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Generalizations of Bounds on the Index of Convergence to

Weighted Digraphs

Glenn Merlet∗ Thomas Nowak† Hans Schneider‡ Sergĕı Sergeev§

Abstract

We study sequences of optimal walks of a growing length, in weighted digraphs, or equivalently,
sequences of entries of max-algebraic matrix powers with growing exponents. It is known that these
sequences are eventually periodic when the digraphs are strongly connected. The transient of such
periodicity depends, in general, both on the size of digraph and on the magnitude of the weights. In this
paper, we show that some bounds on the indices of periodicity of (unweighted) digraphs, such as the
bounds of Wielandt, Dulmage-Mendelsohn, Schwarz, Kim and Gregory-Kirkland-Pullman, apply to the
weights of optimal walks when one of their ends is a critical node.
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weighted digraphs
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1 Introduction

We show that six known bounds for the index of convergence (transient of periodicity) of an unweighted
digraph also apply to weighted digraphs, namely, to transients of rows and columns with critical indices.

The origin of the first of these known bounds lies in Wielandt’s well-known paper [25] where an upper
bound for the transient of a primitive nonnegative matrix was asserted without proof1. Dulmage and
Mendelsohn [10] provided a proof of this result by interpreting it in terms of digraphs and they sharpened
the result by using as additional information in the hypotheses the length of the smallest cycle of the digraph2.
Schwarz [18] generalized Wielandt’s result to apply to all strongly connected digraphs by using Wielandt’s
bound for the cyclicity classes of the digraph, see also Shao and Li [19]. Kim’s [14] bound encompasses the
first three and can be proved using Dulmage and Mendelsohn’s bound in the cyclicity classes.

We also generalize another bound by Kim [14], and a bound by Gregory-Kirkland-Pullman [12] which
depend on Boolean rank.

The six bounds mentioned above are stated in Theorem 2.11 and Theorem 2.14 after the requisite
definitions. Our generalizations to weighted digraphs are stated in Main Theorem 1 and Main Theorem 2,
and subsequently proved in Sections 3–7.

We exploit the natural connection between weighted digraphs and nonnegative matrices in the max (-
times) algebra just as the bounds that we take for our starting points connect unweighted digraphs and
Boolean matrices.
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1Wielandt’s proof was published later in [17].
2Denardo [9] later rediscovered their result.
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2 Preliminaries and Statement of Results

2.1 Digraphs, Walks, and Transients

Let us start with some definitions.

Definition 2.1 (Digraphs). A digraph is a pair G = (N,E) where N is a set of nodes and E ⊆ N ×N is a
set of edges.

Definition 2.2 (Walks and cycles). A walk in G is a finite sequence W = (i0, i1, . . . , it) of nodes such that
each pair (i0, i1), (i1, i2), . . . , (it−1, it) is an edge of G (that is, belongs to E). Here, the nodes i0, resp. it are
the start resp. the end nodes of the walk.

The number t is the length of the walk, and we denote it by ℓ(W ).
When i0 = it, the walk is closed. If, in a closed walk, none of the nodes except for the start and the

end appear more than once, the walk is called a cycle. If no node appears more than once, then the walk is
called a path. A walk is empty if its length is 0.

To a digraph G = (N,E) with N = {1, . . . , n}, we can associate a Boolean matrix A = (ai,j) ∈ B
n×n

defined by

ai,j =

{

0 if (i, j) /∈ E

1 if (i, j) ∈ E .
(2.1)

Conversely, one can associate a digraph to every square Boolean matrix. The connectivity in G is closely
related to the Boolean matrix powers of A. By the Boolean algebra we mean the set B = {0, 1} equipped
with the logical operations of conjunction a · b and disjunction a⊕ b = max(a, b), for a, b ∈ B. The Boolean
multiplication of two matrices A ∈ B

m×n and B ∈ B
n×q is defined by (A ⊗ B)i,j :=

⊕n
k=1(ai,k · bk,j), and

then we also have Boolean matrix powers A⊗t := A⊗ . . .⊗A
︸ ︷︷ ︸

t times

. The (i, j)th entry of A⊗t is denoted by a
(t)
i,j .

The relation between Boolean powers of A and connectivity in G is based on the following fact: a
(t)
i,j = 1

if and only if G contains a walk of length t from i to j.
Let G be a digraph with associated matrix A ∈ B

n×n. The sequence of Boolean matrix powers A⊗t is
eventually periodic, that is, there exists a positive p such that

A⊗(t+p) = A⊗t (2.2)

for all t large enough.

Definition 2.3 (Eventual period). Each p satisfying (2.2) is called an eventual period of A.

The set of nonnegative t satisfying (2.2) is the same for all eventual periods p.

Definition 2.4 (Transient of digraphs). The least nonnegative number t satisfying (2.2) for some (and hence
for all) p is called the transient (of periodicity) of G; we denote it by T (G).

See [4] for general introduction to the theory of digraphs and [15] for a survey on their transients. In the
literature, T (G) is often called the index of convergence, or the exponent of G.

Definition 2.5 (Powers of digraphs). The digraph associated with A⊗t is denoted by Gt. Such graphs will
be further referred to as the powers of G.

Definition 2.6 (Cyclicity and primitivity). For a strongly connected digraph G, its cyclicity is the greatest
common divisor of the lengths of all cycles of G. If d = 1, then G is called primitive, otherwise it is called
imprimitive.

The cyclicity d of G can be equivalently defined as the least eventual period p in (2.2). If G is strongly
connected, then its cyclicity is the smallest eventual period of its sequence of powers. Let us recall the
following basic observation from [4].

2



Theorem 2.7 ([4, Theorem 3.4.5]). Let G be a strongly connected graph with cyclicity d. For each k ≥ 1,
graph Gk consists of gcd(k, d) isolated strongly connected components, and every component has cyclic-
ity d/ gcd(k, d).

We have an important special case when k = d.

Definition 2.8 (Cyclicity classes). According to Theorem 2.7, Gd has exactly d strongly connected compo-
nents, each of cyclicity 1. The node sets of these components are called the cyclicity classes of G.

