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CHARACTERIZATIONS OF GRADED PRÜFER

⋆-MULTIPLICATION DOMAINS

PARVIZ SAHANDI

Abstract. Let R =
⊕

α∈Γ
Rα be a graded integral domain graded by an

arbitrary grading torsionless monoid Γ, and ⋆ be a semistar operation on R.

In this paper we define and study the graded integral domain analogue of ⋆-
Nagata and Kronecker function rings of R with respect to ⋆. We say that R

is a graded Prüfer ⋆-multiplication domain if each nonzero finitely generated
homogeneous ideal of R is ⋆f -invertible. Using ⋆-Nagata and Kronecker func-
tion rings, we give several different equivalent conditions for R to be a graded
Prüfer ⋆-multiplication domain. In particular we give new characterizations
for a graded integral domain, to be a PvMD.

1. Introduction

Let R =
⊕

α∈Γ Rα be a graded (commutative) integral domain graded by an
arbitrary grading torsionless monoid Γ, that is Γ is a commutative cancellative
monoid (written additively). Let 〈Γ〉 = {a− b|a, b ∈ Γ}, be the quotient group of
Γ, which is a torsionfree abelian group.

Let H be the saturated multiplicative set of nonzero homogeneous elements of R.
Then RH =

⊕
α∈〈Γ〉(RH)α, called the homogeneous quotient field of R, is a graded

integral domain whose nonzero homogeneous elements are units. For a fractional
ideal I of R let Ih denote the fractional ideal generated by the set of homogeneous
elements of R in I. It is known that if I is a prime ideal, then Ih is also a prime
ideal (cf. [29, Page 124]). An integral ideal I of R is said to be homogeneous if
I =

⊕
α∈Γ(I∩Rα); equivalently, if I = Ih. A fractional ideal I of R is homogeneous

if sI is an integral homogeneous ideal of R for some s ∈ H (thus I ⊆ RH). For
f ∈ RH , let CR(f) (or simply C(f)) denote the fractional ideal of R generated by
the homogeneous components of f . For a fractional ideal I of R with I ⊆ RH ,
let C(I) =

∑
f∈I C(f). For more on graded integral domains and their divisibility

properties, see [3, 29].
Let R =

⊕
α∈Γ Rα and Nv(H) = {f ∈ R|C(f)v = R}. (Definitions related to

the v-operation will be reviewed in the sequel.) Then Nv(H) is a saturated multi-
plicative subset of R by [4, Lemma 1.1(2)]. The graded integral domain analogue
of the well known Nagata ring is the ring RNv(H). In [4], Anderson and Chang,
studied relationships between the ideal-theoretic properties of RNv(H) and the ho-
mogeneous ideal-theoretic properties of R. For example it is shown that if R has a
unit of nonzero degree, Pic(RNv(H)) = 0 and that R is a PvMD if and only if each
ideal of RNv(H) is extended from a homogeneous ideal of R, if and only if RNv(H)
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is a Prüfer (or Bézout) domain [4, Theorems 3.3 and 3.4]. Also, they generalized
the notion of Kronecker function ring, (for e.a.b. star operations on R) and then
showed that this ring is a Bézout domain [4, Theorem 3.5]. For the definition and
properties of semistar-Nagata and Kronecker function rings of an integral domain
see the interesting survey article [21]. Recall that the Picard group (or the ideal
class group) of an integral domain D, is Pic(D) = Inv(D)/Prin(D), where Inv(D)
is the multiplicative group of invertible fractional ideals of D, and Prin(D) is the
subgroup of principal fractional ideal of D.

Let R =
⊕

α∈Γ Rα be an integral domain, and ⋆ be a semistar operation on R. In
Section 2 of this paper we study the homogeneous elements of QSpec⋆(R) denoted
by h-QSpec⋆(R). We show that if ⋆ is a finite type semistar operation on R which
sends homogeneous fractional ideals to homogeneous ones, and such that R⋆ ( RH ,
then each homogeneous quasi-⋆-ideal of R, is contained in a homogeneous quasi-⋆-
prime ideal of R. One of key results in this paper is Proposition 2.3, which shows
that if R⋆ ( RH , the ⋆̃ sends homogeneous fractional ideals to homogeneous ones.
We also define and study the Nagata ring of R with respect to ⋆. The ⋆-Nagata
ring is defined by the quotient ring RN⋆(H), where N⋆(H) = {f ∈ R|C(f)⋆ = R⋆}.
Among other things, it is shown that Pic(RN⋆(H)) = 0. In Section 3 we define and
study the Kronecker function ring of R with respect to ⋆. The Kronecker function
ring, inspired by [20, Theorem 5.1], is defined by Kr(R, ⋆) := {0} ∪ {f/g|0 6=
f, g ∈ R, and there is 0 6= h ∈ R such that C(f)C(h) ⊆ (C(g)C(h))⋆}. It is shown
that if ⋆ sends homogeneous fractional ideals to fractional ones, then Kr(R, ⋆) is a
Bézout domain. In Section 3 we define the notion of graded Prüfer ⋆-multiplication
domains and give several different equivalent conditions to be a graded P⋆MD. A
graded integral domain R, is called a graded Prüfer ⋆-multiplication domain (graded
P⋆MD) if every finitely generated homogeneous ideal of R is a ⋆f -invertible, i.e.,
(II−1)⋆f = R⋆ for each finitely generated homogeneous ideal I of R. Among other
results we show that R is a graded P⋆MD if and only if RN⋆(H) is a Prüfer domain
if and only if RN⋆(H) is a Bézout domain if and only if RN⋆(H) = Kr(R, ⋆̃) if and
only if Kr(R, ⋆̃) is a flat R-module.

To facilitate the reading of the paper, we review some basic facts on semistar
operations. Let D be an integral domain with quotient field K. Let F(D) denote
the set of all nonzero D-submodules of K. Let F(D) be the set of all nonzero
fractional ideals of D; i.e., E ∈ F(D) if E ∈ F(D) and there exists a nonzero
element r ∈ D with rE ⊆ D. Let f(D) be the set of all nonzero finitely generated
fractional ideals of D. Obviously, f(D) ⊆ F(D) ⊆ F(D). As in [30], a semistar
operation on D is a map ⋆ : F(D) → F(D), E 7→ E⋆, such that, for all x ∈ K,
x 6= 0, and for all E,F ∈ F(D), the following three properties hold:

⋆1 : (xE)⋆ = xE⋆;
⋆2 : E ⊆ F implies that E⋆ ⊆ F ⋆;
⋆3 : E ⊆ E⋆ and E⋆⋆ := (E⋆)⋆ = E⋆.

Let ⋆ be a semistar operation on the domain D. For every E ∈ F(D), put
E⋆f := ∪F ⋆, where the union is taken over all finitely generated F ∈ f(D) with
F ⊆ E. It is easy to see that ⋆f is a semistar operation on D, and ⋆f is called the
semistar operation of finite type associated to ⋆. Note that (⋆f )f = ⋆f . A semistar
operation ⋆ is said to be of finite type if ⋆ = ⋆f ; in particular ⋆f is of finite type.
We say that a nonzero ideal I of D is a quasi-⋆-ideal of D, if I⋆ ∩D = I; a quasi-⋆-
prime (ideal of D), if I is a prime quasi-⋆-ideal of D; and a quasi-⋆-maximal (ideal
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of D), if I is maximal in the set of all proper quasi-⋆-ideals of D. Each quasi-⋆-
maximal ideal is a prime ideal. It was shown in [16, Lemma 4.20] that if D⋆ 6= K,
then each proper quasi-⋆f -ideal of D is contained in a quasi-⋆f -maximal ideal of D.
We denote by QMax⋆(D) (resp., QSpec⋆(D)) the set of all quasi-⋆-maximal ideals
(resp., quasi-⋆-prime ideals) of D.

If ⋆1 and ⋆2 are semistar operations on D, one says that ⋆1 ≤ ⋆2 if E⋆1 ⊆ E⋆2

for each E ∈ F(D) (cf. [30, page 6]). This is equivalent to saying that (E⋆1)⋆2 =
E⋆2 = (E⋆2)⋆1 for each E ∈ F(D) (cf. [30, Lemma 16]). Obviously, for each
semistar operation ⋆ defined on D, we have ⋆f ≤ ⋆. Let dD (or, simply, d) denote
the identity (semi)star operation on D. Clearly, dD ≤ ⋆ for all semistar operations
⋆ on D.

