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FROM LOCALLY CONFORMALLY KÄHLER TO BI-HERMITIAN

STRUCTURES ON NON-KÄHLER COMPLEX SURFACES

VESTISLAV APOSTOLOV, MICHAEL BAILEY, AND GEORGES DLOUSSKY

Abstract. We prove that locally conformally Kähler metrics on certain compact
complex surfaces with odd first Betti number can be deformed to new examples of
bi-Hermitian metrics.

1. Introduction

A bi-Hermitian structure on a complex manifold S = (M,J) consists of a pair
(J+ = J, J−) of integrable complex structures, inducing the same orientation, each of
which is orthogonal with respect to a common Riemannian metric g. We are generally
only interested in the conformal class c = [g]. Furthermore, the case when J+ ≡ J− or
J+ ≡ −J− is considered trivial, so we shall also assume that J+(x) 6= ±J−(x) for at
least one point x ∈ M .

Bi-Hermitian geometry has attracted a great deal of interest recently through its link
with generalized Kähler geometry, a natural extension of Kähler geometry first studied
by Gualtieri [23] in the context of generalized complex structures introduced by N. J.
Hitchin [28]. It is shown in [23] that a generalized Kähler structure is equivalent to
the data of a bi-Hermitian structure (g, J+, J−), satisfying the relations

(1.1) dc+F+ = −dc−F− = dB,

for some 2-form B, where F±(·, ·) = g(J±·, ·) are the corresponding fundamental 2-
forms of the Hermitian structures (g, J±), and dc± = i(∂̄± − ∂±) are the associated
complex operators. We may (trivially) represent a Kähler structure (J, ω) by taking
J± = ±J, F± = ±ω while recent work of Goto [21] provides a way to deform Kähler
metrics to non-trivial generalized Kähler structures, i.e. bi-Hermitian structures sat-
isfying (1.1), and for which J+ 6= −J− at at least one point of M .

This work is a part of the larger problem of the existence of (conformal classes of) bi-
Hermitian structures on compact complex surfaces. In this case, to each bi-Hermitian
structure (c, J+, J−) on S = (M,J = J+), one can associate (using the commutator
[J+, J−] = J+J−−J+J− and a reference metric g ∈ c) a non-trivial holomorphic section
σ = [J+, J−]

♯ ∈ H0(S,K∗
S ⊗ L) of the anti-canonical bundle K∗

S of S, twisted with a
topologically trivial flat holomorphic line bundle L, see [3, Lemma 3]. Furthermore, bi-
Hermitian structures (c, J+, J−) on compact real 4-dimensional (connected) manifolds
M can be divided into three different classes as follows:
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(i) Everywhere on M , J+ 6= J− and J+ 6= −J−;
(ii) Everywhere on M , J+ 6= J− (resp. J+ 6= −J−), but for at least one x ∈ M ,

J+(x) = −J−(x) (resp. J+(x) = J−(x), though—by replacing J− with −J− if
necessary—we can assume without loss of generality that in this class J+ and
J− never agree but J+ and −J− sometimes do);

(iii) There are points on M where J+ = J− and also points where J+ = −J−.

Recall [36, 37, 12, 30] that on a compact complex surface S = (M,J) a Kähler
metric exists if and only if the first Betti number is even. Similarly, by [4, Cor. 1 and
Prop. 4], a bi-Hermitian conformal structure (c, J+, J−) corresponds to a generalized
Kähler structure for some g ∈ c if and only if b1(M) is even. Furthermore, in this
case the flat holomorphic line bundle L mentioned above is trivial ([3, Lemma 4]) and
the bi-Hermitian structures are either of type (i) or (ii) ([3, Prop. 4]). The first case
corresponds to Kähler surfaces with trivial canonical bundle (see [3]), i.e. tori and
K3 surfaces. The classification in the second case follows by [3, 6] and a recent result
in [20]: S must be then a Kähler surface of negative Kodaira dimension whose anti-
canonical bundle K∗

S has a non-trivial section and any Kähler metric on S = (M,J+)
can be deformed to a non-trivial bi-Hermitian structure (c, J+, J−) of the class (ii).

In the case when S doesn’t admit Kähler metrics (i.e. the first Betti number of S
is odd), the complex surfaces supporting bi-Hermitian structures in the class (i) are
classified in [2].

Finally, another case for which the existence theory is fairly complete by [18, 13]
consists of the bi-Hermitian complex surfaces arising from twisted generalized Kähler

structures, i.e., those for which relation (1.1) is weakened to dc+F+ = −dc−F− = H for
some closed 3-form H: when the de Rham class [H] ∈ H3

dR(M) is trivial, we recover
the generalized Kähler case discussed above, while when [H] 6= 0 one gets bi-Hermitian
structures with L ∼= O of the class (iii) ([3, Prop. 4]) on compact complex surfaces in
the Kodaira class VII ([1, Thm. 1]).

Thus motivated, in this note we narrow our focus to the existence of compatible
bi-Hermitian structures of the class (ii) on compact complex surfaces S = (M,J) with
odd first Betti number. It is shown in [1] that S then must be a complex surface in
the Kodaira class VII (i.e. S has Kodaira dimension −∞ and b1(S) = 1) while [15]
provides a complete list of possibilities for the minimal model of S. A more exhaustive
taxonomy of bi-Hermitian complex surfaces with odd first Betti number is provided in
the appendix A.

