
ar
X

iv
:1

30
6.

56
46

v3
 [

cs
.C

R
]

 2
3

D
ec

 2
01

5

SL2 HOMOMORPHIC HASH FUNCTIONS: WORST CASE TO AVERAGE

CASE REDUCTION AND SHORT COLLISION SEARCH

CIARAN MULLAN AND BOAZ TSABAN

Abstract. We study homomorphic hash functions into SL2(q), the 2 × 2 matrices with
determinant 1 over the field with q elements. Modulo a well supported number theoretic
hypothesis, which holds in particular for concrete homomorphisms proposed thus far, we
provide a worst case to average case reduction for these hash functions: upto a logarithmic
factor, a random homomorphism is as secure as any concrete homomorphism. For a family
of homomorphisms containing several concrete proposals in the literature, we prove that
collisions of length O(log q) can be found in running time O(

√
q). For general homomor-

phisms we offer an algorithm that, heuristically and according to experiments, in running
time O(

√
q) finds collisions of length O(log q) for q even, and length O(log2q/ log log q) for

arbitrary q. While exponetial time, our algorithms are faster in practice than all earlier
generic algorithms, and produce much shorter collisions.

1. Introduction

Let {0, 1}∗ be the monoid of all finite bitstrings with string concatenation as monoid
multiplication and the empty string as identity element. Let SL2(q) be the group of 2 × 2
matrices of determinant 1 with entries in the finite field Fq with q = pn elements. Over 20
years ago, Zémor [20] proposed a general hash function construction employing homomor-
phisms h : {0, 1}∗ → SL2(q), that is, functions h with the property that h(uv) = h(u)h(v)
for all u, v ∈ {0, 1}∗. For a pair of elements A = (A0, A1) of SL2(q), denote by hA the unique
homomorphism such that hA(0) = A0 and hA(1) = A1. A bitstrings b1 . . . bm ∈ {0, 1}∗ is
hashed to the matrix

hA(b1 . . . bm) = hA(b1) · · ·hA(bm) = Ab1 · · ·Abm ∈ SL2(q).

Variations of Zémor’s original scheme were proposed in, e.g., [18, 19]. We refer to the survey
of Petit and Quisquater [14] for an introduction to this family of hash functions and its
features.

At present, feasible cryptanalyses on this construction apply only for very special instances
of A and q. A very efficient cryptanalysis for the case where q is a power of 2 and A is a
specific, natural pair of matrices was recently provided by Grassl et al. [9]; see the survey [14]
and the paper [6] for a discsussion of the known cryptanalytic results and their limitations.

We study Zémor’s construction in its full generality. Based on a well supported conjecture
concerning expander graphs, in Section 2 we prove that SL2(q) homomorphic hash functions
based on a random homomorphism is as secure as any concrete homomorphism, upto a
logarithmic factor in collision length. Such worst case to average case reductions, also called

2010 Mathematics Subject Classification. 94A60, 20G40.
Key words and phrases. SL2 hash, homomorphic hash function, Cayley hash function, Tillich–Zémor hash,

expander graphs.
1

http://arxiv.org/abs/1306.5646v3

2 CIARAN MULLAN AND BOAZ TSABAN

random self-reducibility, are very desirable in cryptographic primitives, see, e.g., Ajtai’s
seminal paper [2] and the numerous works that cite it. This puts Zémor’s construction at
the frontiers of provably secure hash functions and motivates a further study of this approach.

The running time of all algorithms studied in this paper is measured by the number of
multiplications of elements of SL2(q). In Section 3 we provide an algorithm producing,
modulo the same well-known conjecture, collisions of length O(log q) in time O(

√
q), for

arbitrary q and a class of homomorphisms including those in [17] (end of §6, i = 2), [20],
[18], and [1]. In Section 4, for random (A0, A1) and arbitrary q we provide a collision
search algorithm, and show, heuristically, that it finds collisions of length O(log2q/ log log q)
in running time O(

√
q). In Section 5 we show that, for messages of all practical sizes, our

algorithm is faster and produces much shorter collisions than the best known subexponential
time algorithm due to Faugère et al. [7]. Moreover, it is shown that the heuristic methods of
Petit [16] and Faugère et al. can be used, for q a power of 2, to reduce an arbitrary pair of
generators (A0, A1) into a form in which our algorithm of Section 3 applies. Consequently,
we obtain collisions of linear length for arbitrary homomorphisms into SL2(2

n).
The theory employed in Sections 2 and 3 may be used to obtain, in a rigorous manner,

estimations for the first phase of an earlier algorithm of Petit et al. [15]. We survey this
algorithm in Appendix A. For an optimal choice of parameters we estimate its performance,
which turns out to be not as good as our new algorithms. Furthermore, our algorithms are
conceptually simpler: unlike Petit et al. we do not appeal to discrete logarithm solving or use
of the LLL algorithm. We remark that Petit et al.’s algorithm produces bitstrings hashing
to the identity matrix, of length linear in p. While the same can be done with our first
algorithm of Section 3, apparently this cannot be achieved with our second, more general
algorithm of Section 4.

Finally, in Appendix B we prove that palindromic collisions, as exploited by Grassl et
al. [9] in their efficient attack for q even, do not exist for arbitrary q, based on the same
natural generating sets.

We mention, here only, that the memory required by our algorithm can be made negligible,
using distinguished points as in [15, §6]. All of our estimations are supported by extensive
computer experiments. When we are interested in estimating the involved constants, we use
lg, the logarithm in base 2, instead of log. The operator | | means: absolute value when
applied to a real number, cardinality when applied to a set, determinant when applied to a
matrix, and bitlength when applied to a bitstring.

Hash functions typically fall into one of two categories: a mathematical design with trans-
parent security but slow performance, or an ad hoc design and fast, but obscure security. The
study of Zémor-like hash functions is worthy of investigation as it may lead to the design of
a fast hash function whose security is based on a natural mathematical problem. Moreover,
properties built into these constructions, including bit-level hashing (as opposed to fixed size
blocks) and homomorphism and parallelism properties, may find use in applications. Our
results, including the cryptanalytic ones, suggest that random instances of the studied hash
family may meet the mentioned goals. We hope that our new mathematical treatment and
simpler collision-finding algorithms will encourage further research in this field.

SL2 HOMOMORPHIC HASH 3

2. Worst case to average case reduction

In earlier papers on SL2(q) hash functions (see [14] and references therein), much effort
has been put on selecting the pair (A0, A1) = (h(0), h(1)) carefully. One motivation was to
have the hash function efficiently implementable. Another was to have it more “secure”:
that small differences in the hashed messages are detectable, and that the hash function is
“mixing”. Here, we show that hashing with a random homomorphism—that is, with a pair
of random elements (A0, A1)—is not less secure than hashing with any prescribed, carefully
chosen homomorphism. The price may be at most a logarithmic factor in the collision length.

In this paper, by graph we always mean a directed one. Let G be a group. For a generating
subset S of G, the Cayley graph of (G, S) is the graph Γ with G as set of vertices, and an
edge from g to ga for each g ∈ G, a ∈ S. This is a regular graph of degree |S|. A regular
graph Γ = (V,E) is an ǫ-expander if, for each set of vertices U ⊆ V with |U | ≤ |V |/2, the
set N(U)—of neighbors of elements of U—satisfies |N(U) \ U | ≥ ǫ|U |. (Necessarily, ǫ ≤ 1
in this case.) Surveys on expander graphs are available in [10, 8, 11].

For a d-regular graph Γ with adjacency matrix A, let

λ(Γ) = max {|λ| : λ is an eigenvalue of A, |λ| 6= d} .
Throughout this section, |G| should be thought of as tending to infinity, whereas |S| (and
thus d) and ǫ should be considered constant. We will use the following known facts.1 In Item

(2) of the following theorem, the vector Âmp describes the distribution on V corresponding to
choosing a vertex according to the distribution p, and then performing m steps of random
walk on the graph, where in each step one moves to a uniformly chosen neighbor of the
present vertex. (As there are loops on the vertices, one may remain at the same vertex after
the step.)

Theorem 2.1. Let Γ = (V,E) be a finite d-regular graph.

(1) If Γ has loops on each vertex and Γ is an ǫ-expander, then d − λ(Γ) ≥ ǫ2/(4 + 2ǫ2)
[8, Theorem E.7].