It has become standard to say that a semistar operation ⋆ is stable if (E ∩F )⋆ =
E⋆ ∩F ⋆ for all E, F ∈ F(D). (“Stable” has replaced the earlier usage, “quotient”,
in [30, Definition 21].) Given a semistar operation ⋆ on D, it is possible to construct
a semistar operation ⋆̃, which is stable and of finite type defined as follows: for each
E ∈ F(D),

E⋆̃ := {x ∈ K|xJ ⊆ E, for some J ⊆ R, J ∈ f(R), J⋆ = D⋆}.

It is well known that [16, Corollary 2.7]

E⋆̃ := ∩{EDP |P ∈ QMax⋆f (D)}, for each E ∈ F(D).

The most widely studied (semi)star operations on D have been the identity d,
v, t := vf , and w := ṽ operations, where Av := (A−1)−1, with A−1 := (R : A) :=
{x ∈ K|xA ⊆ D}.

Let ⋆ be a semistar operation on an integral domain D. We say that ⋆ is
an e.a.b. (endlich arithmetisch brauchbar) semistar operation of D if, for all
E,F,G ∈ f(D), (EF )⋆ ⊆ (EG)⋆ implies that F ⋆ ⊆ G⋆ ([20, Definition 2.3 and
Lemma 2.7]). We can associate to any semistar operation ⋆ on D, an e.a.b.

semistar operation of finite type ⋆a on D, called the e.a.b. semistar operation
associated to ⋆, defined as follows for each F ∈ f(D) and for each E ∈ F (D):

F ⋆a :=
⋃

{((FH)⋆ : H⋆)|H ∈ f(R)},

E⋆a :=
⋃

{F ⋆a |F ⊆ E,F ∈ f(R)}

[20, Definition 4.4 and Proposition 4.5] (note that ((FH)⋆ : H⋆) = ((FH)⋆ : H)).
It is known that ⋆f ≤ ⋆a [20, Proposition 4.5(3)]. Obviously (⋆f )a = ⋆a. Moreover,
when ⋆ = ⋆f , then ⋆ is e.a.b. if and only if ⋆ = ⋆a [20, Proposition 4.5(5)].

Let ⋆ be a semistar operation on a domain D. Recall from [17] that, D is called
a Prüfer ⋆-multiplication domain (for short, a P⋆MD) if each finitely generated
ideal of D is ⋆f -invertible; i.e., if (II

−1)⋆f = D⋆ for all I ∈ f(D). When ⋆ = v,
we recover the classical notion of PvMD; when ⋆ = dD, the identity (semi)star
operation, we recover the notion of Prüfer domain.

2. Nagata ring

Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ be a semistar operation on
R, H be the set of nonzero homogeneous elements of R. An overring T of R, with
R ⊆ T ⊆ RH will be called a homogeneous overring if T =

⊕
α∈〈Γ〉(T ∩ (RH)α).

Thus T is a graded integral domain with Tα = T ∩ (RH)α.
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In this section we study the homogeneous elements of QSpec⋆(R), denoted by
h-QSpec⋆(R), and the graded integral domain analogue of ⋆-Nagata ring. Let h-
QMax⋆(R) denote the set of ideals of R which are maximal in the set of all proper
homogeneous quasi-⋆-ideals of R. The following lemma shows that, if R⋆ ( RH

and ⋆ = ⋆f sends homogeneous fractional ideals to homogeneous ones, then h-
QMax⋆f (R) is nonempty and each proper homogeneous quasi-⋆f -ideal is contained
in a maximal homogeneous quasi-⋆f -ideal.

Lemma 2.1. Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ a finite type semis-
tar operation on R which sends homogeneous fractional ideals to homogeneous ones,
and such that R⋆ ( RH . If I is a proper homogeneous quasi-⋆-ideal of R, then I is
contained in a proper homogeneous quasi-⋆-prime ideal.

Proof. Let X := {I|I is a homogeneous quasi-⋆-ideal of R}. Then it is easy to see
that X is nonempty. Indeed, in this case R⋆ is a homogeneous overring of R, and
if u ∈ H is a nonunit in R⋆, then uR⋆∩R is a proper homogeneous quasi-⋆-ideal of
R. Also X is inductive (see proof of [16, Lemma 4.20]). From Zorn’s Lemma, we
see that every proper homogeneous quasi-⋆-ideal of R is contained in some maximal
element Q of X .

Now we show that Q is actually prime. Take f, g ∈ H\Q and suppose that
fg ∈ Q. By the maximality of Q we have (Q, f)⋆ = R⋆ (note that (Q, f)⋆ ∩ R
is a homogeneous quasi-⋆-ideal of R and properly contains Q). Since ⋆ is of finite
type, we can find a finitely generated ideal J ⊆ Q such that (J, f)⋆ = R⋆. Then
g ∈ gR⋆ ∩ R = g(J, f)⋆ ∩ R ⊆ Q⋆ ∩ R = Q a contradiction. Thus Q is a prime
ideal. �

The following example shows that we can not drop the condition that, ⋆ sends
homogeneous fractional ideals to homogeneous ones, in the above lemma.

Example 2.2. Let k be a field and X,Y be indeterminates over k. Let R = k[X,Y ],
which is a (N0-)graded Noetherian integral domain with degX = deg Y = 1. Set
M := (X,Y + 1) which is a maximal non-homogeneous ideal of R. Let T be a
DVR [11], with maximal ideal N , dominating the local ring RM . If RH ⊆ T , then
there exists a prime ideal P of R such that, P ∩ H = ∅ and N ∩ RH = PRH .
Thus M = N ∩ R = N ∩ RH ∩ R = PRH ∩ R = P . Hence M ∩ H = ∅, which
is a contradiction, since X ∈ M ∩ H. So that, RH * T . Let ⋆ be a semistar

operation on R defined by E⋆ = ET ∩ ERH for each E ∈ F(R). Then clearly
⋆ = ⋆f and R⋆ ( RH . If P is a nonzero prime ideal of R, such that P ∩ H = ∅,
then P ⋆f ∩R = PT ∩ PRH ∩R = PT ∩P = P . Thus P is a quasi-⋆f -prime ideal.
On the other hand if P is any nonzero prime ideal of R such that P ∩H 6= ∅, then
PT = Nk, for some integer k ≥ 1. Therefore, if we assume that P is a quasi-⋆f -
ideal of R, then we would have P = PT ∩ PRH ∩ R = PT ∩ R = Nk ∩ R ⊇ Mk,
which implies that P = M . Thus QSpec⋆f (R) = {M} ∪ {P ∈ Spec(R)|P 6= 0 and

P∩H = ∅}. Therefore by [16, Lemma 4.1, Remark 4.5], we have QSpec⋆̃(R) = {Q ∈
Spec(R)|0 6= Q ⊆ M}∪{P ∈ Spec(R)|P 6= 0 and P ∩H = ∅}. Hence in the present

example we have h-QSpec⋆f (R) = h-QMax⋆f (R) = ∅, and h-QSpec⋆̃(R) = h-

QMax⋆̃(R) = {(X)}. Note that in this example h-QMax⋆̃(R) * QMax⋆̃(R) =
QMax⋆f (R).

From now on in this paper, we are interested and consider, the semistar oper-
ations ⋆ on R, such that R⋆ ( RH and sends homogeneous fractional ideals to
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homogeneous ones. For any such semistar operation, if I is a homogeneous ideal
of R, we have I⋆f = R⋆ if and only if I * Q for each Q ∈ h-QMax⋆f (R). Also if
P is a quasi-⋆-prime ideal of R, then either Ph = 0 or Ph is a quasi-⋆-prime ideal
of R. Indeed, if Ph 6= 0, then Ph ⊆ (Ph)

⋆ ∩ R ⊆ P ⋆ ∩ R = P , which implies that
Ph = (Ph)

⋆ ∩R, since (Ph)
⋆ ∩R is a homogeneous ideal.

The following proposition is the key result in this paper.

Proposition 2.3. Let R =
⊕

α∈ΓRα be a graded integral domain, and ⋆ be a
semistar operation on R such that R⋆ ( RH . Then, ⋆̃ sends homogeneous frac-

tional ideals to homogeneous ones. In particular h-QMax⋆̃(R) 6= ∅, and R⋆̃ is a
homogeneous overring of R.

Proof. Let E be a homogenous fractional ideal of R. To show that E⋆̃ is homo-
geneous let f ∈ E⋆̃. Then fJ ⊆ E for some finitely generated ideal J of R such
that J⋆ = R⋆. Suppose that J = (g1, · · · , gn). Using [4, Lemma 1.1(1)], there is
an integer m ≥ 1 such that C(gi)

m+1C(f) = C(gi)
mC(fgi) for all i = 1, · · · , n.