One may regard a general bi-Hermitian structure (c, J+, J−) on a compact 4-manifold
M as relaxing the generalized Kähler compatibility relation (1.1). Even when b1(M)
is odd, a choice of metric in c satisfying (1.1) exists locally (see [3, Lemma 1] and
[13, Prop. 6]); thus, compatible bi-Hermitian conformal classes on S are always locally
conformal to generalized Kähler structures. It turns out that under the assumption
(ii), one can further relate the bi-Hermitian structures to locally conformally Kähler
metrics, in a similar way that non-trivial generalized Kähler structures arise as defor-
mations of genuine Kähler ones [20, 21]. This is the context for our main result.

Recall that a locally conformally Kähler (or lcK ) metric on a complex manifold
S = (M,J) may be defined by a positive-definite (1, 1)-form F satisfying dF = θ ∧ F
for a closed 1-form θ. The 1-form θ is uniquely determined and is referred to as
the Lee form of F . The corresponding Hermitian metric g(·, ·) = F (·, J ·) defines a
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conformal class c on M . Changing the Hermitian metric g̃ = efg within c amounts
to transforming the Lee form by θ̃ = θ + df , showing that the de Rham class [θ] is
an invariant of the conformal class c. The study of lcK metrics, which goes back to
foundational works by F. Tricerri and I. Vaisman, is a natural extension of the theory of
Kähler metrics to certain classes of non-Kählerian complex manifolds, see e.g. [17, 33]
for an overview of the theory. Of particular interest is the case of compact complex
surfaces, where recent works [8, 10, 11, 22] showed that lcK metric exists for all known
(and conjecturally for all) compact complex surfaces with odd first Betti number, with
the one exception of certain Inoue surfaces with zero second Betti number described
in [8].

Let S = (M,J) be a compact complex surfaces in the class VII. By the well-known
isomorphism (see e.g. [7])

(1.2) H1
dR(S,C) ≃ H1(S,O)

exp
−→ Pic0(S) ≃ H1(S,C⋆) ≃ C

⋆

for any de Rham class a ∈ H1
dR(S,C) there exists a unique flat holomorphic line bundle

La over S. In the case where a is real, i.e., where it belongs to H1
dR(S,R), La is the

complexification of a real flat bundle La over S, and in the sequel we will tacitly identify
La with La, referring to such flat holomorphic bundles as being of real type. Then we
can make the following conjecture:

Conjecture. Let S = (M,J) be a compact complex surface in the class VII such that
H0(S,K∗

S ⊗L) 6= 0 for a flat holomorphic bundle of real type L with H0(S,Lℓ) = 0 for
all ℓ ≥ 1. Then the following two conditions are equivalent:

• There exists a bi-Hermitian structure (g, J+, J−) of the class (ii) on (M,J),
such that J = J+ and σ = [J+, J−]

♯ ∈ H0(S,K∗
S ⊗ L).

• There exists a lcK metric with Lee form −θ whose de Rham class in H1
dR(S,C)

corresponds to the flat bundle L∗.

The assumptions are justified by the fact that, by [3, Proposition 4], [1, Theorem 1],
and the degree computation of [1, p. 561], the two cohomological conditions in the
above Conjecture are necessary for the existence of a bi-Hermitian metric satisfying
(ii), while H0(S,Lℓ) = 0 is necessary for the existence of a lcK metric with Lee form
corresponding to L∗.

We will establish one direction of the conjectured correspondence by extending,
from the Kähler case to the strictly lcK case, certain deformation arguments due to
R. Goto [20], N. J. Hitchin [27] and M. Gualtieri [24].

Theorem 1.1. Let S = (M,J) be a compact complex surface in the class VII such that

H0(S,K∗
S⊗L) 6= 0 for a flat holomorphic line bundle of real type L. Let a ∈ H1

dR(S,R)
be the real de Rham class corresponding to L and suppose that S admits a lcK metric g
with Lee form in a. Then S also admits a bi-Hermitian conformal structure (c, J+, J−)
with J+ = J and σ = [J+, J−]

♯ ∈ H0(S,K∗
S ⊗ L).

We use Theorem 1.1 to give new examples of bi-Hermitian metrics in the class (ii)
on certain Hopf surfaces.

2. Preliminaries

For a closed 1-form θ onM , we denote by L = Lθ the flat real line bundle determined
by the class [θ] ∈ H1

dR(M) and by L∗ its dual. The differential operator dθ = d − θ∧
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then defines the Novikov complex

· · ·
dθ→ Ωk−1(M)

dθ→ Ωk(M)
dθ→ · · ·

and the corresponding cohomology groups Hk
θ (M). Let U = (Ui) be an open covering

such that θ|Ui
= dfi. Then, U defines a trivialization for L with (constant) transition

functions efi−fj on Uij = Ui ∩ Uj ; furthermore, (Ui, e
−fi) defines an isomorphism,

denoted by e−f , between the Novikov complex and L∗-valued de Rham complex

· · ·
dL∗

→ Ωk−1(M,L∗)
dL∗

→ Ωk(M,L∗)
dL∗

→ · · ·

which acts at degree k by e−f (α) = (e−fiα|Ui
) for any α ∈ Ωk(M), and thus

dθ = efidL∗ |Ui
e−fi .

