CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

PARVIZ SAHANDI

ABSTRACT. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid Γ , and \star be a semistar operation on R. In this paper we define and study the graded integral domain analogue of \star -Nagata and Kronecker function rings of R with respect to \star . We say that R is a graded Prüfer \star -multiplication domain if each nonzero finitely generated homogeneous ideal of R is \star_f -invertible. Using \star -Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Prüfer \star -multiplication domain. In particular we give new characterizations for a graded integral domain, to be a PvMD.

1. INTRODUCTION

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded (commutative) integral domain graded by an arbitrary grading torsionless monoid Γ , that is Γ is a commutative cancellative monoid (written additively). Let $\langle \Gamma \rangle = \{a - b | a, b \in \Gamma\}$, be the quotient group of Γ, which is a torsionfree abelian group.

Let H be the saturated multiplicative set of nonzero homogeneous elements of R . Then $R_H = \bigoplus_{\alpha \in \langle \Gamma \rangle} (R_H)_{\alpha}$, called the *homogeneous quotient field of* R, is a graded integral domain whose nonzero homogeneous elements are units. For a fractional ideal I of R let I_h denote the fractional ideal generated by the set of homogeneous elements of R in I. It is known that if I is a prime ideal, then I_h is also a prime ideal (cf. $[29, Page 124]$). An integral ideal I of R is said to be homogeneous if $I = \bigoplus_{\alpha \in \Gamma} (I \cap R_{\alpha})$; equivalently, if $I = I_h$. A fractional ideal I of R is *homogeneous* if sI is an integral homogeneous ideal of R for some $s \in H$ (thus $I \subseteq R_H$). For $f \in R_H$, let $C_R(f)$ (or simply $C(f)$) denote the fractional ideal of R generated by the homogeneous components of f. For a fractional ideal I of R with $I \subseteq R_H$, let $C(I) = \sum_{f \in I} C(f)$. For more on graded integral domains and their divisibility properties, see [\[3,](#page-16-0) [29\]](#page-17-0).

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ and $N_v(H) = \{f \in R | C(f)^v = R\}$. (Definitions related to the v-operation will be reviewed in the sequel.) Then $N_v(H)$ is a saturated multi-plicative subset of R by [\[4,](#page-16-1) Lemma 1.1(2)]. The graded integral domain analogue of the well known Nagata ring is the ring $R_{N_v(H)}$. In [\[4\]](#page-16-1), Anderson and Chang, studied relationships between the ideal-theoretic properties of $R_{N_v(H)}$ and the homogeneous ideal-theoretic properties of R . For example it is shown that if R has a unit of nonzero degree, $Pic(R_{N_v(H)}) = 0$ and that R is a PvMD if and only if each ideal of $R_{N_v(H)}$ is extended from a homogeneous ideal of R, if and only if $R_{N_v(H)}$

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 13A15, 13G05, 13A02.

Key words and phrases. semistar operation, Nagata ring, Kronecker function ring, Prüfer domain, graded domain, PvMD.

Parviz Sahandi was in part supported by a grant from IPM (No. 91130030).

is a Prüfer (or Bézout) domain $[4,$ Theorems 3.3 and 3.4. Also, they generalized the notion of Kronecker function ring, (for **e.a.b.** star operations on R) and then showed that this ring is a Bézout domain $[4,$ Theorem 3.5]. For the definition and properties of semistar-Nagata and Kronecker function rings of an integral domain see the interesting survey article [\[21\]](#page-17-1). Recall that the *Picard group (or the ideal class group*) of an integral domain D, is $Pic(D) = Inv(D)/Prin(D)$, where $Inv(D)$ is the multiplicative group of invertible fractional ideals of D , and $Prin(D)$ is the subgroup of principal fractional ideal of D.