Since E is a homogeneous fractional ideal and fgi ∈ E, we have C(fgi) ⊆ E. Thus
we have C(gi)

m+1C(f) ⊆ E. Let J0 := C(g1)
m+1 + · · ·+ C(gn)

m+1. Thus J0 is a
finitely generated homogeneous ideal of R such that J⋆

0 = R⋆. Since C(f)J0 ⊆ E,
C(f) ⊆ E⋆̃. Therefore E⋆̃ is a homogeneous ideal. �

Lemma 2.4. Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ a semistar operation
on R which sends homogeneous fractional ideals to homogeneous ones. Then ⋆f
sends homogeneous fractional ideals to homogeneous ones.

Proof. Let E be a homogenous fractional ideal of R. Let 0 6= x ∈ E⋆f . Then, there
exists an F ∈ f(R) such that F ⊆ E and x ∈ F ⋆. Suppose that F is generated
by y1, · · · , yn ∈ RH . Let G be a homogeneous fractional ideal of R, generated
by homogeneous components of y1, · · · , yn. Note that F ⊆ G ⊆ E and x ∈ G⋆.
Thus homogeneous components of x belong to G⋆ ⊆ E⋆f . This shows that E⋆f is
homogeneous. �

Note that the v-operation sends homogeneous fractional ideals to homogeneous
ones by [3, Proposition 2.5]. Using the above two results, the t and w-operations
also, send homogeneous fractional ideals to homogeneous ones.

It it well-known that QMax⋆f (R) = QMax⋆̃(R), see [5, Theorem 2.16], for star
operation case, and [18, Corollary 3.5(2)], in general semistar operations. Although

Example 2.2, shows that it may happen that h-QMax⋆f (R) 6= h-QMax⋆̃(R), we
have the following proposition whose proof is almost the same as [4, Theorem 2.16].

Proposition 2.5. Let R =
⊕

α∈ΓRα be a graded integral domain, ⋆ a semistar
operation on R such that R⋆ ( RH , which sends homogeneous fractional ideals to

homogeneous ones. Then h-QMax⋆f (R) = h-QMax⋆̃(R).

Proof. Assume that Q ∈ h-QMax⋆f (R). Then since ⋆̃ ≤ ⋆f by [18, Lemma 2.7(1)],

we have Q ⊆ Q⋆̃ ∩ R ⊆ Q⋆f ∩ R = Q, that is Q is a quasi-⋆̃-ideal. Suppose that

Q /∈ h-QMax⋆̃(R). Then Q is properly contained in some P ∈ h-QMax⋆̃(R). So
since Q ∈ h-QMax⋆f (R), using Lemma 2.1, we must have P ⋆f = R⋆. Thus there
is some finitely generated ideal F ⊆ P such that F ⋆ = R⋆. So for any r ∈ R,
rF ⊆ F ⊆ P . But then, r ∈ P ⋆̃, so R ⊆ P ⋆̃, which implies that P ⋆̃ = R⋆̃, a

contradiction. Therefore, we must have Q ∈ h-QMax⋆̃(R).
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If Q ∈ h-QMax⋆̃(R), thenQ = Q⋆̃∩R ⊆ Q⋆f∩R ⊆ R. Suppose thatQ⋆f∩R = R,
which implies that Q⋆f = R⋆. Then there is a finitely generated ideal F ⊆ Q such
that F ⋆ = R⋆. Now for any r ∈ R, rF ⊆ F ⊆ Q. Therefore R ⊆ Q⋆̃, and
so R = Q⋆̃ ∩ R = Q, which is a contradiction. So Q⋆f ∩ R ( R. Now, since
Q⋆f ∩ R is a homogeneous quasi-⋆f -ideal, there is a P ∈ h-QMax⋆f (R) such that

Q ⊆ Q⋆f ∩R ⊆ P . From the first half of the proof, we know that P ∈ h-QMax⋆̃(R).
So we must have P = Q. Therefore Q ∈ h-QMax⋆f (R). �

Park in [31, Lemma 3.4], proved that Iw =
⋂

P∈h-QMaxw(R) IRH\P for each

homogeneous ideal I of R.

Proposition 2.6. Let R =
⊕

α∈ΓRα be a graded integral domain, ⋆ a semistar

operation on R such that R⋆ ( RH . Then I ⋆̃ =
⋂

P∈h-QMax⋆̃(R) IRH\P for each

homogeneous ideal I of R. Moreover I ⋆̃RH\P = IRH\P for all homogeneous ideal

I of R and all P ∈ h-QMax⋆̃(R).

Proof. By Proposition 2.3, I ⋆̃ is a homogeneous ideal. Also note that
⋂

P∈h- QMax⋆̃(R) IRH\P

is a homogeneous ideal of R. Let f ∈ I ⋆̃ be homogeneous. Then fJ ⊆ I for some
homogeneous finitely generated ideal J of R such that J⋆ = R⋆. It is easy to see

that J ⋆̃ = R⋆̃. Hence we have J * P for all P ∈ h-QMax⋆̃(R). Thus f ∈ IRH\P for

all P ∈ h-QMax⋆̃(R). Conversely, let f ∈
⋂

P∈h-QMax⋆̃(R) IRH\P be homogeneous.

Then (I : f) is a homogeneous ideal which is not contained in any P ∈ h-QMax⋆̃(R).
Therefore (I : f)⋆̃ = R⋆̃. So that there exist a finitely generated ideal J ⊆ (I : f)
such that J⋆ = R⋆. Thus fJ ⊆ I, i.e., f ∈ I ⋆̃. The second assertion follows from
the first one. �

Let D be a domain with quotient field K, and let X be an indeterminate over
K. For each f ∈ K[X ], we let cD(f) denote the content of the polynomial f ,
i.e., the (fractional) ideal of D generated by the coefficients of f . Let ⋆ be a
semistar operation on D. If N⋆ := {g ∈ D[X ]|g 6= 0 and cD(g)⋆ = D⋆}, then
N⋆ = D[X ]\

⋃
{P [X ]|P ∈ QMax⋆f (D)} is a saturated multiplicative subset of

D[X ]. The ring of fractions

Na(D, ⋆) := D[X ]N⋆

is called the ⋆-Nagata domain (of D with respect to the semistar operation ⋆). When
⋆ = d, the identity (semi)star operation on D, then Na(D, d) coincides with the
classical Nagata domain D(X) (as in, for instance [28, page 18], [23, Section 33]
and [18]).

Let N⋆(H) = {f ∈ R|C(f)⋆ = R⋆}. It is easy to see that N⋆(H) is a saturated
multiplicative subset of R. Indeed assume f, g ∈ N⋆(H). Then C(f)n+1C(g) =
C(f)nC(fg) for some integer n ≥ 1 by [4, Lemma 1.1(2)], and C(fg) ⊆ C(f)C(g).
Thus fg ∈ N⋆(H) ⇔ C(fg)⋆ = R⋆ ⇔ C(f)⋆ = C(g)⋆ = R⋆ ⇔ f, g ∈ N⋆(H). Also
it is easy to show that N⋆(H) = N⋆f

(H) = N⋆̃(H). We define the graded integral
domain analogue of ⋆-Nagata ring, by the quotient ring RN⋆(H). When ⋆ = v,
RN⋆(H) was studied in [4], denoted by RN(H).

Lemma 2.7. Let R =
⊕

α∈Γ Rα be a graded integral domain, and ⋆ be a semistar
operation on R such that R⋆ ( RH , which sends homogeneous fractional ideals to
homogeneous ones.

(1) N⋆(H) = R\
⋃

Q∈h-QMax⋆f (R) Q.
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(2) Max(RN⋆(H)) = {QRN⋆(H)|Q ∈ h-QMax⋆f (R)} if and only if R has the
property that if I is a nonzero ideal of R with C(I)⋆ = R⋆, then I∩N⋆(H) 6=
∅.

Proof. (1) Let x ∈ R. Then x ∈ N⋆(H) ⇔ C(x)⋆ = R⋆ ⇔ C(x) * Q for all Q ∈
h-QMax⋆f (R) ⇔ x /∈ Q for all Q ∈ h-QMax⋆f (R) ⇔ x ∈ R\

⋃
Q∈h-QMax⋆f (R) Q.

(2) (⇒) Let I is a nonzero ideal of R with C(I)⋆ = R⋆. Then I * Q for all
Q ∈ h-QMax⋆f (R), and hence IRN⋆(H) = RN⋆(H). Thus I ∩N⋆(H) 6= ∅.