In particular, we have an isomorphism between the cohomology groups

Hk
θ (M) ≃ Hk(M,L∗).

Considering the Dolbeault cohomology groups of S with values in the flat holomor-
phic line bundle L∗ = L∗ ⊗ C, we have

dL∗ = ∂L∗ + ∂̄L∗ , and dθ = ∂θ + ∂̄θ

with
∂θ = ∂ − θ1,0 ∧ and ∂̄θ = ∂̄ − θ0,1∧,

giving rise to the isomorphisms

Hp,q

∂̄θ
(S) ≃ Hp,q(S,L∗).

Similarly, the space of holomorphic sectionsH0(S,K∗
S⊗L) can be naturally identified

with the space of smooth sections of
∧2(T 1,0M) in the kernel of the twisted Cauchy–

Riemann operator
∂̄θσ = ∂̄σ + θ0,1 ⊗ σ.

We shall use the following vanishing result.

Proposition 2.1. Let S be a compact complex surface in the class VII and L a flat

holomorphic line bundle over S, such that H0(S,K∗
S ⊗ L) 6= 0 and H0(S,L⊗2) = 0.

Then H0,2(S,L∗) = 0. In particular, for any (0, 2)-form with values in L∗, α, there
exists a (0, 1)-form with values in L∗, β, such that α = ∂̄L∗β.

Proof. As H0(S,L⊗2) = 0 and H0(S,K∗
S ⊗ L) 6= 0, it follows that H0(S,KS ⊗L) = 0.

By Serre duality, H2(S,L∗) ∼= H0,2(S,L∗) = 0. As Ω0,3(M,L∗) = 0, α = ∂̄L∗β. �

Remark 2.2. If S is a minimal complex surface in the class VII with b2(S) > 0 and
H0(S,K∗

S ⊗L) 6= 0 for some flat line bundle L, then H0,2(S,F) = 0 for any non-trivial
flat line bundle F by [15], [16, Lemma 2.1] and Serre duality.

Our proof of Theorem 1.1 will rely on the following proposition, which should be
regarded as a straightforward generalization of [24, Theorem 6.2] to the case of locally
conformal generalized Kähler structures [38].

Proposition 2.3. [24] Suppose S = (M,J) is a compact complex surface as in The-

orem 1.1, endowed with a holomorphic section σ ∈ H0(S,K∗
S ⊗ L), where L is a flat

holomorphic line bundle of real type corresponding to a de Rham class [θ] ∈ H1
dR(M,R).

Let Q = Re(σ), and ω ∈ Ω2(M,L∗) be a dL∗-closed 2-form with values in L∗ such that
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• the J-invariant part of ω is positive definite;

• ωJ − J∗ω + ωQω = 0, where ω : TM → T ∗M ⊗ L∗, Q : T ∗M → TM ⊗ L and

J∗ acts on T ∗M by J∗α(·) = −α(J ·).

Then,

(i) J− := −J −Qω is an integrable complex structure on M ;

(ii) g = −1
2ω(J − J−) is a symmetric tensor field with values in L∗ which defines

a conformal class c = [g] of Riemannian metrics on M ;

(iii) J+ := J and J− are orthogonal with respect to c and J+(x) 6= J−(x) on M .

Proof. Let U = (Ui) be an open covering such that θ|Ui
= dfi. This defines a trivi-

alization for L with positive constant transition functions (Uij , e
fi−fj). We can then

write ω = (ωi) and σ = (σi) with respect to U, with ωi (resp σi) being closed 2-forms
(resp. holomorphic Poisson structures) on each Ui such that ωj = efj−fiωi (resp.

σj = efi−fjσi). Putting Qi = Re(σi), by [24, Theorem 6.2] the J-invariant part of ωi

gives rise to a bi-Hermitian metric gi on each Ui with gj = efj−figi. Thus, the con-
formal structures ([gi], Ui) extend to a global conformal class of Riemannian metrics
on M ; similarly, (Ui, Qiωi) is a well-defined tensor field on M , showing that J− is an
integrable almost complex structure on M . Finally, in order to verify (iii), suppose
that J+(x) = J−(x) for some x ∈ M . It follows from (i) that the endomorphism Qω of
TxM commutes with J . As the J-invariant part of ω is positive-definite (and therefore
non-degenerate) while Q anti-commutes with J , one concludes that Q must vanishes
at x. But then, according to (i), J−(x) = −J(x) = −J+(x), a contradiction. �

Conversely, the general theory of bi-Hermitian complex surfaces [3] implies

Proposition 2.4. Any bi-Hermitian structure (c, J+, J−) on a compact 4-manifold M ,

such that J+(x) 6= J−(x) for each x ∈ M and J+(x) 6= −J−(x) for at least one point

x, arises from Proposition 2.3.

