitz (see [4])

Theorem 1.1. If 1 < p < ∞ and A ∈ T p
α (L∞(Cn)) then B(A) vanishing at

infinity implies that A is compact. Furthermore, any compact operator on
F p
α is in fact in fact in T p

α (L∞(Cn)).

Before we continue let us mention some history leading up to this theorem.
First, note that the sufficiency part of Theorem 1.1 was first proved by S.
Axler and D. Zheng in the seminal paper [1] for the classical Bergman space
L2
a(D, dA) setting in the special case where A is in the algebra generated

by {Tf : f ∈ L∞(D)}. Furthermore, note that this result was extended to

the F 2
α setting by M. Engľis in [9]. On the other hand, Theorem 1.1 was

later proved for Lp
a(Bn, dv) in its entirety when 1 < p < ∞ by D. Suárez

in [20] using vastly more technical and deeper techniques than the ones in
[1] (see also [14] where this result is extended to the canonically weighted
Bergman space Lp

a(Bn, dvγ)). Moreover, note that the proof of Theorem 1.1
in [4] largely uses [20] as a blueprint, though (as usual) the details involved
in extending these arguments to the Fock space setting are often highly
nontrivial and thus require considerable work. Also, note that both [4] and
[20] contain (as largely byproducts of the techniques used to prove Theorem
1.1 and its Bergman space analogue) interesting essential norm estimates
for both general operators and operators in T p

α (L∞(Cn)) and respectively
T p(L∞(Bn)).

Interestingly, note that Theorem 1.1 (and remarkably its Bergman space
version in [20]) was given a vastly simplified proof by M. Mitkovski and B.
Wick in [15] using completely different methods than those of [4, 20]. On
the other hand, J. Xia and D. Zheng in the recent paper [24] introduced the
class SL(α) of “sufficiently localized” operators on F 2

α consisting of those
operators A on F 2

α where

|〈Akz , kw〉F 2
α
| . 1

(1 + |z − w|)2n+δ

for some δ = δ(A) > 0 independent of z, w ∈ C
n, which is a ∗−algebra of

bounded operators on F 2
α that contains all Toeplitz operators with bounded

symbols. Furthermore, Theorem 1.1 was generalized in the F 2
α setting in

[24] as follows

Theorem 1.2. If A is in the F 2
α operator norm closure of SL(α) then A is

compact on F 2
α if B(A) vanishing at infinity.

Also, note that Theorem 1.2 was proved by frame theoretic ideas that are
vastly simpler than the ones in [4, 20].

The purpose of this paper is to try to extend Theorem 1.2 to a very wide
class of exponentially weighted Fock spaces, and more generally to study
essential norm properties of operators on these weighted Fock spaces. More
precisely, let dc = i

4(∂ − ∂) and let d be the usual exterior derivative. Let
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φ ∈ C2(Cn) be a real valued function on C
n such that

cω0 < ddcφ < Cω0 (1.1)

holds uniformly pointwise on C
n for some positive constants c and C (in the

sense of positive (1, 1) forms) where ω0 = ddc| · |2 is the standard Euclidean
Kähler form. For any 1 ≤ p ≤ ∞ and any positive Borel measure ν on C

n,
let Lp

φ(ν) be the space defined by

Lp
φ(ν) := {f measurable on C

n s.t. f(·)e−φ(·) ∈ Lp(Cn, dν).}
Furthermore, let Lp

φ be the space Lp
φ(dv) and let F p

φ be the so called “gen-

eralized Fock space” defined by

F p
φ := {f entire on C

n s.t. f ∈ Lp
φ}.

Note that the spaces F p
φ appear naturally in the study of the ∂ equation

and sampling/interpolation theory and have also been studied by numerous
authors (see [5, 6, 8, 13, 18, 19] for example, and in particular, see [19] for
an excellent overview of the basic linear space properties of F p

φ .)

Fix some real valued φ satisfying (1.1) and let kz be the normalized re-
producing kernel of F 2

φ . Furthermore, here and throughout the rest of the

paper we will let 〈·, ·〉 denote the canonical F 2
φ inner product. For a bounded

operator A on F p
φ with 1 < p < ∞, let B(A) again be the Berezin transform

of A defined on C
n by

(B(A))(z) := 〈Akz , kz〉.
Note that Hölder’s inequality and Theorem 2.1 of Section 2 immediately
implies that B(A) is a bounded function on C

n and that B(A) vanishes at
infinity when 1 < p < ∞ and A is compact on F p

φ .

Now suppose that µ is a complex Borel measure on C
n in the sense that

µ can be written as µ = (µ1 − µ2) + i(µ3 − µ4) where µj, j = 1, . . . , 4 are
positive σ−finite Borel measures on C

n (for example when dµ = f dv for
f ∈ L1

loc(C
n).) Given such a complex Borel measure µ on C

n where |µ| is
Fock-Carleson (see Section 2 for precise definitions), we define the Toeplitz
operator Tµ with symbol µ by the equation

(Tµf)(z) :=

∫

Cn

f(w)K(z, w)e−2φ(w) dµ(w)

where K(z, w) is the reproducing kernel of F 2
φ . Furthermore, if µ is given by

µ = f dv for a measurable function f on C
n, then we write Tf instead of Tµ.

Also note that if |µ| is Fock-Carleson, then an easy application of Fubini’s
theorem gives us that B(Tµ) = B(µ) where B(µ) is the Berezin transform
of µ given by

(B(µ))(z) =

∫

Cn

|kz(w)|2 dµ(w).

Given any “nice” class X of complex Borel measures on C
n (in the previ-

ously mentioned sense), let T p
φ (X) be the F p

φ operator norm closure of the
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algebra generated by {Tµ : µ ∈ X}. Furthermore, let SL(φ) be the class
of “sufficiently localized” operators A where A is bounded on F q

φ for some

2 ≤ q < ∞ and where

|〈Akz , kw〉| .
1

(1 + |z − w|)2n+δ
(1.2)

for some δ = δ(A) > 0 independent of z, w. Note that SL(φ) includes finite
sums of finite products of Toeplitz operators with Fock-Carleson measures
(see Propositions 2.5 and 2.6 in Section 2.) Furthermore, note that any
A ∈ SL(φ) extends to a bounded operator on F p

φ for any 1 ≤ p ≤ ∞ and

that SL(φ) is also a ∗-algebra (see Section 2.)
The following two theorems can be considered the main results of this

paper.

Theorem 1.3. Let 1 < p < ∞ and let A ∈ SL(φ). Then there exists
R = R(A) > 0 where A is compact if

lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz , kw〉| = 0. (1.3)

Furthermore, if A is in the F 2
φ operator norm closure of SL(φ) then A is

compact on F 2
φ when (1.3) holds.

Theorem 1.4. If 1 < p < ∞ then the space of compact operators on F p
φ

coincides with T p
φ (C

∞
c (Cn)). Furthermore, the space of compact operators on

either of the spaces F 2
φ for general φ satisfying (1.1) or F p

α (for 1 < p < ∞)

coincides with the operator norm closure of the set {Tf : f ∈ C∞
c (Cn)}.

Note that condition (1.3) is significantly weaker than the so-called “re-
producing kernel thesis condition” that often appears in the literature (see
[15] for example), which says that

lim
|z|→∞

‖Akz‖F p
φ
= 0.

In particular, if 1 < p < ∞, then f) and g) in Theorem 2.1 gives us that for
any R > 0

lim
|z|→∞

sup
w∈B(z,R)

|〈Akz , kw〉| ≈ lim
|z|→∞

sup
w∈B(z,R)

|Akz(w)|e−φ(w)

≤ lim sup
|z|→∞

‖Akz‖F∞
φ

. lim sup
|z|→∞

‖Akz‖F p
φ
.

However, if we assume the existence of a uniformly bounded family of
operators {Uz}z∈Cn on both F p

φ and F q
φ (with q being the conjugate exponent

of p) where
(Uzkw)(u) = Θ(z, w)kz−w(u) (1.4)

with |Θ(·, ·)| bounded above and below on C
n×C

n, then we will give a very
short and easy proof of the following result:
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Proposition 1.5. Assume that there exists a uniformly bounded family
of operators {Uz}z∈Cn on both F p

φ and F q
φ satisfying (1.4). Then for any

bounded A on F p
φ , we have that B(A) vanishes at infinity if and only if A

satisfies (1.3) for any R > 0.

In the F p
α setting, note that these operators are classical and in particular

are the “weighted translations” defined by

(Uzh)(w) = h(z − w)kz(w)

that satisfy U∗
z = Uz = U−1

z . Furthermore, note that the existence of a uni-
formly bounded family of operators {Uz}z∈Cn on both F p

φ and F q
φ satisfying

(1.4) is often taken as an assumption when proving results about Banach or
Hilbert spaces of analytic functions (see [15] for example.) For this reason,
it is rather remarkable that one can prove Theorem 1.3 for p = 2 without
assuming the existence of a uniformly bounded family of operators {Uz}z∈Cn

on F 2
φ satisfying (1.4). Also note that Theorem 1.4 was proved in the F 2

α

setting in [3]. Despite this, it is noteworthy that both Theorems 1.3 and 1.4
are new even in the F p

α setting when p 6= 2.
Now if f ∈ C∞

c (Cn) then it is easy to see that Tf is compact on F p
φ (in

fact, Tf is trace class on F 2
φ if f ∈ C∞

c (Cn), see the end of Section 4 for an

easy proof.) Thus, in light of Theorem 1.4, Theorem 1.1 can be restated as
an approximation result that says that if A ∈ T p

α (L∞(Cn)) (which in fact as
a set is equal to T p

α ({µ : |µ| is Fock-Carleson}), see [4]) and B(A) vanishes
at infinity, then A is in fact in the norm closure of the set {Tf : f ∈ C∞

c (Cn)}
when 1 < p < ∞.