(⇐) Let I be a nonzero ideal of R such that I ⊆
⋃

Q∈h- QMax⋆f (R) Q. If C(I)⋆f =

R⋆, then, by assumption, there exists an f ∈ I with C(f)⋆ = R⋆. But, since
I ⊆

⋃
Q∈h-QMax⋆f (R) Q, we have f ∈ Q for some Q ∈ h-QMax⋆f (R), a con-

tradiction. Thus C(I)⋆ ( R⋆, and hence I ⊆ Q for some Q ∈ h-QMax⋆f (R).
Thus {QRN⋆(H)|Q ∈ h-QMax⋆f (R)} is the set of maximal ideals of RN⋆(H) by [23,
Proposition 4.8]. �

We will say that R satisfies property (#⋆) if, for any nonzero ideal I of R,
C(I)⋆ = R⋆ implies that there exists an f ∈ I such that C(f)⋆ = R⋆.

Example 2.8. Let R =
⊕

α∈Γ Rα be a graded integral domain, and let ⋆ be a
semistar operation on R. If R contains a unit of nonzero degree, then R satisfies
property (#⋆) (see [4, Example 1.6] for the case ⋆ = t).

The next result is a generalization of the fact that I ⋆̃ = I Na(R, ⋆) ∩K, where
K is the quotient field of R [18, Proposition 3.4(3)].

Lemma 2.9. Let R =
⊕

α∈Γ Rα be a graded integral domain, and ⋆ be a semistar

operation on R such that R⋆ ( RH , with property (#⋆). Then I ⋆̃ = IRN⋆(H) ∩RH

and I ⋆̃RN⋆(H) = IRN⋆(H) for each homogeneous ideal I of R. In particular R⋆̃ is
integrally closed if and only if RN⋆(H) is integrally closed.

Proof. If I ⋆̃ = IRN⋆(H) ∩ RH , then it is easy to see that I ⋆̃RN⋆(H) = IRN⋆(H).

Hence it suffices to show that I ⋆̃ = IRN⋆(H) ∩RH .

(⊆) Let f ∈ I ⋆̃(⊆ RH), and let J be a finitely generated ideal of R such that
J⋆ = R⋆ and fJ ⊆ I. Then C(J)⋆ = R⋆, and since R satisfies property (#⋆),
there exists an h ∈ J with C(h)⋆ = R⋆. Hence h ∈ N⋆(H) and fh ∈ I. Thus
f ∈ IRN⋆(H) ∩RH .

(⊇) Let f = g
h
∈ IRN⋆(H) ∩RH , where g ∈ I and h ∈ N⋆(H). Then fh = g ∈ I,

and since C(h)m+1C(f) = C(h)mC(fh) for some integer m ≥ 1 by [4, Lemma
1.1(1)], we have fC(h)m+1 ⊆ C(f)C(h)m+1 = C(h)mC(fh) = C(h)mC(g) ⊆ I.
Also note that (C(h)m+1)⋆ = R⋆, since C(h)⋆ = R⋆. Thus f ∈ I ⋆̃.

For the in particular case, assume that RN⋆(H) is integrally closed. Using
[3, Proposition 2.1], RH is a GCD-domain, hence is integrally closed. Therefore
R⋆̃ = RN⋆(H) ∩ RH is integrally closed. Conversely, assume that R⋆̃ is integrally

closed. Then RQ is integrally closed by [14, Proposition 3.8] for all Q ∈ QSpec⋆̃(R).

Let QRN⋆(H) be a maximal ideal of RN⋆(H) for some Q ∈ h-QMax⋆̃(R). Then
(RN⋆(H))QRN⋆(H)

= RQ is integrally closed. Thus RN⋆(H) is integrally closed. �

Lemma 2.10. Let R =
⊕

α∈Γ Rα be a graded integral domain, and ⋆ be a semistar
operation on R such that R⋆ ( RH , with property (#⋆). Then for each nonzero
finitely generated homogeneous ideal I of R, I is ⋆f -invertible if and only if, IRN⋆(H)

is invertible.
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Proof. Let I be nonzero finitely generated homogeneous ideal of R, such that I is

⋆f -invertible. Let QRN⋆(H) ∈ Max(RN⋆(H)), where Q ∈ h-QMax⋆̃(R) by Lemma
2.7(2). Thus by [22, Theorem 2.23], (IRN⋆(H))QRN⋆(H)

= IRQ is invertible (is

principal) in RQ. Hence IRN⋆(H) is invertible by [23, Theorem 7.3]. Conversely,
assume that I is finitely generated, and IRN⋆(H) is invertible. By flatness we

have I−1RN⋆(H) = (R : I)RN⋆(H) = (RN⋆(H) : IRN⋆(H)) = (IRN⋆(H))
−1. There-

fore, (II−1)RN⋆(H) = (IRN⋆(H))(I
−1RN⋆(H)) = (IRN⋆(H))(IRN⋆(H))

−1 = RN⋆(H).

Hence II−1∩N⋆(H) 6= ∅. Let f ∈ II−1∩N⋆(H). So that R⋆ = C(f)⋆ ⊆ (II−1)⋆f ⊆
R⋆. Thus I is ⋆f -invertible. �

Corollary 2.11. Let R =
⊕

α∈Γ Rα be a graded integral domain, and ⋆ be a
semistar operation on R such that R⋆ ( RH , with property (#⋆) and 0 6= f ∈ R.
Then the following conditions are equivalent:

(1) C(f) is ⋆f -invertible.
(2) C(f)RN⋆(H) is invertible.
(3) C(f)RN⋆(H) = fRN⋆(H).

Proof. Exactly is the same as [4, Corollary 1.9]. �

Let Z be the additive group of integers. Clearly, the direct sum Γ⊕Z of Γ with Z
is a torsionless grading monoid. So if y is an indeterminate overR =

⊕
α∈ΓRα, then

R[y, y−1] is a graded integral domain graded by Γ⊕Z. In the following proposition
we use a technique for defining semistar operations on integral domains, due to
Chang and Fontana [9, Theorem 2.3].

Proposition 2.12. Let R =
⊕

α∈Γ Rα be a graded integral domain with quotient
field K, let y, X be two indeterminates over R and let ⋆ be a semistar operation
on R such that R⋆ ( RH . Set T := R[y, y−1], K1 := K(y) and take the following
subset of Spec(T ):

△⋆ := {Q ∈ Spec(T )| Q ∩R = (0) or Q = (Q ∩R)R[y, y−1] and (Q ∩R)⋆f ( R⋆}.

Set S⋆ := T [X ]\(
⋃
{Q[X ]|Q ∈ △⋆}) and:

E⋆′ := E[X ]S⋆ ∩K1, for all E ∈ F(T ).

(a) The mapping ⋆′ : F(T ) → F(T ), E 7→ E⋆′ is a stable semistar operation of
finite type on T , i.e., ⋆̃′ = ⋆′.

(b) (⋆̃)′ = (⋆f )′ = ⋆′.
(c) (ER[y, y−1])⋆′ ∩K = E⋆̃ for all E ∈ F(R).
(d) (ER[y, y−1])⋆′ = E⋆̃R[y, y−1] for all E ∈ F(R).
(e) T ⋆′ ( TH′ , where H ′ is the set of nonzero homogeneous elements of T , and

⋆′ sends homogeneous fractional ideals to homogeneous ones.
(f) QMax⋆′(T ) = {Q|Q ∈ Spec(T ) such that Q∩R = (0) and cR(Q)⋆f = R⋆}∪

{PR[y, y−1]|P ∈ QMax⋆f (R)}.

(g) h-QMax⋆′(T ) = {PR[y, y−1]|P ∈ h-QMax⋆̃(R)}.
(h) (wR)′ = (tR)′ = (vR)′ = wT .

Proof. Set ∇⋆ := {Q ∈ Spec(T )| Q∩R = (0) and cD(Q)⋆f = R⋆ or Q = PR[y, y−1]
and P ∈ QMax⋆f (D)}. Then it is easy to see that the elements of ∇⋆ are the
maximal elements of △⋆ (see proof of [9, Theorem 2.3]). Thus

S⋆ := T [X ]\(
⋃

{Q[X ]|Q ∈ △⋆}) = T [X ]\(
⋃

{Q[X ]|Q ∈ ∇⋆}).
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(a) It follows from [9, Theorem 2.1 (a) and (b)], that ⋆′ is a stable semistar
operation of finite type on T .

(b) Since QMax⋆f (D) = QMax⋆̃(D), the conclusion follows easily from the fact

that S ⋆̃ = S⋆f = S⋆.
(c) and (d) Exactly are the same as proof of [9, Theorem 2.3(c) and (d)].
(e) From part (d) we have T ⋆′ = R⋆̃R[y, y−1] ( RHR[y, y−1] = TH′ . The second

assertion follows from Proposition 2.3, since ⋆̃′ = ⋆′ by (a).
(f) Follows from [9, Theorem 2.1(e)] and the remark in the first paragraph in

the proof.
(g) Let M ∈ h-QMax⋆′(T ). Since y, y−1 ∈ T , clearly we have M∩R 6= (0). Then

by (f), there is P ∈ QMax⋆f (R) such that M ⊆ PR[y, y−1]. If P ∈ h-QMax⋆̃(R),

then M = PR[y, y−1] and we are done. So suppose that P /∈ h-QMax⋆̃(R).