Proof. With respect to a reference metric g ∈ c, let F±(·, ·) = g(J±·, ·) denote the
fundamental 2-forms of the Hermitian structures (g, J+) and (g, J−), respectively, and
θ± the corresponding Lee forms defined by dF± = θ± ∧F±. By [3, Lemma 1], θ+ + θ−
is closed (as M is compact). Let J denote one of the complex structures, J+ say, and
S = (M,J) the corresponding complex surface. By [3, Lemma 3], the (1, 1) tensor

Φ :=
1

2
(J+J− − J−J+)

can be transformed, via the metric g, to a (2, 0) tensor Q. The later defines a smooth

section σ of
∧2(T 1,0S) with Re(σ) = Q, which belongs to the kernel of ∂̄θ = ∂̄ + θ0,1⊗

with θ = 1
2(θ+ + θ−). Thus, by the discussion at beginning of this section, σ can be

equally seen as an element of H0(S,K∗
S ⊗L) where L = L⊗C is the flat holomorphic

line bundle of real type, corresponding to the de Rham class [θ].
Letting p = −1

4trace(J+J−), one has (see e.g. [3, Eq. (2)]) that p is a smooth function
on M with values in [−1, 1]. Furthermore, p(x) = ±1 if and only if J+(x) = ±J−(x).
Thus, our assumption is that p < 1 on M , so that the 2-form

(2.1) ω(·, ·) := F+(·, ·)−
1

1− p
g(ΦJ ·, ·),

is well-defined on M and is manifestly self-dual with respect to g. The co-differential of
ω has been computed in the proof of [3, Proposition 4] to be δgω(·) = −1

2ω((θ++θ−)
♯, ·),
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where ♯ stands for the vector field corresponding to a 1-form via the metric g. As ω is
self-dual, the last equality equivalently reads as

dω =
1

2
(θ+ + θ−) ∧ ω,

showing that ω is dθ-closed and thus can be identified with a dL∗-closed 2-form with
values in L∗ (see the discussion at the beginning of the section). Note that the J-
invariant part of ω is, by construction, the positive-definite fundamental 2-form F+.
The relations (i) and (ii) between J+, J−, g and ω are checked easily. �

3. Proof of Theorem 1.1

We start with a compact complex surface S = (M,J) in the class VII, endowed with
a section σ ∈ H0(S,K∗

S⊗L), for a flat holomorphic line bundle L = L⊗C, where L is a
flat real line bundle corresponding to a class [θ] ∈ H1

dR(S). Let F be the fundamental
form of a lcK metric on S with Lee form θ. Thus, F is dθ closed, positive definite
J-invariant 2-form on S, which we will also identify with a dL∗ -closed positive definite
J-invariant 2-form with values in L∗ (still denoted by F ). Note that the degree of L
with respect to a Gauduchon metric g in the conformal class of the lcK structure F is
degg(L) = − 1

2π

∫

M
|θ|2dvg < 0 (see e.g. [2, Eq. (5)]), so that H0(S,L⊗ℓ) = 0, ∀ℓ ≥ 1.

It follows that for any (0, 2)-form with values in L∗, α = ∂̄L∗β, see Proposition 2.1.
We wish to find a family ω(t) of dL∗-closed 2-forms with values in L∗, such that

ω(0) = 0, ω̇(0) = F (where the dot stands for the derivative with respect to t) and, for
sufficiently small t > 0, (ω(t), Q = Re(σ)) satisfy the two conditions of Proposition 2.3.
Note that the boundary condition at t = 0 for ω(t) implies that the J-invariant part
of ω(t) will be positive definite for t > 0 sufficiently small, so we have to deal with the
second condition relating ω(t) and Q. To this end, we suppose ω(t) is expressed as a
power series in t,

ω(t) = tω1 + t2ω2 + . . . ,

where each ωn is a dL∗ -closed real 2-form with values in L∗ and ω1 = F .
The equation

(3.1) ω(t)J − J∗ω(t) + ω(t)Qω(t) = 0

relates to the (2, 0) + (0, 2) part of ω(t). In other words, it may be expressed as

(3.2) 2(J∗ω(t)2,0+0,2)− ω(t)Qω(t) = 0.

If we decompose this term-by-term, we have (factoring out tn)

(3.3) J∗ω2,0+0,2
n =

1

2

∑

i+j=n

ωiQωj.

Since ω1 = F is (1, 1), this is satisfied for n = 1. Given ωi for all i < n, (3.3) fixes

ω2,0+0,2
n .
Since we need that dL∗

(

ω(t)
)

= 0, in particular we must have ∂̄L∗ω0,2
n = 0 for the

ω0,2
n thus determined: in complex dimension 2 this is automatic. By Proposition 2.1,

there exists a (0, 1)-form with values in L∗, βn, such that

(3.4) ∂L∗ω0,2
n = ∂L∗ ∂̄L∗βn.

Letting

(3.5) ω1,1
n = ∂L∗βn + ∂̄L∗ β̄n,
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the L∗-valued real 2-form ωn defined by (3.3) and (3.5) satisfies (by using (3.4))

dL∗ωn = (∂L∗ + ∂̄L∗)(ω2,0
n + ω0,2

n + ω1,1
n )

= ∂L∗ω0,2
n + ∂̄L∗ω2,0

n + ∂L∗ω1,1
n + ∂̄L∗ω1,1

n

= ∂L∗ ∂̄L∗βn + ∂̄L∗∂L∗ β̄n + ∂̄L∗∂L∗βn + ∂L∗ ∂̄L∗ β̄n

= 0,

as required.