In terms of walks, nodes i and j belong to the same cyclicity class if and only if there is a walk from i to
j whose length is a multiple of d. More generally, for each i and j there is an integer s with 0 ≤ s ≤ d− 1
such that the length of every walk connecting i to j is congruent to s modulo d. This observation defines
the circuit of cyclicity classes, being crucial for the description of Gt in the periodic regime.

Let us introduce the following two definitions. The first of them is given in honor of the first paper on
the subject by Wielandt [25].

Definition 2.9 (Wielandt number). By Wielandt number we mean the following function:

Wi(k) :=

{

0 if k = 1,

(k − 1)2 + 1 if k > 1.
(2.3)

Definition 2.10 (Girth). The girth of G, denoted it by g(G), is the smallest length of a nonempty cycle in
G.

We will be interested in the following bounds on T (G).

Theorem 2.11. Let G be a strongly connected digraph with n nodes, cyclicity d, and girth g. The following
upper bounds on the transient of G hold:

(i) (Wielandt [25, 17]) If d = 1, then T (G) ≤ Wi(n);

(ii) (Dulmage-Mendelsohn [10]) If d = 1, then T (G) ≤ (n− 2) · g + n;

(iii) (Schwarz [18, 19]) T (G) ≤ d ·Wi
(⌊n

d

⌋)

+ (n mod d);

(iv) (Kim [14]) T (G) ≤
(⌊n

d

⌋

− 2
)

· g + n.

Remark 2.12. Clearly, the bound of Schwarz is tighter than the bound of Wielandt in the imprimitive case
(d > 1), while in the primitive case (d = 1) they are equal to each other. The bound of Kim is in the same
relation with the bound of Dulmage and Mendelsohn. Further, the bound of Dulmage and Mendelsohn is
tighter than that of Wielandt when g < n− 1 and both bounds are equal when g = n− 1. In the remaining
case g = n, the graph consists of a single Hamiltonian cycle and periodicity starts from the very beginning,
i.e., T (G) = 1.

Let us show that the bound of Schwarz can be deduced from the bound of Kim. Firstly, it can be seen
that by substituting g = d(

⌊
n
d

⌋
− 1) in Kim’s bound and using the identity n = d

⌊
n
d

⌋
+(n mod d) we obtain

the bound of Schwarz. Hence the bound of Kim is tighter when g
d <

⌊
n
d

⌋
−1, and the bounds are equal when

g
d =

⌊
n
d

⌋
− 1.

Consider the remaining case g
d =

⌊
n
d

⌋
. By definitions of g and d, the length of any cycle on G equals to

g + td for some t ≥ 0. Since g
d =

⌊
n
d

⌋
, all cycles are of length g, thus g = d and

⌊
n
d

⌋
= 1. Therefore, both

bounds equal to (n mod d) = n− g.

We are also interested in the improvements of Theorem 2.11 in terms of the factor rank of a matrix A ∈
B
n×n (also known as the Boolean rank or Schein rank).
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Definition 2.13 (Factor rank in Boolean algebra). The Factor rank of A is the least number r such that

A =

r⊕

α=1

vα ⊗ wT
α (2.4)

with Boolean vectors v1, w1, . . . , vr, wr ∈ B
n.

The factor rank of A is at most n since (2.4) holds when choosing r = n and the wα to be the unit vectors
and the vα to be the columns of A.

The following bounds involving the factor rank were established:

Theorem 2.14. Let G be a strongly connected primitive digraph with girth g, and let the associated matrix
of G have factor rank r. The following upper bounds on the transient of G hold:

(i) (Gregory-Kirkland-Pullman [12]) T (G) ≤ Wi(r) + 1;

(ii) (Kim [14]) T (G) ≤ (r − 2) · g + r + 1.

In fact, we will show that the bounds in Theorem 2.14 also hold for non-primitive matrices and that
the analogous stronger bounds of Schwarz and Kim with the factor rank instead of n are true. See Main
Theorem 2.

2.2 Weighted Digraphs and Max Algebra

In a weighted digraph G, every edge (i, j) ∈ E is weighted by some weight ai,j . We consider the case of
nonnegative weights ai,j ∈ R+ and

Definition 2.15 (Weight of a walk). The weight of a walk W = (i0, i1, . . . , it) is the product

p(W ) := ai0,i1 · ai1,i2 · · · ait−1,it . (2.5)

Recall that the length of a walk W = (i0, i1, . . . , it) is ℓ(W ) = t.
Another common definition is letting edge weights be arbitrary reals and the weight of walks be the sum

of the weights of its edges. One can navigate between these two definitions by taking the logarithm and the
exponential.

By max algebra we understand the set of nonnegative real numbers R+ equipped with the usual multi-
plication ab := a · b and tropical addition a ⊕ b := max(a, b). This arithmetic is extended to matrices and
vectors in the usual way, which leads to max-linear algebra, i.e. the theory of max-linear systems [1, 5]. The
product of two matrices A ∈ R

m×n
+ and B ∈ R

n×q
+ is defined by (A ⊗ B)i,j := max1≤k≤n ai,k · bk,j , which

defines the max-algebraic matrix powers A⊗t := A⊗ . . .⊗A
︸ ︷︷ ︸

t times

. The (i, j)th entry of A⊗t will be denoted by

a
(t)
i,j . Boolean matrices are a special case of max-algebraic matrices.
The walks of maximum weight in G are closely related with the entries of max-algebraic powers of the

associated nonnegative matrix of weights A = (ai,j). Conversely, one can associate a weighted digraph G(A)
to every square max-algebraic matrix A. The connection between max-algebraic powers and weights of walks

is based on the following fact called the optimal walk interpretation of max-algebraic matrix powers: a
(t)
i,j is

the maximum weight of all walks of length t from i to j, or 0 if no such walk exists.

Definition 2.16 (Maximum cycle geometric mean). If G(A) has at least one nonempty cycle, then the
maximum geometric cycle mean of A ∈ R

n×n
+ is equal to

λ(A) := max
{
p(C)1/ℓ(C) | C is a nonempty cycle in G(A)

}
(2.6)

Set λ(A) = 0 if no nonempty cycle in G(A) exists.
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Definition 2.17 (Critical graph). Let A ∈ R
n×n
+ . The cycles of G(A) at which the maximum geometric

cycle mean is attained are called critical, and so are all nodes and edges that belong to them. The set of all
critical nodes is denoted by Nc(A) and the set of all critical edges is denoted by Ec(A). The critical graph,
denoted by Gc(A), consists of all critical nodes and all critical edges.