Then note that Ph ∈ h-QSpec⋆̃(R) and M ⊆ PhR[y, y−1] = (PR[y, y−1])h; hence
M = PhR[y, y−1], because M is a homogeneous maximal quasi-⋆′-ideal. Note

that in this case Ph ∈ h-QMax⋆̃(R) by [16, Lemma 4.1, Remark 4.5]. So that

M ∈ {PR[y, y−1]|P ∈ h-QMax⋆̃(R)}. The other inclusion is trivial.
(h) Suppose that ⋆f = t. Note that if M ∈ QMax⋆′(T ), and M ∩ R 6= (0),

then, M = (M ∩ R)[y, y−1] and M ∩ R ∈ QMaxt(R) (cf. [24, Proposition 1.1]).
Moreover, if Q ∈ Spec(T ) is such that Q ∩ R = (0), then Q is a quasi-t-maximal
ideal of T if and only if cR(Q)t = R. Indeed, if Q is a quasi-t-maximal ideal of
T , and cR(Q)t ( R, then there exists a quasi-t-maximal ideal P of R such that
cR(Q)t ⊆ P . Hence Q ⊆ P [y, y−1], and therefore Q = P [y, y−1]. Consequently
(0) = Q ∩ R = P [y, y−1] ∩ R = P which is a contradiction. Conversely assume
that cR(Q)t = R. Suppose Q is not a quasi-t-maximal ideal of T , and let M be a
quasi-t-maximal ideal of T which contains Q. Since the containment is proper, we
have M ∩ R 6= (0). Thus M = (M ∩ R)[y, y−1] and M ∩ R ∈ QMaxt(R) (cf. [24,
Proposition 1.1]). Since Q ⊆ M , cR(Q) is contained in the quasi-t-ideal M ∩ R,
so that cR(Q)t 6= R which is a contradiction. Thus we showed that QMaxt(T ) =
{Q|Q ∈ Spec(T ) such that Q ∩ R = (0) and cR(Q)⋆f = R⋆} ∪ {PR[y, y−1]|P ∈
QMax⋆f (R)} = QMax⋆′(T ), where the second equality is by (f). Thus using (a)
and (b), we obtain (wR)′ = (tR)′ = (vR)′ = wT . �

It is known that Pic(D(X)) = 0 [1, Theorem 2]. More generally, if ∗ is a star
operation on D, then Pic(Na(D, ∗)) = 0, [26, Theorem 2.14]. Also in the graded
case it is shown in [4, Theorem 3.3], that Pic(RNv(H)) = 0, where R =

⊕
α∈Γ Rα

is a graded integral domain containing a unit of nonzero degree. We next show in
general that Pic(RN⋆(H)) = 0.

Theorem 2.13. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree, and ⋆ be a semistar operation on R such that R⋆ ( RH . Then
Pic(RN⋆(H)) = 0.

Proof. Let y be an indeterminate over R, and T = R[y, y−1]. Using Proposition
2.12(e) and (g) and Lemma 2.7, we deduce that Max(TN⋆′(H)) = {QTN⋆′(H)|Q ∈
h-QMax⋆f (R)}. Next since Max((RN⋆(H))(y)) = {P (y)|P is a maximal ideal of
RN⋆(H)}, [23, Proposition 33.1], we have Max((RN⋆(H))(y)) = {(QRN⋆(H))(y)|Q ∈
h-QMax⋆f (R)}. Thus by a computation similar to the proof of [4, Lemma 3.2], we
obtain the equality TN⋆′(H) = (RN⋆(H))(y). The rest of the proof is exactly the
same as proof of [4, Theorem 3.3], using Proposition 2.12. �
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Let D be a domain and T an overring of D. Let ⋆ and ⋆′ be semistar operations
on D and T , respectively. One says that T is (⋆, ⋆′)-linked to D (or that T is a
(⋆, ⋆′)-linked overring of D) if

F ⋆ = D⋆ ⇒ (FT )⋆
′

= T ⋆′

for each nonzero finitely generated ideal F of D. (The preceding definition gen-
eralizes the notion of “t-linked overring” which was introduced in [13].) It is
shown in [15, Theorem 3.8], that T is a (⋆, ⋆′)-linked overring of D if and only
if Na(D, ⋆) ⊆ Na(T, ⋆′). We need a graded analogue of linkedness.

Let R =
⊕

α∈Γ Rα be a graded integral domain, and T be a homogeneous
overring of R. Let ⋆ and ⋆′ be semistar operations on R and T , respectively.
We say that T is homogeneously (⋆, ⋆′)-linked overring of R if

F ⋆ = D⋆ ⇒ (FT )⋆
′

= T ⋆′

for each nonzero homogeneous finitely generated ideal F of R. We say that T is
homogeneously t-linked overring of R if T is homogeneously (t, t)-linked overring of
R. Also it can be seen that T is homogeneously (⋆, ⋆′)-linked overring of R if and

only if T is homogeneously (⋆̃, ⋆̃′)-linked overring of R (cf. [15, Theorem 3.8]).

Example 2.14. Let R =
⊕

α∈Γ Rα be a graded integral domain, and let ⋆ be a

semistar operation on R such that R⋆ ( RH . Let P ∈ h-QSpec⋆̃(R). Then, RH\P

is a homogeneously (⋆, ⋆′)-linked overring of R, for all semistar operation ⋆′ on
RH\P . Indeed assume that F is a nonzero finitely generated homogeneous ideal of

R such that F ⋆ = R⋆. Then we have F ⋆̃ = R⋆̃. Thus using Proposition 2.6, we
have FRH\P = F ⋆̃RH\P = R⋆̃RH\P = RH\P .

Lemma 2.15. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit of
nonzero degree, and let T be a homogeneous overring of R. Let ⋆ (resp. ⋆′) be a
semistar operation on R (resp. on T ). Then, T is a homogeneously (⋆, ⋆′)-linked
overring of R if and only if RN⋆(H) ⊆ TN⋆′(H).

Proof. Let f ∈ R such that CR(f)
⋆ = R⋆. Then by assumption CT (f)

⋆′

=

(CR(f)T )
⋆′

= R⋆′

. Hence RN⋆(H) ⊆ TN⋆′(H). Conversely let F be a nonzero
homogeneous finitely generated ideal of R such that F ⋆ = R⋆. Since R has a unit
of nonzero degree we can choose an element f ∈ R such that CR(f) = F . From
the fact that CR(f)

⋆ = R⋆, we have that f is a unit in RN⋆(H) and so by assump-

tion, f is a unit in TN⋆′(H). This implies that CT (f)
⋆′

= (CR(f)T )
⋆′

= T ⋆′

, i.e.,

(FT )⋆
′

= T ⋆′

. �

3. Kronecker function ring

Let R =
⊕

α∈Γ Rα be a graded integral domain, ∗ an e.a.b. star operation
on R. The graded analogue of the well known Kronecker function ring (see [23,
Theorem 32.7]) of R with respect to ∗ is defined by

Kr(R, ∗) :=

{
f

g

∣∣∣∣ f, g ∈ R, g 6= 0, and C(f) ⊆ C(g)∗
}

in [4]. The following lemma is proved in [4, Theorems 2.9 and 3.5], for an e.a.b.

star operation ∗. We need to state it for e.a.b. semistar operations. Since the
proof is exactly the same as star operation case, we omit the proof.
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Lemma 3.1. Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ an e.a.b. semistar
operation on R, and

Kr(R, ⋆) :=

{
f

g

∣∣∣∣ f, g ∈ R, g 6= 0, and C(f) ⊆ C(g)⋆
}
.

Then

(1) Kr(R, ⋆) is an integral domain.

In addition, if R has a unit of nonzero degree, then,

(2) Kr(R, ⋆) is a Bézout domain.
(3) I Kr(R, ⋆)∩RH = I⋆ for every nonzero finitely generated homogeneous ideal

I of R.

Inspired by the work of Fontana and Loper in [20], we can generalize this defini-
tion of Kr(R, ⋆) to all semistar operations on R which send homogeneous fractional
ideals, to homogeneous ones, provided that R has a unit of nonzero degree. Before
doing that we need a lemma.