Thus, in order to show that our choices of ωi satisfy equation (3.3), it remains to be
shown that the (1, 1)-part of (3.3) vanishes, i.e.,

Lemma 3.1. Given the ωn as defined above,
∑

i+j=n

(ωiQωj)
1,1 = 0.(3.6)

Proof. In other words, we want to show that
∑

i+j=n

(J∗ωiQωj + ωiQωjJ) = 0.

Since Q anti-commutes with J , i.e. JQ = −QJ∗, this is
∑

i+j=n

(J∗ωiQωj − ωiJQωj − ωiQJ∗ωj + ωiQωjJ)

=
∑

i+j=n

(J∗ωi − ωiJ)Qωj −
∑

i+j=n

ωiQ(J∗ωj − ωjJ).

Now let us assume, inductively, that (3.6)—or, equivalently, (3.3)—holds for all n′ < n.
Then we make the substitution

J∗ωi − ωiJ =
∑

k+l=i

ωkQωl

(and likewise for ωj), so that we finally get
∑

i+j=n

(J∗ωiQωj + ωiQωjJ) =
∑

j+k+l=n

ωkQωlQωj −
∑

i+k+l=n

ωiQωkQωl = 0.

�

In this way we may build a formal power series for a real dL∗-closed form ω(t)
with values in L∗, which satisfies (3.1). It remains to be shown that this series has a
positive radius of convergence. This is rather standard, by using Hodge theory as in
[31]. Thus, let g be a Hermitian metric on S (we can take for instance the lcK metric
corresponding to F ) and h a Hermitian metric on the holomorphic line bundle L∗

(parallel with respect to the flat connection on L∗). Denote by �̄L∗ = ∂̄L∗ ∂̄∗
L∗ + ∂̄∗

L∗∂̄L∗

the resulting Laplacian acting on smooth sections of ∧0,2S ⊗ L∗. As H0,2(S,L∗) = 0,
�̄L∗ is invertible on C∞(∧0,2S ⊗ L∗) with inverse denoted by G. Then, letting

βn = ∂̄∗
L∗G(ω0,2

n ),

(so that βn manifestly solves (3.4)) we get, for n > 1,

ω1,1
n = ∂L∗ ∂̄∗

L∗G(ω0,2
n ) + complex conjugate,
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and therefore

ωn = ω0,2
n + ∂L∗ ∂̄∗

L∗G(ω0,2
n ) + complex conjugate,

where ω0,2
n is inductively defined by (3.3). Schauder estimates for the Laplacian imply

that in Ck,α(M) (for given k ≥ 2, 0 < α < 1)

‖ωn‖k,α ≤ Ck,α

∑

i+j=n

‖ωi‖k,α‖ωj‖k,α,

for some positive constant Ck,α. We can conclude that the power series ω(t) =
∑∞

n=1 ωnt
n converges for small t, by showing as in [31, Chapter 4, Thm. 2.1] that

||ωn||k,α ≤ 1
16Ck,α

Sn, where Sn =
bn
k,α

n2 with bk,α = 16Ck,α||F ||k,α (therefore the series

converges in Ck,α(M) for t ∈ [0, 1/bk,α)).
In order to establish smoothness of ω(t), we use elliptic regularity as in [31]. The

real 2-form ω(t) satisfies ω(0) ≡ 0, ω̇(0) ≡ F as well as the equation (3.2) and

ω(t)1,1 = tF + 2Re{∂L∗ ∂̄∗
L∗Gω(t)0,2}.(3.7)

Substituting (3.7) into (3.2) and taking only the (0, 2) part for simplicity, we get

2iω(t)0,2 = ω(t)0,2Qω(t)0,2 +
(

(

tF + 2Re{∂L∗ ∂̄∗
L∗Gω(t)0,2}

)

Q
(

tF + 2Re{∂L∗ ∂̄∗
L∗Gω(t)0,2}

)

)0,2
.

Letting Θt = Gω(t)0,2, thus

2i�̄L∗Θt = E(Θt),(3.8)

where

E(Θt) =
(

(

(�̄L∗ + 2Re ◦ ∂L∗ ∂̄∗
L∗)Θt + tF

)

Q
(

(�̄L∗ + 2Re ◦ ∂L∗ ∂̄∗
L∗)Θt + tF

)

)0,2

is a non-linear second-order differential operator with smooth coefficients acting on
sections of ∧0,2S ⊗ L∗. As Θ0 ≡ 0, it follows that for small t > 0, the non-linear
equation (3.8) is elliptic at Θt, so that Θt must be C∞ (see e.g. [9, p. 467, Thm. 41]).

Remark 3.2. Our method of proof produces non-trivial generalized Kähler metrics
(or equivalently, non-trivial bi-Hermitian structures) in the case when S = (M,J)
is a compact complex surface of Kodaira dimension −∞ with b1(M) even, endowed
with a non-trivial section σ of the anti-canonical bundle K∗

S . This is the case when
starting with a Kähler metric F , the proof of Theorem 1.1 gives rise to a family
of symplectic forms ω(t) satisfying the conditions of Proposition 2.3 with L = O.
Note that in this case one needs the analogue of Proposition 2.1 (i.e. H0,2(S) = 0).
This is insured by using the Hodge isomorphism H2,0(S) ∼= H0,2(S) under the Kähler
assumption on S, and the Serre duality H2,0(S) ∼= H0(S,KS) = 0 (as the Kodaira
dimension is negative). By [3, Theorems 1 and 2], this allows to recast [20, Theorem 6.2]
entirely within the framework of bi-Hermitian geometry. A more general approach to
the deformation theory of generalized Kähler structures of any dimension has been
independently developed by M. Gualtieri and N. J. Hitchin [25].