As we have λ(α · A) = α · λ(A) for all α ∈ R+ and A ∈ R
n×n
+ , we also have λ

(
A/λ(A)

)
= 1 whenever

λ(A) 6= 0. It is λ(A) 6= 0 if and only if G(A) contains a nonempty cycle. In this case, the equality

A⊗t = λ(A)t ·
(
A/λ(A)

)⊗t
implies that we can indeed assume λ(A) = 1 without loss of generality when

studying the sequence of max-algebraic matrix powers. We will indeed assume λ(A) = 1 in the rest of the
paper. It means that we avoid the case when λ(A) = 0. This case is trivial because there are no critical
nodes. Moreover, since there are no closed walks on G(A), there are no walks with length more than n− 1,
so A⊗n = 0.

The following definition is standard.

Definition 2.18 (Irreducibility). A matrix A ∈ R
n×n
+ is called irreducible if G(A) is strongly connected, i.e.,

if for each i, j ∈ N there exists a walk of nonzero weight whose starting node is i and end node is j.
A ∈ R

n×n
+ is called reducible if it is not irreducible.

Cohen et al. [8] first proved that the sequence of max-algebraic matrix powers of an irreduciblematrix A
with λ(A) = 1 is eventually periodic.

Definition 2.19 (Transient of matrices). The least nonnegative t satisfying A⊗(p+t) = λ(A)p ·A⊗t for some
p > 0 is called the transient of A and denoted by T (A).

The transient of A depends not only on the nodes and edges in G(A), but also on the specific weights
in A. It was studied by several authors, including Hartmann and Arguelles [13], Bouillard and Gaujal [3],
Soto y Koelemeijer [24], Akian et al. [2, Section 7], and Charron-Bost et al. [7]. However, none of the upper
bounds on the transient were generalizations of any of the Boolean bounds of Theorem 2.11 (in the sense
that the bounds of that theorem would be immediately recovered when specializing these results to Boolean
matrices). To see that T (A) depends also on the weights of A, consider

A =

(
1 ǫ
ǫ 1/e

)

,

and observe that the transient of (a
(t)
2,2)t≥1 is equal to ⌈−2 log ǫ⌉ if ǫ < 1.

In the present paper, we generalize all the bounds in Theorem 2.11 to the weighted case. We do this
not by giving bounds on the transient of A, but by giving bounds on the transients of the critical rows and
columns of A. Let us give the corresponding definition.

Definition 2.20 (Row and column transients). Let A ∈ R
n×n
+ . The least nonnegative t satisfying a

(p+t)
k,i =

λ(A)p · a
(t)
k,i for a fixed k ∈ N , all i ∈ N and some p > 0 is called the transient of the kth row of A and

denoted by Tk(A), or just Tk if the matrix is clear from the context.

Similarly, the least nonnegative t satisfying a
(p+t)
i,k = λ(A)p · a

(t)
i,k for a fixed k ∈ N , all i ∈ N and some

p > 0 is called the transient of the kth column of A.

Remark 2.21. This definition makes sense also when A is reducible. However, in that case the transient
is defined only for some rows and columns. Below we are interested only in the case of critical rows and
columns, for which the transients always exist regardless of the irreducibility of A.

Remark 2.22. In the Boolean case, all rows and columns are critical, hence we are really generalizing the
Boolean bounds. We are motivated by a result of Nachtigall [16] who showed that the transient of critical
rows and columns does not exceed n2. Later, Sergeev and Schneider [22] conjectured that, in fact, this
transient should not exceed Wi(n). In particular, we prove this conjecture.

The following is the first main result of the paper.
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Main Theorem 1. Let A ∈ R
n×n
+ be irreducible and let k be a critical node. Denote by d the cyclicity of

G(A), by H the component of the critical graph Gc(A) containing k, and by |H | the number of nodes in H.
The following quantities are upper bounds on the transient of the kth row and the kth column:

(i) (Wielandt bound) Wi(n)

(ii) (Dulmage-Mendelsohn bound) (n− 2) · g(H) + |H |

(iii) (Schwarz bound) d ·Wi
(⌊n

d

⌋)

+ (n mod d)

(iv) (Kim bound)
(⌊n

d

⌋

− 2
)

· g(H) + min(n, |H |+ (n mod d))

The first two bounds also hold in the case when A is reducible.

Remark 2.23. Denote by γ(Gc(A)) the least common multiple of the cyclicities of all strongly connected
components of Gc(A). This number is well-known to be the least eventual period of the sequence (A⊗t)t≥1

when A is irreducible (see [8, 5]). It is also the least eventual period of the sequence of submatrices of A⊗t

extracted from the critical rows or the critical columns (also in the reducible case). For an individual critical
row or column, the least eventual period can be shown to be equal to the cyclicity of the component of Gc(A)
where the index of that row or column lies (see Remark 3.4).

Remark 2.24. As in the Boolean case, the bound of Schwarz (resp. Kim) is tighter than the bound of
Wielandt (resp. Dulmage and Mendelsohn) when the corresponding component of G is imprimitive. More-
over, the bound of Wielandt is never tighter than that of Dulmage and Mendelsohn when g(H) ≤ n − 1.
Unlike for the unweighted graphs, the case g(H) = n is non-trivial and will be treated below. Likewise, the

bound of Schwarz is never tighter than the bound of Kim when g(H)
d ≤

⌊
n
d

⌋
− 1, but the case g(H)

d =
⌊
n
d

⌋

has to be treated separately. Here we prefer to deduce the bound of Kim from the bound of Dulmage and
Mendelsohn in the same way as the bound of Schwarz is derived from the bound of Wielandt (similar to the
approach of Shao and Li [19]).

Definition 2.25 (Factor rank in max algebra). In max algebra, factor rank of A ∈ R
n×n
+ is the least number

r such that (2.4) holds for some vectors v1, w1, . . . , vr, wr ∈ R
n
+.

In our next main result, we show that the results of Main Theorem 1 can be improved by means of factor
rank, thus obtaining a max-algebraic extension of Theorem 2.14.