(2) Let α = λ(Γ)/d and Â = 1
d
A. Let u be the uniform distribution on V , and let p be

an arbitrary distribution on V . Then, for each event B:
∣

∣

∣

∣

Pr
Âmp

[B]− Pr
u

[B]

∣

∣

∣

∣

≤ 1

2
‖Âmp− u‖1 ≤

1

2

√

|V | · αm

for all m [10, Theorem 3.2].

Let G be a finite group, and let g = (g0, . . . , gk−1) be a k-tuple of generators of G. The
homomorphic hash function hg : {0, . . . , k − 1}∗ → G is defined by

hg(b1b2 . . . bm) := gb1gb2 · · · gbm ∈ G

for all b1b2 . . . bm ∈ {0, . . . , k − 1}∗. For a set S ⊆ G, define S±1 := S ∪ S−1, where
S−1 := {s−1 : s ∈ S}.

The first item of the following proposition was pointed out to us by E. Breuillard.2

1The references given are to the surveys, where the primary references can be found.
2We state and prove this observation in a slightly more general setting than the one provided by Breuillard,

but the argument is identical to Breuillard’s.

4 CIARAN MULLAN AND BOAZ TSABAN

Proposition 2.2. Let G be a finite group, and let S = {g0, . . . , gk−1} be generators of G
such that the Cayley graph of (G, S±1) is an ǫ-expander. Then:

(1) The Cayley graph of (G, S) is an ǫ/(k + 1)-expander.
(2) Let m = (c(k + 1)3/ǫ2) log |G|, c > 5/2. Let u be the uniform distribution on G. Let

e be the neutral element of G, and set g = (g0, . . . , gk−1, e). If v ∈ {0, . . . , k}m is

chosen uniformly at random, then for each event B:
∣

∣

∣
Pr[hg(v) ∈ B]− Pr

u

[B]
∣

∣

∣
≤ 1

2
‖hg(v)− u‖1 <

1

2|G|c/5−1/2
.

Proof. (1) Let δ = ǫ/(k + 1). Assume that there is U ⊆ G such that |U | ≤ |G|/2 and
|US \ U | < δ|U |. Fix s ∈ S. In particular, |Us \ U | < δ|U |, and thus

|Us−1 ∩ U | = |U ∩ Us−1| = |(Us ∩ U)s−1| = |Us ∩ U | ≥ (1− δ)|U |.
Thus, |Us−1 \ U | < δ|U |, and therefore

ǫ|U | ≤ |US±1 \ U | ≤ |US−1 \ U |+ |US \ U | < kδ|U |+ δ|U | = (k + 1)δ|U | = ǫ|U |;
a contradiction.

(2) Let δ = ǫ/(k + 1). By (1), the Cayley graph of (G, S) is a δ-expander. The Cayley
graph of (G, S ∪ {e}), where e is the neutral element of G, is the Cayley graph of (G, S),
with a loop added at each vertex. As N(U) \ U does not change when adding loops, the
Cayley graph of (G, S ∪ {e}) is a δ-expander, too.

As the Cayley graph Γ of (G, S ∪ {e}) has loops on all vertices, Theorem 2.1 applies. As
δ ≤ 1/2,

k + 1− λ(Γ) ≥ δ2

4 + 2δ2
>

δ2

5
.

Thus,
λ(Γ)

k + 1
< 1− δ2

5d
= 1− ǫ2

5d3
.

Let v = b1b2 . . . bm ∈ {0, . . . , k}m be chosen uniformly at random. Then

hg(v) = gb1 · · · gbm
is the endpoint of a uniform random walk of length m in the Cayley graph Γ of (G, S ∪{e}),
starting at e. By Theorem 2.1, for α = 1− ǫ2/5(k + 1)3:

∣

∣

∣
Pr[hg(v) ∈ B]− Pr

u

[B]
∣

∣

∣
≤ 1

2
‖hg(v)− u‖1 <

1

2

√

|G| · αm.

Let m = c/5 · log1/α |G|. Then
√

|G| · αm =
√

|G| · αc/5·log1/α |G| =
√

|G|(|G|log1/α α)c/5 =
√

|G| · |G|−c/5 = 1/|G|c/5−1/2.

As
logα = log(1− ǫ2/5(k + 1)3) < −ǫ2/5(k + 1)3,

we have that

log1/α |G| = log |G|
log 1

α

=
log |G|
− logα

<
log |G|

ǫ2/5(k + 1)3
=

5(k + 1)3

ǫ2
log |G|,

and m is as required. �

SL2 HOMOMORPHIC HASH 5

As its proof indicates, the following theorem can be generalized to arbitrary, not necessarily
equal, numbers of given generators and random elements. We state it, though, in the form
needed here.

Theorem 2.3. Let G be a finite group, and let g = (g0, g1) be a pair of generators of G such

that the Cayley graph of (G, {g±1
0 , g±1

1 }) is an ǫ-expander. Assume that if r = (r0, r1) ∈ G2

is chosen uniformly at random, one can find in time O(t), with non-negligible probability,

collisions of length O(l) in hr. Then one can find with the same probability and time O(t),
collisions in the original hash function hg, of length O(l log |G|/ǫ2).
Proof. Let m = (c · 33/ǫ2) log |G|, with c large enough (say, 10). Let g = (g0, g1, e). Take
uniformly random, independent v0, v1 ∈ {0, 1, 2}m. By Proposition 2.2, r0 := hg(v0) and
r1 := hg(v1) are statistically indistinguishable from independent, uniformly random elements
of G. A collision

hr(b1b2 · · · bl1) = hr(c1c2 · · · cl2)
of length l := max{l1, l2} yields the collision

hg(vb1vb2 · · · vbl1) = hg(vc1vc2 · · · vcl2)
of length O(ml) = O(l log |G|/ǫ2). As e is the neutral element of G, this is also a (typically,
shorter) collision of length O(ml) in the original generators g0 and g1. �

Let ǫ > 0. Let P be a family of prime powers. For each q ∈ P, assume that A
(q)
0 , A

(q)
1 ∈

SL2(q) are generators such that the Cayley graph of (SL2(q), {A(q)
0 , A

(q)
1 }±1) is an ǫ-expander.

Then, by Theorem 2.3, the associated hash functions hA(q) are not more secure than random
hash functions h : {0, 1}∗ → SL2(q). In other words, the hash functions hR with R =
(R0, R1) ∈ SL2(q)

2 a uniformly random pair of matrices are the strongest in terms of collision
resistance.

This observation is applicable in our setting for two reasons. The first is that, in all
concrete proposals made thus far (e.g., [17, 18, 20]) the corresponding Cayley graph was
proved to be an expander. The second, more general, is the following well known and well
supported conjecture (cf. Conjecture 2.9 in [11]).

Conjecture 2.4 (Lubotzky). There is a constant ǫ > 0 such that, for all prime powers q, and
all generators A0, A1 of SL2(q), the Cayley graph of (SL2(q), {A±1

0 , A±1
1 }) is an ǫ-expander.

In the case where the generatorsA0, A1 are chosen at random and q is prime, this conjecture
was proved to hold for randomly chosen matrices, with probability going to 1 as q increases,
by Bourgain and Gamburd [3]. Breuillard, Green, Guralnick and Tao [5] have recently
extended this result to q an arbitrary prime power. From another direction, Breuillard and
Gamburd [4] proved that there is a set of primes q, of density 1 in the primes, for which the
conjecture holds regardless of the choice of generators.

3. Collisions of linear length

The following theorem provides an algorithm for finding collisions of length O(log q) in
time O(

√
q), for a special class of generators. This class includes a substantial portion of the

concrete pairs of generators proposed in the literature, including the ones in [17] (end of §6,

6 CIARAN MULLAN AND BOAZ TSABAN

i = 2), [20], [18], and [1]. According to Lubotzky’s above-mentioned Conjecture 2.4 and the
discussion following it, ǫ may be viewed as a constant in the following theorem.

Theorem 3.1. Let A = (A0, A1) be a pair of generators of SL2(q) such that |A0 −A1| = 0.
If the Cayley graph of (SL2(q), {A±1

0 , A±1
1 }) is an ǫ-expander, then a collision on hA of length

O(log q/ǫ2) can be found in time O(
√
q).

The remainder of this section details the proof of Theorem 3.1. Let

T :=

{(

α β
0 α−1

)

: 0 6= α ∈ Fq, β ∈ Fq

}

be the subgroup of SL2(q) consisting of all upper triangular matrices.

Lemma 3.2. For generators A0, A1 of SL2(q), the following conditions are equivalent:

(1) |A0 − A1| = 0.
(2) There exists P ∈ SL2(q) and ξ0, ξ1 ∈ Fq such that

P−1AiP =

(

ξi −1
1 0

)

for i = 0, 1.