In addition to proving Theorems 1.3 and 1.4, we will also prove some very
natural essential norm estimates for both operators in the F p

φ operator norm

closure of SL(φ) and for general bounded operators on F p
φ . In particular, we

will prove the following two theorems, the first of which is a generalization
of some of the essential norm estimates in [4] and the second of which is a
strong generalization of the essential norm estimates for Toeplitz operators
on the unweighted Bergman space from [16] (that were proved using vastly
different techniques that the ones we use here.) It is rather interesting to
note that both of these theorems are new in the F p

α setting (and in some
instances are even new for p = 2.)

Theorem 1.6. If 1 < p < ∞ and A bounded on F p
φ then

‖A‖Q ≈ lim
r→∞

‖MχB(0,r)c
A‖F p

φ
→Lp

φ
. (1.5)

Moreover, if A is in the F p
φ operator norm closure of SL(φ) then we also

have
‖A‖Q ≈ sup

d>0
lim sup
|z|→∞

‖MχB(z,d)
APMχB(z,2d)

‖F p
φ
→Lp

φ
. (1.6)

Theorem 1.7. Let 0 < δ < 1 and let µ be a complex Borel measure where
|µ| is Fock-Carleson with ‖µ‖∗ ≤ 1. If 1 < p < ∞ then there exists C = Cδ
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independent of µ where

‖Tµ‖Q . Cδ

(
lim sup
|z|,|w|→∞

|〈Tµkz, kw〉|
)δ

.

Furthermore, we will extend the essential norm estimates in [15] to the
p 6= 2 case F p

φ setting, which in particular (in conjunction Proposition 1.5)

provides us with a very short proof of Theorem 1.1 for p 6= 2 when compared
to the proof of Theorem 1.1 from [4] (note that a similar simplification when
p = 2 was also provided in [15].)

We will now briefly outline the structure of this paper. The next section
will discuss some preliminary results that will be used throughout the rest
of the paper (including a brief discussion of Fock-Carleson measures and
the short proof of Proposition 1.5.) In Section 3, we will prove Theorem
1.3 when p = 2. Although the proof of this result uses the frame theoretic
ideas from [24], the details of the arguments in Section 4 are considerably
simpler and more transparent than the details in [24]. Section 4 will contain
the proof of Theorem 1.4, and in Section 5 we will prove Theorem 1.3 when
p 6= 2 and also prove Theorems 1.6 and 1.7 by extending the ideas and
essential norm estimates from [15] to the F p

φ setting. Finally Section 6 will

discuss interesting open questions related to the results of this paper.
Note that we will write A . B for two quantities A and B if there exists

an unimportant constant C such that A ≤ CB. Furthermore, B . A is
defined similarly and we will write A ≈ B if A . B and B . A.

Finally in this introduction we will briefly discuss a concrete and inter-
esting (from the point of view of holomorphic function spaces) example of
a generalized Fock space. In particular, we will now show that the Fock-
Sobolev spaces introduced recently in [7] are in fact generalized Fock spaces.
Given any m ∈ N, let F p,m

α denote the Fock-Sobolev space of entire functions
with the norm

‖f‖F p,m
α

:=
∑

|β|≤m

‖∂βf‖F p
α

where the sum is over all multiindicies β with |β| ≤ m. It was then proved
in [7] that f ∈ F p,m

α if and only if z 7→ |z|mf(z) ∈ Lp
α where Lp

α := Lp
φ for

φ(z) = α
2 |z|2, and furthermore the canonical norms induced by these two

conditions are equivalent (note that this was only proved for α = 1 but the
extension to general α > 0 is trivial.)

By a standard closed graph theorem argument, we have that f ∈ F p,m
α if

and only if z 7→ (A + |z|2)m
2 f(z) is in Lp

α for any A > 0, and furthermore
the canonical norm induced by this condition (for fixed A > 0) is equivalent
to the F p,m

α norm. Thus, if

φ(z) :=
α

2
|z|2 − m

2
ln(A+ |z|2)
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then we have F p,m
α = F p

φ and

ddcφ(z) =

n∑

j,k=1

(
α

4
δkj −

m((A+ |z|2)δkj − zjzk)

4(A + |z|2)2
)
dzk ∧ dzj

which by an application of the Cauchy-Schwartz inequality gives us that
(
α

4
− m

4(A+ |z|2)

)
ω0 ≤ ddcφ ≤

(
α

4
− mA

4(A+ |z|2)2
)
ω0.

Thus, we have that φ satisfies condition (1.1) if A > 2m/α. Because of this,
the reader should keep in mind that all of the results proved in this paper
also apply to Fock-Sobolev spaces (which by themselves for Fock-Sobolev
spaces are interesting in their own right.)

Remark: Well after this paper was written, the author in collaboration
with B. Wick and M. Mitkovski was able to prove that if 1 < p < ∞ and A
is in the F p

φ operator norm closure of SL(φ), then there exists R = R(A) >

0 where A is compact if (1.3) is true. In fact, one can even replace the
conditions defining SL(φ) by similar but weaker integral conditions (see
[12] for details.)

2. Preliminary results

In this section, we will state and prove some preliminary results that will
be used in the rest of the paper. First, we will mention some important
properties of F p

φ from [19] that should be familiar to the reader who has

experience with the classical Fock spaces F p
α .

Theorem 2.1. The Fock spaces F p
φ satisfy the following properties:

a) There exists ǫ, C > 0 independent of z, w ∈ C
n such that

e−φ(z)|K(z, w)|e−φ(w) ≤ Ce−ǫ|z−w|.

b) If 1 ≤ p ≤ ∞ then kz → 0 weakly in F p
φ as |z| → ∞.

c) If 1 ≤ p < ∞ then (F p
φ )

∗ = F q
φ for 1/p+1/q = 1 under the usual

pairing

Ψg(f) :=

∫

Cn

f(z)g(z)e−2φ(z) dv(z).

d) The orthogonal projection P : L2
φ → F 2

φ extends to a bounded

operator from Lp
φ to F p

φ when 1 ≤ p ≤ ∞.
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e) P restricted to F p
φ is the identity operator when 1 ≤ p ≤ ∞.

f) eφ(z) ≈
√
K(z, z) for any z ∈ C

n.

g) If 0 < p < ∞ and r > 0 then there exists Cr > 0 where

(|f |pe−pφ)(z) . Cr

∫

B(z,r)
|f(w)|pe−pφ(w) dv(w)

and

|∇(|f |pe−pφ)|(z) . Cr

∫

B(z,r)
|f(w)|pe−pφ(w) dv(w)

for any f ∈ F p
φ and z ∈ C

n.

Note that property a) immediately implies that {kz : z ∈ C
n} is bounded

in F p
φ when 0 < p ≤ ∞. Furthermore, note that property a) for the classical

Fock space F 2
α is in fact true for any ǫ > 0. In particular, since

Kα(z, w) = eα(z·w)

where Kα(z, w) is the reproducing kernel of F 2
α , we have that

e−
α
2
|z|2 |Kα(z, w)|e−α

2
|w|2 = e−

α
2
|z|2|eα(z·w)|e−α

2
|w|2

= e−
α
2
|z−w|2.

In general however, one can not expect to have such a fast off diagonal
decay when dealing with generalized Fock spaces (though fortunately, as
was noticed in [19], quadratic exponential off diagonal decay as above is
usually not needed.)

Now if ν is a nonnegative Borel measure on C
n, then we say ν is a Fock-

Carleson measure for F p
φ if the embedding operator ι : F p

φ → Lp
φ(ν) is

bounded. We will often use the following useful characterization of Fock-
Carleson measures on C

n (see [19] for a proof.)

Theorem 2.2. If 1 ≤ p < ∞ and ν is a nonnegative Borel measure, then
the following are equivalent:

a) ν is a Fock-Carleson measure for F p
φ ,

b) supz∈Cn ν(B(z, 1)) < ∞,
c) Tν is bounded on F p

φ .

Furthermore, the canonical norms defined by any of these three conditions
are equivalent.

Since ν being Fock-Carleson for F p
φ is independent of p when 1 ≤ p < ∞,

we will say ν is a Fock-Carleson measure if ν satisfies any of the equivalent
conditions in Theorem 2.2. Furthermore, if µ is a complex Borel measure
on C

n, then we will denote by ‖µ‖∗ any of the canonical norms applied to



COMPACTNESS OF OPERATORS ON GENERALIZED FOCK SPACES 9

the variation measure |µ| defined by the conditions in Theorem 2.2 . We
will also let ‖f‖∗ denote ‖|f | dv‖∗ when f is a measurable function on C

n.
We will now show that the spaces F p

φ behave in the same way that the

spaces F p
α do under complex interpolation (see [25].)

Theorem 2.3. If 1 ≤ p0 ≤ p1 ≤ ∞ and 0 ≤ θ ≤ 1 where

1

p
=

1− θ

p0
+

θ

p1

then

[F p0
φ , F p1

φ ]
θ
= F p

φ

with equivalent norms.