Lemma 3.2. Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ a semistar operation
on R which sends homogeneous fractional ideals to homogeneous ones. Suppose
that a ∈ R is homogeneous and B,F ∈ f(R), with B homogeneous and F ⊆ RH ,
such that aF ⊆ (BF )⋆. Then there exists a homogeneous T ∈ f(R) such that
aT ⊆ (BT )⋆.

Proof. Suppose that F is generated by y1, · · · , yn ∈ RH . Let yi =
∑

tij be the
decomposition of yi to homogeneous elements for i = 1, · · · , n. Then ayi ∈ (BF )⋆ =
(
∑

yiB)⋆ ⊆ (
∑

tijB)⋆. Since (
∑

tijB)⋆ is homogeneous we have atij ∈ (
∑

tijB)⋆.
Let T be the fractional ideal of R, generated by all homogeneous elements tij . So
that aT ⊆ (BT )⋆ and T ∈ f(R) is homogeneous. �

Theorem 3.3. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree, ⋆ a semistar operation on R which sends homogeneous fractional
ideals to homogeneous ones, and

Kr(R, ⋆) :=

{
f

g

∣∣∣∣
f, g ∈ R, g 6= 0, and there is 0 6= h ∈ R
such that C(f)C(h) ⊆ (C(g)C(h))⋆

}
.

Then

(1) Kr(R, ⋆) = Kr(R, ⋆a).
(2) Kr(R, ⋆) is a Bézout domain.
(3) I Kr(R, ⋆) ∩ RH = I⋆a for every nonzero finitely generated homogeneous

ideal I of R.
(4) If f, g ∈ R are nonzero such that C(f + g)⋆ = (C(f) + C(g))⋆, then

(f, g)Kr(R, ⋆) = (f+g)Kr(R, ⋆). In particular, f Kr(R, ⋆) = C(f)Kr(R, ⋆)
for all f ∈ R.

Proof. It it clear from the definition that Kr(R, ⋆) = Kr(R, ⋆f). Thus using Lemma
2.4, we can assume, without loss of generality, that ⋆ is a semistar operation of finite
type.

Parts (2) and (3) are direct consequences of (1) using Lemma 3.1. For the proof
of (1) we have two cases:



12 PARVIZ SAHANDI

Case 1: Assume that ⋆ is an e.a.b. semistar operation of finite type. In this
case, for f, g, h ∈ R\{0} we have

C(f)C(h) ⊆ (C(g)C(h))⋆ ⇔ C(f) ⊆ C(g)⋆.

Therefore Kr(R, ⋆) -as defined in this theorem- coincides with Kr(R, ⋆) of an e.a.b.

semistar operation ⋆, as defined in Lemma 3.1. Also in this case ⋆ = ⋆a by [20,
Proposition 4.5(5)]. Hence in this case (1) is true.

Case 2: General case. Let ⋆ be a semistar operation of finite type on R. By
definition it is easy to see that, given two semistar operations on R with ⋆1 ≤
⋆2, then Kr(R, ⋆1) ⊆ Kr(R, ⋆2). Using [20, Proposition 4.5(3)] we have ⋆ ≤ ⋆a.
Therefore Kr(R, ⋆) ⊆ Kr(R, ⋆a). Conversely let f/g ∈ Kr(R, ⋆a). Then, by Case
1, C(f) ⊆ C(g)⋆a . Set A := C(f) and B := C(g). Then A ⊆ B⋆a =

⋃
{((BH)⋆ :

H)|H ∈ f(R)}. Suppose that A is generated by homogeneous elements x1, · · · , xn ∈
R. Then there is Hi ∈ f(R), such that xiHi ⊆ (BHi)

⋆ for i = 1, · · · , n. Choose 0 6=
ri ∈ R such that Fi = riHi ⊆ R. Thus xiFi ⊆ (BFi)

⋆. Therefore Lemma 3.2 gives
a homogeneous Ti ∈ f(R) such that xiTi ⊆ (BTi)

⋆. Now set T := T1T2 · · ·Tn which
is a finitely generated homogeneous fractional ideal of R such that AT ⊆ (BT )⋆.
Now since R has a unit of nonzero degree, we can find an element h ∈ R such that
C(h) = T . Then C(f)C(h) ⊆ (C(g)C(h))⋆. This means that f/g ∈ Kr(R, ⋆) to
complete the proof of (1).

The proof of (4) is exactly the same as [4, Theorem 2.9(3)]. �

4. Graded P⋆MDs

Let R =
⊕

α∈Γ Rα be a graded integral domain, ⋆ be a semistar operation on R,
H be the set of nonzero homogeneous elements of R, and N⋆(H) = {f ∈ R|C(f)⋆ =
R⋆}. In this section we define the notion of graded Prüfer ⋆-multiplication domain
(graded P⋆MD for short) and give several characterization of it.

We say that a graded integral domain R =
⊕

α∈Γ Rα with a semistar operation ⋆,
is a graded Prüfer ⋆-multiplication domain (graded P⋆MD) if every nonzero finitely
generated homogeneous ideal of R is a ⋆f -invertible, i.e., (II

−1)⋆f = R⋆ for every
nonzero finitely generated homogeneous ideal I of R. It is easy to see that a graded
P⋆MD is the same as a graded P⋆fMD by definition, and is the same as a graded
P⋆̃MD by [22, Proposition 2.18]. When ⋆ = v we recover the classical notion of a
graded Prüfer v-multiplication domain (graded PvMD) [2]. It is known that R is a
graded PvMD if and only if R is a PvMD [2, Theorem 6.4].

Also when ⋆ = d, a graded PdMD is called a graded Prüfer domain [4]. It is
clear that every graded Prüfer domain is a graded PvMD and hence a PvMD. In
particular every graded Prüfer domain is an integrally closed domain. Although R
is a graded PvMD if and only if R is a PvMD, Anderson and Chang in [4, Example
3.6] provided an example of a graded Prüfer domain which is not Prüfer. It is known
that if A,B,C are ideals of an integral domain D, then (A+B)(A+C)(B +C) =
(A + B + C)(AB + AC + BC). Thus R =

⊕
α∈Γ Rα is a graded Prüfer domain

if and only if every nonzero ideal of R generated by two homogeneous elements is
invertible. We use this result in this section without comments.

The following proposition is inspired by [23, Theorem 24.3].

Proposition 4.1. Let R =
⊕

α∈Γ Rα be a graded integral domain. Then the fol-
lowing conditions are equivalent:

(1) R is a graded Prüfer domain.
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(2) Each finitely generated nonzero homogeneous ideal of R is a cancelation
ideal.

(3) If A,B,C are finitely generated homogeneous ideals of R such that AB =
AC and A is nonzero, then B = C.

(4) R is integrally closed and there is a positive integer n > 1 such that (a, b)n =
(an, bn) for each a, b ∈ H.

(5) R is integrally closed and there exists an integer n > 1 such that an−1b ∈
(an, bn) for each a, b ∈ H.

Proof. The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are clear.
(3) ⇒ (4) By the same argument as in the proof of part (2) ⇒ (3), in [23, Propo-

sition 24.1], we have that R is integrally closed in RH . Therefore by [3, Proposition
5.4], R is integrally closed. Now if a, b ∈ H we have (a, b)3 = (a, b)(a2, b2). Thus
by (3) we obtain that (a, b)2 = (a2, b2).

(5) ⇒ (1) If (5) holds then [23, Proposition 24.2], implies that each nonzero
homogeneous ideal generated by two homogeneous elements is invertible. Therefore
R is a graded Prüfer domain. �

The ungraded version of the following theorem is due to Gilmer (see [23, Corol-
lary 28.5]).

Theorem 4.2. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree. Then R is a graded Prüfer domain if and only if C(f)C(g) = C(fg)
for all f, g ∈ RH .

Proof. (⇒) Let f, g ∈ RH . Then by [4, Lemma 1.1(1)], there exists some positive
integer n such that C(f)n+1C(g) = C(f)nC(fg). Now since R is a graded Prüfer
domain, the homogeneous fractional ideal C(f)n is invertible. Thus C(f)C(g) =
C(fg) for all f, g ∈ RH .

(⇐) Let α ∈ H be a unit of nonzero degree. Assume that C(f)C(g) = C(fg) for
all f, g ∈ RH . Hence R is integrally closed by [2, Theorem 3.7]. Now let a, b ∈ H
be arbitrary. We can choose a positive integer n such that deg(a) 6= deg(αnb). So
that C(a + αnb) = (a, b). Hence, since (a+ αnb)(a− αnb) = a2 − (αnb)2, we have
(a, b)(a,−b) = (a2,−b2). Consequently (a, b)2 = (a2, b2). Thus by Proposition 4.1,
we see that R is a graded Prüfer domain. �

Lemma 4.3. Let R =
⊕

α∈Γ Rα be a graded integral domain and P be a homoge-
neous prime ideal. Then, the following statements are equivalent:

(1) RH\P is a graded Prüfer domain
(2) RP is a valuation domain.
(3) For each nonzero homogeneous u ∈ RH , u or u−1 is in RH\P .