Proof. (1) ⇒ (2): Let v be a nontrivial vector with A0v −A1v = (A0 −A1)v = ~0. Let

u := A0v = A1v.

Assume that u = αv for some α ∈ Fq. Let P ∈ SL2(q) be a matrix whose first column is v.
Then

P−1AiP =

(

α ∗
0 ∗

)

∈ T

for i = 0, 1, and thus A0, A1 do not generate SL2(q); a contradiction.
Thus, u is linearly independent of v. Let Q be the matrix whose columns are (−u, v) and

let P = |Q|−1Q. Then

P−1AiP =

(

∗ −1
∗ 0

)

,

and having determinant 1, we arrive at (2).
(2) ⇒ (1):

|A0 − A1| = |P−1(A0 − A1)P | = |P−1A0P − P−1A1P | =
∣

∣

∣

∣

(

ξ0 − ξ1 0
0 0

)
∣

∣

∣

∣

= 0. �

By Lemma 3.2, we may assume that

Ai =

(

ξi −1
1 0

)

for i = 0, 1.

Definition 3.3. For a bitstring v = b1b2 . . . bm ∈ V , we define vr := bm . . . b2b1 as the reversal
bitstring.

SL2 HOMOMORPHIC HASH 7

Lemma 3.4. Let A = (A0, A1) be a pair of elements of SL2(q) with

Ai =

(

ξi −1
1 0

)

for i = 0, 1. For a bitstring v let
(

α β
γ δ

)

:= hA(v).

Then

hA(v
r) =

(

α −γ
−β δ

)

.

Proof. By induction on |v|. If |v| = 1 then hA(v) is A0 or A1, both of the desired form.
Assume the result holds for v. Then for each i ∈ {0, 1}, we have by the induction hypothesis
that

hA(vi) =

(

α β
γ δ

)(

ξi −1
1 0

)

=

(

αξi + β −α
γξi + δ −γ

)

,

hA(iv
r) =

(

ξi −1
1 0

)(

α −γ
−β δ

)

=

(

αξi + β −γξi − δ
α −γ

)

.

Thus, hA((vi)
r) = hA(iv

r) has the desired form. �

Let

K :=

{(

1 β
0 1

)

: β ∈ Fq

}

.

K is a subgroup of T . Since K is abelian, hashing into K with two noncommuting bitstrings
u, v (i.e., such that uv 6= vu) yields the collision

hA(uv) = hA(u)hA(v) = hA(v)hA(u) = hA(vu).

Proposition 3.5. Let A = (A0, A1) be a pair of elements of SL2(q), with

Ai =

(

ξi −1
1 0

)

for i = 0, 1. Let b1b2 . . . bm be a bitstring such that hA(b1b2 . . . bm) ∈ T . Then for all i ∈ {0, 1}

hA(ibm . . . b2) ∈ T ,

and

hA(b1b2 . . . bmibm . . . b2), hA(ibm . . . b2b1b2 . . . bm) ∈ K.

Proof. Let v = b1b2 . . . bm, and assume that

hA(v) =

(

α β
0 α−1

)

.

8 CIARAN MULLAN AND BOAZ TSABAN

By Lemma 3.4,

hA(ibm . . . b2) = hA(i)hA(bm . . . b2)hA(b1)hA(b1)
−1

= hA(i)hA(bm . . . b2b1)hA(b1)
−1

=

(

ξi −1
1 0

)(

α 0
−β α−1

)(

ξb1 −1
1 0

)−1

=

(

∗ −α−1

α 0

)(

0 1
−1 ξb1

)

=

(

α−1 ∗
0 α

)

∈ T .

Moreover, we have that

hA(b1b2 . . . bmibm . . . b2) = hA(b1b2 . . . bm)hA(ibm . . . b2)

=

(

α ∗
0 α−1

)(

α−1 ∗
0 α

)

=

(

1 ∗
0 1

)

∈ K,

and similarly for hA(ibm . . . b2b1b2 . . . bm). �

Corollary 3.6. Let A = (A0, A1) be a pair of elements of SL2(q), with

Ai =

(

ξi −1
1 0

)

for i = 0, 1. Let v = b1b2 . . . bm be a bitstring such that hA(v) ∈ T . Let u = bm . . . b2. Then

the palindromic bitstring uv := bm . . . b1 . . . bm of length 2m−1 satisfies hA(0uv1) = hA(1uv0),
a collision of length 2m+ 1.

Proof. By Proposition 3.5, we have that

hA(v)hA(0uv1)hA(u) = hA(v0u)hA(v1u)

= hA(v1u)hA(v0u)

= hA(v)hA(1uv0)hA(u).

Multiplying on the right by hA(u)
−1 and on the left by hA(v), the assertion follows. �

We can now describe our algorithm. Let A = (A0, A1) be a pair of generators of SL2(q)
such that |A0 − A1| = 0. First conjugate A to matrices B = (B0, B1) which have the form
as in Lemma 3.2. As conjugation is a group isomorphism, the Cayley graph is unchanged,
which thus remains an ǫ-expander. Note that the order of SL2(q) is (q− 1)q(q+1) ≈ q3. By
Proposition 2.2, we can generate bitstrings v of length O(log q/ǫ2) such that the statistical
distance between hA(v) and a uniformly random element of SL2(q) is smaller than 1/q2.

Next, hash with hB into the subgroup T using a meet-in-the-middle approach as done by
Petit et al. [15]. We describe this approach using different, but equivalent terminology. In
order to effectively hash into T , we need an efficient encoding of the cosets of T in SL2(q).
In general, there is a bijective correspondence between transitive permutation groups and

SL2 HOMOMORPHIC HASH 9

cosets of subgroups. The following proposition provides a concrete, efficient representation
of these cosets as projective points.

Definition 3.7. Extend the definition of the quotient αβ−1 to the case β = 0 by declaring
α · 0−1 = ∞ for all α ∈ Fq.

Proposition 3.8. The map

SL2(q)/T −→ Fq ∪ {∞}
(

α β
γ δ

)

T 7−→ αγ−1

is well defined and bijective.

Proof. Assume that
(

α1 ∗
γ1 ∗

)

T =

(

α2 ∗
γ2 ∗

)

T .

Then
(

∗ ∗
−γ2 α2

)(

α1 ∗
γ1 ∗

)

=

(

α2 ∗
γ2 ∗

)−1(
α1 ∗
γ1 ∗

)

∈ T ,

that is, −γ2α1 + α2γ1 = 0. Thus, α1γ2 = α2γ1, and the claim follows by considering the
possible cases: if any of γ1, γ2 is 0, say, γ1 = 0, then α1 6= 0 (since the matrices are invertible),
and thus γ2 = 0, and the code of both cosets is ∞. If none of γ1, γ2 is 0, then the codes are
α1γ

−1
1 = α2γ

−1
2 . This proves that the map is well defined.

It is clear that the map is onto. As | SL2(q)/T | = q + 1 = |Fq ∪ {∞}|, the map is
bijective. �

So, to hash into T , produce matrices C by lazy random walks on the Cayley graph of
(SL2(q), {g0, g1}), starting at e, together with bitstrings v ∈ {0, 1}∗ of length O(log q) such
that C = hB(v), and store v and the code of the coset hB(v)T , as given by Proposition 3.8.
That is, if C = hB(v) then in terms of the entries of C the code of CT is given by c11c

−1
21 .

Search for the code of C−1T in the set of stored codes. The code of C−1T , in terms of
the entries of C, is −c22c

−1
21 . If one is found, say of hB(u), then hB(u)T = hB(v)

−1T , and
therefore

hB(vu)T = hB(v)hB(u)T = T ,

so that we can terminate with

hB(vu) ∈ T .

By Proposition 2.2, for each pair u, v of our bitstrings, the probability that the codes
of hB(u)T and hB(v)

−1T are equal is, up to an additive O(1/q2) error, the same as the
probability that the codes of r0T and r1T are equal, for uniformly random elements r0, r1 of
SL2(q). As | SL2(q)/T | = q + 1, this probability is 1/(q + 1). The additive error of O(1/q2)
is negligible compared to that, thus O(

√
q) bitstrings suffice for the above procedure to

terminate.
Suppose we have found a bitstring b1 . . . b2m = uv whose hash value lies in T . By Corollary

3.6, the palindromic bitstring

w := b2m . . . b1 . . . b2m

10 CIARAN MULLAN AND BOAZ TSABAN

satisfies
hA(0w1) = hA(1w0);

a collision of length 4m + 1, which is O(log q/ǫ2). This completes the proof of Theorem
3.1. �

Remark 3.9. Heuristically, there is no need to assume in Theorem 3.1 that A0 and A1

generate SL2(q). Indeed, if they do not, then as shown in Lemma 3.2, they are simultaneously
conjugate to elements of T , and thus we can find a collision of length lg q as in Section 4.2.
Thus, in any case we end up with collisions of length roughly lg q if |A0 − A1| = 0.