Proof. First note that the classical Stein-Weiss interpolation theorem gives
us that

[Lp0
φ , Lp1

φ ]
θ
= Lp

φ (2.1)

with equal norms. Now by the definition of [Lp0
φ , Lp1

φ ]
θ
and (2.1), we have

that [F p0
φ , F p1

φ ]
θ
⊆ F p

φ .

On the other hand, if f ∈ F p
φ ⊆ Lp

φ, then again by (2.1) there ex-

ists a positive constant C and an analytic function w 7→ F (·, w) from
{w ∈ C : 0 ≤ Re w ≤ 1} to Lp0

φ + Lp1
φ where

a) F (z, θ) = f(z) for all z ∈ C
n,

b) ‖F (·, w)‖Lp0
φ

≤ C for all Re (w) = 0,

c) ‖F (·, w)‖Lp1
φ

≤ C for all Re (w) = 1.

Now let G(z, w) = (P (F (·, w)))(z). Then by a) and d) in Theorem 2.1 and
Morera’s theorem, we have that w 7→ G(·, w) is an analytic function from
{w ∈ C : 0 ≤ Re w ≤ 1} to F p0

φ + F p1
φ and G satisfies

a) G(z, θ) = (Pf)(z) = f(z) for all z ∈ C
n,

b) ‖G(·, w)‖Lp0
φ

≤ C ′ for all Re (w) = 0,

c) ‖G(·, w)‖Lp1
φ

≤ C ′ for all Re (w) = 1.

for some positive constant C ′, which implies that f ∈ [F p0
φ , F p1

φ ]
θ
, or [F p0

φ , F p1
φ ]

θ
=

F p
φ .

To show the equivalence of norms, let f ∈ F p
φ . Then by definition (2.1)

we have that

‖f‖F p
φ
= ‖f‖[Lp0

φ
,L

p1
φ

]
θ

≤ ‖f‖[F p0
φ

,F
p1
φ

]
θ

.

An application of the open mapping theorem immediately completes the
proof. �
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We next prove some simple results regarding SL(φ). Note that the proof
of the second one is similar to the proof of Proposition 3.2 in [24] though we
include the details for the sake of the reader.

Proposition 2.4. Any operator A ∈ SL(φ) extends bounded on F p
φ for any

1 ≤ p < ∞.

Proof. Assume that A is bounded on F q
φ for some 2 ≤ q < ∞ and that A

satisfies (1.2). Let g ∈ F 1
φ ⊆ F q

φ and note that an application of (1.2) and

f) in Theorem 2.1 gives us that

|(Ag)(w)|e−φ(w) ≈ |〈g,A∗kw〉|

≤
∫

Cn

|g(u)||(A∗kw)(u)|e−2φ(u) dv(u)

≈
∫

Cn

(
|g(u)|e−φ(u)

)
|〈Aku, kw〉| dv(u)

.

∫

Cn

(
|g(u)|e−φ(u)

) 1

(1 + |u− w|)2n+δ
dv(u).

An easy application of Fubini’s theorem then gives us that A extends to a
bounded operator on F 1

φ , and furthermore since 2 ≤ q < ∞, Theorem 2.3

gives us that A extends to a bounded operator on F p
φ for all 1 ≤ p ≤ 2.

Finally, this means that A∗ is bounded on F p
φ for all 2 ≤ p < ∞. In

particular, we have that A∗ ∈ SL(φ) and so A∗ is bounded on F p
φ for all

1 ≤ p ≤ 2, which implies that A is bounded on F p
φ for all 1 ≤ p < ∞. �

Proposition 2.5. SL(φ) is a ∗ − algebra.

Proof. As was remarked in the proof of Proposition 2.4, A ∈ SL(φ) =⇒
A∗ ∈ SL(φ). Thus, we only need to show that SL(φ) is an algebra.

Let A1, A2 ∈ SL(φ) and pick δi > 0 where

|〈Aikz, kw〉| .
1

(1 + |z − w|)2n+δi

for i = 1, 2. Then by Theorem 2.1 we have

|〈A1A2kz, kw〉| ≤
∫

Cn

|(A2kz)(u)||(A∗
1kw)(u)|e−2φ(u) du

.

∫

Cn

|〈A2kz, ku〉||〈A1ku, kw〉| du

.

∫

Cn

1

(1 + |z − u|)2n+δ2(1 + |u− w|)2n+δ1
du

The proof now easily follows with δ(A1A2) = min{δ1, δ2} (see p. 10 in [24]
for more details.) �

Proposition 2.6. If µ is a complex Borel measure on C
n such that |µ| is

Fock-Carleson then Tµ ∈ SL(φ) for any 1 < p < ∞.
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Proof. First note that Theorem 2.2 gives us that Tµ is bounded on F p
φ for

all 1 ≤ p < ∞. Now note that Fubini’s theorem and Theorems 2.1 and 2.2
tell us that

〈Tµkz, kw〉 =
∫

Cn

kz(u)kw(u)e
−2φ(u) dµ(u).

Furthermore, another easy application of Theorems 2.1 and 2.2 and the fact
that kz(·)kw(·) ∈ F 1

2φ for each z, w ∈ C
n gives us that

|〈Tµkz, kw〉| ≤
∫

Cn

|kz(u)||kw(u)|e−2φ(u) d|µ|(u)

. ‖µ‖∗
∫

Cn

|kz(u)||kw(u)|e−2φ(u) dv(u)

. ‖µ‖∗
∫

Cn

e−ǫ(|z−u|+|u−w|) dv(u)

. ‖µ‖∗e−
ǫ
2
|z−w|.

�

Finally in this section we prove Proposition 1.5.
Proof of Proposition 1.5. If R > 0 then obviously we have

|(B(A))(z)| = |〈Akz , kz〉| ≤ sup
w∈B(z,R)

|〈Akz, kw〉|

so that B(A) vanishes at infinity if (1.3) is true.
Now assume the existence of a uniformly bounded family of operators on

both F p
φ and F q

φ satisfying (1.4). Furthermore, assume that B(A) vanishes

at infinity but that

lim sup
|w|→∞

sup
w∈B(z,R)

|〈Akz , kw〉| 6= 0

for some fixed R > 0. Thus, there exists sequences {zm}, {wm} where
limm→∞ |zm| = +∞ and |wm| ≤ R for any m ∈ N, and where

lim sup
m→∞

|〈Akzm , kzm−wm〉| > ǫ (2.2)

for some ǫ > 0. Furthermore, passing to a subsequence if necessary, we
may assume that limm→∞wm = w. Note that an easy application of The-
orem 2.1 and the Lebesgue dominated convergence theorem gives us that
limm→∞ kwm = kw in where the convergence is in the F p

φ norm.

Let B(F p
φ ) be the space of bounded operators on F p

φ . Now since (F p
φ )

∗ =

F q
φ , an argument that is almost identical to the proof of the Banach-Alaoglu

theorem tells us that the unit ball of B(F p
φ) is WOT compact. Then passing

to another subsequence if necessary, we can assume

Â = WOT− lim
m→∞

U∗
zmAUzm .
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Thus, we have that

lim sup
m→∞

|〈Akzm , kzm−wm〉| ≈ lim sup
m→∞

|〈U∗
zmAUzmk0, kwm〉|

= lim sup
m→∞

|〈U∗
zmAUzmk0, kw〉|

= |〈Âk0, kw〉|.
However, for any z ∈ C

n

|〈Âkz , kz〉| = lim
m→∞

|〈U∗
zmAUzmkz, kz〉| ≈ lim

m→∞
|〈Akzm−z, kzm−z〉| = 0

since by assumption B(A) vanishes at infinity. Thus, since the Berezin

transform is injective (see the end of Section 4), we get that Â = 0, which
contradicts (2.2) and completes the proof.

3. Proof of Theorem 1.3 for p = 2

In this section we will prove Theorem 1.3 when p = 2. Now if f ∈ F 2
φ ,

then note that Fubini’s theorem and Theorem 2.1 gives us that

f(w) =

∫

Cn

f(z)K(w, z) e−2φ(z) dv(z)

=

∫

Cn

f(z)〈K(·, z),K(·, w)〉 e−2φ(z) dv(z)

=

∫

Cn

((k̃z ⊗ k̃z)f)(w) dv(z)

where
k̃z = e−φ(z)K(·, z).

In other words, we have that

IdF 2
φ
→F 2

φ
=

∫

Cn

k̃z ⊗ k̃z dv(z) (3.1)

where the integral is interpreted as a standard Bôchner integral, which

roughly states that we can treat {k̃z}z∈Cn as a sort of continuously indexed

frame. Furthermore, note that
∫
K k̃z⊗ k̃z dv(z) is compact (Hilbert-Schmidt

in fact) on F 2
φ for any compact K ⊆ C

n.
We will now very briefly sketch the main idea of the proof of Theorem

1.3 when p = 2. First, with the help of some simple ideas from classical
frame theory, we will rewrite (3.1) in a kind of discretized way that is more
convenient for us. We will then combine this with the fact that operators

in SL(φ) are “almost diagonal” with respect to {k̃z}z∈Cn to prove that
‖A‖Q can be dominated by the norm of a certain block diagonal matrix

involving the family {Ak̃z}z∈Cn if A is in the F 2
φ operator norm closure of

SL(φ). Finally, we will complete the proof of Theorem 1.3 when p = 2
by showing that condition 1.3 easily implies that the norm of these blocks
approaches zero as one goes farther down the diagonal. As was mentioned
in the introduction, this same idea was used to prove Theorem 1.3 in the
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F 2
α setting. Despite this, it is again worth noting that the details of the

arguments in this section are considerably simpler and more transparent
than the details in [24].

