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Abstract

We use the supersymmetric formalism to derive an integral formula

for the density of states of the Gaussian Orthogonal Ensemble, and

then apply saddle-point analysis to give a new derivation of the 1/N -

correction to Wigner’s law. This extends the work of Disertori on

the Gaussian Unitary Ensemble. We also apply our method to the

interpolating ensembles of Mehta–Pandey.

1 Introduction

In this note we study the density of states for the Gaussian Unitary Ensemble
(GUE) and the Gaussian Orthogonal Ensemble (GOE). Both are ensembles
of N×N Hermitian random matrices H , so that the joint distribution of the
entries is centered Gaussian, and the covariance of the entries is given by

〈HijHkl〉 =
{

1
N
δ(jk)δ(il) , GUE

1
N
(δ(jk)δ(il) + δ(ik)δ(jl)) , GOE

. (1)
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Here 〈·〉 denotes the average (expectation), and δ denotes the Kronecker
delta,

δ(ij) =

{
1 , i = j

0 , i 6= j
.

In particular, the GUE entries are complex (the diagonal elements are real),
whereas the GOE entries are real.

The density of states ρ(E) is defined by

ρ(E) =
d

dE

〈
1

N
# {eigenvalues ≤ E}

〉
.

Let

ρsc(E) =
1

π

√
(1− E2/4)+

be the (Wigner) semicircle density. We give new proofs for the following two
theorems (see below for the history of these and related results):

Theorem 1. For GUE,

ρ(E) = ρ
sc
(E)− (−1)N

4π3Nρ
sc
(E)2

cos

[
N

(
E

√
1− E2

4
+ 2 arcsin

E

2

)]
+O(N−3/2)

for |E| < 2− δ, and the implicit constant in the O-notation depends only on
δ > 0.

Theorem 2. For GOE,

ρ(E) = ρ
sc
(E)− 1

4π2Nρ
sc
(E)

+O(N−3/2)

for |E| < 2− δ, and the implicit constant in the O-notation depends only on
δ > 0.

Remark. The oscillatory term in the expansion corresponding to GOE is of
order N−2, see Kalisch and Braak [9]. It can also be derived by our methods.

We also consider the interpolating ensembles of Mehta and Pandey [12],
which are given by

√
rGUE +

√
1− rGOE , 0 ≤ r ≤ 1 .
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The case r = 0 corresponds to the GOE, whereas r = 1 corresponds to the
GUE (in the notation of [12], r = α2). More explicitly,

〈HijHkl〉 =
1

N
(δ(jk)δ(il) + (1− r)δ(ik)δ(jl)) . (2)

We prove:

Theorem 3. For the interpolating ensemble (2),

ρ(E) = ρ
sc
(E)− (−1)Nr

4π3Nρ
sc
(E)2

ℜ





e
−N

(
iE
√

1−E2/4+2 ln(iE/2+
√

1−E2/4)
)

(1− r)(1− E2/2− iE
√

1−E2/4) + 1






− 1− r
2π2Nρ

sc
(E)
ℜ
{
(2
√

1−E2/4− r(−iE/2 +
√

1−E2/4))

× (−iE/2 +
√

1−E2/4)3

((1− r)(1−E2/2− iE
√

1− E2/4) + 1)2

}
+O(N−3/2)

for |E| < 2− δ, and the implicit constant in the O-notation depends only on
δ > 0.

These results are based on a saddle-point analysis of the exact integral for-
mulaæ for ρ(E), which we prove (in Lemmata 1.1, 1.2, and 1.3 below) using
the supersymmetric formalism. The supersymmetric formalism, put forth by
Berezin (see [1] for an early application to Wigner matrices) and developed
in the works of Wegner and Efetov, is a very general method to derive dual
integral representations for expressions such as an average product of sev-
eral matrix elements of the resolvent. While widely applied in the physical
literature, only a fraction of these applications have been put on rigorous
mathematical basis.

On the other hand, the supersymmetric method is potentially applicable
to a wide range of problems pertaining to the spectral properties of random
matrices and random operators; see the review of Spencer [14].

Two of the alternative groups of methods to study the eigenvalue distri-
bution of random matrices are perturbative methods (such as the moment
method), and the method of orthogonal polynomials. The moment method
was applied by Wigner in the 1950’s to prove the weak convergence of the
spectral distribution to the semicircle law ρsc. A major disadvantage of all
perturbative methods is that they typically allow to control the density of
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states at some scale ǫ ∼ N−κ, i.e. they do not allow to take ǫ → +0 while
keeping N fixed (moreover, usually κ < 1, so the perturbative methods are
unable to see the oscillatory corrections to ρsc). The supersymmetric method
allows to derive exact formulæ for fixed N and ǫ→ +0.