Remark 3.10. Note that once a string v is found that hashes into K (as in Proposition 3.5)
one can construct preimages to the identity element by concatenating v with itself p times.

Heuristic estimations and computer experiments. Throughout this paper, in our
heuristic estimations we assume that for our purposes hashes of distinct bitstrings behave
as if they are independent, uniformly distributed elements of the group in question. (Unless
there is an obvious obstruction, cf. Section 4.2.1.)

For the algorithm presented above, one needs that, for two of our generated matrices,
C1, C2, the codes of C1T and C−1

2 T are identical. This happens, heuristically, with proba-
bility 1/(q+1) ≈ 1/q. Thus, we need to generate about

√
q matrices. To this end, it suffices

to hash all bitstrings of length up to lg
√
q ≈ lg q/2. Having achieved that, the length of

the bitstring hashing to T is twice that, lg q, and the length of the final collision is roughly
2 lg q. Our experimental results suggest that this heuristic is quite precisely correct.

We have tested our algorithms for a variety of pairs p, n such that q = pn ≈ 216, 232. For
each N = 16, 32, we first chose a random p in a prescribed interval {2k, 2k+1, 2k+2, . . . , 2k+1}
indicated in the tables below, and then took n to be the rounded value of N/ lg p, so that
pn ≈ 2N . For each choice of N and an interval for p, we conducted 10,000 experiments
where, in each experiment, we took a random ξ0, ξ1 ∈ Fq, and applied our algorithm to the
pair

A0 =

(

ξ0 −1
1 0

)

, A1 =

(

ξ1 −1
1 0

)

.

The output of these sets of 10,000 experiments is the minimum, median, average (and stan-
dard deviation), and maximum values encountered for each of the measured quantities (work
and length). For N = 16, we have also computed, for the same instances, the work needed
to find the shortest collision (by breadth-first search enumeration) and its length.

The results of our experiments are displayed in Tables 1 and 2. The striking observation
is that, for all of these sets of parameters, and for the total 80,000 experiments conducted,
none deviated substantially from our optimistic heuristic estimations. Moreover, it is clearly
visible that our algorithm is not sensitive to the field characteristic p.

4. A generic short collision search algorithm

We now present a generic collision finding algorithm for SL2(q) homomorphic hash func-
tions for arbitrary q and arbitrary pairs A = (A0, A1). Heuristically, and according to
experiments, our algorithm finds collisions of length roughly 2 lg2 q/ lg lg q in running time
O(

√
q). This algorithm improves upon an algorithm of Petit et al. [15] for q a power of 2.

SL2 HOMOMORPHIC HASH 11

Table 1. Results for q ≈ 216: Minimum, median, average (and standard
deviation), and maximum values encountered. 10,000 experiments for each
range of p.

shortest collision our algorithm

p ∈ work length work length

{21, . . . , 22} 0.00q 0.38 lg q 0.04
√
q 0.70 lg q

6.29q 1.12 lg q 2.42
√
q 2.20 lg q

8.75q (9.41q) 1.10 lg q (0.12 lg q) 2.50
√
q (1.30

√
q) 2.16 lg q (0.24 lg q)

100.90q 1.38 lg q 8.28
√
q 2.68 lg q

{23, . . . , 24} 0.00q 0.20 lg q 0.01
√
q 0.40 lg q

3.67q 1.08 lg q 2.23
√
q 2.22 lg q

5.22q (5.14q) 1.05 lg q (0.12 lg q) 2.44
√
q (1.29

√
q) 2.16 lg q (0.26 lg q)

61.65q 1.35 lg q 8.02
√
q 2.78 lg q

{27, . . . , 28} 0.00q 0.20 lg q 0.01
√
q 0.32 lg q

3.87q 1.08 lg q 2.30
√
q 2.20 lg q

5.40q (5.33q) 1.06 lg q (0.12 lg q) 2.45
√
q (1.30

√
q) 2.16 lg q (0.26 lg q)

56.84q 1.34 lg q 7.99
√
q 2.84 lg q

{215, . . . , 216} 0.00q 0.26 lg q 0.02
√
q 0.46 lg q

3.77q 1.07 lg q 2.34
√
q 2.20 lg q

5.34q (5.29q) 1.05 lg q (0.12 lg q) 2.46
√
q (1.32

√
q) 2.16 lg q (0.26 lg q)

69.47q 1.35 lg q 10.73
√
q 2.74 lg q

Petit et al. demonstrate, heuristically, that their algorithm is expected to find collisions of
length about 12lg2q in running time O(

√
q log q). A straightforward generalization of their

algorithm to an arbitrary field size q = pn yields collisions of length about 12plg2q, and a
slight modification of their approach yields p times shorter collisions. We detail this approach
and its mentioned refinement in Appendix A.

The basic idea of our approach is to hash with A = (A0, A1) until we find two elements
that commute. For suppose we find two distinct strings u, v whose hash values commute.
Then a collision is given by hA(uv) = hA(vu). An obvious approach would be to hash into
a commutative subgroup.

Roughly speaking, our algorithm is as follows. The first step is to hash twice on hA into
the subgroup T . In fact, we show, heuristically, that we may assume that one of the matrices
A0, A1 is already in T , and it suffices to hash just once into T . This halves the amount of
work, and makes it possible to reduce the length of the final collision by a factor of lg lg q.
We then use the obtained matrices C0, C1 ∈ T , to reduce the problem to hashing on hC to
find two commuting elements. As we will see, aiming for the above-mentioned subgroup K
(this was the approach taken by Petit et al. [15]) is problematic for our approach, whereas

12 CIARAN MULLAN AND BOAZ TSABAN

Table 2. Results of the new algorithm for q ≈ 232: Minimum, median, av-
erage (and standard deviation), and maximum values encountered. 10,000
experiments for each range of p.

p ∈ work length

{21, . . . , 22} 0.04
√
q 1.34 lg q

2.39
√
q 2.10 lg q

2.48
√
q (1.31

√
q) 2.08 lg q (0.12 lg q)

9.03
√
q 2.40 lg q

{27, . . . , 28} 0.02
√
q 1.22 lg q

2.33
√
q 2.10 lg q

2.48
√
q (1.30

√
q) 2.08 lg q (0.12 lg q)

8.51
√
q 2.40 lg q

{215, . . . , 216} 0.03
√
q 1.28 lg q

2.33
√
q 2.10 lg q

2.48
√
q (1.31

√
q) 2.08 lg q (0.12 lg q)

8.27
√
q 2.40 lg q

{231, . . . , 232} 0.03
√
q 1.26 lg q

2.37
√
q 2.10 lg q

2.48
√
q (1.30

√
q) 2.08 lg q (0.12 lg q)

8.50
√
q 2.36 lg q

the subgroup D of diagonal matrices is a good choice. In fact, we have a slightly better
method, hashing directly to commuting elements, not necessarily diagonal ones.

We describe our algorithm in two phases: the first phase describes how to reduce the
problem into one where A0, A1 are in T , and the second phase describes how to hash on T
to find commuting elements.

4.1. First phase: moving into T . In this phase we find two short bitstrings hashing into
T . Finding the first string is easy. Since conjugation is a group automorphism, collisions
are preserved under conjugation. The probability that a matrix in SL2(q) is diagonalizable
is 1/2−Θ(1/q) [12]. Thus heuristically, A0, A1 or short combination thereof, call it A2, may
be assumed to be diagonalizable. In other words, there is a bitstring u0 of constant length
such that A2 := hA(u0) is diagonalizable.

Let P ∈ SL2(q) be such that P−1A2P is diagonal. In particular, P−1A2P ∈ T . Conjugat-
ing A0, A1 by P , let

B0 := P−1A0P,

B1 := P−1A1P.

SL2 HOMOMORPHIC HASH 13

Setting B = (B0, B1), we have that

C0 := hB(u0) = P−1A2P ∈ T .