Now treat Z
2n as a lattice in C

n in the canonical way and let {eu}u∈Z2n

be any fixed orthonormal basis for F 2
φ . Note that by f) in Lemma 2.1 we

have that |k̃z(w)| ≈ |kz(w)| for any z, w ∈ C
n.

The proof of Theorem 1.3 when p = 2 will require the following three
lemmas, the first of which is well known (though we include the proof for
the sake of completion), and the third of which contains the essential ideas
of the proof. Note that in this section, all norms will either be the F 2

φ norm,

or the operator norm on F 2
φ .

Lemma 3.1. If Fz :=
∑

u∈Z2n k̃u+z ⊗ eu is the translated “pre-frame oper-

ator” asociated to {k̃u+z}u∈Cn for z ∈ C
n, then supz∈Cn ‖Fz‖ < ∞.

Proof. An easy computation gives us that

FzF
∗
z =

∑

u∈Z2n

k̃u+z ⊗ k̃u+z.

Thus, f) and g) in Lemma 2.1 gives us that

〈FzF
∗
z f, f〉 =

∑

u∈Z2n

|〈f, k̃u+z〉|2

=
∑

u∈Z2n

|f(u+ z)|2e−2φ(u+z)

.
∑

u∈Z2n

∫

B(u+z, 1
2
)
|f(w)|2e−2φ(w) dv(w)

≤ ‖f‖2

if f ∈ F 2
φ . �

Lemma 3.2. Suppose that B ∈ SL(φ) and let ǫ > 0. Then there exists
R = R(B, ǫ) where if Ω ⊂ Z

2n ×Z
2n satisfies |u− v| ≥ R for any (u, v) ∈ Ω

and if η, ξ ∈ S := [0, 1)2n ⊂ C
n, then

∥∥∥∥∥∥

∑

(u,v)∈Ω
〈Bk̃v+η, k̃u+ξ〉 eu ⊗ ev

∥∥∥∥∥∥
≤ ǫ

Proof. Without loss of generality assume that R ≥ 1 so that (u, v) ∈ Ω
implies that |u−v| ≥ 1. Since |u−v| ≥ R for any (u, v) ∈ Ω, we immediately
obtain that ∣∣∣〈Bk̃v+η , k̃u+ξ〉

∣∣∣ . 1

(1 +R
δ
2 )|u− v|2n+ δ

2

for any η, ξ ∈ S.
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Now let pi : Ω → Z
2n for i = 1, 2 be the projection onto the ith factor.

Furthermore, for each u ∈ p1(Ω) and each integer ℓ ≥ 0, let

Gu
ℓ := {v : (u, v) ∈ Ω and 2ℓ ≤ |u− v| < 2ℓ+1}.

By an elementary volume count, we have that

card Gu
ℓ . 22nℓ.

Thus, for any u ∈ p1(Ω) we have
∑

v:(u,v)∈Ω

∣∣∣〈Bk̃v+η , k̃u+ξ〉
∣∣∣ . 1

(1 +R)
δ
2

∑

v:(u,v)∈Ω

1

(1 + |u− v|)2n+ δ
2

=
1

(1 +R)
δ
2

∞∑

ℓ=0

∑

v∈Gu
ℓ

1

(1 + |u− v|)2n+ δ
2

.
1

(1 +R)
δ
2

∞∑

ℓ=0

22nℓ

2(2n+
δ
2
)ℓ

.
1

(1 +R)
δ
2

.

Similarly, since B∗ ∈ SL(φ), we have for each v ∈ p2(Ω) that
∑

u:(u,v)∈Ω

∣∣∣〈B∗k̃v+η , k̃u+ξ〉
∣∣∣ . 1

(1 +R)
δ
2

.

Therefore, an easy application of the Schur test now completes the proof.
�

For the next lemma, it will be convenient to use the standard “sup-norm”
| · |∞ on C

n defined for z = (z1, . . . , zn) by

|z|∞ := max{|z1|, . . . , |zn|}
and we will let B∞(z,R) denote the open ball in C

n with center z ∈ C
n and

radius R > 0 under this norm. Furthermore, for any R > 0 let

RZ
2n := {Ru : u ∈ Z

2n}
and let

Z
2n
R := {u ∈ Z

2n : |u|∞ < R}
Also, for z ∈ C

n and R ∈ N let Fz;R denote the translated and truncated
“pre-frame operator” defined by

Fz;R :=
∑

u∈Z2n
R

k̃u+z ⊗ eu.

Note that if A is bounded on F 2
φ and a, b ∈ C

n, then by definition we have
that

F ∗
a;RAFb;R =

∑

x,y∈Z2n
R

〈Ak̃y+b, k̃x+a〉ex ⊗ ey.
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Lemma 3.3. For any A in the F 2
φ operator norm closure of SL(φ), there

exists some R ∈ N depending on A where the following holds for any N ∈ N:
there exists a, b ∈ C

n with

|a|∞ ≥ N − 1 and |b|∞ ≤ 2

such that

‖A‖Q . ‖F ∗
a;RAFa+b;R‖.

Proof. Obviously we may assume that ‖A‖Q > 0 for otherwise there is
nothing to prove. We will now in fact find a and b as above where

‖A‖Q ≤ 1

4n+3C2
‖F ∗

a;RAFa+b;R‖

and where

C := sup
z∈Cn

‖Fz‖ (3.2)

(which is finite by Lemma 3.1.) To that end, pick B ∈ SL(φ) where

‖A−B‖ <
1

4n+3C4
‖A‖Q. (3.3)

Since B ∈ SL(φ), Lemma 3.2 tells us that there exists R > 0 where
∥∥∥∥∥∥

∑

(u,v)∈Ω
〈Bk̃v+η, k̃u+ξ〉 eu ⊗ ev

∥∥∥∥∥∥
≤ 1

16C2
‖A‖Q (3.4)

whenever η, ξ ∈ S and Ω ⊂ Z
2n×Z

2n satisfies |u−v|∞ ≥ R for any (u, v) ∈ Ω.
We will in fact show that this R has the desired property.

Clearly without loss of generality we may assume that N > R. Now
define the compact operator K on F 2

φ by

K :=
∑

u∈Z2n

|u|∞<N+R

∫

S+u
k̃z ⊗ k̃z dv(z) =

∫

S




∑

u∈Z2n

|u|∞<N+R

k̃u+z ⊗ k̃u+z


 dv(z)

where as before S = [0, 1)2n ⊂ C
n. Note that (3.1) then tells us that we can

write Id−K as

Id−K =

∫

S




∑

u∈Z2n

|u|∞≥N+R

k̃u+z ⊗ k̃u+z


 dv(z).

Thus, if we define

Gz :=
∑

u∈Z2n

|u|∞≥N+R

k̃u+z ⊗ eu
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then

Id−K =

∫

S
GzG

∗
z dv(z).

Since (3.1) again gives us that

Id =

∫

S


 ∑

u∈Z2n

k̃u+z ⊗ k̃u+z


 dv(z) =

∫

S
FzF

∗
z dv(z),

we can rewrite (Id−K)A as

(Id−K)A = (Id−K)AId =

∫

S

∫

S
GzG

∗
zAFwF

∗
w dv(z) dv(w). (3.5)

Now since ‖A‖Q = ‖(Id−K)A‖Q, an elementary approximation argument
involving Bôchner integrability in conjunction with (3.5) gives us a pair
z0, w0 ∈ S where

‖Gz0G
∗
z0AFw0F

∗
w0
‖Q ≥ 1

2
‖A‖Q.

Furthermore, it is trivial that Gz0G
∗
z0 ≤ Fz0F

∗
z0 so by (3.3) we have

‖G∗
z0BFw0‖Q +

1

64C2
‖A‖Q ≥ ‖G∗

z0AFw0‖Q ≥ 1

2C2
‖A‖Q

(where C is from (3.2)) so that that

‖G∗
z0BFw0‖Q ≥ 1

4C2
‖A‖Q.

Now since

G∗
z0BFw0 =

∑

η∈Z2n

|η|∞≥N+R

∑

u∈Z2n

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu,

we can write G∗
z0BFw0 = D + E where the “diagonal” part D is given by

∑

η∈Z2n

|η|∞≥N+R




∑

u∈Z2n

|u−η|∞<R

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu




and the “off-diagonal” part E is given by

∑

η∈Z2n

|η|∞≥N+R




∑

u∈Z2n

|u−η|∞≥R

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu




Note that (3.4) gives us that

‖E‖ ≤ 1

8C2
‖A‖Q

so that

‖D‖Q ≥ 1

8C2
‖A‖Q
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Now by elementary arguments, we have that

{(η, u) ∈ Z
2n × Z

2n : |η|∞ ≥ N +R and |η − u|∞ < R} = A1\A2

where

A1 := {(x+ u′,y + u′) ∈ Z
2n × Z

2n : u′ ∈ RZ
2n

with |u′|∞ ≥ N and (x, y) ∈ Z
2n
R × Z

2n
R }

and

A2 := {(x+ u′,y + u′) ∈ Z
2n × Z

2n

with (x, y) ∈ Z
2n
R × Z

2n
R and |x+ u′|∞ < N +R or |x− y|∞ ≥ R}.