The method of orthogonal polynomials, developed in the 1960’s by Dyson,
Gaudin, and Mehta (see the book of Mehta [10]), allows to compute the
asymptotics of the density of states in the strong sense and to arbitrary
precision. For example, the asymptotic expansions of Theorems 1 and 2 (as
well as analogous expansions for several other ensembles) were derived by
Forrester, Frankel, and Garoni [8, 6]. Theorem 3 can probably be extracted
via asymptotic analysis from formula (4.52) of Mehta and Pandey [12]; see
also § 5 there.

A vast generalization of Theorems 1 and 2 was obtained by Desroisiers
and Forrester [2], who considered general β-ensembles (with arbitrary β > 0,
where β = 1 corresponds to GOE and β = 2 — to GUE; the interpolating
ensembles (2) are however not a special case of β-ensembles). Their work is
based on the study of multivariate Hermite polynomials.

On the other hand, the potential range of applicability of the supersym-
metric method seems to include many problems beyond the applicability of
the orthogonal polynomial method (and even the method of multivariate
orthogonal polynomials); see [14].

Thus the supersymmetric method has several advantages over both pertur-
bative methods and the method of orthogonal polynomials. The applications
found during the last dozen years include an analysis of the density of states
of a 3D band matrix model by Disertori, Pinson, and Spencer [4], and the
study of mixed moments of characteristic polynomials for a class of 1D band
matrices by T. Shcherbina [13]; see [14] for a review of other results.

Kalisch and Braak [9] used the supersymmetric formalism to derive a
formula for GOE, GUE and GSE density of states, and then applied saddle-
point analysis to derive the asymptotics of Theorems 1 and 2. Their work is
however on the physical level of rigor. A mathematically rigorous derivation
of Theorem 1 (as well as of its counterparts at the spectral edges) was given
by Disertori [3]. The derivation of the integral formulæ by Kalisch–Braak
and Disertori is based on the Hubbard-Stratonovich transformation.

Our contribution is three-fold. First, we derive a integral representation
for the density of states using a different supersymmetric approach; our for-
malæ (Lemmata 1.1, 1.2, and 1.3) seem simpler than the ones obtained via
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the Hubbard–Stratonovich transformation. We mention that a different ap-
proach avoiding the Hubbard–Stratonovich transformation was developed by
Fyodorov in [7].

Second, we perform a mathematically rigorous saddle-point analysis of
both formalæ to derive the asymptotic expansions of Theorems 1, 2, and
3, thus extending the work of Disertori to GOE and to the interpolating
ensembles. Although the results (at least, those pertaining to GUE and
GOE) are not new, we believe that the methods can be applied to other
problems intractable by other means; thus our third goal is a detailed and
(relatively) self-contained exposition.

We remark that the method of the current paper can be probably applied to
other Gaussian ensembles. As an example, we mention the anti-symmetric
Hermitian ensemble of Mehta and Rosenzweig [11], corresponding to r = 2
in (2).

To state the integral formulæ, we need some notation. Let Eǫ = E − iǫ and

G(z) = (z −H)−1 ; G(z;m,n) = (z −H)−1(m,n) .

The density of states can be expressed in terms of G as follows:

ρ(E) = ℑ lim
ǫ→+0

1

πN
tr 〈G(Eǫ)〉 . (3)

The supersymmetric formalism is used to derive a (dual) integral represen-
tation for 〈trG(Eǫ)〉.

Lemma 1.1. For GUE,

1

N
〈trG(Eǫ)〉 =

(−1)N−1N

2π

∫ ∞

0

ds

∮
dz(iE − z + s)

exp

[
−N(iEǫs+

1

2
s2 − ln s)

]
exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
,

whereas

i = 〈i〉 = (−1)N−1N

2π

∫ ∞

0

ds

∮
dz
iE − z + s

s

exp

[
−N(iEǫs+

1

2
s2 − ln s)

]
exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
.
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Lemma 1.2. For GOE,

1

N
〈trG(Eǫ)〉 =

(−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz

z
s + t

st
(1− α2)−3/2

[
1

N
+ (z − iEǫ)

2 − 2(z − iEǫ)(s+ t) + 4st(1− α2)

]

exp

[
−N(iEǫ(s+ t) + s2 + t2 − 1

2
ln s− 1

2
ln t)

]

exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
exp

[
−N(2stα2 − 1

2
ln(1− α2))

]
,

whereas

i = 〈i〉 = (−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz

z
1

st
(1− α2)−3/2

[
1

N
+ (z − iEǫ)

2 − 2(z − iEǫ)(s+ t) + 4st(1− α2)

]

exp

[
−N(iEǫ(s+ t) + s2 + t2 − 1

2
ln s− 1

2
ln t)

]

exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
exp

[
−N(2stα2 − 1

2
ln(1− α2))

]
.