Proof. (1) ⇒ (2) Suppose that RH\P is a graded Prüfer domain. In particular
RH\P is a (graded) PvMD and each nonzero homogeneous ideal of RH\P is a t-

ideal. So that h-QMaxt(RH\P ) = {PRH\P }. Thus by [10, Lemma 2.7], we see that
(RH\P )PRH\P

= RP is a valuation domain.

(2) ⇒ (3) Let 0 6= u ∈ RH . Thus by the hypothesis u or u−1 is in RP . Thus u
or u−1 is in RH\P .

(3) ⇒ (1) Let I, J be two nonzero homogeneous ideals of RH\P and assume

that I * J . So there is a homogeneous element a ∈ I\J . For each b ∈ J , we
have a

b
/∈ RH\P , since otherwise we have a = (a

b
)b ∈ J . Thus by the hypothesis
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b
a
∈ RH\P . Hence b = ( b

a
)a ∈ I. Thus we showed that J ⊆ I, and so every two

homogeneous ideal are comparable.
Now Let (a, b) be an ideal generated by two homogeneous elements of RH\P .

Now by the first paragraph (a, b) = (a) or (a, b) = (b). Thus (a, b) is invertible.
Hence RH\P is a graded Prüfer domain. �

Theorem 4.4. Let R =
⊕

α∈Γ Rα be a graded integral domain, and ⋆ be a semistar
operation on R such that R⋆ ( RH . Then, the following statements are equivalent:

(1) R is a graded P⋆MD.

(2) RH\P is a graded Prüfer domain for each P ∈ h-QSpec⋆̃(R).

(3) RH\P is a graded Prüfer domain for each P ∈ h-QMax⋆̃(R).

(4) RP is a valuation domain for each P ∈ h-QSpec⋆̃(R).

(5) RP is a valuation domain for each P ∈ h-QMax⋆̃(R).

Proof. (2) ⇒ (3) is trivial, and, (2) ⇔ (4) and (3) ⇔ (5), follow from Lemma 4.3.
(1) ⇒ (2) Let I be a nonzero finitely generated homogeneous ideal of R. Then

I is ⋆̃-invertible. Therefore, for each P ∈ h-QSpec⋆̃(R), since II−1 * P , we have
RH\P = (II−1)RH\P = IRH\P I

−1RH\P = (IRH\P )(IRH\P )
−1. So that IRH\P

is invertible. Thus RH\P is a graded Prüfer domain for each P ∈ h-QSpec⋆̃(R).
(3) ⇒ (1) Let I be a nonzero finitely generated homogeneous ideal of R. Suppose

that I is not ⋆̃-invertible. Hence there exists P ∈ h-QMax⋆̃(R) such that II−1 ⊆ P .
Thus RH\P = (IRH\P )(IRH\P )

−1 = II−1RH\P ⊆ PRH\P , which is a contradic-

tion. So that II−1 * P for each P ∈ h-QMax⋆̃(R). Therefore (II−1)⋆̃ = R⋆̃, that
is I is ⋆̃-invertible, and hence R is a graded P⋆MD. �

The ungraded version of the following theorem is due to Chang in the star
operation case [8, Theorem 3.7], and is due to Anderson, Fontana, and Zafrullah in
the case of semistar operations [6, Theorem 1.1].

Theorem 4.5. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree, and ⋆ be a semistar operation on R such that R⋆ ( RH . Then R
is a graded P⋆MD if and only if (C(f)C(g))⋆̃ = C(fg)⋆̃ for all f, g ∈ RH .

Proof. (⇒) Let f, g ∈ RH . Choose a positive integer n such that C(f)n+1C(g) =

C(f)nC(fg) by [4, Lemma 1.1(1)]. Thus (C(f)n+1C(g))⋆̃ = (C(f)nC(fg))⋆̃. Since
R is a graded P⋆MD, the homogeneous fractional ideal C(f)n is ⋆̃-invertible. Thus
(C(f)C(g))⋆̃ = C(fg)⋆̃ for all f, g ∈ RH .

(⇐) Assume that (C(f)C(g))⋆̃ = C(fg)⋆̃ for all f, g ∈ RH . Let P ∈ h-

QMax⋆̃(R). Then using Proposition 2.6, we haveC(f)RH\PC(g)RH\P = C(f)C(g)RH\P =

(C(f)C(g))⋆̃RH\P = C(fg)⋆̃RH\P = C(fg)RH\P . Since RH\P has a unit of
nonzero degree, Theorem 4.2 shows that RH\P is a graded Prüfer domain. Now
Theorem 4.4, implies that R is a graded P⋆MD. �

We now recall the notion of ⋆-valuation overring (a notion due essentially to P.
Jaffard [25, page 46]). For a domain D and a semistar operation ⋆ on D, we say
that a valuation overring V of D is a ⋆-valuation overring of D provided F ⋆ ⊆ FV ,
for each F ∈ f(D).
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Remark 4.6. (1) Let ⋆ be a semistar operation on a graded integral domain R =⊕
α∈Γ Rα. Recall that for each F ∈ f(R) we have

F ⋆a =
⋂

{FV |V is a ⋆ -valuation overring of R},

by [19, Propositions 3.3 and 3.4 and Theorem 3.5].
(2) We have N⋆(H) = N⋆̃a

(H). Indeed, since ⋆̃ ≤ ⋆̃a by [20, Proposition 4.5], we

have N⋆(H) = N⋆̃(H) ⊆ N⋆̃a
(H). Now if f ∈ R\N⋆(H) then, C(f)⋆̃ ( R⋆̃. Thus

there is a homogeneous quasi-⋆̃-prime ideal P of R such that C(f) ⊆ P . Let V
be a valuation domain dominating RP with maximal ideal M [23, Corollary 19.7].
Therefore V is a ⋆̃-valuation overring of R by [18, Theorem 3.9], and C(f)V ⊆ M ;
so C(f)(⋆̃)a ( R(⋆̃)a and f /∈ N⋆̃a

(H). Thus we obtain that N⋆(H) = N⋆̃a(H).

In the following theorem we generalize a characterization of PvMDs proved by
Arnold and Brewer [7, Theorem 3]. It also generalizes [8, Theorem 3.7], [4, Theo-
rems 3.4 and 3.5], and [17, Theorem 3.1].

Theorem 4.7. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree, and ⋆ be a semistar operation on R such that R⋆ ( RH . Then, the
following statements are equivalent:

(1) R is a graded P⋆MD.
(2) Every ideal of RN⋆(H) is extended from a homogeneous ideal of R.
(3) Every principal ideal of RN⋆(H) is extended from a homogeneous ideal of R.
(4) RN⋆(H) is a Prüfer domain.
(5) RN⋆(H) is a Bézout domain.
(6) RN⋆(H) = Kr(R, ⋆̃).
(7) Kr(R, ⋆̃) is a quotient ring of R.
(8) Kr(R, ⋆̃) is a flat R-module.
(9) I ⋆̃ = I ⋆̃a for each nonzero homogeneous finitely generated ideal of R.

In particular if R is a graded P⋆MD, then R⋆̃ is integrally closed.

Proof. By Proposition 2.3 and Theorem 3.3, we have Kr(R, ⋆̃) is well-defined and
is a Bézout domain.

(1) ⇒ (2) Let 0 6= f ∈ R. Then C(f) is ⋆̃-invertible, because R is a graded
P⋆MD, and thus fRN⋆(H) = C(f)RN⋆(H) by Corollary 2.11. Hence if A is an ideal of
RN⋆(H), then A = IRN⋆(H) for some ideal I ofR, and thus A = (

∑
f∈I C(f))RN⋆(H).