Main Theorem 2. Let A ∈ R
n×n
+ be irreducible. Denote by d the cyclicity of G(A) and by r the factor

rank of A. Let k be critical. Denote by H the component of the critical graph Gc(A) containing k, and let
h ≤ min(|H |, r) be the parameter defined below in (7.4). The following upper bounds on the transient of the
kth row and kth column hold:

(i) Wi (r) + 1;

(ii) (r − 2) · g(H) + h+ 1.

(iii) d ·Wi
(⌊ r

d

⌋)

+ (r mod d) + 1;

(iv)
(⌊ r

d

⌋

− 2
)

· g(H) + min(r, h+ (r mod d)) + 1.

The first two bounds apply to reducible matrices as well.

Remark 2.26. While all parameters appearing in the bounds of Main Theorem 1 only depend on the
unweighted digraphs underlying G(A) and Gc(A), the factor rank r of Main Theorem 2 depends on the
values of A, i.e. on the weights on G(A).
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The next five sections of the paper contain the proofs of Main Theorem 1 and Main Theorem 2. That
is, we will prove that Tk(A) for a critical index k is less than any of the quantities in Main Theorem 1 and
Main Theorem 2. Applying the result to the transposed matrix AT , we see that the bounds also hold for
the transients of the columns.

The proofs do not use the results of Theorem 2.11 or Theorem 2.14 and hence, in particular, we give new
proofs for those classical results.

2.3 Visualization

In the end of this section, let us recall a result on diagonal matrix scaling, which we will use.
LetX be an n×n nonnegative diagonal matrix, i.e. a matrix whose diagonal entries are positive and whose

off-diagonal entries are zero. Consider the operation of diagonal similarity scaling A 7→ X−1AX , applied to
any A ∈ R

n×n
+ . It can be checked that the diagonal similarity scaling preserves λ(A) and commutes with

max-algebraic matrix powering: for B = X−1AX we have λ(A) = λ(B) and B⊗t = X−1A⊗tX . Hence, to
analyze max-algebraic matrix powers we will use a particular “canonical” form that can be always reached
by means of a diagonal similarity scaling.

Definition 2.27 (Visualization). A matrix A ∈ R
n×n
+ is called visualized if it has ai,j ≤ λ(A) for all i, j ∈ N .

For a visualized matrix, it also follows that ai,j = λ(A) for all critical edges (i, j) ∈ Ec.
Further if ai,j = λ(A) holds only for all critical edges (i, j) ∈ Ec, matrix A is called strictly visualized.

Remark 2.28. It is known that every nonnegative matrix with positive maximum geometric cycle mean
can be brought to a visualized form by means of a diagonal similarity scaling. Moreover, every nonnegative
matrix can be brought to a strictly visualized form [23]. Hence in our analysis of max-algebraic powers, we
can assume without loss of generality that A is visualized (and, moreover, strictly visualized), which we do
in the rest of the paper. Since we also assume λ(A) = 1, it means that all entries are between 0 and 1 and
critical edges are exactly edges with weight 1.

An early use of visualization scaling (unrelated to max algebra) can be found in Fiedler and Pták [11],
and the scaling was studied in more detail in [23]. For a short survey on the use of visualization scaling
in max algebra see [21]. Let us conclude with the following observation concerning the visualization of
max-algebraic powers. Recall that Gt denotes the tth power of an arbitrary digraph G.

Lemma 2.29 (cf. [6, Lemma 2.9],[20]). Let A ∈ R
n×n
+ and t ≥ 1.

(i) Gc(A⊗t) = (Gc(A))t,

(ii) If A is visualized (or strictly visualized), then so is A⊗t.

3 Proof of Dulmage-Mendelsohn Bound

In this section, we want to prove the second bound of Main Theorem 1. In fact, we first argue that
Tk(A) ≤ n− 1 when ak,k = λ(A), from which we get Tk(A) ≤ g(H)(n− 1) for H a component of the critical
graph and k in a minimal cycle of H , and finally the general bound.

The proof splits into the following lemmas, all of them apply to any A ∈ R
n×n
+ and will be used again

later. Without loss of generality, we will assume in the proofs that λ(A) = 1 and A is visualized, that is all
edges have weight at most 1 and all critical edges have weight 1. (See remark 2.28)

The first lemma gives a means to bound the transient of a row of the matrix. More specifically, it states
that a row is periodic as soon as its entries are equal to that of a higher matrix power. The proof is a
straightforward calculation.

Lemma 3.1. Let k ∈ N . Further assume that there exist r < s such that a
(r)
k,j = a

(s)
k,j for all j ∈ N . Then

Tk ≤ r.
In particular, Tk(A) ≤ m · Tk

(
A⊗m

)
for all m ≥ 1.
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Proof. Set p = s− r and let j ∈ N . Then, for all t ≥ r:

a
(t+p)
k,j = max

l∈N
a
(s)
k,l · a

(t+p−s)
l,j = max

l∈N
a
(r)
k,l · a

(t−r)
l,j = a

(t)
k,j

This concludes the proof.

The next lemma shows that a stronger form of the Weighted Dulmage-Mendelsohn bound holds if k lies
on a critical cycle of length g(H). Its proof uses the fact that k lies on a critical cycle of length 1 in the
digraph of the matrix power A⊗g(H). Denote by Ak· the kth row of A.

Lemma 3.2 (Nachtigall [16]). Let k be a critical node on a critical cycle of length ℓ. Then Tk ≤ (n− 1) · ℓ
and ℓ is an eventual period of A⊗t

k·

Proof. Set B = A⊗ℓ. Then bk,k = 1 and hence b
(t)
k,j is non-decreasing with t. But since we assume λ(A) = 1,

λ(B) = 1 and supt∈N B⊗t = maxn−1
t=1 B⊗t, so b

(t)
k,j is constant for t ≥ n− 1, i.e. Tk(A

⊗ℓ) ≤ n− 1.
Lemma 3.1 now concludes the proof.

The following result enables us to use the bound of Lemma 3.2 for nodes that do not lie on a critical
cycle of minimal length. As usual, we assume that λ(A) = 1 and A is visualized. The proof makes heavy
use of this assumption. It is closely related to the circulant symmetries of the critical part of max-algebraic
powers in the periodic regime, as described by Butkovič and Sergeev [5, Section 8.3], [20].