Remark 3.3. As observed in [21], as a by-product of Theorem 1.1 one obtains non-
obstructness of the class [QF ] ∈ H1(S, T 1,0S), for any lcK metric F with Lee form
corresponding to L∗, should it exist.
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4. Towards a converse

In order to further motivate the conjecture in the introduction, recall that by Propo-
sition 2.4, any bi-Hermitian structure (c, J+, J−) on S = (M,J) with J = J+ and
J+(x) 6= J−(x) for each x ∈ M , gives rise to a dL∗ -closed form ω whose J-invariant
part is positive-definite: in other words, J is tamed by a locally conformally symplectic
2-form ω with Lee form corresponding to L∗. Note that the flat line bundle L∗ is the
dual of the flat bundle L for which σ ∈ H0(S,K∗

S ⊗L). As computed in [1] (see also [2,
Eq. (6)]), another necessary condition for L∗ is that degg(L

∗) > 0 with respect to the

Gauduchon metric of (c, J), in particular H0(S,Lℓ) = 0 for ℓ ≥ 1. On a given minimal
complex surface in the Class VII with a global spherical shell and second Betti number
b2(M) > 0, one can show that there is a finite number of such line bundles L. We
therefore ask the following more general

Question 4.1. Let S = (M,J) be a minimal compact complex surface in the class
VII, with a global spherical shell, and L a flat holomorphic line bundle of real type such
that H0(S,Lℓ) = 0 for any ℓ ≥ 1. Suppose there exists a dL∗-closed 2-form with values
in L∗, ω, whose J-invariant part is positive definite and denote Ω = [ω] ∈ H2(M,L∗)
the corresponding Novikov cohomology class. Does Ω contain a positive-definite J-
invariant 2-form F?

Note that the vanishing H0(S,Lℓ) = 0 for ℓ ≥ 1 is a necessary condition as the
degree of L with respect to a Gauduchon metric g in the conformal class of the lcK
structure is degg(L) = − 1

2π

∫

M
|θ|2dvg < 0 (see e.g. [2, Eq. (5)]).

For a compact complex surface with b1(S) even and H0(S,KS) = 0 (and L = O),
the analogous statement is known to be true as H2

dR(S)
∼= H1,1(S,R) and therefore

the de Rham class Ω = [ω] of a symplectic form taming J defines a Kähler class by a
result of Buchdahl [12] and Lamari [30].

A similar question has been raised in [10, Remark 1] and [34]. The general exis-
tence results in [10, 11] show that on a minimal Kato surface lcK metrics exist for L∗

corresponding to an interval of big Lee forms in H1
dR(S) (i.e. for Lee forms with de

Rham classes ta, 0 6= a ∈ H1
dR(M), t > ε(S) ≫ 0) while the stability results in [10] or

[19] combined with Remark 2.2 imply that the existence of lcK metrics in H2(M,L∗)
is stable under complex deformations of S.

5. Examples
In this section we give new examples of bi-Hermitian metrics on primary Hopf

surfaces S, such that J+(x) 6= J−(x) on S and J+ = −J− on an elliptic curve E ⊂ S.
To the best of our knowledge, these are new: Indeed, they are not strongly bi-Hermitian
(as J+ = −J− on E) nor are they ASD (see [35]) as J+ 6= J− everywhere. According to
[13], these examples generate bi-Hermitian structures of the same kind on the blow-ups
of S at E.

Recall that a diagonal primary Hopf surface S is defined as the quotient of C2 \
{(0, 0)} by a contraction

(5.1) γ(z1, z2) = (a1z1, a2z2), 0 < |a1| ≤ |a2| < 1.

Letting a = (a1, a2) we denote by Sa the resulting diagonal Hopf surface. As Sa
∼=

S1×S3, any holomorphic line bundle is topologically trivial. The diagonal Hopf surface
Sa admits two elliptic curves, E1 and E2, which are respectively the projections of the
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axes {z1 = 0} and {z2 = 0} in C
2 under the contraction (5.1). A holomorphic section

of the anti-canonical bundle K∗
Sa

is induced by the γ-invariant bi-vector

z1z2
∂

∂z1
∧

∂

∂z2
,

showing that
K∗

Sa
= [E1 + E2].

Without loss of generality, we can choose the identification (1.2) so that K∗
Sa

corre-
sponds to a1a2 ∈ C

∗ and thus [Ei] corresponds to ai. It follows that the flat bundles

Lp1,p2
∼= p1[E1] + p2[E2], pi ≥ 0,

which correspond to ap11 ap22 under (1.2), all admit holomorphic sections while K∗
Sa

⊗
Lp1,p2 has a non-trivial sections for pi ≥ −1. Furthermore, it is not difficult to show
(see e.g. [2, Lemma 4]) that Lp1,p2 is of real type if and only if ap11 ap22 is a real number.