(2) ⇒ (3) Clear.
(3) ⇒ (1) Is the same as part (3) ⇒ (1) in [4, Theorem 3.4].
(1) ⇒ (4) Let A be a nonzero finitely generated ideal of RN⋆(H). Then by

Corollary 2.11, A = IRN⋆(H) for some nonzero finitely generated homogeneous
ideal I of R. Since R is a graded P⋆MD, I is ⋆̃-invertible, and thus A = IRN⋆(H)

is invertible by Lemma 2.10.
(4) ⇒ (5) Follows from Theorem 2.13.
(5) ⇒ (6) Clearly RN⋆(H) ⊆ Kr(R, ⋆̃). Since RN⋆(H) is a Bézout domain, then

Kr(R, ⋆̃) is a quotient ring ofRN⋆(H), by [23, Proposition 27.3]. IfQ ∈ h-QMax⋆̃(R),
then QKr(R, ⋆̃) ( Kr(R, ⋆̃). Otherwise QKr(R, ⋆̃) = Kr(R, ⋆̃), and hence there is
an element f ∈ Q, such that f Kr(R, ⋆̃) = Kr(R, ⋆̃). Thus 1

f
∈ Kr(R, ⋆̃). Therefore

R = C(1) ⊆ C(f)(⋆̃)a ⊆ R(⋆̃)a , so that C(f)(⋆̃)a = R(⋆̃)a . Hence f ∈ N(⋆̃)a(H) =

N⋆(H) by Remark 4.6(2). This means that Q⋆̃ = R⋆̃, a contradiction. Thus
QKr(R, ⋆̃) ( Kr(R, ⋆̃), and so there is a maximal ideal M of Kr(R, ⋆̃) such that
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QKr(R, ⋆) ⊆ M . Hence M ∩ RN⋆(H) = QRN⋆(H), by Lemma 2.7. Consequently
RQ ⊆ Kr(R, ⋆̃)M , and since RQ is a valuation domain, we have RQ = Kr(R, ⋆̃)M .
Therefore RN⋆(H) =

⋂
Q∈h-QMax⋆̃(R) RQ ⊇

⋂
M∈Max(Kr(R,⋆̃)) Kr(R, ⋆̃)M . Hence

RN⋆(H) = Kr(R, ⋆̃).
(6) ⇒ (7) and (7) ⇒ (8) are clear.
(8) ⇒ (6) Recall that an overring T of an integral domain S is a flat S-module

if and only if TM = SM∩S for all M ∈ Max(T ) by [32, Theorem 2].
Let A be an ideal of R such that AKr(R, ⋆̃) = Kr(R, ⋆̃). Then there exists

an element f ∈ A such that f Kr(R, ⋆̃) = Kr(R, ⋆̃) using Theorem 3.3; so 1
f

∈

Kr(R, ⋆̃) = Kr(R, ⋆̃a). Thus R = C(1) ⊆ C(f)⋆̃a ⊆ R⋆̃a , and so C(f)⋆̃a = R⋆̃a .
Hence C(f)⋆̃ = R⋆̃. Therefore f ∈ A ∩N⋆(H) 6= ∅. Hence, if P0 is a homogeneous
maximal quasi-⋆̃-ideal of R, then P0 Kr(R, ⋆̃) ( Kr(R, ⋆̃), and since P0RN⋆(H) is
a maximal ideal of RN⋆(H), there is a maximal ideal M0 of Kr(R, ⋆̃) such that
M0 ∩R = (M0 ∩RN⋆(H)) ∩ R = P0RN⋆(H) ∩ R = P0. Thus by (8), Kr(R,w)M0 =
RP0 = (RN(H))P0RN(H)

.

Let M1 be a maximal ideal of Kr(R, ⋆̃), and let P1 be a homogeneous maximal
quasi-⋆̃-ideal of R such that M1 ∩ RN⋆(H) ⊆ P1RN⋆(H). By the above paragraph,
there is a maximal ideal M2 of Kr(R, ⋆̃) such that Kr(R, ⋆̃)M2 = (RN⋆(H))P1RN⋆(H)

.

Note that Kr(R, ⋆̃)M2 ⊆ Kr(R, ⋆̃)M1 , M1 and M2 are maximal ideals, and Kr(R, ⋆̃)
is a Prüfer domain; hence M1 = M2 (cf. [23, Theorem 17.6(c)]) and Kr(R, ⋆̃)M1 =
(RN⋆(H))P1RN(H)

. Thus

Kr(R, ⋆̃) =
⋂

M∈Max(Kr(R,⋆̃))

Kr(R, ⋆̃)M =
⋂

P∈h-QMax⋆̃(R)

(RN⋆(H))PRN⋆(H)
= RN⋆(H).

(6) ⇒ (9) Assume that RN⋆(H) = Kr(R, ⋆̃). Let I be a nonzero homogeneous
finitely generated ideal of R. Then by Lemma 2.9 and Theorem 3.3(3), we have

I ⋆̃ = IRN⋆(H) ∩RH = I Kr(R, ⋆̃) ∩RH = I ⋆̃a .
(9) ⇒ (1) Let a and b be two nonzero homogeneous elements of R. Then

((a, b)3)⋆̃a = ((a, b)(a2, b2))⋆̃a which implies that ((a, b)2)⋆̃a = (a2, b2)⋆̃a . Hence
((a, b)2)⋆̃ = (a2, b2)⋆̃ and so (a, b)2RH\P = (a2, b2)RH\P for each homogeneous

maximal quasi-⋆̃-ideal P of R. On the other hand R⋆̃ = R⋆̃a by (9). Hence R⋆̃

is integrally closed. Thus R⋆̃RH\P = RH\P is integrally closed. Therefore by
Proposition 4.1, RH\P is a graded Prüfer domain for each homogeneous maximal
quasi-⋆f -ideal of R. Thus R is a graded P⋆MD by Theorem 4.4. �

The following theorem is a graded version of a characterization of Prüfer domains
proved by Davis [12, Theorem 1]. It also generalizes [13, Theorem 2.10], in the t-
operation, and [15, Theorem 5.3], in the case of semistar operations.

Theorem 4.8. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree, and ⋆ be a semistar operation on R such that R⋆ ( RH . Then, the
following statements are equivalent:

(1) R is a graded P⋆MD.
(2) Each homogeneously (⋆, t)-linked overring of R is a PvMD.
(3) Each homogeneously (⋆, d)-linked overring of R is a graded Prüfer domain.
(4) Each homogeneously (⋆, t)-linked overring of R, is integrally closed.
(5) Each homogeneously (⋆, d)-linked overring of R, is integrally closed.
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Proof. (1) ⇒ (2) Let T be a homogeneously (⋆, t)-linked overring of R. Thus by
Lemma 2.15, we have RN⋆(H) ⊆ TNv(H). Since R is a graded P⋆MD, by Theorem
4.7, we have RN⋆(H) is a Prüfer domain. Thus by [23, Theorem 26.1], we have
TNv(H) is a Prüfer domain. Hence, again by Theorem 4.7, we have T is a graded
PvMD. Therefore using [2, Theorem 6.4], T is a PvMD.

(2) ⇒ (4) ⇒ (5) and (3) ⇒ (5) are clear.

(5) ⇒ (1) Let P ∈ h-QMax⋆̃(R). For a nonzero homogeneous u ∈ RH , let
T = R[u2, u3]H\P . Then RH\P and T are homogeneous (⋆, d)-linked overring of R
by Example 2.14. So that RH\P and T are integrally closed. Hence u ∈ T , and

since T = RH\P [u
2, u3], there exists a polynomial γ ∈ RH\P [X ] such that γ(u) = 0

and one of the coefficients of γ is a unit in RH\P . So u or u−1 is in RH\P by [27,
Theorem 67]. Therefore by Lemma 4.3, RH\P is a graded Prüfer domain. Thus R
is a graded P⋆MD by Theorem 4.4.

(1) ⇒ (3) Is the same argument as in part (1) ⇒ (2). �

The next result gives new characterizations of PvMDs for graded integral do-
mains, which is the special cases of Theorems 4.4, 4.5, 4.7, and 4.8, for ⋆ = v.

Corollary 4.9. Let R =
⊕

α∈Γ Rα be a graded integral domain with a unit of
nonzero degree. Then, the following statements are equivalent:

(1) R is a (graded) PvMD.
(2) RH\P is a graded Prüfer domain for each P ∈ h-QMaxt(R).

(3) RP is a valuation domain for each P ∈ h-QMaxt(R).
(4) Every ideal of RNv(H) is extended from a homogeneous ideal of R.
(5) RNv(H) is a Prüfer domain.
(6) RNv(H) is a Bézout domain.
(7) RNv(H) = Kr(R,w).
(8) Kr(R,w) is a quotient ring of R.
(9) Kr(R,w) is a flat R-module.

(10) Each homogeneously t-linked overring of R is a PvMD.
(11) Each homogeneously t-linked overring of R, is integrally closed.
(12) (C(f)C(g))w = C(fg)w for all f, g ∈ RH .
(13) Iw = Iwa for each nonzero homogeneous finitely generated ideal of R.
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cation domains, Comm. Algebra 32 (2004), 1101–1126.
16. M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in: S. Chapman

and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000,
169–197.
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