Thus, we can write D := D1 −D2 where

D1 =
∑

(η,u)∈A1

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu

and
D2 =

∑

(η,u)∈A1∩A2

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu

Moreover, another application of (3.4) gives us that

‖D2‖Q ≤ 1

16C2
‖A‖Q

so that

‖D1‖ ≥ 1

16C2
‖A‖Q

If
Eu,z :=

∑

x∈Z2n
R

k̃x+u+z ⊗ ex+u

for some given u ∈ Z
2n and z ∈ C

n then note that we can write

D1 =
∑

u∈RZ2n

|u|∞≥N

E∗
u,z0BEu,w0.

Now let Z1 and Z2 denote the odd and even integers, respectively, and
for ℓ ∈ {1, 2}2n let Z2n

ℓ := Zℓ1 × · · · × Zℓ2n so that obviously

RZ
2n =

⋃

ℓ∈{1,2}2n
RZ

2n
ℓ .

Furthermore, if ℓ ∈ {1, 2}2n is fixed and u, u′ ∈ RZ
2n
ℓ with u 6= u′ then ey+u′

is orthogonal to ex+u for any x, y ∈ Z
2n
R . Thus, it is easy to see that

‖D1‖ ≤ 4n sup
u∈RZ2n

|u|∞≥N

‖E∗
u,z0BEu,w0‖

which means that there exists some u0 ∈ RZ
2n such that |u0|∞ ≥ N and

‖E∗
u0,z0BEu0,w0‖ ≥ 1

4
5
2
+nC2

‖A‖Q
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Now note that

‖E∗
u0,z0BEu0,w0‖ =

∥∥∥∥∥∥

∑

x,y∈Z2n
R

〈Bk̃y+u0+w0 , k̃x+u0+z0〉eu0+x ⊗ eu0+y

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

x,y∈Z2n
R

〈Bk̃y+u0+w0 , k̃x+u0+z0〉ex ⊗ ey

∥∥∥∥∥∥
= ‖F ∗

u0+w0;RBFu0+z0;R‖

Finally, set a = u0+w0 and b = z0−w0 so that |a|∞ ≥ N − 1 and |b|∞ ≤ 2.
Then according to (3.3), we have that

‖F ∗
a;R(A−B)Fa+b;R‖ ≤ 1

4n+3C2
‖A‖Q

so that

‖F ∗
a;RAFa+b;R‖ ≥ 1

4n+3C2
‖A‖Q

which completes the proof. �

We can now prove Theorem 1.3 when p = 2.
Proof of Theorem 1.3 when p = 2. By Lemma 3.3 there exists some R ∈ N

depending on A and sequences {aj}, {bj} ⊂ C
n with

lim
j→∞

|aj| = ∞ and sup
j≥1

|bj | . 2

where

‖A‖Q . ‖F ∗
aj ;RAFaj+bj ;R‖.

However, if R is large enough, then

lim sup
j→∞

‖F ∗
aj ;RAFaj+bj ;R‖ =

∥∥∥∥∥∥

∑

x,y∈Z2n
R

〈Ak̃x+aj+bj , k̃y+aj 〉ey ⊗ ex

∥∥∥∥∥∥

. R4n lim sup
|z|→∞

sup
w∈B(z,3R)

|〈Akz , kw〉|

which proves Theorem 1.3 when p = 2.

4. Proof of Theorem 1.4

In this short section we will prove Theorem 1.4. First we will need the
following simple result.

Lemma 4.1. If 1 ≤ p < ∞ and S ⊆ C
n is a Borel set with nonzero Lebesgue

volume measure, then span{K(·, w) : w ∈ S} is dense in F p
φ .
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Proof. Let q be the conjugate of exponent of p. If g ∈ F q
φ = (F p

φ )
∗ (see c)

in Theorem 2.1) annihilates span{K(·, w) : w ∈ S}, then e) in Theorem 2.1
implies that

g(w) =

∫

Cn

g(u)K(u,w)e−2φ(u) dv(u) = 0

for any w ∈ S, which implies that g ≡ 0 since S has nonzero Lebesgue
volume measure. The proof then immediately follows by the Hahn-Banach
theorem. �

Lemma 4.2. Finite rank operators on F p
φ are in the norm closure of the

algebra generated by Toeplitz operators with point mass measure symbols
when 1 ≤ p < ∞.

Proof. Since

0 < K(w,w) =

∫

Cn

|K(w, z)|2e−2φ(z) dv(z)

the set
Zw := {z ∈ C

n : K(w, z) 6= 0}
trivially has nonzero Lebesgue volume measure for each w ∈ C

n. Thus,
Lemma 4.1 tells us that span{K(·, z) : z ∈ Zw} is dense in F p

φ for each

w ∈ C
n, which in turn implies that span{K(·, z)⊗K(·, w) : w ∈ C

n, z ∈ Zw}
is dense (with respect to the F p

φ operator norm) in the space of finite rank
operators.

The proof is then completed by observing that

K(·, z)⊗K(·, w) = e2φ(z)+2φ(w)

K(w, z)
TδzTδw

where δz and δw are the point mass measures at z, w ∈ C
n with z ∈ Zw. �

Lemma 4.3. Given w ∈ C
n, let

F ǫ
w(z) :=

cn
ǫ2n

χB(w,ǫ)(z)

where cn is the volume of the unit ball in C
n. Then we have

lim
ǫ→0+

‖TF ǫ
w
− Tδw‖F p

φ
→F p

φ
= 0

for each 1 < p < ∞.

Proof. By an easy application of Theorem 2.1 we have that K(z, ·) ∈ F 1
φ for

each z ∈ C
n. Thus, by Theorems 2.1 and 2.2, we have that

‖Tµ‖F∞
φ

→F∞
φ

. ‖µ‖∗.
Therefore, by complex interpolation and duality, it is enough to prove the
lemma for p = 2. To that end, note that TF ǫ

w
− Tδw is obviously bounded

and self adjoint on F 2
φ , which means that

‖TF ǫ
w
− Tδw‖F 2

φ
→F 2

φ
= sup

‖h‖
F2
φ
=1

∣∣〈(TF ǫ
w
− Tδw)h, h〉

∣∣ .
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However,

∣∣〈(TF ǫ
w
− Tδw)h, h〉

∣∣ =
∣∣∣∣
∫

Cn

|h(z)|2F ǫ
w(z)e

−2φ(z) dv(z) −
∫

Cn

|h(z)|2e−2φ(z) dδw(z)

∣∣∣∣

=

∣∣∣∣∣
cn
ǫ2n

∫

B(w,ǫ)
|h(z)|2e−2φ(z)dv(z) − |h(w)|2e−2φ(w)

∣∣∣∣∣

≤ cn
ǫ2n

∫

B(w,ǫ)

∣∣∣|h(z)|2e−2φ(z) − |h(w)|2e−2φ(w)
∣∣∣ dv(z)

where cn is the volume of the unit ball in C
n. Moreover, if ‖h‖F 2

φ
= 1, then

g) in Theorem 2.1 tells us that |h|2e−2φ is Lipschitz with Lipschitz constant
independent of h, which completes the proof. �

Note that by an easy application of Theorem 2 in [19] we have that Tf

is compact on F p
φ for 1 ≤ p < ∞ if f ∈ C∞

c (Cn). Combining this fact with

Lemmas 4.2 and 4.3 gives us the following.

Theorem 4.4. Finite rank operators are in T p
φ (C

∞
c (Cn)) when 1 < p < ∞.

In particular, since all Lp spaces have the bounded approximation property
(see [23]), the space of compact operators on F p

φ coincides with T p
φ (C

∞
c (Cn)).

The proof that {Tf : f ∈ C∞
c (Cn)} is F p

α operator norm dense in the
space of compact operators will use Theorem 4.4 in conjunction with the
ideas in [2] p. 3136, which we now elaborate.

Note that the proof of Theorem 4.4 actually shows that span{TfTg : f, g ∈
C∞
c (Cn)} is F p

α operator norm dense in the space of compact operators
when 1 < p < ∞. Thus, to show that {Tf : f ∈ C∞

c (Cn)} is F p
α operator

norm dense in the space of compact operators on F p
α , it is enough to show

that {Tf : f ∈ C∞
c (Cn)} is F p

α operator norm dense in span{TfTg : f, g ∈
C∞
c (Cn)}.
To that end, Let F be the usual L2 - Fourier transform on C

n where we
identify C

n with R
2n in the canonical way. Now if f1, f2 ∈ C∞

c (Cn), then it
is elementary that there exists sequences {fj,ℓ}∞ℓ=1 ⊂ F(C∞

c (Cn)) for j = 1, 2
such that limℓ→∞ fj,ℓ = fj uniformly on C

n, where F(C∞
c (Cn)) is the image

of C∞
c (Cn) under F . Furthermore, by Theorem 24 in [2], we have that

TfTg = Tf♯αg (4.1)

where the “product” ♯α is given by

f♯αg =
∑

γ∈Nn
0

1

(−α)|γ|γ!

∂|γ|f
∂zγ

· ∂
|γ|g
∂zγ

(4.2)

whenever f, g ∈ F(C∞
c (Cn)).