It remains to find a second string whose hash value on hB lies in T , which we can do using
the meet-in-the-middle method used in the proof of Theorem 3.1. Heuristically, we expect
that among roughly

√
q bitstrings there will be strings u, v with the same code (as given by

Proposition 3.8), so that the string vu hashes into T and

|vu| = |u|+ |v| ≈ 2 lg
√
q = lg q.

Setting u1 := vu we arrive at two strings u0, u1 of lengths l0 constant and l1 ≈ lg q, respec-
tively, hashing to C0, C1 ∈ T .

4.2. Second phase: finding commuting elements in T . After finding strings u0, u1

hashing to C0, C1 ∈ T , the next and final step is to find two strings whose hash values
commute on hC .

4.2.1. An obstruction. It is tempting to repeat the same procedure for hC and the subgroup
K of T of index q − 1. Unfortunately, we encounter the following obstruction, stemming
from K being abelian. Let

T0 =

(

α0 ∗
0 α−1

0

)

, T1 =

(

α1 ∗
0 α−1

1

)

.

For each bitstring b1 . . . bm, the upper left entry of Tb1 . . . Tbm is

αb0 . . . αbm = α
ν0(b1...bm)
0 α

ν1(b1...bm)
1 ,

where ν0(·), ν1(·) denote, respectively, the number of 0-bits and the number of 1-bits in a
bitstring.

On average, to have αk0
0 αk1

1 = 1, we need k0 and k1 to be roughly
√
q, which would increase

the length of the final collision by
√
q, i.e. exponentially in lg q.

This problem is circumvented by Petit et al. [15] by hashing roughly lg q times into T ,
and then using an algorithm based on the LLL algorithm and computing discrete logarithms
in Fq (see Appendix A). However, this has a price, both in terms of running time and the
length of resulting collisions.

We propose two simpler and more efficient approaches.

4.2.2. First solution: hashing into D. Instead of hashing into K, consider the subgroup D
of T , consisting of the diagonal matrices

(

α 0
0 α−1

)

for nonzero α ∈ Fq. To construct a collision, we need to find two strings that hash on hC

into D. We already have one such string, namely u0 with hash value hB(u0) := hC(0).
We can employ a similar meet-in-the-middle approach as in the previous phase to find a

bitstring w of length roughly lg q such that hC(w) ∈ D. Note that to avoid trivialities w
must not be a sequence of concatenations of u0.

Again, to employ a meet-in-the-middle approach we need an efficient encoding of the cosets
of D in T , which is given by the following.

14 CIARAN MULLAN AND BOAZ TSABAN

Proposition 4.1. The map

T /D −→ Fq
(

α β
0 α−1

)

D 7−→ αβ

is well defined and bijective.

Proof. Assume that
(

α1 β1

0 α−1
1

)

D =

(

α2 β2

0 α−1
2

)

D.

Then
(

α−1
2 −β2

0 α2

)(

α1 β1

0 α−1
1

)

=

(

α2 β2

0 α−1
2

)−1(
α1 β1

0 α−1
1

)

∈ D,

and therefore α−1
2 β1 − β2α

−1
1 = 0, that is, α1β1 = α2β2, and the codes are equal.

The map is onto. As |T /D| = q(q − 1)/(q − 1) = q = |Fq|, the map is bijective. �

4.2.3. Second solution: hashing to commuting elements of T . This solution, which seeks for
more balanced strings whose hashes commute, turns out slightly better than the previous
approach of hashing into D. We need a code to test when two elements of T commute.

Proposition 4.2. Matrices
(

α β
0 α−1

)

,

(

γ δ
0 γ−1

)

not equal to ±I commute if and only if (α− α−1)β−1 = (γ − γ−1)δ−1.

Proof. By direct calculation, all entries of
(

α β
0 α−1

)(

γ δ
0 γ−1

)

−
(

γ δ
0 γ−1

)(

α β
0 α−1

)

are 0, except perhaps the upper right one

αδ + βγ−1 − γβ − δα−1 = δ(α− α−1)− β(γ − γ−1),

which is 0 if and only if

δ(α− α−1) = β(γ − γ−1).

If β and δ are both nonzero then we can rewrite the above equation as

(α− α−1)β−1 = (γ − γ−1)δ−1,

and the claim is proved.
If β = 0 then, since α 6= ±1 we have that δ(α − α−1) = 0 implies δ = 0. It follows

that the matrices are diagonal, and thus commute, and we have that (in the notation of
Definition 3.7)

(α− α−1)β−1 = ∞ = (γ − γ−1)δ−1.

The case δ = 0 is identical. �

SL2 HOMOMORPHIC HASH 15

Thus, to find two strings whose hashes on hC commute do the following. For roughly
√
q

bitstrings v (that are not a power of u0) compute

hC(v) =

(

α β
0 α−1

)

and store v and the code (α − α−1)β−1. If we ever encounter the code 0 or ∞ then we are
done, since this matrix commutes with C0. Assuming this rare event does not occur, find
two strings u, v such that the codes of hC(u) and hC(v) are equal. We expect

|uv|, |vu| ≈ 2|v| ≈ 2 lg
√
q = lg q,

and the overall length of the collision

hC(uv) = hC(u)hC(v) = hC(v)hC(u) = hC(vu)

is on average, in terms of the original hash function hA,

|uv| ≈ l0 + lg q

2
· lg q ≈ 1

2
lg2q.

The factor 1/2 comes from expecting a roughly equal number of zeros and ones.

4.3. Compressed collisions. In the first phase, we arrived at two strings u0, u1 of lengths
l0 constant and l1 ≈ lg q, respectively, hashing to C0, C1 ∈ T . For both the first and second
solutions above, we can reduce the total collision length by exploiting the fact that u0 is
roughly lg q/l0 times shorter than u1.

Let C = (C0, C1). For each bitstring b1 . . . bk ∈ {0, 1}∗,
hC(b1 . . . bk) = Cb1 · · ·Cbk = hA(ub1) · · ·hA(ubk) = hA(ub1 . . . ubk).

Define

ν0(b1 . . . bk) = |{i = 1, . . . , k : bi = 0}|
ν1(b1 . . . bk) = |{i = 1, . . . , k : bi = 1}|

‖b1 . . . bk‖l0,l1 = ν0(b1 . . . bk) · l0 + ν1(b1 . . . bk) · l1.
Then, in terms of hA, the length of a collision hC(w1) = hC(w2) is max{‖w1‖l0,l1 , ‖w2‖l0,l1}.

Following is an algorithm for producing finite bitstrings v such that the length ‖v‖l0,l1 is
monotonically increasing, for l0 < l1.

Algorithm 4.3.

(1) g := gcd(l0, l1); k0 := l0/g; k1 := l1/g.
(2) For n = 1, . . . , k1:

Sn :=

{

{0n/k0} if k0 | n,
∅ otherwise.

(3) Sk1 := Sk1 ∪ {1}.
(4) For n = k1 + 1, k1 + 2, . . . :

Sn := {v0 : v ∈ Sn−k0} ∪ {v1 : v ∈ Sn−k1} .
Proposition 4.4. Let l0 < l1 be natural numbers. In the notation of Algorithm 4.3:

(1) For each v ∈ {0, 1}∗, ‖v‖l0,l1 is divisible by g.

16 CIARAN MULLAN AND BOAZ TSABAN

(2) For each n, Sn = {v ∈ {0, 1}∗ : ‖v‖l0,l1/g = n}.
(3) |Sn| = |Sn−k0|+ |Sn−k1|, a generalized Fibonacci sequence.

(4) |S1 ∪ S2 ∪ . . . ∪ Sn| ≥ ⌊k1/k0⌋⌊n/2k1⌋ = ⌊l1/l0⌋⌊gn/2l1⌋.

Proof. (1) Obvious.
(2,3) By induction on n, observing that the bitstrings of length gn split into those termi-

nating with 0 and those terminating with 1.
(4) Let m = ⌊n/2k1⌋. The map

{1, . . . , ⌊k1/k0⌋}m −→ S1 ∪ S2 ∪ . . . ∪ Sn

(i1, . . . , im) 7−→ 0i110i21 . . . 0im1

is injective. Its range is as claimed. Indeed,

‖0i110i21 . . . 0im1‖l0,l1 ≤ m(l0⌊k1/k0⌋+ l1) = m(l0⌊l1/l0⌋ + l1) ≤ m · 2l1 ≤ (n/2k1) · 2l1 = gn.