Lemma 1.3. For the interpolating ensemble (2),

1

N
〈trG(Eǫ)〉 =

(−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz

z
s + t

st
(1−α2)−3/2

[
1

N
+ (z − iEǫ)

2 − (2− r)(z − iEǫ)(s+ t) + 4(1− r)st(1− α2)

]

exp

[
−N(iEǫ(s+ t) + (1− r

2
)(s2 + t2) + rst− 1

2
ln s− 1

2
ln t)

]

exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
exp

[
−N(2(1− r)stα2 − 1

2
ln(1− α2))

]
,
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whereas

i = 〈i〉 = (−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz

z
1

st
(1−α2)−3/2

[
1

N
+ (z − iEǫ)

2 − (2− r)(z − iEǫ)(s+ t) + 4(1− r)st(1− α2)

]

exp

[
−N(iEǫ(s+ t) + (1− r

2
)(s2 + t2) + rst− 1

2
ln s− 1

2
ln t)

]

exp

[
−N(iEǫz −

1

2
z2 + ln z)

]
exp

[
−N(2(1− r)stα2 − 1

2
ln(1− α2))

]
.

In the three lemmata, the contour integral is along a counterclockwise
contour about zero; the choice of the branch of the logarithm is not impor-
tant, since it is multiplied by an integer number N in the exponent. We prove
the lemmata in Section 2, and then apply saddle point analysis to derive the
theorems in Section 3. We omit the proofs of Lemma 1.3 and Theorem 3
which are almost identical to the proofs of Lemma 1.2 and Theorem 2, re-
spectively.

Acknowledgement I am grateful to Tom Spencer for encouraging me to
work on this problem, and for his helpful advise. I also thank Margherita
Disertori, Tanya Shcherbina and Sasha Sodin for useful discussions, and Yan
Fyodorov for suggesting to consider the interpolating ensembles of Mehta–
Pandey, and for his interest in this work.

2 Integral representation

The proof of Lemmata 1.1,1.2, and 1.3 is based on the supersymmetric for-
malism. Let us introduce the notation.

For z, z′ ∈ CN , set

[z, z′] =

N∑

j=1

z̄jz
′
j , |z| =

√
[z, z] ;

in particular, for an N ×N matrix A,

[z, Az] =
∑

z̄jAjkzk .
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Also set

Dz =
N∏

j=1

dℜzj dℑzj
π

. (4)

Let ψ1, · · · , ψN , ψ̄1, · · · , ψ̄N be anti-commuting variables, i.e.

ψiψj + ψjψi = ψiψ̄j + ψ̄jψi = ψ̄iψ̄j + ψ̄jψ̄i = 0 ,

and let
[ψ,ψ] =

∑
ψ̄jψj , [ψ, Aψ] =

∑
ψ̄jAjkψk .

Also let

Dψ =
N∏

j=1

dψ̄jdψj .

The supersymmetric (Berezin) integral is defined by the rules
∫
ψjdψj =

∫
ψ̄jdψ̄j = 1 ,

∫
dψj =

∫
dψ̄j = 0 .

We start from the identities

(H −Eǫ)
−1(k, j) = i

∫
Dz

∫
Dψ e−i[z,(Eǫ−H)z]−i[ψ,(Eǫ−H)ψ]zkz̄j ,

i = i

∫
Dz

∫
Dψ e−i[z,(Eǫ−H)z]−i[ψ,(Eǫ−H)ψ] ,

(5)

which are valid for any Hermitian matrix H and any ǫ > 0 (see Spencer [14,
(4.20)]). We shall prove the first part of each of the lemmata using the first
identity; the second part is similarly derived from the second identity.