By uniform convergence and (4.1), we have that

Tf1Tf2 = lim
ℓ→∞

Tf1,ℓTf2,ℓ = lim
ℓ→∞

Tf1,ℓ♯αf2,ℓ
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where the limit is in the F p
φ operator norm. Finally, since each fj,ℓ is in the

Schwartz space of Cn, it is clear that each f1,ℓ♯αf2,ℓ is smooth and vanishes
at infinity. Thus, each f1,ℓ♯αf2,ℓ can itself be uniformly approximated on C

n

by functions in C∞
c (Cn), which completes the proof that {Tf : f ∈ C∞

c (Cn)}
is dense in the space of compact operators on F p

α.
Finally, we will complete the proof of Theorem 1.4 when p = 2. As was

stated in the introduction, the proof is very similar to the proof of Theorem
9 in [3] and so we will only outline the proof. To that end, given any bounded
operator X on F 2

φ , let KX(w, z) be the function defined by

KX(w, z) := (X∗K(·, z))(w)

so that KX(w, z) is analytic in w and conjugate analytic in z.
Note that a) in Theorem 2.1 immediately tells us that PMS : L2

φ → L2
φ is

Hilbert-Schmidt if S ⊆ C
n is compact, which easily implies that Tf is trace

class on F 2
φ when f ∈ C∞

c (Cn). Thus, if f ∈ C∞
c (Cn) and X is any bounded

operator on F 2
φ , then TfX is trace class on F 2

φ and repeating word for word

the proof of Theorem 8 in [3] gives us that

tr(TgX) =

∫

Cn

g(w)KX (w,w)e−2φ(w) dv(w). (4.3)

Now suppose that {Tf : f ∈ C∞
c (Cn)} is not dense in the space of compact

operators on F 2
φ . Then by the Hahn-Banach theorem and duality, there

exists a non-zero trace class operator X on F 2
φ where tr(TgX) = 0 for any

g ∈ C∞
c (Cn). However, this implies that

0 =

∫

Cn

g(w)KX (w,w)e−2φ(w) dv(w)

for any g ∈ C∞
c (Cn), which by elementary arguments implies thatKX(w,w) ≡

0.
The proof will be completed if we can show that

KX(w,w) ≡ 0 =⇒ X = 0.

To that end, since KX(w, z) is analytic in w and conjugate analytic in z
and KX(w,w) ≡ 0, a standard result in several complex variables implies
that KX(w, z) ≡ 0. However, since span{K(·, z) : z ∈ C

n} is dense in
F 2
φ , the condition KX(w, z) ≡ 0 implies that X = 0. (It should be noted

that the argument in this paragraph is by now standard and that the exact
same argument tells us that the Berezin transform is injective on F p

φ when

1 < p < ∞. )
It should be remarked that a very similar argument also shows that

{Tf : f ∈ C∞
c (Cn)} is trace norm dense in the trace class of F 2

φ (which was

proved in [3] for the classical Fock space F 2
α.)
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5. Essential norm estimates

In this section we prove Theorems 1.6 and 1.7. First however we will need
the following two Lemmas, the second of which is similar to Proposition 4.4
in [15].

Lemma 5.1. If K is compact on F p
φ and 1 < p < ∞, then

lim sup
R→∞

‖MχB(0,R)c
K‖F p

φ
→Lp

φ
= 0

Proof. By Theorem 1.4 and an easy approximation argument, it is enough
to prove the result for K = Tf where f ∈ C∞

c (Cn).
For that matter, let Sf = supp f and let M = sup{|w| : w ∈ Sf}.

Furthermore, assume without loss of generality that R > M . If g ∈ F p
φ with

‖g‖F p
φ
= 1 and q is the conjugate exponent of p, then we have

|e−φ(z)χB(0,R)c(z)Tfg(z)| ≤ χB(0,R)c(z)

∫

Sf

|f(w)||g(w)||K(z, w)|e−φ(z)e−2φ(w) dv(w)

≤ ‖f‖L∞χB(0,R)c(z)

(∫

Sf

(
eφ(z)|K(z, w)|eφ(w)

)q
dv(w)

) 1
q

. ‖f‖L∞χB(0,R)c(z)

(∫

Sf

e−qǫ|z−w| dv(w)

) 1
q

. ‖f‖L∞e−
ǫ(R−M)

2 e−
ǫ(|z|−M)

2

which immediately implies that

‖MχB(0,R)c
Tfg‖F p

φ
→Lp

φ
. ‖f‖L∞e−

ǫ(R−M)
2

where ǫ is from Theorem 2.1. Letting R → ∞ now completes the proof. �

Before we prove the next lemma, we will need to use the simple covering
of Cn from [4]. In particular, fix d > 0 and enumerate the disjoint family
of sets {[−d, d)2n + σ}σ∈2dZ2n as {Fj}∞j=1 and for this fixed d let Gj = {z ∈
C
n : dist∞(z, Fj) ≤ d} where dist∞(z, Fj) is the distance between z and

Fj in the | · |∞ norm. The following properties now hold trivially from the
definitions above:

(a) Fj ∩ Fk = ∅ if j 6= k,
(b) Every z ∈ C

n belongs to at most 22n of the sets Gj ,

(c) diam(Gj) ≤ 4d
√
2n where diam(Gj) is the Euclidean diameter

of Gj .

Lemma 5.2. If ǫ > 0 and A ∈ SL(φ), then there exists d = d(A) > 0 such
that ∥∥∥∥∥∥

AP −
∑

j

MχFj
APMχGj

∥∥∥∥∥∥
F p
φ
→Lp

φ

< ǫ
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where the sets Fj and Gj are defined above.

Proof. We first prove the Lemma for p = 2. To that end, note that

(APf)(w) −
∑

j

χFj
(w)(APMχGj

f)(w) =
∑

j

χFj
(w)(APMχGc

j
f)(w)

=

∫

Cn

Φ(w, u)f(u)e−2φ(u) dv(u)

where

Φ(w, u) :=
∑

j

χFj
(w)χGc

j
(u)〈AK(·, u),K(·, w)〉.

We then estimate that
∫

Cn

|Φ(w, u)|(eφ(u))e−2φ(u) dv(u) ≈ eφ(w)
∑

j

∫

Gc
j

χFj
(w)|〈Aku, kw〉| dv(u)

. eφ(w)
∑

j

∫

Gc
j

χFj
(w)

(1 + |u− w|)2n+δ
dv(u)

. d−
δ
2 eφ(w)

since |u− w| & d if u ∈ Fj and w ∈ Gc
j . Similarly we can easily get that

∫

Cn

|Φ(w, u)|(eφ(w))e−2φ(w) dv(w) . d−
δ
2 eφ(u)

which by the Schur test proves the lemma if p = 2.
Now assume that 1 < p < 2. Since A is bounded on F 1

φ we easily get that
∥∥∥∥∥∥

∑

j

MχFj
APMχGj

∥∥∥∥∥∥
F 1
φ
→L1

φ

< ∞

which by complex interpolation proves the Theorem when 1 < p < 2.
Finally when 2 < p < ∞, one can similarly get a trivial L1

φ → F 1
φ operator

norm bound on

∑

j

MχFj
APMχGj




∗

=
∑

j

PMχGj
A∗PMχFj

since A∗ is bounded on F 1
φ . Duality and complex interpolation now proves

the lemma when 2 < p < ∞.
�

We will now prove Theorem 1.6
Proof of Theorem 1.6. We first prove (1.5). Let A be bounded on F p

φ .

Then since PMχB(0,R)
A is compact on F p

φ for any R > 0 and since the
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orthogonal projection P : Lp
φ → F p

φ is bounded and coincides with the

identity on F p
φ , we have that

‖A‖Q ≤ lim sup
R→∞

‖PA− PMχB(0,R)
A‖F p

φ
→F p

φ
. lim sup

R→∞
‖MχB(0,R)c

A‖F p
φ
→Lp

φ
.

On the other hand, if K : F p
φ → F p

φ is compact then Lemma 5.1 gives us
that

lim sup
R→∞

‖MχB(0,R)c
A‖F p

φ
→Lp

φ
= lim sup

R→∞
‖MχB(0,R)c

(A−K)‖F p
φ
→Lp

φ

≤ ‖A−K‖F p
φ
→F p

φ

which completes the proof of (1.5).
Now we will prove (1.6). By completely elementary arguments we have

that

sup
d>0

lim sup
|z|→∞

‖MχB(z,d)
APMχB(z,2d)

‖F p
φ
→Lp

φ
≤ lim sup

R→∞
‖MχB(0,R)c

A‖F p
φ
→Lp

φ

for any bounded A on F p
φ . Finally, since

‖A‖Q ≈ lim sup
R→∞

‖MχB(0,R)c
A‖F p

φ
→Lp

φ
,

we will complete the proof by showing that

‖A‖Q . sup
d>0

lim sup
|z|→∞

‖MχB(z,d)
APMχB(z,2d)

‖F p
φ
→Lp

φ

for any A ∈ SL(φ). An easy approximation argument will then complete
the proof.

To that end, let ǫ > 0. Fix some d > 0 large enough where Lemma 5.2
is true and let {Fj} be the corresponding cover of Cn (with associated sets
{Gj}.) Then we have that

‖A‖Q ≤ ǫ+ lim sup
m→∞

∥∥∥∥∥∥

∑

j≥m

MχFj
APMχGj

∥∥∥∥∥∥
F p
φ
→Lp

φ

However, if f ∈ F p
φ with norm one, then

lim sup
m→∞

∥∥∥∥∥∥

∑

j≥m

MχFj
APMχGj

f

∥∥∥∥∥∥

p

Lp
φ

= lim sup
m→∞

∑

j≥m

∥∥∥MχFj
APMχGj

f
∥∥∥
p

Lp
φ

≤ 22n lim sup
m→∞

‖MχFm
APMχGm

‖p
F p
φ
→Lp

φ

≤ 22n sup
d>0

lim sup
|z|→∞

‖MχB(z,d)
APMχB(z,2d)

‖p
F p
φ
→Lp

φ

.