Apply (2). �

To find shorter collisions we use the same algorithms as before, but generate the bitstrings
according to Algorithm 4.3. By item (4) of Proposition 4.4, we need that

√
q ≈ (l1/l0)

gn/2l1 ,

and since l0 is constant, we have

1

2
lg q ≈ gn

2l1
lg

l1
l0

≈ gn

2

lg l1
l1

,

that is,

gn ≈ l1 lg q

lg l1
≈ lg2q

lg lg q
.

The length of the obtained collision is twice that.

Remark 4.5. The diagonalization trick in the first phase, that reduces the running time by
a constant factor, leads to the lg lg q factor reduction of the resulting length. It may be
that the constant estimation for the minimal length of a diagonal element is not provable,
even using that the Cayley graph of (SL2(q), {A0, A1}) is an expander. The reason is that
a random walk in an expander graph may miss a subset of half the size of the group for a
logarithmic number of steps. If we aim, instead, at collisions of length O(log2 q), then the
first phase of our algorithm would be to hash twice into T , and the estimations for running
time and bitstring lengths are provable as in the previous section. We do not know whether
estimations in the second (noncompressed) phase are provable. If, for two random elements
A0, A1 of T , the Cayley graph of (T , {A±1

0 , A±1
1 }) is (with high probability) an expander,

then they are.

4.4. Computer experiments. Computer experiments are reported in Tables 3 and 4. Here
too, our optimistic estimations are all validated. Indeed, our estimation 2 lg2 q/ lg lg q turns
out slightly more generous than needed.

S
L
2
H
O
M
O
M
O
R
P
H
IC

H
A
S
H

1
7

Table 3. Results for q ≈ 216: Minimum, median, average (and standard deviation), and maximum values
encountered. 10,000 experiments for each range of p. L := lg2 q/ lg lg q.

shortest collision diagonalizable shortest triangular compressed search

p ∈ work length length work length work length

{21, . . . , 22} 0.00q 0.31 lg q 1.00 0.03
√
q 0.31 lg q 0.00

√
q 0.08L

3.66q 1.07 lg q 1.00 2.41
√
q 1.06 lg q 2.68

√
q 1.34L

5.38q (5.32q) 1.05 lg q (0.11 lg q) 1.40 (0.79) 2.66
√
q (1.51

√
q) 1.04L (0.13 lg q) 2.89

√
q (1.54

√
q) 1.36L (0.30L)

54.98q 1.32 lg q 5.00 10.79
√
q 1.32 lg q 12.13

√
q 2.98L

{23, . . . , 24} 0.00q 0.27 lg q 1.00 0.03
√
q 0.20 lg q 0.00

√
q 0.08L

3.71q 1.08 lg q 1.00 2.45
√
q 1.04 lg q 2.60

√
q 1.32L

5.35q (5.34q) 1.05 lg q (0.11 lg q) 1.41 (0.79) 2.68
√
q (1.54

√
q) 1.04L (0.13 lg q) 2.81

√
q (1.51

√
q) 1.34L (0.32L)

58.57q 1.35 lg q 6.00 10.34
√
q 1.35 lg q 11.56

√
q 3.02L

{27, . . . , 28} 0.00q 0.20 lg q 1.00 0.03
√
q 0.21 lg q 0.00

√
q 0.06L

3.96q 1.08 lg q 1.00 2.40
√
q 1.06 lg q 2.64

√
q 1.34L

5.54q (5.41q) 1.06 lg q (0.12 lg q) 1.41 (0.79) 2.67
√
q (1.57

√
q) 1.04L (0.14 lg q) 2.81

√
q (1.48

√
q) 1.34L (0.32L)

49.42q 1.34 lg q 5.00 33.43
√
q 1.58 lg q 9.88

√
q 2.86L

{215, . . . , 216} 0.00q 0.26 lg q 1.00 0.01
√
q 0.19 lg q 0.00

√
q 0.06L

3.82q 1.07 lg q 1.00 2.43
√
q 1.06 lg q 2.62

√
q 1.32L

5.41q (5.32q) 1.06 lg q (0.11 lg q) 1.41 (0.80) 2.66
√
q (1.51

√
q) 1.04L (0.13 lg q) 2.82

√
q (1.52

√
q) 1.34L (0.32L)

51.93q 1.32 lg q 5.00 10.13
√
q 1.32 lg q 10.52

√
q 2.88L

1
8

C
IA

R
A
N

M
U
L
L
A
N

A
N
D

B
O
A
Z
T
S
A
B
A
N

Table 4. Results for q ≈ 232: Minimum, median, average (and standard deviation), and maximum values
encountered. 10,000 experiments for each range of p. L := lg2 q/ lg lg q.

diagonalizable shortest triangular compressed search

p ∈ length work length work length

{21, . . . , 22} 1.00 0.04
√
q 0.66 lg q 0.03

√
q 0.58L

1.00 2.44
√
q 1.03 lg q 2.98

√
q 1.34L

1.41 (0.80) 2.69
√
q (1.54

√
q) 1.02 lg q (0.06 lg q) 3.23

√
q (1.78

√
q) 1.38L (0.22L)

6.00 10.38
√
q 1.17 lg q 10.66

√
q 2.44L

{27, . . . , 28} 1.00 0.02
√
q 0.56 lg q 0.00

√
q 0.18L

1.00 2.39
√
q 1.02 lg q 2.92

√
q 1.34L

1.41 (0.81) 2.63
√
q (1.51

√
q) 1.02 lg q (0.07 lg q) 3.19

√
q (1.74

√
q) 1.38L (0.22L)

5.00 10.07
√
q 1.21 lg q 11.19

√
q 2.42L

{215, . . . , 216} 1.00 0.04
√
q 0.65 lg q 0.00

√
q 0.18L

1.00 2.43
√
q 1.03 lg q 2.92

√
q 1.34L

1.40 (0.79) 2.69
√
q (1.55

√
q) 1.02 lg q (0.07 lg q) 3.19

√
q (1.77

√
q) 1.38L (0.22L)

5.00 10.26
√
q 1.19 lg q 10.52

√
q 2.46L

{231, . . . , 232} 1.00 0.01
√
q 0.51 lg q 0.00

√
q 0.14L

1.00 2.43
√
q 1.03 lg q 2.95

√
q 1.34L

1.42 (0.80) 2.67
√
q (1.54

√
q) 1.02 lg q (0.06 lg q) 3.21

√
q (1.75

√
q) 1.38L (0.22L)

6.00 10.61
√
q 1.17 lg q 11.17

√
q 2.40L

SL2 HOMOMORPHIC HASH 19

Table 5. Generic collision search versus subexponential collision search.

subexponential algorithm our algorithm

q work length work length

264 2143 280 232 210

2128 2137 280 264 212

2256 2202 280 2128 214

2512 2344 280 2256 216

21024 2625 280 2512 218

22048 21181 280 21024 220

24096 22292 280 22048 221

28192 24532 280 24096 223

216384 29093 280 28192 225

5. Linear collisions for q = 2n

Faugère et al. [7], building on [16], devised a heuristic subexponential time algorithm in
the case where q is a power of 2. Heuristically, for n0 ≤ n, their time complexity and collision
length are

2
ωn logn logn0

n0 log(n/n0) and
32n33n0

n0

,

respectively, where ω ≈ 2.8 is the matrix multiplication constant. For the collisions to
have polynomial length, n0 must be O(logn). To minimize time complexity, n0 should be
Θ(log n). Let n0 = c logn. Then the time complexity and collision length are, very roughly,

2
ω
c
· n log logn

logn and
32

c
· n

3+c log 3

log n
.

To compare the performance of our algorithm to that of the subexponential algorithm from
a practical point of view, we have limited the length of the collision to 280 bits (one terra
terra bits), a generous upper bound for an acceptable message length. Then, for each
n = 64, 128, 256, . . . , 16384, we have computed the maximal value of n0 for which the collision
length of the subexponential algorithm is not greater than 280. For this value of n0, the
running time of the subexponential algorithm is minimal. Table 5 lists, for each of these n,
the running time and collision length (rounded) for our algorithm and the subexponential
one. One sees clearly that, limiting the collision length to 280, our generic algorithm is much
faster in all cases, and produces much shorter collisions.

But this is not the end of the story. Petit has realized that, for q a power of 2, given the
methods of [16] and [7], our methods from Section 3 imply that, heuristically, collisions of
linear length can be found for arbitrary generators A0, A1 of SL2(2

n). Modulo our results, this
algorithm is implicit in the proof of Proposition 3 of [7]. Following is a detailed description
of this algorithm.