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be an integral domain, and \star be a semistar operation on R. In Section 2 of this paper we study the homogeneous elements of $\mathrm{QSpec}^{\star}(R)$ denoted by h-QSpec^{*}(R). We show that if \star is a finite type semistar operation on R which sends homogeneous fractional ideals to homogeneous ones, and such that $R^* \subsetneq R_H$, then each homogeneous quasi- \star -ideal of R, is contained in a homogeneous quasi- \star prime ideal of R. One of key results in this paper is Proposition [2.3,](#page-4-0) which shows that if $R^* \subsetneq R_H$, the $\widetilde{\star}$ sends homogeneous fractional ideals to homogeneous ones. We also define and study the Nagata ring of R with respect to \star . The \star -Nagata ring is defined by the quotient ring $R_{N_{\star}(H)}$, where $N_{\star}(H) = \{f \in R | C(f)^{\star} = R^{\star}\}.$ Among other things, it is shown that $Pic(R_{N_{\star}(H)}) = 0$. In Section 3 we define and study the Kronecker function ring of R with respect to \star . The Kronecker function ring, inspired by [\[20,](#page-17-2) Theorem 5.1], is defined by Kr(R, \star) := {0} ∪ { $f/g|0 \neq$ $f, g \in R$, and there is $0 \neq h \in R$ such that $C(f)C(h) \subseteq (C(g)C(h))^*$. It is shown that if \star sends homogeneous fractional ideals to fractional ones, then $Kr(R, \star)$ is a Bézout domain. In Section 3 we define the notion of graded Prüfer \star -multiplication domains and give several different equivalent conditions to be a graded $P\star MD$. A graded integral domain R, is called a *graded Prüfer* \star *-multiplication domain (graded*) $P \star M D$) if every finitely generated homogeneous ideal of R is a \star_f -invertible, i.e., $(II^{-1})^{\star_f} = R^{\star}$ for each finitely generated homogeneous ideal I of R. Among other results we show that R is a graded P \star MD if and only if $R_{N_{\star}(H)}$ is a Prüfer domain if and only if $R_{N_{\star}(H)}$ is a Bézout domain if and only if $R_{N_{\star}(H)} = \text{Kr}(R, \tilde{\star})$ if and only if $Kr(R, \tilde{\star})$ is a flat R-module.

To facilitate the reading of the paper, we review some basic facts on semistar operations. Let D be an integral domain with quotient field K. Let $\overline{\mathcal{F}}(D)$ denote the set of all nonzero D-submodules of K. Let $\mathcal{F}(D)$ be the set of all nonzero *fractional* ideals of D; i.e., $E \in \mathcal{F}(D)$ if $E \in \overline{\mathcal{F}}(D)$ and there exists a nonzero element $r \in D$ with $r \in D$. Let $f(D)$ be the set of all nonzero finitely generated fractional ideals of D. Obviously, $f(D) \subseteq \mathcal{F}(D) \subseteq \overline{\mathcal{F}}(D)$. As in [\[30\]](#page-17-3), a *semistar operation on* D is a map $\star : \overline{\mathcal{F}}(D) \to \overline{\mathcal{F}}(D)$, $E \mapsto E^*$, such that, for all $x \in K$, $x \neq 0$, and for all $E, F \in \overline{\mathcal{F}}(D)$, the following three properties hold:

- \star_1 : $(xE)^* = xE^*;$
- $\star_2 : E \subseteq F$ implies that $E^* \subseteq F^*$;
- $\star_3 : E \subseteq E^{\star}$ and $E^{\star\star} := (E^{\star})^{\star} = E^{\star}.$

Let \star be a semistar operation on the domain D. For every $E \in \overline{\mathcal{F}}(D)$, put $E^{\star_f} := \cup F^{\star}$, where the union is taken over all finitely generated $F \in f(D)$ with $F \subseteq E$. It is easy to see that \star_f is a semistar operation on D, and \star_f is called *the semistar operation of finite type associated to* \star . Note that $(\star_f)_f = \star_f$. A semistar operation \star is said to be of *finite type* if $\star = \star_f$; in particular \star_f is of finite type. We say that a nonzero ideal I of D is a *quasi-* \star -ideal of D, if $I^* \cap D = I$; a *quasi-* \star *prime* (ideal of D), if I is a prime quasi- \star -ideal of D; and a *quasi-* \star *-maximal* (ideal of D), if I is maximal in the set of all proper quasi- \star -ideals of D. Each quasi- \star -maximal ideal is a prime ideal. It was shown in [\[16,](#page-17-4) Lemma 4.20] that if $D^* \neq K$, then each proper quasi- \star_f -ideal of D is contained in a quasi- \star_f -maximal ideal of D. We denote by $\mathsf{QMax}^{\star}(D)$ (resp., $\mathsf{QSpec}^{\star}(D)$) the set of all quasi- \star -maximal ideals (resp., quasi- \star -prime ideals) of D.