Letting ǫ → 0+ now completes the proof.
We will now prove an extremely useful technical lemma whose proof is

similar to the proof of Lemma 1.6 and part (a) of Theorem 4.3 in [15]. For
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the sake of notational ease, all norms in the rest of this section will either
denote the F p

φ norm, the F p
φ operator norm, or the F p

φ → Lp
φ norm.

Lemma 5.3. Suppose that 1 < p < ∞ and let ǫ > 0. Pick d > 0 cor-
responding to ǫ in Lemma 5.2. Then there exists a sequence {zj} with
limj→∞ |zj | = ∞ such that

‖A‖Q ≤ ǫ+ lim sup
j→∞

‖Mχ
B(zj ,d

√
2n)

Agj‖

where

gj :=

∫

B(0,2d
√
2n)

aj(u)k̃zj−u dv(u)

and where aj satisfies
∫

B(0,2d
√
2n)

|aj(u)|p dv(u) = 1.

Proof. As in the proof of Theorem 1.6, fix d > 0 such that

‖A‖Q ≤ ǫ

2
+ lim sup

m→∞

∥∥∥∥∥∥

∑

j≥m

MχFj
APMχGj

∥∥∥∥∥∥
.

However, if ‖f‖ ≤ 1, then
∥∥∥∥∥∥

∑

j≥m

MχFj
APMχGj

f

∥∥∥∥∥∥

p

=
∑

j≥m

∥∥∥MχFj
APMχGj

f
∥∥∥
p

=
∑

j≥m

∥∥∥MχFj
APMχGj

f
∥∥∥
p

‖MχGj
f‖p ‖MχGj

f‖p

≤ 22n sup
j≥m

‖MχFj
Alj‖p

where

lj :=
PMχGj

f

‖MχGj
f‖ .

If wj is the center of the cubes Fj then Fj ⊂ B(wj, d
√
2n) so that Gj ⊂

B(wj, 2d
√
2n). Now if

Tm :=
∑

j≥m

MχFj
APMχGj

then we have that

‖Tm‖ . sup
j≥m

sup
‖f‖≤1

{
‖MχFj

Alj‖ : lj =
PMχGj

f

‖MχGj
f‖

}

. sup
|z|≥|wm|

sup
‖f‖≤1

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,2d
√
2n)f

‖MB(z,2d
√
2n)f‖

}
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and so

lim sup
m→∞

‖Tm‖ . lim sup
|z|→∞

sup
‖f‖≤1

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,2d
√
2n)f

‖MB(z,2d
√
2n)f‖

}
.

Pick a sequence {zj} ⊂ C
n and a corresponding sequence {fj} ⊂ F p

φ with

‖fj‖ ≤ 1 such that

lim sup
|z|→∞

sup
‖f‖≤1

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,d
√
2n)f

‖MB(z,d
√
2n)f‖

}
− 1

2
ǫ

≤ lim sup
j→∞

‖MB(zj ,d
√
2n)Agj‖

where

gj :=
PMB(zj ,2d

√
2n)fj

‖MB(zj ,2d
√
2n)fj‖

=

∫
B(zj ,2d

√
2n)〈fj, k̃u〉k̃u dv(u)

(∫
B(zj ,2d

√
2n) |〈fj, k̃w〉|p dv(w)

) 1
p

=

∫
B(0,2d

√
2n)〈fj, k̃zj−u〉k̃zj−u dv(u)

(∫
B(0,2d

√
2n) |〈fj , k̃zj−w〉|p dv(w)

) 1
p

(where the second to last equality follows from the definition of P , the

definition of k̃w, and the reproducing property.)
Finally, setting

aj(u) :=
〈fj, k̃zj−u〉

(∫
B(0,2d

√
2n) |〈fj , k̃zj−w〉|p dv(w)

) 1
p

completes the proof. �

We will now prove three very interesting corollaries to Lemma 5.3, the
first of which is a proof of Theorem 1.3 when p 6= 2.
Proof of Theorem 1.3 when p 6= 2. Let A ∈ SL(φ). We in fact prove that
there exists R > 0 such that

‖A‖Q . R2n lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz , kw〉|.

Obviously there is nothing to prove if ‖A‖Q = 0 so assume ‖A‖Q > 0. Then
by Lemma 5.3 with ǫ = 1

2‖A‖Q we have a sequence {zj} with limj→∞ |zj | =
∞ where

‖A‖Q ≤ 2 lim sup
j→∞

‖MB(zj ,R/2)Agj‖

with

gj :=

∫

B(0,R)
aj(u)k̃zj−u dv(u)
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where aj satisfies ∫

B(0,R)
|aj(u)|p dv(u) = 1

and where R := 2d
√
2n with d coming from Lemma 5.3. However, the

reproducing property gives us that

|Agj(z)|e−φ(z) ≤
∫

B(0,R)
|aj(u)||〈Ak̃zj−u, k̃z〉| dv(u)

so that by Hölder’s inequality we have

‖A‖pQ ≤2p lim sup
j→∞

∫

B(zj ,R)

(∫

B(0,R)
|aj(u)||〈Ak̃zj−u, k̃z〉| dv(u)

)p

dv(z)

. R2np lim sup
|z|→∞

sup
w∈B(z,2R)

|〈Akz, kw〉|p

which completes the proof.
We will now prove Theorem 1.7 with the help of Lemma 5.3.

Proof of Theorem 1.7. First note that ‖Tµ‖ . 1 if ‖µ‖∗ ≤ 1 so without loss
of generality we can assume that 0 < ‖Tµ‖Q < 1 since otherwise there is
nothing to prove. By Lemma 5.3 there exists a sequence limj→∞ |zj | = ∞
where

‖A‖Q ≤ 2 lim sup
j→∞

‖Agj‖

where

gj :=

∫

B(0,2d
√
n)
aj(u)k̃zj−u dv(u)

and where ∫

B(0,2d
√
n)
|aj(u)|p dv(u) = 1.

However, by the proofs of Proposition 2.6 and Lemma 5.2, we can pick

d > 0 where e−
ǫd
2 . ‖Tµ‖Q (where here ǫ corresponds to Proposition 2.1) so

without loss of generality we may assume that d = − ln(‖Tµ‖Q)
Furthermore, combining this with the proof of Theorem 1.3 when p 6= 2,

we have that

‖Tµ‖Q . (ln(‖Tµ‖Q))2n lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz , kw〉|

≤ (ln(‖Tµ‖Q))2n lim sup
|z|,|w|→∞

|〈Akz , kw〉|

(where as before R := 2d
√
2n.)

Finally, it is elementary that u/(lnu)2n ≥ Cδu
1
δ for u ∈ (0, 1) which

means that

(‖Tµ‖Q)
1
δ ≤ Cδ lim sup

|z|,|w|→∞
|〈Tµkz, kw〉|

for all 0 < δ < 1.
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We will end this section by extending the main essential norm estimate in
[15] to the F p

φ setting in the situation where we are assuming the existence of

a uniformly bounded family of operators {Uz}z∈Cn on F p
φ such that (1.4) is

true and where ‖Uzh‖F p
φ
& ‖h‖F p

φ
for all z ∈ C

n and h ∈ F p
φ . In particular,

we will prove the following result whose proof is similar to the proof of part
(a) of Theorem 4.3 in [15] . It should be remarked that this provides a vastly
simplified proof of the main results in [4] when p 6= 2. Also note that this
theorem should be interpreted as another way of quantifying the statement
that ‖A‖Q is equivalent to the “norm of A translated out to infinity.”

Theorem 5.4. Assuming the existence of a uniformly bounded family of
operators {Uz}z∈Cn on F p

φ satisfying (1.4) and where ‖Uzh‖F p
φ
& ‖h‖F p

φ
for

all z ∈ C
n and h ∈ F p

φ , we have that

‖A‖Q ≈ sup
‖f‖

F
p
φ
≤1

lim sup
|z|→∞

‖AUzf‖F p
φ

holds for any A in the F p
φ operator norm closure of SL(φ) when 1 < p < ∞.

Proof. Let w ∈ C
n and notice that

lim sup
|z|→∞

‖KUzkw‖F p
φ
. lim sup

|z|→∞
‖Kkz−w‖F p

φ
= 0

if K is compact on F p
φ . Thus, by an easy density argument, we have that

sup
‖f‖

F
p
φ
≤1

lim sup
|z|→∞

‖KUzf‖F p
φ
= 0

if K is compact on F p
φ . In particular, if K is compact on F p

φ then

sup
‖f‖

F
p
φ
≤1

lim sup
|z|→∞

‖AUzf‖F p
φ
= sup

‖f‖
F
p
φ
≤1

lim sup
|z|→∞

‖(A−K)Uzf‖F p
φ
. ‖A−K‖F p

φ
→F p

φ

so that

sup
‖f‖

F
p
φ
≤1

lim sup
|z|→∞

‖AUzf‖F p
φ
. ‖A‖Q.

Now for the other half of Theorem 5.4, let ǫ > 0 and pick a sequence {zj}
with limj→∞ |zj | = ∞ where

‖A‖Q ≤ ǫ+ lim sup
j→∞

‖Agj‖F p
φ

and where

gj :=

∫

B(0,2d
√
n)
aj(u)k̃zj−u dv(u).