20 CIARAN MULLAN AND BOAZ TSABAN

A matrix E ∈ SL2(q) is orthogonal if EEt = I. The orthogonal matrices in SL2(2
n) are

precisely matrices of the form

E =

(

α+ 1 α
α α + 1

)

,

where α ∈ F2n [16]. In particular, these matrices are symmetric and satisfy E2 = I.
Let A0, A1 be generators of SL2(2

n). Let

B0 := A0A1; B1 := A1A0.

It suffices to find a collision for (B0, B1). The traces of B0 and B1 are equal. By the proof
of [16, Lemma 2], there are several possibilities:

(1) Certain (rare) pathologies happen,3 in which there are collisions of length 2, and we
are done.

(2) B0, B1 are simultaneously conjugate to upper triangular matrices, so by Section 4.2
we can find a collision of length lg q in time

√
q. This case is also rare for random

generators.
(3) In the remaining, main case, B0, B1 can be simultaneously conjugated to a pair of

the form

C,Ct,

i.e., such that the second matrix is the transpose of the first. It suffices to find a
collision for (C,Ct). This is the only case remaining to be dealt with.

By [16, Lemma 8], we can find an orthogonal matrix E such that ECE = Ct. Thus,

CE = ECt, and

CtE = EC.

Consider the pair (CE,C). By the above-mentioned special form of orthogonal matrices,
|E − I| = 0, and thus

|CE − C| = |C(E − I)| = |C| · |E − I| = 0.

Transforming a collision for (CE,C) to one for (C,Ct) is possible if the number of 0’s is
either even in both strings or odd in both strings. In this case, using that CE = ECt,
CtE = EC, and E2 = I, the E’s can be pushed to the left, transposing the matrices C,Ct

on their way, and vanishing when meeting other E’s. If an E remains (necessarily, on both
sides), it can be canceled from both sides. Thus, heuristically, we need two collisions for
(CE,C) to conclude.

By the proof of Lemma 3.2, there are two cases to consider: CE and C are simultaneously
conjugate to either upper triangular matrices or to matrices of the form

(

ξi 1
1 0

)

.

In the former case, by Section 4.2, we can find collisions of the prescribed form of length lg q
in time

√
q. In the latter, main case, by Corollary 3.6 it suffices to hash with h = h(CE,C)

3Rare pathologies are possible if A0, A1 are chosen in very special form, see the proof of [16, Lemma 2].

SL2 HOMOMORPHIC HASH 21

once (in time
√
q and string length lg q) into an upper triangular matrix, say h(b1 . . . bm) ∈ T .

By Corollary 3.6,

h(0bm . . . b1 . . . bm1) = h(1bm . . . b1 . . . bm0).

As the number of 0 bits in both strings of this collision is equal, this collision can be trans-
formed into one for (C,Ct), and we are done.

To illustrate this algorithm in the main case, assume that A0, A1 are given. Then:

(1) Set B0 := A0A1, B1 := A1A0.
(2) Find a matrix P such that P−1B0P = C, P−1B1P = Ct, for some matrix C.
(3) Find an orthogonal matrix E such that CE = ECt.
(4) Find a matrix Q such that

D0 := Q−1(CE)Q =

(

ξ0 1
1 0

)

, D1 := Q−1CQ =

(

ξ1 1
1 0

)

.

(5) Find a bitstring b1 . . . bm such that Db1 · · ·Dbm ∈ T , so that

D0Dbm · · ·Db1 · · ·DbmD1 = D1Dbm · · ·Db1 · · ·DbmD0.

For example, assume that m = 3 and b1 . . . bm = 011. Then

D0D0D1D1D1D0D1 = D1D0D1D1D1D0D0,

and in terms of CE and C,

CECECCCCEC = CCECCCCECE.

Moving the E’s to the left, using CE = ECt, CtE = EC, and E2 = I, we have that

ECtCCtCtCtCtC = ECtCtCCCCCt,

and thus

CtCCtCtCtCtC = CtCtCCCCCt.

In terms of B0 and B1, we have that

B1B0B1B1B1B1B0 = B1B1B0B0B0B0B1,

and in terms of A0 and A1,

A1A0A0A1A1A0A1A0A1A0A1A0A0A1 = A1A0A1A0A0A1A0A1A0A1A0A1A1A0.

The first reduction doubles the collision length. All other reductions preserve the collision
length. Thus, we expect collision lengths of the algorithm to be roughly

2 · 2 lg q = 4 lg q.

5.1. Computer experiments. The results for q = 216, 232 are very similar to those in
Tables 1 and 2, with the only difference that, as expected, the collision length is doubled.
Results of experiments for q = 240 are provided in Table 6. Here too, our heuristic estimations
are confirmed, and even generous. The standard deviation of the collision length is very small,
and is expected to converge to 0 as q increases.

22 CIARAN MULLAN AND BOAZ TSABAN

Table 6. Results of the new algorithm for q = 240, 10,000 experiments.

q = 240 work length

Minimum 0.02
√
q 2.76 lg q

Median 2.41
√
q 4.16 lg q

Average (and standard deviation) 2.49
√
q (1.31

√
q) 4.14 lg q (0.2 lg q)

Maximum 8.32
√
q 4.54 lg q

Acknowledgments. We thank Alexei Belov, Alex Lubotzky and Terrence Tao for useful
information about expander Cayley graphs. We also thank Emmanuel Breuillard for pointing
out Proposition 2.2(1) to us, and for his permission to include it here. We owe special thanks
to Christophe Petit, for numerous discussions about the problem studied here and the known
methods, for useful advice that helped improve the presentation of this paper, and for his
observation that, given the methods of [16] and [7], our methods imply that, heuristically,
collisions of linear length can be found for arbitrary generators of SL2(2

n). This research
was initiated when the second named author visited Simon Blackburn, Carlos Cid, and the
first named author at Royal Holloway, University of London. This author thanks his hosts
for their kind hospitality.

References

[1] K. Abdukhalikov, C. Kim, On the security of the hashing scheme based on SL2, FSE ’98, Lecture Notes
in Computer Science 1372 (1998), 93–102.

[2] M. Ajtai, Generating hard instances of lattice problems (extended abstract), STOC ’96, ACM, New
York, NY, USA, 1996, 99–108.

[3] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(Fp), Annals of Mathe-
matics 167 (2008), 625–642.

[4] E. Breuillard, A. Gamburd, Strong uniform expansion in SL(2, p), Geometric Functional Analysis 20
(2010), 1201–1209.

[5] E. Breuillard, B. Green, R. Guralnick, T. Tao, Expansion in finite simple groups of Lie type, arXiv
eprint 1309.1975.

[6] L. Bromberg, V. Shpilrain, A. Vdovina, Navigating in the Cayley graph of SL2(Fp) and applications to

hashing, arXiv eprint 1409.4478.
[7] J. Faugère, L. Perret, C. Petit, and G. Renault, New subexponential algorithms for factoring in SL2(F2n),

Cryptology ePrint Archive, Report 2011/598.
[8] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press,

2008.
[9] M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-Zémor hash function,

Journal of Cryptolgy 24 (2011), 148–156.
[10] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bulletin of the American

Mathematical Society 43 (2006), 439–561.
[11] A. Lubotzky, Expander graphs in pure and applied mathematics, Bulletin of the American Mathematical

Society 49 (2012), 113–162.
[12] V. Naik (moderator), Element structure of special linear group of de-

gree two over a finite field, Groupprops, The Group Properties Wiki.
http://groupprops.subwiki.org/wiki/Element_structure_of_special_linear_group_of_degree_two_over_a_finite_field

http://groupprops.subwiki.org/wiki/Element_structure_of_special_linear_group_of_degree_two_over_a_finite_field

SL2 HOMOMORPHIC HASH 23

[13] C. Petit, J. Quisquater, Preimages for the Tillich–Zémor hash function, SAC ’10, Lecture Notes in
Computer Science 6544 (2010), 282–301.

[14] C. Petit, J. Quisquater, Rubik’s for cryptographers, Notices of the American Mathematical Society 61
(2013), 733–739.

[15] C. Petit, J. Quisquater, J. Tillich, G. Zémor, Hard and easy components of collision search in the
Zémor-Tillich hash function: new attacks and reduced variants with equivalent security, CT-RSA ’09,
Lecture Notes in Computer Science 5473 (2009), 182–194.

[16] C. Petit, Towards factoring in SL2(2
n), Design Codes and Cryptography 71 (2014), 409–431.