If \star_1 and \star_2 are semistar operations on D, one says that $\star_1 \leq \star_2$ if $E^{\star_1} \subseteq E^{\star_2}$ for each $E \in \overline{\mathcal{F}}(D)$ (cf. [\[30,](#page-17-3) page 6]). This is equivalent to saying that $(E^{\star})^{\star 2} =$ $E^{\star_2} = (E^{\star_2})^{\star_1}$ for each $E \in \overline{\mathcal{F}}(D)$ (cf. [\[30,](#page-17-3) Lemma 16]). Obviously, for each semistar operation \star defined on D, we have $\star_f \leq \star$. Let d_D (or, simply, d) denote the identity (semi)star operation on D. Clearly, $d_D \leq \star$ for all semistar operations \star on D.

It has become standard to say that a semistar operation \star is *stable* if $(E \cap F)^{\star}$ = $E^{\star} \cap F^{\star}$ for all $E, F \in \overline{\mathcal{F}}(D)$. ("Stable" has replaced the earlier usage, "quotient", in [\[30,](#page-17-3) Definition 21].) Given a semistar operation \star on D, it is possible to construct a semistar operation $\widetilde{\star}$, which is stable and of finite type defined as follows: for each $E \in \overline{\mathcal{F}}(D),$

$$
E^{\widetilde{\star}} := \{ x \in K | xJ \subseteq E, \text{ for some } J \subseteq R, J \in f(R), J^{\star} = D^{\star} \}.
$$

It is well known that [\[16,](#page-17-4) Corollary 2.7]

$$
E^{\widetilde{\star}} := \cap \{ E D_P | P \in \mathrm{QMax}^{\star_f}(D) \}, \text{ for each } E \in \overline{\mathcal{F}}(D).
$$

The most widely studied (semi)star operations on D have been the identity d , $v, t := v_f$, and $w := \tilde{v}$ operations, where $A^v := (A^{-1})^{-1}$, with $A^{-1} := (R : A) :=$ $\{x \in K | xA \subseteq D\}.$

Let \star be a semistar operation on an integral domain D. We say that \star is an e.a.b. *(endlich arithmetisch brauchbar) semistar operation* of D if, for all $E, F, G \in f(D), (EF)^* \subseteq (EG)^*$ implies that $F^* \subseteq G^*$ ([\[20,](#page-17-2) Definition 2.3 and Lemma 2.7). We can associate to any semistar operation \star on D, an e.a.b. semistar operation of finite type \star_a on D, called the *e.a.b. semistar operation associated to* \star , defined as follows for each $F \in f(D)$ and for each $E \in \overline{F}(D)$:

$$
F^{\star_a} := \bigcup \{ ((FH)^{\star} : H^{\star}) | H \in f(R) \},
$$

$$
E^{\star_a} := \bigcup \{ F^{\star_a} | F \subseteq E, F \in f(R) \}
$$

[\[20,](#page-17-2) Definition 4.4 and Proposition 4.5] (note that $((FH)^{*}: H^{*}) = ((FH)^{*}: H)$). It is known that $\star_f \leq \star_a$ [\[20,](#page-17-2) Proposition 4.5(3)]. Obviously $(\star_f)_a = \star_a$. Moreover, when $\star = \star_f$, then \star is **e**.a.b. if and only if $\star = \star_a$ [\[20,](#page-17-2) Proposition 4.5(5)].

Let \star be a semistar operation on a domain D. Recall from [\[17\]](#page-17-5) that, D is called a *Prüfer* \star -multiplication domain (for short, a P \star MD) if each finitely generated ideal of D is \star_f *-invertible*; i.e., if $(II^{-1})^{\star_f} = D^{\star}$ for all $I \in f(D)$. When $\star = v$, we recover the classical notion of PvMD; when $\star = d_D$, the identity (semi)star operation, we recover the notion of Prüfer domain.

2. Nagata ring

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star be a semistar operation on R, H be the set of nonzero homogeneous elements of R . An overring T of R , with $R \subseteq T \subseteq R_H$ will be called a *homogeneous overring* if $T = \bigoplus_{\alpha \in \langle \Gamma \rangle} (T \cap (R_H)_{\alpha}).$ Thus T is a graded integral domain with $T_{\alpha} = T \cap (R_H)_{\alpha}$.

In this section we study the homogeneous elements of $\mathrm{QSpec}^{\star}(R)$, denoted by $h\text{-}QSpec^{\star}(R)$, and the graded integral domain analogue of \star -Nagata ring. Let h- $\mathrm{QMax}^{\star}(R)$ denote the set of ideals of R which are maximal in the set of all proper homogeneous quasi- \star -ideals of R. The following lemma shows that, if $R^* \subsetneq R_H$ and $\star = \star_f$ sends homogeneous fractional ideals to homogeneous ones, then h- $\mathbf{Q}\mathbf{M}\mathbf{a}\mathbf{x}^{\star}f(R)$ is nonempty and each proper homogeneous quasi- \star_f -ideal is contained in a maximal homogeneous quasi- \star_f -ideal.