Now let ρ := 2d
√
2n. Note that we can write k̃zj−u = Θ(u, zj)Uzj k̃u where

|Θ(·, ·)| is bounded above and below on C
n ×C

n. Thus, it is not difficult to
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see that we can write gj as gj = Uzjhj where

hj =

∫

B(0,ρ)
aj(u)k̃u dv(u)

and where

aj(u) :=
Θ(u, zj)〈fj, k̃zj−u〉

(∫
B(0,ρ) |〈fj , k̃zj−u〉|p dv(u)

) 1
p

Since {aj} is a bounded sequence in Lp(B(0, ρ), dv), (passing to a sub-
sequence if necessary) we can assume that aj converges in the weak −∗
topology of Lq(B(0, ρ)) to a function a on B(0, ρ) (where q is the conjugate
exponent of p), which in particular means that we may also assume aj → a
pointwise on B(0, ρ). Now if

h =

∫

B(0,ρ)
a(u)k̃u dv(u)

then an easy application of the Lebesgue dominated convergence theorem
(in conjunction with Theorem 2.1) gives us that hj → h in F p

φ . Moreover,

we have that

1 & ‖gj‖F p
φ
= ‖Uzjhj‖F p

φ
≈ ‖hj‖F p

φ

so that ‖h‖ . 1, and finally this gives us that

‖A‖Q . ǫ+ lim sup
j→∞

‖Agj‖ = ǫ+ lim sup
j→∞

‖AUzjhj‖ . ǫ+ lim sup
j→∞

‖AUzjh‖

and hence

‖A‖Q . sup
‖f‖≤1

lim sup
|z|→∞

‖AUzjf‖

�

6. Open problems

In this last section we will discuss some interesting open problems related
to the results of this paper. The first obvious question is whether Theorem
1.3 holds where we replace (1.3) with the condition that

lim
|z|→∞

(B(A))(z) = 0 (6.1)

when we do not necessarily assume the existence of a uniformly bounded
family of operators {Uz}z∈Cn that satisfies (1.4). Furthermore, it would be
fascinating to know whether there is any kind of converse to Proposition 1.5
in the following sense: suppose that F 2

φ (or more generally F p
φ) satisfies the

condition that (6.1) =⇒ (1.3) for all R > 0 and all bounded operators A on
F 2
φ (respectively, F p

φ .) Then does this necessarily imply the existence of a

uniformly bounded family of operators {Uz}z∈Cn satisfying (1.4)?
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Now assume that reproducing kernels of F 2
φ satisfy

|〈kz, kw〉| ≈
1

‖K(·, z − w)‖F 2
φ

(6.2)

(which in fact is assumed in [15] and is true for the classical Fock space and
in an appropriately modified form is true for the classical Bergman spaces
over bounded symmetric domains.) Then a simple computation tells us that

U∗
z f(w) := f(z − w)kz(w)

defines a uniformly bounded family of operators on F p
φ such that (1.4) holds.

Moreover, if (6.2) is true, then it is very easy to show that any bounded
operator Uz on F p

φ satisfying (1.4) must be defined by

U∗
z f(w) := C(z)f(z − w)kz(w) (6.3)

for some function C on C
n that is bounded above and below. In particular,

an easy computation tells us that we must have

U∗
z ku(w) =

Θ(z, w)ku(z − w)kz(w)

〈kz, kw〉‖K(·, z − w)‖F 2
φ

in order for (1.4) to be true. Thus, by Liouville’s theorem, we have that

Θ(z, w) = C(z)〈kz, kw〉‖K(·, z − w)‖F 2
φ

for C(·) bounded above and below on C
n (since (6.2) implies that kz(w) 6= 0

for all z, w ∈ C
n.) The density of the reproducing kernels on F p

φ easily

completes the proof. It is therefore reasonable to ask when in general (6.3)
defines a bounded (or even a well defined) operator on F p

φ and if so whether

any uniformly bounded family of operators {Uz}z∈Cn satisfying (1.4) must
in fact be of the form (6.3).

Now let Ã denote the Berezin transform of a bounded operator A on the
unweighted Bergman space A2(D). Note that it was shown in [10] that there
is no C > 0 independent of f satisfying ‖f‖L∞(D) ≤ 1 where

‖Tf‖Q ≤ C lim sup
|z|→1−

|T̃f (z)|.

While it is most likely also the case that the previous statement holds true in
the Fock space setting F 2

α (though no immediate examples come to mind),
and while it is very likely that one can prove an appropriate version of
Theorem 1.7 in the A2(D) setting, it would be interesting to know if one
can set δ = 0 in Theorem 1.7. Furthermore, it would be very interesting to
know if there exists C > 0 independent of µ with ‖µ‖∗ ≤ 1 where

‖Tµ‖Q ≤ C lim sup
|z|→∞

‖Tµkz‖F p
φ
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or even if the above estimate holds true in the F 2
α setting for all bounded f

on C
n with ‖f‖L∞(Cn) ≤ 1. It would also be interesting to know whether an

appropriately modified estimate holds in the A2(D) setting holds.
Now if f ∈ Lq(Cn, dv) for 1 ≤ q < ∞, then Hölder’s inequality immedi-

ately implies that

‖f‖∗ ≤ ‖f‖Lq(Cn,dv)

which means that Tf can be approximated in the F p
φ operator norm for

1 ≤ p < ∞ by a Toeplitz operator with C∞
c (Cn) symbol. Obviously this

result is not true for f ∈ L∞(Cn) since otherwise if f ≡ 1 then Tf = IdF p
φ
→F p

φ

would be compact on F p
φ . However, one can ask if Tf for f ∈ L∞(Cn) can be

approximated in the F p
φ norm by Toeplitz operators with smooth, bounded

symbols whose derivatives of arbitrary order are also bounded.
Note that this is in fact true for the classical Fock space F p

α . In particular,
if µ is a complex Borel measure on C

n where |µ| is Fock-Carleson, then it
was proved in [4] that for 1 < p < ∞,

lim
t→0+

‖Tµ̃(t) − Tµ‖F p
α
= 0 (6.4)

where µ̃(t) is the heat transform of µ given by

µ̃(t)(z) :=
1

(4πt)n

∫

Cn

e−
|z−w|2

4t dµ(w).

Unfortunately the arguments used in [4] (which are similar to some of the
arguments in [17]) are not available in the generalized Fock space setting,
and therefore it would be interesting to know if the above mentioned result
is true for F p

φ (even for function symbols f ∈ L∞(Cn).) Note that this,
if proved, would obviously imply that the Toeplitz algebra generated by
Toeplitz operators with Fock-Carleson measure symbols would coincide with
the Toeplitz algebra generated by Toeplitz operators with smooth, bounded
(function) symbols whose derivatives of all orders is bounded, which as was
stated in Theorem 1.1 is true for F p

α .
A related question is whether the F p

φ operator norm closure of SL(φ)
coincides with T p

φ (X) for some class of Borel measures X on C
n (like say,

bounded functions on C
n.) Even in the classical Fock space setting F 2

α it
would be interesting to know if the F 2

α operator norm closure of SL(φ) with
φ = α| · |2/2 coincides with the Toeplitz algebra T 2

α (L
∞(Cn)). One rather

interesting approach to this question would be to construct a “k-Berezin
transform” for F 2

α that is analogous to the k-Berezin transform introduced
by D. Suárez in [21] and further studied in [22, 17].

It would also be interesting to know if {Tf : f ∈ C∞
c (Cn)} is dense

in the space of compact operators on F p
φ for 1 < p < ∞ (and p 6= 2.)

As was already remarked, the arguments in Section 4 actually show that
span{TfTg : f, g ∈ C∞

c (Cn)} is dense in F p
φ when 1 < p < ∞, which is “not

too far” from {Tf : f ∈ C∞
c (Cn)}. Furthermore, note that the formulas (4.1)
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and (4.2) hold for symbols other than those in the space F(C∞
c (Cn)) (see [2]

for more details.) However, (4.1) and (4.2) are most emphatically exclusive
to the classical Fock space setting. In particular, since Toeplitz operators
with “nice” function symbols on F 2

α are unitarily equivalent to certain Weyl
ΨDOs on L2(Rn) under the Bargmann isometry B : F 2

α → L2(Rn), one
can informally use the well known asymptoptic composition formula for the
product of ΨDOs and pull back to F 2

α to guess (4.1) and (4.2) (see [11] or [25]
for a much more detailed description of the above ideas.) Because of this, it
will most likely require new techniques to prove that {Tf : f ∈ C∞

c (Cn)} is
dense in the space of compact operators on F p

φ for general 1 < p < ∞.

Finally, we end this paper with a simple but nonetheless interesting fact.
First, note that the argument used to prove Theorem 1’ in [9] extends to
the generalized Fock space setting and shows that {Tf : f ∈ C∞

c (Cn)} is
SOT dense in the space of bounded operators on F 2

φ . In particular, suppose
that f1, . . . , fk and g1, . . . , gm for k,m ∈ N are two sequences of linearly
independent functions in F 2

φ . If we now define R : C∞
c (Cn) → C

k×m by

(Rφ)ij :=

∫

Cn

φ(z)fi(z)gj(z) e
−2φ(z) dv(z)

then it is not difficult to show that R is surjective, which by elementary
Hilbert space arguments proves the claim.
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