Finally, the condition H0(Sa,L
ℓ
p1,p2

) = 0 implies p1 ≤ −1 or p2 ≤ −1. We thus

get two families of flat bundles Lp = L−1,p, p ≥ −1 (resp. L̃q = Lq,−1, q ≥ −1)
possibly satisfying the necessary conditions in Theorem 1.1, subject to the constraint
ap2/a1 ∈ R>0 (resp. aq1/a2 ∈ R>0). It remains to investigate whether or not there is a

lcK metric on Sa in H2(Sa, L
∗
p) or H

2(Sa, L̃
∗
q).

In the case p = −1 (or equivalently q = −1), the existence of lcK structure in
H2(Sa,L

∗
p) = H2(Sa,K

∗
Sa
) (with a1a2 ∈ R) is established in [22] while the existence of

(strongly) bi-Hermitian deformations was observed in [2]. So we shall assume p, q ≥ 0.

It is shown in [22] that any diagonal Hopf surface Sa admits a Vaisman lcK metric,
i.e. a lcK Hermitian metric g0 whose Lee form θ0 is parallel. As observed in [2], the
de Rham class [θ0] of the Gauduchon–Ornea lcK metrics corresponds (via (1.2)) to the
real number c0 = |a1||a2|. The Vaisman lcK metrics always come in families, called
0-type deformation in [8],

gt = g0 +
(t− 1)

|θ0|2
(θ0 ⊗ θ0 + Jθ0 ⊗ Jθ0), t > 0,

with Lee forms θt = tθ0, so that the de Rham class of tθ0 corresponds to ct0 (see e.g.
[8, Eq. [7)] or [5, Eq. (21) & (22)]). It follows that for each flat bundle of real type, Lµ,
corresponding (via (1.2)) to a positive real number µ > 1, there exists a lcK metric
with Lee form corresponding to L∗

µ. Thus, if for some p ≥ 0 we have ap2/a1 > 1 (resp.

for some q ≥ 0 we have aq1/a2 > 1), we can apply Theorem 1.1 with L = Lp (resp.

L = L̃q) in order to construct bi-Hermitian metrics metrics on S1 × S3. As a special

case, we can take a1 = a2 = λ ∈]0, 1[ and L = L0
∼= L̃0 (i.e. p = 0 = q).

Another class of (primary) Hopf surfaces are the non-diagonal ones, when S = Sb,λ,m

is obtained as a quotient of C2 \ {(0, 0)} by the contraction

γ(z1, z2) = (bmz1 + λzm2 , bz2), 0 < |b| < 1, λ 6= 0,m ≥ 1.

The deformation argument in [22] shows that for any µ > 1 such S still admits lcK
metrics with fundamental 2-form in H2(S,L∗

µ), where Lµ is a flat bundle corresponding

(via (1.2)) to µ. Furthermore, the axis z2 = 0 of C2 defines an elliptic curve E ⊂ S
with K∗

S
∼= (m + 1)E and corresponding complex number bm+1. If b ∈]0, 1[ is real,

then Theorem 1.1 applies for the flat bundles L = Lp
∼= −p[E], 1 ≤ p ≤ m + 1,

corresponding to b−p.
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Remark 5.1. It is well-known (see e.g. [33]) that the Vaisman lcK metrics we have used
to produce our examples of bi-Hermitian metrics admit potentials, i.e. there exists a
smooth (real) section f of L∗ such that F = 2i∂L∗ ∂̄L∗f = dL∗dcL∗f . This allows to
construct bi-Hermitian metrics via a hamiltonian flow, originally due to Hitchin [26],
and re-casted in the case of Hopf surfaces in our previous work [2] (in order to obtain
strongly bi-Hermitian metrics). Indeed, for any such potential f , Xf = Q(df) is a
smooth vector field on M whose flow ϕs defines a family of 2-forms

ω(t) :=

∫ t

0
ϕ∗
s(dL∗dcL∗f)ds,

satisfying the second relation in Proposition 2.3 and
(

dω(t)
dt

)

t=0
= dL∗dcL∗f = F (see

[24]). Thus, we obtain a familly of bi-Hermitian structures with J+ = J and J t
− =

−ϕt(J).

Appendix A. A rough classification of bi-Hermitian complex surfaces in
the class VII0

In this section, we recast the list obtained in [15] of the minimal compact com-
plex surfaces S = (M,J) in the Kodaira class VII, possibly admitting compatible
bi-Hermitian structures, in terms of the classification of bi-Hermitian structures in the
three classes (i)–(iii) from the introduction (defined as a function of the number of
connected components of the divisor determined by σ = [J+, J−]

♯ ∈ H0(S,K∗
S ⊗ L)).

As in [15], we will assume that the algebraic dimension of S is zero, i.e. that
there are no non-constant meromorphic functions on S, and that the fundamental
group π1(S) ∼= Z. These assumptions exclude only the cases of elliptic primary Hopf
surfaces (i.e. diagonal Hopf surfaces with ap11 = ap22 for some p1, p2 ∈ Z, see [29]),
and the secondary Hopf surfaces (which are finitely covered by a primary Hopf surface
described in Section 5). We then have the following

Proposition A.1. Let S = (M,J) be a minimal compact complex surface in the

Kodaira class VII of algebraic dimension 0, endowed with a compatible bi-Hermitian

structure (c, J+ = J, J−). By replacing S with a finite covering if necessary, assume

also the fundamental group of S is Z. Then one of the following must hold.