Lemma 3.3. Let k and l be two indices of Nc(A), and suppose that there exists a walk from k to l, of length
r and with all edges critical.

(i) If t ≥ Tl(A), then A
⊗(t+r)
k· = λ(A)r · A⊗t

l· .

(ii) Tk(A) ≤ Tl(A) + r.

Remark 3.4. Since none of the above lemmas assume the irreducibility of A, they imply the eventual
periodicity of all rows and columns with critical indices in the reducible case. Moreover, they show that
the cyclicity γ(H) of a strongly connected component H of Gc(A) is an eventual period for the A⊗t

k· for

any k ∈ H . It is the least period because when A is strictly visualized, a
(t)
k,k takes the value 1 with least

eventual period γ(H).

Proof of Lemma 3.3. Since A is assumed to be visualized with λ(A) = 1, the existence of the walk with

critical edges exactly means a
(r)
k,l = 1.

Since each edge of Gc(A) belongs to a cycle of Gc(A), there is a walk from l to k with critical edges.

Let s ≥ 1 be its length. We have a
(s)
l,k = 1.

Thus, we have

a
(t+r+s)
l,j ≥ a

(s)
l,k .a

(t+r)
k,j = a

(t+r)
k,j ≥ a

(r)
k,l .a

(t)
l,j = a

(t)
l,j

for any t.
Iterating the inequality, we see that

a
(t+p(r+s))
l,j ≥ a

(t+r)
k,j ≥ a

(t)
l,j (3.1)

for all t and p.

If p is an eventual period of a
(t)
l,j and t ≥ Tl, the first and the last entry of (3.1) are equal, so all inequalities

of (3.1) are equalities.

It means that the sequences
(

a
(t)
k,j

)

t≥Tl+r
,

(

a
(t−r)
l,j

)

t≥Tl+r
,

(

a
(t)
l,j

)

t≥Tl

are identical. Since the last

sequence is periodic, both parts of the lemma are proved.

Proof of Dulmage-Mendelsohn bound. Let C be a cycle in H of length ℓ(C) = g(H). By Lemma 3.2, Tk ≤
(n− 1) · g(H) for all nodes k of C.

Let now k be any node in H . There exist walks in H from k to C of length at most |H | − g(H).
Application of Lemma 3.3 now concludes the proof.
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4 Proof of Kim’s Bound

Set B = A⊗d. The cyclicity classes of G(A) are the strongly connected components of G(B), and G(B) is
completely reducible, i.e. it has no edge between two different strongly connected components.

It means that, up to reordering the indices, B is block-diagonal. As in Kim [14], we want to apply the
previous bound to the smallest blocks. Then, we will get the general bound thanks to Lemmas 3.1 to 3.3.

Obviously, any cycle in G(A) has to go through every cyclicity class. Thus, d divides g(H) and if k
belongs to H then the girth of its strongly connected components in Gc(B) is at most g(H)/d.

Call a cyclicity class of G(A) small if it contains the minimal number of nodes amongst cyclicity classes.
Let m be the number of nodes in any small class.

We apply the Dulmage-Mendelsohn bound to the nodes of small classes and then use Lemma 3.3 to
extend it to all other critical nodes.

We distinguish the cases (A) m ≤ ⌊n/d⌋−1 and (B) m = ⌊n/d⌋. Note that m ≥ ⌊n/d⌋+1 is not possible.
In case (B), there are at least d− (n mod d) small classes because otherwise the sum of sizes of cyclicity

classes C would satisfy

n =
∑

C

|C| >
(
d− (n mod d)

)
· ⌊n/d⌋+ (n mod d) ·

(
⌊n/d⌋+ 1

)

= d · ⌊n/d⌋+ (n mod d) = n ,

(4.1)

a contradiction. Hence every critical node is connected to a small class by a path consisting of critical edges
of length at most (n mod d).

Let us first prove that
Tk ≤

(
⌊n/d⌋ − 2

)
· g(H) + n. (4.2)

In both cases (A) and (B), by the max-algebraic extension of Dulmage and Mendelsohn’s bound, we
have Tk(B) ≤ (m− 2) · g(H)/d+m for each critical node k of H in a small class. Lemma 3.1 then implies
Tk(A) ≤ (m− 2) · g(H) + d ·m for all critical nodes k of H in small classes.

In case (A), a crude estimation for all critical k in small classes is

Tk ≤ (m− 1) · g(H) + d ·m ≤
(
⌊n/d⌋ − 2

)
· g(H) + n− d .

Because every critical node has paths consisting of critical edges to a small class of length at most d − 1,
(4.2) follows from Lemma 3.3 in case (A).

In case (B), there is a path of length at most (n mod d) consisting of critical edges to a small class.
Hence, again by Lemma 3.3,

Tk ≤
(
⌊n/d⌋ − 2

)
· g(H) + d · ⌊n/d⌋+ (n mod d)

=
(
⌊n/d⌋ − 2

)
· g(H) + n .

This concludes the proof of (4.2).
It remains to prove

Tk(A) ≤
(
⌊n/d⌋ − 2

)
· g(H) + |H |+ (n mod d). (4.3)

This is based on the following lemma, which we prove using the same case distinction.

Lemma 4.1. If k is in a critical closed walk C, then

Tk(A) ≤ (⌊n/d⌋ − 1)ℓ(C) + (n mod d), (4.4)

Proof. Let us first notice that k is in a critical closed walk of A⊗d with length ℓ(C)/d.
If k is in a small class, then Tk(A

⊗d) ≤ (m − 1)ℓ(C)/d by Lemma 3.2, thus Tk(A) ≤ (m − 1)ℓ(C) by
Lemma 3.1.

If k is in C but not necessarily in a small class, we distinguish between cases (A) and (B) and apply
Lemma 3.3. In case (A), m ≤ ⌊n/d⌋ − 1. Recall that C contains representatives of all cyclicity classes (and
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the small classes, too), and therefore, each node k ∈ C can be connected to a node of C in a small class by
a subpath of C, with length at most ℓ(C)− 1. Applying Lemma 3.3 we get

Tk(A) ≤ (⌊n/d⌋ − 2)ℓ(C) + ℓ(C)− 1 = (⌊n/d⌋ − 1)ℓ(C)− 1

which implies (4.4). In case (B), m = ⌊n/d⌋ and there is a path from k to a node of C in a small class with
length at most (n mod d), so we get exactly (4.4).