[17] J. Tillich, G. Zémor, Group-theoretic hash functions, Algebraic Coding, First French-Israeli Workshop,
Lecture Notes in Computer Science 781 (1994), 90–110.

[18] J. Tillich, G. Zémor, Hashing with SL2, CRYPTO ’94, Lecture Notes in Computer Science 839 (1991),
508–511.

[19] D. Charles, K. Lauter, E. Goren, Cryptographic hash functions from expander graphs, Journal of
Cryptology 22 (2009), 93–113.

[20] G. Zémor, Hash functions and graphs with large girths, Eurocrypt ’91, Lecture Notes in Computer
Science 547 (1991), pages 508–511.

Appendix A. The Petit–Quisquater–Tillich–Zémor algorithm

For the reader’s convenience, we outline the generic algorithm of Petit, Quisquater, Tillich
and Zémor [15] for finding collisions for q even. We describe their algorithm in a simplified
language, generalize it to p ≥ 2, and find optimal parameters: collisions of length ≈ 12lg2q
in time O(

√
q lg q). This ignores the complexity of the second phase (discrete logarithms and

LLL) of their attack, which we assume is smaller than
√
q. Setting their parameters so as to

reduce the running time below O(
√
q lg q) would render the length of the resulting collisions

superpolynomial in lg q.

A.1. First phase: hashing into T . The performance estimations of this phase can be
proved, asymptotically, as in Section 3. By Section 4.1, in time roughly

√
q one can hash

once into T with a string of length about lg q. Doing this N := lg q times, we obtain (in
time

√
q lg q), bitstrings w1, . . . , wN each of length about lg q such that

hA(w1), . . . , hA(wN) ∈ T .

A.2. Second phase: hashing into K. Denote by λ1, . . . , λN the upper left entries of
hA(w1), . . . , hA(wN), respectively.

Computing N discrete logarithms in Fq and using the LLL algorithm, find nonnegative

integers k1, . . . , kN , with
√

k2
1 + . . .+ k2

N as small as possible, such that

λk1
1 . . . λkN

N = 1.

Taking all possibilities ki ∈ {0, 1}, λk1
1 . . . λkN

N takes about

2N ≈ 2lg q = q

values. Thus, it is expected (although, thus far, unproved) that the solution returned by the
LLL algorithm satisfies

√

k2
1 + . . .+ k2

N ≈
√
N ≈

√

lg q.

Let

v = wk1
1 wk2

2 . . . wkN
N ,

24 CIARAN MULLAN AND BOAZ TSABAN

where exponentiation denotes string concatenation. By the Cauchy–Schwartz inequality,

|v| = k1 · |w1|+ . . .+ kN · |wN | ≤
√

k2
1 + . . .+ k2

N ·
√

|w1|2 + . . .+ |wN |2,

with the right hand side being ≈
√
N ·

√

N lg2q = N lg q = lg2q.
Now,

h(v)

(

1
0

)

= h(w1)
k1 . . . h(wn)

kn

(

1
0

)

= λk1
1 . . . λkn

n

(

1
0

)

=

(

1
0

)

,

that is, for some β ∈ Fq,

h(v) =

(

1 β
0 1

)

.

As q = pn, we have that

h(vp) =

(

1 pβ
0 1

)

=

(

1 0
0 1

)

,

that is, vp and the empty message hash to the same value. We have that

|vp| = p · |v| ≈ plg2q.

This completes our description of the Petit–Quisquater–Tillich–Zémor algorithm.
Note that p may be exponential in the security parameter. To obtain shorter collisions,

note that in the definition of v, if u is obtained by any permutation of the order of the
k1 + . . .+ kN subwords wi in the word v = wk1

1 . . . wkN
N , we still have by the same argument

that

h(u) =

(

1 γ
0 1

)

for some γ ∈ Fq. Thus, h(v) commutes with h(u), and we arrive at the collision

h(uv) = h(u)h(v) = h(v)h(u) = h(vu),

whose length is about 2 lg2 q. Moreover, assuming for example that k1 and k2 are nonzero,
let

w = wk1−1
1 wk2−1

2 . . . wkN
N

Taking v = w1w2w and u = w2w1w, we know that

h(vw2w1)h(w) = h(vu) = h(uv) = h(uw1w2)h(w),

and therefore

h(vw2w1) = h(uw1w2),

a collision of length roughly

|v|+ |w1|+ |w2| ≈ lg2q + 2 lg q ≈ lg2q.

The algorithms presented in Section 4 are faster, and provide shorter collisions. We stress
that, unlike the Petit et al. algorithm, our generic algorithm does not provide bitstrings
hashing to the identity matrix (see, however, Remark 3.10).

SL2 HOMOMORPHIC HASH 25

Appendix B. The impossibility of palindromic collisions for p > 2

Let q = 2n and let α be a primitive element of F2n. Let

A0 =

(

α −1
1 0

)

, A1 =

(

α+ 1 −1
1 0

)

.

Grassl, Ilić, Magliveras, and Steinwandt [9] provide, in this case, an efficient algorithm for
finding palindromes v ∈ {0, 1}∗ of length 2n such that the palindromes 0v0 and 1v1 hash
to the same value under hA. This implies that the proposal in [18] is insecure. Grassl et
al.’s method does not generalize in any conceivable way to odd prime powers q. In fact, we
show here that for q odd there are no palindromes v such that 0v0 and 1v1 form a collision.
Throughout, we write h for hA.

Proposition B.1. Let v ∈ {0, 1}∗ be a palindrome. Then

(1) h(v) is of the form

(

a b
−b d

)

.

(2) h(0v0)− h(1v1) =

(

−2aα− a− 2b a
−a 0

)

.

(3) If p > 2 then h(0v0) 6= h(1v1).

Proof. (1) We proceed by induction on the length of v. The induction base consists of |v| = 1
and |v| = 2. If |v| = 1, i.e., v = β ∈ {0, 1}, then

h(v) =

(

α+ β −1
1 0

)

has the desired form.
Note that by direct calculation,

(1)
(

α + β −1
1 0

)(

a b
−b d

)(

α + β −1
1 0

)

=

(

a(α + β)2 + 2b(α + β)− d −(aα + aβ + b)
aα + aβ + b −a

)

.

By Equation (1), we have in particular (for a = d = 1, b = 0) that, for each β ∈ {0, 1},
h(ββ) = AβIAβ

has the desired form. This completes the verification of the induction base.
Induction step: assume that

h(v) =

(

a b
−b d

)

.

Then by Equation (1) h(βvβ) = Aβh(v)Aβ has the desired form for each β ∈ {0, 1}.
(2,3) Since v is a palindrome, we have by the above calculation that

h(0v0)− h(1v1) =

(

−2aα − a− 2b a
−a 0

)

.

Hence, for h(0v0) = h(1v1) to hold, a must be 0. This in turn implies that 2b = 0, which
for p > 2 implies that b = 0. Thus, 1 = det(h(v)) = ad+ b2 = 0, a contradiction. �

26 CIARAN MULLAN AND BOAZ TSABAN

Interestingly, it is pointed out in [9] that, for q a power of 2 and a palindrome v, h(0v1) =
h(1v0) is equivalent to h(0v0) = h(1v1). For q odd, we proved that h(0v0) = h(1v1) is
impossible (Proposition B.1), but that h(0v1) = h(1v0) is provably possible (Theorem 3.1)!

Technische Universität Darmstadt, Fachbereich Informatik, Kryptographie und Comput-

eralgebra, Hochschulstraße 10, 64289 Darmstadt, Germany

Department of Mathematics, Bar Ilan University, 5290002 Ramat Gan, Israel and Faculty

of Mathematics and Computer Science, Weizmann Institute of Science, 7610001 Rhovot,

Israel

E-mail address : tsaban@math.biu.ac.il
URL: http://www.cs.biu.ac.il/~tsaban

	1. Introduction
	2. Worst case to average case reduction
	3. Collisions of linear length
	Heuristic estimations and computer experiments.

	4. A generic short collision search algorithm
	4.1. First phase: moving into T
	4.2. Second phase: finding commuting elements in T
	4.3. Compressed collisions
	4.4. Computer experiments

	5. Linear collisions for q=2n
	5.1. Computer experiments
	Acknowledgments

	References
	Appendix A. The Petit–Quisquater–Tillich–Zémor algorithm
	A.1. First phase: hashing into T
	A.2. Second phase: hashing into K

	Appendix B. The impossibility of palindromic collisions for p>2