Lemma 2.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a finite type semis*tar operation on* R *which sends homogeneous fractional ideals to homogeneous ones,* and such that $R^* \subseteq R_H$. If I is a proper homogeneous quasi- \star -ideal of R, then I is *contained in a proper homogeneous quasi-*-prime ideal.*

Proof. Let $X := \{I | I$ is a homogeneous quasi- \star -ideal of R $\}$. Then it is easy to see that X is nonempty. Indeed, in this case R^* is a homogeneous overring of R, and if $u \in H$ is a nonunit in R^* , then $uR^* \cap R$ is a proper homogeneous quasi- \star -ideal of R. Also X is inductive (see proof of $[16, \text{ Lemma } 4.20]$). From Zorn's Lemma, we see that every proper homogeneous quasi- \star -ideal of R is contained in some maximal element Q of X .

Now we show that Q is actually prime. Take $f, g \in H \backslash Q$ and suppose that $fg \in Q$. By the maximality of Q we have $(Q, f)^* = R^*$ (note that $(Q, f)^* \cap R$ is a homogeneous quasi- \star -ideal of R and properly contains Q). Since \star is of finite type, we can find a finitely generated ideal $J \subseteq Q$ such that $(J, f)^* = R^*$. Then $g \in gR^* \cap R = g(J, f)^* \cap R \subseteq Q^* \cap R = Q$ a contradiction. Thus Q is a prime ideal.

The following example shows that we can not drop the condition that, \star sends homogeneous fractional ideals to homogeneous ones, in the above lemma.

Example 2.2. Let k be a field and X, Y be indeterminates over k. Let $R = k[X, Y]$, *which is a (N₀-)graded Noetherian integral domain with* deg $X = \deg Y = 1$ *. Set* $M := (X, Y + 1)$ *which is a maximal non-homogeneous ideal of R. Let* T *be a DVR* [\[11\]](#page-17-6)*, with maximal ideal* N, dominating the local ring R_M . If $R_H \subseteq T$, then *there exists a prime ideal* P *of* R *such that,* $P \cap H = \emptyset$ *and* $N \cap R_H = PR_H$. *Thus* $M = N \cap R = N \cap R_H \cap R = PR_H \cap R = P$ *. Hence* $M \cap H = \emptyset$ *, which is a contradiction, since* $X \in M \cap H$ *. So that,* $R_H \nsubseteq T$ *. Let* \star *be a semistar operation on* R *defined by* $E^* = ET \cap ER_H$ *for each* $E \in \overline{\mathcal{F}}(R)$ *. Then clearly* $\star = \star_f$ and $R^* \subsetneq R_H$ *. If* P *is a nonzero prime ideal of* R*, such that* $P \cap H = ∅$ *, then* $P^{\star_f} \cap R = PT \cap PR_H \cap R = PT \cap P = P$. Thus P *is a quasi-* \star_f -prime ideal. *On the other hand if* P *is any nonzero prime ideal of* R *such that* $P \cap H \neq \emptyset$ *, then* $PT = N^k$, for some integer $k \geq 1$. Therefore, if we assume that P is a quasi- \star_f *ideal of* R, then we would have $P = PT \cap PR_H \cap R = PT \cap R = N^k \cap R \supseteq M^k$, *which implies that* $P = M$ *. Thus* $QSpec^{\star_f}(R) = \{M\} \cup \{P \in \text{Spec}(R)|P \neq 0 \text{ and } P\}$ $P \cap H = \emptyset$. Therefore by [\[16,](#page-17-4) Lemma 4.1, Remark 4.5], we have $\text{QSpec}^{\widetilde{\star}}(R) = \{Q \in$ $Spec(R)|0 \neq Q \subseteq M$ } \cup { $P \in Spec(R)|P \neq 0$ *and* $P \cap H = \emptyset$ *}. Hence in the present example we have* $h \text{-QSpec}^{\star} f(R) = h \text{-QMax}^{\star} f(R) = \emptyset$, and $h \text{-QSpec}^{\tilde{\star}}(R) = h$ $\mathrm{QMax}^{\widetilde{\star}}(R) = \{ (X) \}.$ Note that in this example h- $\mathrm{QMax}^{\widetilde{\star}}(R) \nsubseteq \mathrm{QMax}^{\widetilde{\star}}(R) =$ $\mathrm{QMax}^{\star f}(R)$.