To conclude the proof of (4.3), we apply the Lemma 4.1 to a cycle C with length g(H) and notice that
for any k ∈ H , there is a critical path from k to C with length at most |H |−g(H). By Lemma 3.3, it implies

Tk(A) ≤ (⌊n/d⌋ − 1)g(H) + (n mod d) + |H | − g(H)

= (⌊n/d⌋ − 2)g(H) + |H |+ (n mod d)

and (4.3) is proved.

5 Proof of Wielandt’s Bound

If g(H) ≤ n − 1, then Wielandt’s bound follows from the Dulmage-Mendelsohn bound. It remains to treat
the case that g(H) = n, i.e. Gc(A) is a Hamiltonian cycle. We therefore prove a result on cycle removal and
insertion (Theorem 5.2) which implies the Wielandt bound for matrices with a critical Hamiltonian cycle
(Corollary 5.3).

5.1 Cycle Replacement with a Hamiltonian Cycle

We recall the following elementary application of the pigeonhole principle.

Lemma 5.1. Let x1, . . . , xn be integers. There exists a nonempty subset I of {1, . . . , n} such that
∑

i∈I xi

is a multiple of n.

Proof. Either one of the n sums
∑k

i=1 xi with 1 ≤ k ≤ n is a multiple of n, or two of these sums are in the
same congruence class modulo n.

We will use this lemma to prove:

Theorem 5.2. Let G be a digraph with n nodes. For any Hamiltonian cycle CH in G and any walk W , there
is a walk V that has the same start and end node as W , is formed by removing cycles from W and possibly
inserting copies of CH , and has a length satisfying (n − 1)2 + 1 ≤ ℓ(V ) ≤ (n − 1)2 + n and ℓ(V ) ≡ ℓ(W )
(mod n).

Corollary 5.3. If A ∈ R
n×n
+ has a critical Hamiltonian cycle and λ(A) = 1, then the transient of A is at

most Wi(n).

Proof of Theorem 5.2. W can be decomposed into a path P and a collection C of cycles. Note that P is
empty when the start and the end nodes of W are the same.

Let B be a result of recursively removing from C sets of cycles whose combined length is a multiple of n.
By Lemma 5.1, |B| ≤ n− 1. Also, ℓ(C) ≤ n− 1 for all C ∈ B.

Let us build the walk V as follows. If P intersects all cycles of B [Case (C)], then we successively insert
all such cycles in P . Otherwise [Case (D)], we first insert CH into P , getting P̃ and then insert all cycles
of B into P̃ .
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In case (C), we have

ℓ(V ) = ℓ(P ) +
∑

α∈R

ℓ(Cα)

≤ (n− 1) + (n− 1) · (n− 1)

< (n− 1)2 + n

In case (D), there exists some Ĉ ∈ B such that ℓ(P ) + ℓ(Ĉ) ≤ n− 1, so that

ℓ(V ) = ℓ(CH) + ℓ(P ) + ℓ(Ĉ) +
∑

C∈B

C 6=Ĉ

ℓ(C)

≤ n+ (n− 1) + (n− 1) · (n− 2)

= (n− 1)2 + n

Moreover, ℓ(V ) ≡ ℓ(W ) (mod n) by construction in both cases.
This concludes the proof, because if V is too short, we just insert copies of CH into it.

5.2 Proof of Wielandt’s Bound with a Critical Hamiltonian Cycle

In this section, we prove Corollary 5.3. Because the critical graph contains a Hamiltonian cycle, it is strongly
connected and n is an eventual period of A⊗t.

Let i, j ∈ N and let t ≥ Wi(n). We show that a
(t)
i,j = a

(s(t))
i,j where s(t) = Wi(n) +

(
(t−Wi(n)) mod n

)
.

Because s(t) = s(t′) whenever t ≡ t′ (mod n), this suffices for the proof.
If t = s(t) the result is obvious. Otherwise, let W be a maximum weight walk of length t from i to j, i.e.

p(W ) = a
(t)
i,j . We apply Theorem 5.2 to walk W and the critical Hamiltonian cycle CH . By Theorem 5.2,

there is a walk V from i to j, obtained from W by deleting some cycles and possible inserting copies of C,
with length satisfying Wi(n) ≤ ℓ(V ) ≤ Wi(n)+n−1 and ℓ(V ) ≡ ℓ(W ) (mod n). In other words, ℓ(V ) = s(t).
Because we assume λ(A) = 1, the weight of V satisfies p(V ) ≥ p(W ) and hence

a
(s(t))
i,j ≥ p(V ) ≥ p(W ) = a

(t)
i,j . (5.1)

Since t ≥ Wi(n) and s(t) ≡ t (mod n), there exists some r ≥ 0 such that t− s(t) = r · n. Hence

a
(t)
i,j ≥ a

(s(t))
i,j · a

(r·n)
j,j = a

(s(t))
i,j (5.2)

because a
(n)
j,j = 1. Combination of (5.1) and (5.2) concludes the proof.

Remark 5.4. To our knowledge, the results of this section are new. However, let us remark that the method
of cycle replacement using Lemma 5.1 was invented by Hartmann and Arguelles [13], who also used it to
derive (less precise) transience bounds for sequences of optimal walks.

6 Proof of Schwarz’s Bound

Schwarz’s bound is derived from Wielandt’s bound as Kim’s bound is derived from Dulmage-Mendelsohn’s
bound in Section 4.

Again, call a cyclicity class of G(A) small if it contains the minimal number of nodes amongst cyclicity
classes. Let m be the number of nodes in any small class and set B = A⊗d.

For each critical node k in a small cyclicity class, we have Tk(B) ≤ Wi(m) by Wielandt’s bound.
Lemma 3.1 hence implies Tk(A) ≤ d ·Wi(m) for all critical nodes k in small classes.

We distinguish the cases (A) m ≤ ⌊n/d⌋−1 and (B) m = ⌊n/d⌋. Note that m ≥ ⌊n/d⌋+1 is not possible.
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In case (A), a crude estimation for all critical k in small classes is

Tk ≤ d ·Wi(m) ≤ d ·Wi
(
⌊n/d⌋

)
− d .