Proof of Lemma 1.1. Taking the expectation of (5) and summing over k = j,
we obtain:

1

N
〈trG(Eǫ)〉 =

i

N

∫
Dz

∫
Dψ [z, z] e−iEǫ([z,z]+[ψ,ψ])

〈
ei([z,Hz]+[ψ,Hψ])

〉
. (6)

Using the identity
〈eg〉 = e〈g

2〉/2

(valid for any Gaussian random variable g), we deduce

1

N
〈trG(Eǫ)〉 =

i

N

∫
Dz

∫
Dψ [z, z] e−iEǫ([z,z]+[ψ,ψ]e−

1

2
〈([z,Hz]+[ψ,Hψ])2〉 . (7)
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From (1),

〈([z, Hz] + [ψ, Hψ])2〉 = 1

N

(
[z, z]2 − [ψ,ψ]2 + 2

N∑

j,k=1

zjψ̄j z̄kψk

)
.

Let U be a unitary matrix such that U1j = z̄j/|z|. Denote

φ̄i =
∑

j

Ūijψ̄j , φi =
∑

j

Uijψj .

Then

[φ,φ] = [ψ,ψ] ,
∑

zjψ̄j = |z|φ̄1 ,
∑

zjψj = |z|φ1 , Dφ = Dψ ,

in particular,
N∑

j,k=1

zjψ̄j z̄kψk = [z, z]φ̄1φ1 .

Returning to (7), we obtain:

1

N
〈trG(Eǫ)〉 =

i

N

∫
Dz

∫
Dφ̃dφ̄1dφ1 [z, z] e

−iEǫ([z,z]+[φ̃,φ̃])e−iEǫφ̄1φ1

e−
1

2N ([z,z]
2−[φ̃,φ̃]2)e−

1

2N (2[z,z]φ̄1φ1−2φ̄1φ1[φ̃,φ̃]) ,

where we have set φ̃ to be the Grassmanian vector φ without the first coor-
dinate. Integrating over φ1 (and φ̄1), we obtain:

∫
dφ̄1dφ1e

−iEǫφ̄1φ1−
1

N
[z,z]φ̄1φ1−

1

N
φ̄1φ1[φ̃,φ̃] = iEǫ +

1

N
[z, z]− 1

N
[φ̃, φ̃] .

To integrate over φ̃, we use a Grassmanian version of polar coordinates:
∫
Dφ̃F ([φ̃, φ̃]) = (−1)N−1 (N − 1)!

2πi

∮
F (z)

zN
dz (8)

(the contour encircles the origin counterclockwise). For the sake of complete-
ness, let us prove this formula, after stating it as

Lemma 2.1. For any analytic function F and an N-component Grassmann
vector φ, ∫

DφF ([φ,φ]) = (−1)N N !

2πi

∮
F (z)

zN+1
dz ,

where the contour encircles the origin counterclockwise.
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Proof. First,

F ([φ,φ]) =

N∑

j=0

F (j)(0)

j!
[φ,φ]j .

Only the last term contributes to the integral, thus

∫
DφF ([φ,φ]) =

F (N)(0)

N !

∫
Dφ[φ,φ]N = (−1)NF (N)(0) ,

where on the second step we opened all the brackets and applied the inte-
gration rules. Now the statement follows from Cauchy’s formula.

Applying (8), we obtain:

1

N
〈trG(Eǫ)〉 =

i

N
(−1)N−1 (N − 1)!

2πi

∫
Dz

∮
dz

zN
[z, z]

(
iEǫ +

1

N
[z, z]− z

N

)
exp

{
−iEǫ[z, z]−

1

2N
[z, z]2 − iEǫz +

1

2N
z2
}
. (9)

Now we pass to polar coordinates in z using the formula

∫

CN

DzF ([z, z]) =
1

(N − 1)!

∫ ∞

0

F (s)sN−1ds , (10)

and obtain:

1

N
〈trG(Eǫ)〉 =

(−1)N−1

2πN

∫ ∞

0

ds

∮
dz(iEǫ +

s− z
N

)

exp

{
−iEǫs−

1

2N
s2
}
exp

{
−iEǫz +

1

2N
z2
}
sN

zN
. (11)

The change of variables s→ Ns, z → Nz concludes the proof of Lemma 1.1.

Proof of Lemma 1.2. Similarly to the proof of Lemma 1.1,

1

N
〈trG(Eǫ)〉 =

i

N

∫
Dz

∫
Dψ [z, z] e−iEǫ([z,z]+[ψ,ψ])e−

1

2
〈([z,Hz]+[ψ,Hψ])2〉 .