(i) Everywhere on M , J+ 6= J− and J+ 6= −J−. Then σ = [J+, J−]
♯ ∈ H0(S,K∗

S ⊗
KS) never vanishes, and S is a primary Hopf surface described in [2, Thm. 1].

(ii) Everywhere on M , J+ 6= J− but for at least one x ∈ M , J+(x) = −J−(x). Then
σ = [J+, J−]

♯ ∈ H0(S,K∗
S ⊗ L) with L 6= O, and S must be either a primary

Hopf surface, a parabolic Inoue surface, or a surface with GSS of intermediate

type.

(iii) There are points on M where J+ = J− and also points where J+ = −J−. Then

σ = [J+, J−]
♯ ∈ H0(S,K∗

S) and S must be a primary Hopf surface, a parabolic

Inoue surface or an even Inoue-Hirzebruch surface.

Proof. The case (i) is treated in [2].
We will next establish (iii). As the zero set of the holomorphic section σ = [J+, J−]

♯ ∈
H0(S,K∗

S ⊗ L) consists of the points where either J+(x) = J−(x) or J+(x) = −J−(x)
(see e.g. [3]), we conclude that K∗

S ⊗L is represented by an effective divisor D with at
least two connected components. By [15, Thm. 0.4], S must be then either a primary
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Hopf surface, a (parabolic) Inoue surface, or an Inoue–Hirzebruch surface. The Inoue–
Hirzebruch surfaces come in two families, called even or odd in [15], and it has been
already observed in the proof of [15, Cor. 3.45] that the odd Inoue–Hirzebruch surfaces
cannot appear as the effective divisor representing K∗

S ⊗ L for some flat bundle L is
connected (it is given by one cycle of rational curves). It remains therefore to show
that in the three cases for S, we must have L = O. Suppose for contradiction that
L 6= O: by the degree computation in [1], we must then have H0(S,Lℓ) = 0 for ℓ ≥ 1.

If S is a diagonal Hopf surface as in Section 5 with [D] ∼= K∗
S ⊗L and H0(S,Lℓ) = 0

for ℓ ≥ 1, we have already noticed that [D] ∼= (p + 1)[E2], p ≥ 0 or [D] ∼= (q +
1)[E1], q ≥ 0. As we assume that S doesn’t have non-trivial meromorphic functions,
it follows D = (p + 1)E2 or D = (q + 1)E1, a contradiction as D has at least two
connected components. Similarly, if S is a non-diagonal primary Hopf surface, then
K∗

S
∼= (m+ 1)[E] and therefore D = (p+ 1)E, p ≥ 0, a contradiction.

If S is a parabolic Inoue surface or an even Inoue-Hirzebruch surface, then K∗
S
∼=

[A + B] for a cycle A of rational curves and a smooth elliptic curve B, or for two
cycles of rational curves A,B, respectively (see [32] and [15, Prop. 2.27]). In the first
case, the cycle A represents a flat bundle, and therefore, by [15, Lemma 2.26], we must
have D = B, a contradiction as B is connected; in the second case, neither A nor
B represents a flat bundle because A2 < 0 and B2 < 0 (see [32, Thm. 6.1] or [14,
Cor. 2.28]) so we obtain a contradiction as we assumed L 6= O.

Finally, we consider the case (ii): the only additional point with respect to [15,
Thm. 0.4] is that Inoue–Hirzebruch surfaces cannot support bi-Hermitian structures
of the class (ii). Indeed, as we have already explained in the introduction, a necessary
condition for the existence of such bi-Hermitian structures is that H0(S,K∗

S ⊗ L) 6= 0

for a non-trivial flat bundle with H0(S,Lℓ) = 0 for ℓ ≥ 1. For the even Inoue–
Hirzebruch surfaces the only flat bundle L with H0(S,K∗

S ⊗ L) 6= 0 is the trivial one,
see [14, Prop. 2.14], while for the odd Inoue–Hirzebruch surfaces, H0(S,K∗

S ⊗ L) 6= 0
for a (unique) flat bundle L which satisfies L2 ∼= O by [14, Prop. 2.14] and [32,
Lemma 2.5]. �

Remark A.2. The general existence problem for bi-Hermitian structures can be reduced
to the minimal case by [15, Lemma 3.43] and the construction in [13]. From the list
above, the existence is now fully established in the case (i) by [2] and in the case (iii)
by [18]. The construction in this paper provides the first existence results in the case
(ii), but a complete resolution is still to come. We also note (see [4, Prop. 3]) that the
bi-Hermitian minimal complex surfaces in the class (iii) are precisely the ones arising
from twisted generalized Kähler structures.
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J. Geom. Phys. 59 (2009), 295–305.

[35] M. Pontecorvo, Complex structures on Riemannian 4-manifolds, Math. Ann. 309 (1997), 159–
177.

[36] Y.-T. Siu, Every K3 surface is Kähler, Invent. Math. 73 (1983), 139–150.
[37] A. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces,

Invent. Math. 61 (1980), 251–265.
[38] I. Vaisman, Conformal changes of generalized complex structures, An. Sti. Univ. “Al. I. Cuza”

Iasi, Sect. I, Mat. (N.S.), 54 (2008), 1-14.

http://arxiv.org/abs/1007.3485
http://arxiv.org/abs/1105.4775


14 V. APOSTOLOV, M. BAILEY, AND G. DLOUSSKY
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