Observe that each critical node can be connected to a small class, by a path of length at most d−1 consisting
of critical edges only. So in case (A), the theorem just follows from Lemma 3.3.

In case (B), there are at least d− (n mod d) small classes because otherwise (4.1) yields a contradiction.
In this case, each critical node can be connected to a node from a small class by a path consisting only of
critical edges, of length at most (n mod d). Hence, by Lemma 3.3,

Tk ≤ d ·Wi
(
⌊n/d⌋

)
+ (n mod d) .

This concludes the proof.

7 Proof of the Bounds Involving the Factor Rank

In this section, we prove Main Theorem 2. Let vα, wα ∈ R
n
+, for α = 1, . . . , r, be the vectors in factor rank

representation (2.4). Further, Let V and W be the n× r matrices whose columns are vectors vα and wα for
α = 1, . . . , r, and consider the (n+ r) × (n+ r) matrix Z defined by

Z =

(
0n×n V
WT 0r×r

)

, (7.1)

Then we have

Z⊗2 =

(
A 0n×r

0r×n B

)

, (7.2)

where the r × r matrix B is given by

bα,β =

n⊕

i=1

wα,i · vβ,i, for α, β = 1, . . . , r. (7.3)

We will apply the bounds of Main Theorem 1 to the critical nodes of B and transfer the result to the
critical nodes of A, thanks to the following observation.

Lemma 7.1. If (k, n+ β) is an edge of Gc(Z), then Tk(A) ≤ Tβ(B) + 1.

Proof. By Equation (7.2) and Lemma 3.1, Tn+β(Z) ≤ 2Tn+β(Z
⊗2) ≤ 2Tβ(B), thus Tk(Z) ≤ 2Tβ(B) + 1 by

Lemma 3.3. But Equation (7.2) now implies Tk(A) ≤ ⌈Tk(Z)/2⌉ ≤ ⌈(2Tβ(B) + 1)/2⌉ = Tβ(B) + 1.

To use this lemma, we need to study the links between Gc(Z), Gc(A) and Gc(B).
The next observation is useful for the case of Kim’s and Schwarz’s bounds, where A is assumed to be

irreducible.

Lemma 7.2. If A is irreducible, then so are Z and B. Moreover G(B) and G(A) have the same cyclicity.

Proof. As A is irreducible, there exists a walk in G(Z⊗2), and hence in G(Z), between every pair of nodes
in {1, . . . , n}. None of the vectors vα, wα for α = 1, . . . , r is zero by the minimality of r, i.e. every node
in {n + 1, . . . , n + r} has an incoming and an outgoing neighbor in {1, . . . , n}. Hence there exists a walk
between every pair of nodes in G(Z).

By Theorem 2.7, G(Z⊗2) has at most 2 strongly connected components with the same cyclicity. By
Equation (7.2), it has at least 2 components, one of them is G(A) and the second one is isomorphic to G(B),
hence these are the two components given by Theorem 2.7. In particular, B is irreducible and the graphs
of A and B have the same cyclicity.
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i j k l

n+α n+β n+γ

vα,i wα,j vβ,j wβ,k vγ,k wγ,l

Figure 1: A walk in G(Z)

By construction, G(Z) is a bipartite graph, so every walk in G(Z) alternates between nodes in {1, . . . , n}
and nodes in {n+ 1, . . . , n+ r}. Figure 1 depicts an example of a walk in G(Z).

As all closed walks in G(Z) are of even length, the cyclicity of any component of Gc(Z) is even, i.e. it
is divisible by two. Hence each component G of Gc(Z) splits into two components of (Gc(Z))2 such that
the (disjoint) union of their node sets is exactly the node set of G (e.g., apply Theorem 2.7 with k = 2 and
even σ). Following [6] we call these two components related. For a component H of (Gc(Z))2, the related
component will be denoted by H ′.

Each closed walk of G(Z) and, therefore, each component of Gc(Z) contains nodes both from {1, . . . , n}
and from {n + 1, . . . , n + r}. Hence, if H and H ′ is a pair of related components of (Gc(Z))2 then one of
them (say, H) contains a node in {1, . . . , n} and the other (H ′) contains a node in {n+ 1, . . . , n+ r}. Since
there are no edges between the two components of G(Z⊗2), H is a subgraph of G(A) and H ′ is a subgraph of
G(B). Further as (Gc(Z))2 = Gc(Z⊗2) (by Lemma 2.29), H and H ′ are components of Gc(Z⊗2). As Gc(Z⊗2)
consists of only such components and the cycles not belonging to such components have a strictly smaller
geometric mean, it follows that H is a component of Gc(A), H ′ is a component of Gc(B) and, moreover,
Gc(A) and Gc(B) do not have components that are not formed this way.3

Lemma 7.3. Let H be a component of Gc(A).

(i) g(H) = g(H ′).

(ii) If k belongs to a closed walk C on H, then there are edges (n + α, k) and (k, n + β) ∈ Gc(Z), such
that α and β belong to a closed walk C̃ in H ′, with ℓ(C) = ℓ(C′).

Proof. Take a closed walk C on H . Each edge of C results from a path of Gc(Z) of length 2, and inserting
these path in C we obtain a closed walk of Gc(Z) (see Figure 2, left). This walk contains nodes from both
H and H ′. In Z⊗2 it splits in two closed walks of Gc(Z⊗2) of the same length (see Figure 2, right). One of
these closed walks is C and the other is a closed walk C̃ of H ′ (since H and H ′ are isolated in Gc(Z⊗2)).

This implies g(H ′) ≤ g(H), and the reverse inequality follows by symmetry, hence part (i).4 It also
follows that each node of the original cycle in H has neighbors belonging to a closed walk in H ′. Since each
node of H lies on a cycle, we have part (ii).

Define
h = min(|H |, |H ′|). (7.4)

We are ready for the proof of Main Theorem 2.