(12)

10



Now we have:

〈([z, Hz] + [ψ, Hψ])2〉

=
1

N

{
|
∑

j

z2j |2 + [z, z]2 − [ψ,ψ]2 + 2
∑

j

z̄jψ̄j

∑

k

zkψk + 2
∑

j

zjψ̄j

∑

k

z̄kψk

}

=
1

N

{
2[x,x]2 + 2[y,y]2 + 4[x,y]2 + 4

[
∑

j

xjψ̄j

∑

k

xkψk +
∑

j

yjψ̄j

∑

k

ykψk

]}
,

where we use the decomposition z = x + iy of z into its real and imaginary
parts.

Denote u = 1
2
(1 + [x,y]

|x||y|
); then

u(1− u) = 1

|x|2|y|2 (|x|
2|y|2 − [x,y]2) .

Define

x̃ = |x|(
√
ue1 +

√
1− ue2) , ỹ = |y|(

√
ue1 −

√
1− ue2) ,

where ej is the j-th vector of the standard basis. Then one can find an
orthogonal map which takes x,y to x̃, ỹ. Hence, similarly to the proof of
Lemma 1.1, one can pass from ψ to a new Grassmann variable φ and rewrite
(12) as

1

N
〈trG(Eǫ)〉 =

i

N

∫∫
DxDy

∫
Dφ(|x|2 + |y|2)

exp
{
− iEǫ(|x|2 + |y|2 + [φ,φ])− 1

2N

[
2|x|4 + 2|y|4 + 4[x,y]2 − [φ,φ]2

+4(|x|2+|y|2)(uφ̄1φ1+(1−u)φ̄2φ2)+4
√
u(1− u)(|x|2−|y|2)(φ̄2φ1+φ̄1φ2)

]}
,

where DxDy still incorporates the factor π−N from (4). Let φ̃ be the Grass-
mannian vector φ whithout the first two coordinates. Then the above ex-
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pression can be rewritten as

1

N
〈trG(Eǫ)〉 =

i

N

∫∫
DxDy

∫
Dφ̃

∫
dφ̄1dφ1dφ̄2dφ2(|x|2 + |y|2)

exp
{
− iEǫ(|x|2 + |y|2 + [φ̃, φ̃])− 1

N

[
|x|4 + |y|4 + 2[x,y]2 − 1

2
[φ̃, φ̃]2

]

− iEǫ(φ̄1φ1 + φ̄2φ2) +
1

N

[
φ̄1φ1φ̄2φ2 + [φ̃, φ̃](φ̄1φ1 + φ̄2φ2)

−2(|x|2+|y|2)(uφ̄1φ1+(1−u)φ̄2φ2)−2
√
u(1− u)(|x|2−|y|2)(φ̄2φ1+φ̄1φ2)

]}
.

Let us first integrate over φ1, φ̄1, φ2, and φ̄2. Using the Taylor expansion
ez = 1+ z + z2/2 + · · · (the higher-order terms vanish due to anticommuta-
tivity), we obtain:

∫
dφ̄1dφ1dφ̄2dφ2 exp

{ 1

N
φ̄1φ1φ̄2φ2 + (

1

N
[φ̃, φ̃]− iEǫ)(φ̄1φ1 + φ̄2φ2)

− 2

N
(|x|2 + |y|2)(uφ̄1φ1 + (1− u)φ̄2φ2)

− 2

N

√
u(1− u)(|x|2 − |y|2)(φ̄2φ1 + φ̄1φ2)

}

=
1

N
+ (

1

N
[φ̃, φ̃]− iEǫ)

2 − 2

N
(
1

N
[φ̃, φ̃]− iEǫ)(|x|2 + |y|2)

+
4

N2
(|x|2|y|2 − [x,y]2) .

(13)

Thus

1

N
〈trG(Eǫ)〉 =

i

N

∫∫
DxDy

∫
Dφ̃ (|x|2 + |y|2)

( 1

N
+ (

1

N
[φ̃, φ̃]− iEǫ)

2 − 2

N
(
1

N
[φ̃, φ̃]− iEǫ)(|x|2 + |y|2)

+
4

N2
(|x|2|y|2 − [x,y]2)

)

exp
{
− iEǫ([x,x] + [y,y] + [φ̃, φ̃])

− 1

N

[
|x|4 + |y|4 + 2[x,y]2 − 1

2
[φ̃, φ̃]2

]}
.

(14)
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Now we integrate over φ̃ using the formula (8). We obtain:

1

N
〈trG(Eǫ)〉 =

i

N

(−1)N(N − 2)!

2πi

∫∫
DxDy

∮
dz

zN−1
(|x|2 + |y|2)

( 1

N
+ (

z

N
− iEǫ)

2 − 2

N
(
z

N
− iEǫ)(|x|2 + |y|2)

+
4

N2
(|x|2|y|2 − [x,y]2)

)

exp
{
− iEǫ([x,x] + [y,y] + z)

− 1

N

[
|x|4 + |y|4 + 2[x,y]2 − 1

2
z2
]}

.

(15)

Finally, we pass to polar coordinates in x and y. Setting x = sα, y = tβ,
where s = |x|, y = |y|, and α, β ∈ SN−1 and using the formulæ

∫

RN

F (x)Dx =
NπN/2

Γ(N
2
+ 1)

∫ ∞

0

ds

∫

SN−1

dσ(α)F (sα)

and
∫∫

SN−1×SN−1

F ([α, β])dσ(α)dσ(β) =
1

B(N−1
2
, 1
2
)

∫ 1

−1

F (α1)(1− α1)
N−3

2 dα1 ,

where σ is the invariant probability measure on SN−1, and

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)

is the Euler beta function, we obtain:

1

N
〈trG(Eǫ)〉 =

i

NπN

(−1)N(N − 2)!

2πi

πNN2

Γ(N/2 + 1)2B(N−1
2
, 1
2
)

∫ ∞

0

ds sN−1

∫ ∞

0

dt tN−1

∫ 1

−1

dα (1− α2)
N−3

2

∮
dz

zN−1

(s2 + t2)
( 1

N
+ (

z

N
− iEǫ)

2 − 2

N
(
z

N
− iEǫ)(s

2 + t2)

+
4

N2
s2t2(1− α2)

)

exp
{
− iEǫ(s

2 + t2 + z)− 1

N

[
s4 + t4 + 2s2t2α2 − 1

2
z2
]}

.

(16)

The final change of variables s ← s2/N , t ← t2/N , z ← z/N concludes the
proof.
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3 Saddle point analysis

Proof of Theorem 1. We shall take ǫ → +0 in Lemma 1.1 and compute the
asymptotics using saddle-point analysis. First we calculate the saddles. Set

f(s) = iEs +
1

2
s2 − ln s .

Then

f ′(s) = iE + s− 1

s
,

therefore the saddles are

s± = −iE
2
±
√

1− E2

4
. (17)

Similarly, for

g(z) = iEz − 1

2
z2 + ln z

we have

g′(z) = iE − z + 1

z
,

so the saddles are

z± =
iE

2
±
√

1− E2

4
. (18)

We deform the contours in s and z as follows:

Γ1 : s =

{
s+s̃ , 0 ≤ s̃ ≤ A

s+A+ s̃− A , A ≤ s̃ ,
(19)

and
Γ2 : z = eiθ , 0 ≤ θ ≤ 2π , (20)

where

A =

{
2 , |E| ≤

√
3

1
E2

2
−1

,
√
3 < |E| < 2

.

The contour in s passes through the saddle point s+, whereas the contour in z
passes through both z+ and z−. The change of coutour is justified according
to Cauchy’s theorem.

14



Claim 3.1. The minimum of ℜf(s) on the s-contour is achieved at s = s+,
i.e. s̃ = 1.

Proof of Claim 3.1. We have:

ℜf(x+ iy) = −Ey + 1

2
(x2 − y2)− 1

2
ln(x2 + y2) .

Therefore

∂

∂x
ℜf(x+ iy) = x

{
1− 1

x2 + y2

}
,

∂

∂y
ℜf(x+ iy) = −E − y

{
1 +

1

x2 + y2

}
.

For x2 + y2 ≥ 1, the x-derivative is positive, therefore ℜf(s(s̃)) is increasing
for s̃ ≥ A. Next,

d

ds̃
ℜf(s+s̃) = s̃(ℜs+)2(1− s̃−2)− ℑs+(E + s̃ℑs+(1 + s̃−2))

= s̃(1−E2/4)(1− s̃−2) +
E

2
(E − s̃E

2
(1 + s̃−2))

= s̃−1

{
s̃2(1− E2

2
) + s̃

E2

2
− 1

}
.

The quadtatic expression in the brackets has two roots, 1 and (E2/2− 1)−1;
for |E| <

√
2 the second root is negative, whereas for |E| >

√
2 it is greater

than A. Therefore ℜf(s(s̃)) is decreasing for 0 ≤ s̃ ≤ 1 and increasing for
1 ≤ s̃ ≤ A.