Proof of Main Theorem 2. Let Z and B be the matrices defined in (7.1) and (7.3) . Let k be an index in
H (belonging to {1, . . . , n}). By Lemma 7.3 part (ii), there is an edge of Gc(Z) connecting it to some node
n+β, for β ∈ {1, . . . , r}, which belongs to H ′. For each bound of Main Theorem 1, an application Lemma 7.1

3In fact, we also have λ(A) = λ(B) = λ(Z⊗2) = (λ(Z))2.
4A similar argument shows that for any strongly connected graph G, all components of Gk have the same girth.
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Figure 2: Correspondence between closed walks of G(Z), G(A) and G(B).

yields a version of the corresponding bound of Main Theorem 2 on Tk, where d is the cyclicity of B, and we
have g(H ′) instead of g(H) and |H ′| instead of h.

However, g(H ′) = g(H) and G(B) has the same cyclicity as G(A) (when A and hence also B are irre-
ducible), so it only remains to explain why we have h (and not |H ′|), in the factor rank versions of the
bounds of Dulmage and Mendelsohn, and Kim. The following argument accounts for both cases (set d = 1
for Dulmage and Mendelsohn’s bound).

First, let k belong to a cycle C with length g(H). By Lemma 7.3 part (i), β belongs to a closed walk C̃ with
length g(H) = g(H ′) in H ′, so we can apply Lemma 4.1 to β and get Tβ(B) ≤ g(H)(⌊r/d⌋ − 1) + (r mod d)
(for the bound of Kim), or apply Lemma 3.2 and get Tβ(B) ≤ g(H)(r − 1) (for the bound of Dulmage and
Mendelsohn). By Lemma 7.1, we get

Tk(A) ≤ g(H)(⌊r/d⌋ − 1) + (r mod d) + 1.

Second, if k does not belong to such a cycle, we can apply Lemma 3.3, because k is connected to C by a
path on H of length at most |H | − g(H). Hence we obtain

Tk(A) ≤ g(H)(⌊r/d⌋ − 2) + (r mod d) + |H |+ 1

and the factor rank versions of Kim’s and Dulmage-Mendelsohn’s bounds. The proof is complete.

8 On the Precision of the Bounds

Since the bounds of Main Theorem 1 are extensions of the bounds on Boolean matrices and the latter are
known to be exact (see for instance [15] and the references therein), so are the bounds of Main Theorem 1.
However, the max-algebraic case is richer, and some natural questions arise. A general question is when
these bounds are attained. To begin with, can these bounds be attained by the matrices whose critical graph
does not attain the corresponding “Boolean” bound, or can the bounds be attained when not all the nodes
are critical.

The easiest way to produce max-plus examples from Boolean ones is to use the semigroup morphism φ0 :
R

n×n
+ → B

n×n that maps A to its pattern B = φ0(A) such that bi,j = 0 if and only if ai,j = 0 and bi,j = 1
otherwise. Since it is a morphism, we have:
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Figure 3: Schwarz’s example (left) and its max-algebraic version (right)

Lemma 8.1. Let A,B ∈ R
n×n
+ have the same pattern and let A be Boolean. Then Tk(A) ≤ Tk(B) for all

k = 1, . . . , n.

To illustrate the use of Lemma 8.1, consider an example from the work of Schwarz [18], attaining the
corresponding bound. It is a strongly connected graph consisting of two cycles, of lengths 6 and 4, displayed
in the left part of Figure 3. The greatest transient of a row of the associated Boolean matrix is T4(A) = 11,
which is equal to Schwarz’s bound of Theorem 2.11 with n = 7 and d = 2. Now, let B be a matrix with
pattern A such that node 4 is critical. On one hand, Main Theorem 1 ensures that T4(B) ≤ 11. On the
other hand, by Lemma 8.1, we have T4(B) ≥ T4(A) = 11. Thus Schwarz’s bound is attained by T4(B). In
particular, consider any nonnegative matrix B where all entries of the bigger cycle are equal to 1, and the
two remaining nonzero entries are less than or equal to 1. The associated digraphs of A and B are displayed
on Figure 3. It can be checked by direct computation that T4(B) = 11. More examples of this kind can be
constructed using the work of Shao and Li [19]. Observe that not all the nodes of the graph on the right-hand
side of Figure 3 are critical, but it does attain the greatest possible transient of critical rows, because node 4
is critical.

Another way to produce examples is to use the map φ1 : Rn×n
+ → B

n×n that maps A to B = φ1(A) such
that bi,j = 1 if and only if ai,j = 1 and bi,j = 0 otherwise. It is not a morphism on R

n×n
+ but it is not difficult

to check (generalizing Lemma 2.29) that it is a morphism on the following semigroups of Rn×n
+ , defined for

each subset X of N :

SX =
{
A ∈ R

n×n
+ | λ(A) = 1 , A is strictly visualized , Nc(A) = X

}

For any matrix A in SX the critical edges have weight 1, so that Gc(A) = Gc(φ1(A)). Obviously,
if λ(A) = 1 and A is strictly visualized, A ∈ SNc(A), so that any such matrix satisfies Tk(A) ≥ Tk (φ1(A)).
It extends to general matrices in the following way.

For A ∈ R
n×n
+ , let AC be the critical matrix of A, with entries

aCij =

{

1, if (i, j) ∈ Ec(A),

0, otherwise.

Lemma 8.2 (cf. [6, Corollary 2.9]). Tk(A
C) ≤ Tk(A) for all k ∈ Nc(A).

Lemma 8.2 shows that if an unweighted digraph Gc on n nodes attains a given bound for some Tk, then
any n× n matrix with entries in [0, 1], whose critical graph is Gc, attains it as well (for the same k). In the
following example, the first matrix attains Wielandt’s bound (T5(A) = 17) second matrix attains Dulmage
and Mendelsohn’s bound (T4(B) = 14), since their critical graphs attain the corresponding Boolean bounds.
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A =









0 1 0.1 0.2 0
0 0 1 0 0.3
0 0.4 0 1 0
1 0 0.5 0 1
1 0 0 0 0.9









, B =









0 1 0.4 0.5 0
0.1 0 1 0 0
1 0 0.2 1 0.7
0 0.9 0 0 1
1 0.2 0.6 0.7 0









.

We conclude that the two lemmas provide us with some classes of matrices attaining the bounds of Main
Theorem 1. However, this characterization is far from being complete and leaves vast possibilities of research.
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[5] P. Butkovič. Max-Linear Systems: Theory and Algorithms. Springer, 2010.
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