Claim 3.2. The minimum of ℜg(z) on the z-contour is achieved at z = z±,
i.e. for the two values of θ for which sin θ = E

2
.

Proof of Claim 3.2. We have:

ℜf(eiθ) = −E sin θ − 1

2
(cos2 θ − sin2 θ) ,

hence
d

dθ
ℜf(eiθ) = − cos θ(E − 2 sin θ) .

The claim easily follows.

15



According to Claims 3.1 and 3.2, the saddle-point approximation is jus-
tified, i.e. the asympototics of the integral

I =
(−1)N−1N

2π

∫

Γ1

ds

∮

Γ2

dz(iE − z + s) exp {−N(f(s) + g(z))}

is given (to arbitrary order in 1/N) by the contribution of the saddle points
(s = s+, z = z+) and (s = s+, z = z−). This follows from the general results
on saddle-point approximation, see e.g. Fedoryuk [7, §4.1, Theorem 1.2].

Let us compute the contribution of the saddle points (up to order 1/N).

Denote CN = (−1)N−1N
2π

. Then the second part of Lemma 1.1 yields:

i = 〈i〉 = CN

∫

Γ1

ds

∮

Γ2

dz
iE − z + s

s
exp {−N(f(s) + g(z))} ,

therefore

I = is++
(−1)N−1N

2π

∫

Γ1

ds

∮

Γ2

dz
iE − z + s

s
(s−s+) exp {−N(f(s) + g(z))} .

We have:
f ′′(s) = 1 + s−2 , f ′′′(s) = −2s−3 ,

hence

f(s+) = iEs+ +
1

2
s2+ − ln s+ , f ′′(s+) =

s2+ + 1

s2+
, f ′′′(s+) = −

2

s3+
.

Also, for

φ(s) =
iE − z + s

s
(s− s+) ,

we have:

φ′(s) = 1 + (iE − z)s+
s2

, φ′′(s) = −(iE − z)2s+
s3

,

hence

φ(s+) = 0 , φ′(s+) =
iE + s+ − z

s+
, φ2(s+) = −2

iE − z
s+

.

16



Therefore
√

2π

N

e−Nf(s+)

N(f ′′(s+))3/2

[
φ′′(s+)

2
− f ′′′(s+)φ

′(s+)

2f ′′(s+)

]

=

√
2π

N

1

N
e−N(iEs++ 1

2
s2+−ln s+) s+

(s2+ + 1)3/2

[
z − iE +

iE + s+ − z
s2+ − 1

]
.

This expression gives the contribution of s+ to the s-integral, up to correc-
tions of order N−3/2. The contribution of z± to the z-integral is given by

√
2π

N

[
e−Ng(z+)

√
g′′(z+)

ψ(z+) +
e−Ng(z

−
)

√
g′′(z−)

ψ(z−)

]
,

where ψ(z) is the prefactor in the z-integral. This expression is equal to

e−N(iEz+− 1

2
z2++ln z+) iz+s+

(z2+ + 1)1/2
.

Note that the second term vanishes since ψ(z−) = 0. Combining all the
expressions, we obtain:

I =
E

2
+ i

√
1− E2

4

− (−1)N i
4N(1 −E2/4)

e
−N

[
iE
√

1−E2/4+2 ln(iE/2+
√

1−E2/4)
]

+O(N−3/2) .

We conclude the proof by taking the imaginary part and using (3).

Proof of Theorem 2. As in the proof of Theorem 2, we take the limit ǫ→ +0
in the formula from Lemma 1.2, and use saddle-point analysis to compute
the asymptotics of the resulting integral

I =
(−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz exp {−NF (s, t, z, α)}Φ(s, t, z, α) ,

where

F (s, t, z, α) = iE(s + t) + s2 + t2 − 1

2
ln s− 1

2
ln t

+ iEz − 1

2
z2 + ln z + 2stα2 − 1

2
ln(1− α2)

17



and

Φ(s, t, z, α) = z
s + t

st
(1− α2)−3/2

×
[
1

N
+ (z − iEǫ)

2 − 2(z − iEǫ)(s+ t) + 4st(1− α2)

]
.

The relevant saddles of F are given by α = 0, s = t = s+
2
, z = z±, where

s+ is the same as in (17) and z± is as in (18). We shall deform the contours
so that they will pass through these saddles and the minimum of ℜF will be
achieved only at these two points. We do it as follows: the α-contour will
remain the interval [−1, 1]. In the s and t-variables, we integrate along the
contour Γ1 from (19), with the modification

A =





2 , |E| ≤

√
5
2

1√
E2/2−1

,
√

5
2
< |E| < 2

,

while in the z-variable, we integrate along Γ2 from (20).

Claim 3.3. For every s, t ∈ Γ1 and z ∈ Γ2, the minimum of ℜF (s, t, z, α)
on [−1, 1] is achieved at the point α = 0.

Proof of Claim 3.3. We have:

∂ℜF
∂α

= 4ℜstα+
α

1− α2
=

α

1− α2
((4ℜst+ 1)− 4ℜstα2) .

The derivative vanishes at α = 0, and at the two points α± given by

α2 = 1 +
1

4ℜst .

For s, t on the contour Γ1,

ℜst ≥ A2ℜs2+ ≥ 0 ,

hence the two points are not in the domain [−1, 1]. Since ℜf tends to +∞
as α→ ±1, the minimum is indeed at α = 0.
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According to Claim 3.3 and Claims 3.1 (modified for the new choice of
A) and 3.2, the minimum of F is indeed achieved at the two saddles. Thus
the asympototic contribution to I comes, to any order in N−1, ony from the
neighborhoods of these saddles.

Since

(−1)N2NN2

8π2

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dz exp {−NF (s, t, z, α)} Φ(s, t, z, α)

s+ t
= i

according to the second half of Lemma 1.2, we rewrite I as

I = is++CN

∫ ∞

0

ds

∫ ∞

0

dt

∫ 1

−1

dα

∮
dze−N(f(s)+f(t)+g(s,t,α)+h(z))Φ1(s, t, z, α) ,

where

CN =
(−1)N2NN2

8π2
,

f(s) = iEs+ s2 − 1

2
ln s ,

g(s, t, α) = 2stα2 − 1

2
ln(1− α2) ,

h(z) = iEz − 1

2
z2 + ln z ,

Φ1(s, t, z, α) = z
s− s+

2
+ t− s+

2

st
(1− α2)−3/2

×
[
1

N
+ (z − iEǫ)

2 − 2(z − iEǫ)(s+ t) + 4st(1− α2)

]
.

The addend 1/N does not contribute to the asymptotics up to order 1/N .
Therefore we compute the leading term of the contribution of α = 0 to the
integral

∫
e−N(2stα2− 1

2
ln(1−α2))(1− α2)−3/2

[
(z − iE)2 − 2(z − iE)(s+ t) + 4st(1− α2)

]
dα.

(21)

It is equal to
√

2π

N

1√
4st+ 1

[
(z − iE)2 − 2(z − iE)(s + t) + 4st

]
,
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up to terms of higher order. Now we integrate over s and t, keeping the
terms up to order 1/N . The integral is given by

I2(z) =

∫ ∞

0

ds

∫ ∞

0

dt e−N(f(s)+f(t))Φ2(s, t, z) , (22)

where

Φ2(s, t, z) =
s− s+

2
+ t− s+

2

st
√
4st+ 1

[
(z − iEǫ)

2 − 2(z − iEǫ)(s+ t) + 4st
]
;

we compute the contribution of s = t = s+ to order 1/N , which is equal to

2π

N2
e−2Nf(s+/2) 1

f ′′(s+/2)2

[
Φ2 ss(s+/2, s+/2, z)−

f ′′′(s+/2)

f ′′(s+/2)
Φ2 s(s+/2, s+/2, z)

]

since Φ2(s+/2, s+/2, z) = 0. This expression is equal to

2π

N2
e−N(iEs++s2

+
/2−ln

s+

2
) 2s2+
(s2+ + 1)5/2

×
[
2s+ − 2(z − iE)− 3s+

s2+ + 1

(
(z − iE)2 − 2s+(z − iE) + s2+

)]
.

Then we compute the contribution of z = z± to the integral over z,
∮
dze−Nh(z)Φ3(z) ,

where

Φ3(z) = z

[
2s+ − 2(z − iE)− 3s+

s2+ + 1

(
(z − iE)2 − 2s+(z − iE) + s2+

)]
.

The contribution comes from z−, since Φ3(z+) = 0, and we only need the
leading term, √

2π

N

1√
h′′(z−)

e−Nh(z
−
)Φ3(z−) .

This final computation yields the answer:

I = is+ + i

iE
2
−
√

1− E2

4

4N(1− E2

4
)

+O(N−3/2) .

In particular,

ρ(E) = ℑπ−1I = ρsc(E)−
1

4π2Nρsc(E)
+O(N−3/2) .
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