From now on in this paper, we are interested and consider, the semistar operations \star on R, such that $R^* \subsetneq R_H$ and sends homogeneous fractional ideals to homogeneous ones. For any such semistar operation, if I is a homogeneous ideal of R, we have $I^{\star_f} = R^{\star}$ if and only if $I \nsubseteq Q$ for each $Q \in h\text{-}QMax^{\star_f}(R)$. Also if P is a quasi- \star -prime ideal of R, then either $P_h = 0$ or P_h is a quasi- \star -prime ideal of R. Indeed, if $P_h \neq 0$, then $P_h \subseteq (P_h)^* \cap R \subseteq P^* \cap R = P$, which implies that $P_h = (P_h)^* \cap R$, since $(P_h)^* \cap R$ is a homogeneous ideal.

The following proposition is the key result in this paper.

Proposition 2.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a *semistar operation on* R *such that* $R^* \subsetneq R_H$. Then, $\tilde{\star}$ *sends homogeneous fractional ideals to homogeneous ones. In particular* h *-* \widehat{Q} *Max^{* $\widetilde{\star}(R) \neq \emptyset$ *, and* $R\widetilde{\star}$ *is a*} *homogeneous overring of* R*.*

Proof. Let E be a homogenous fractional ideal of R. To show that $E^{\tilde{\star}}$ is homogeneous let $f \in E^{\tilde{\star}}$. Then $fJ \subseteq E$ for some finitely generated ideal J of R such that $J^* = R^*$. Suppose that $J = (g_1, \dots, g_n)$. Using [\[4,](#page-16-1) Lemma 1.1(1)], there is an integer $m \geq 1$ such that $C(g_i)^{m+1}C(f) = C(g_i)^m C(fg_i)$ for all $i = 1, \dots, n$. Since E is a homogeneous fractional ideal and $fg_i \in E$, we have $C(fg_i) \subseteq E$. Thus we have $C(g_i)^{m+1}C(f) \subseteq E$. Let $J_0 := C(g_1)^{m+1} + \cdots + C(g_n)^{m+1}$. Thus J_0 is a finitely generated homogeneous ideal of R such that $J_0^* = R^*$. Since $C(f)J_0 \subseteq E$, $C(f) \subseteq E^{\tilde{\star}}$. Therefore $E^{\tilde{\star}}$ is a homogeneous ideal.

Lemma 2.4. *Let* $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ *be a graded integral domain,* \star *a semistar operation* on R which sends homogeneous fractional ideals to homogeneous ones. Then \star_f *sends homogeneous fractional ideals to homogeneous ones.*

Proof. Let E be a homogenous fractional ideal of R. Let $0 \neq x \in E^{\star_f}$. Then, there exists an $F \in f(R)$ such that $F \subseteq E$ and $x \in F^*$. Suppose that F is generated by $y_1, \dots, y_n \in R_H$. Let G be a homogeneous fractional ideal of R, generated by homogeneous components of y_1, \dots, y_n . Note that $F \subseteq G \subseteq E$ and $x \in G^*$. Thus homogeneous components of x belong to $G^* \subseteq E^{*_f}$. This shows that E^{*_f} is homogeneous. \square

Note that the v-operation sends homogeneous fractional ideals to homogeneous ones by [\[3,](#page-16-0) Proposition 2.5]. Using the above two results, the t and w-operations also, send homogeneous fractional ideals to homogeneous ones.

It it well-known that $\mathrm{QMax}^{\star}{}^{f}(R) = \mathrm{QMax}^{\widetilde{\star}}(R)$, see [\[5,](#page-16-2) Theorem 2.16], for star operation case, and [\[18,](#page-17-7) Corollary 3.5(2)], in general semistar operations. Although Example [2.2,](#page-3-0) shows that it may happen that $h\text{-}\mathrm{QMax}^{\star_f}(R) \neq h\text{-}\mathrm{QMax}^{\widetilde{\star}}(R)$, we have the following proposition whose proof is almost the same as [\[4,](#page-16-1) Theorem 2.16].

Proposition 2.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar *operation on* R *such that* $R^* \subsetneq R_H$ *, which sends homogeneous fractional ideals to homogeneous ones.* Then h -QMax^{*} $f(R) = h$ -QMax^{*} (R) .

Proof. Assume that $Q \in h \text{-} Q \text{Max}^{\star_f}(R)$. Then since $\widetilde{\star} \leq \star_f$ by [\[18,](#page-17-7) Lemma 2.7(1)], we have $Q \subseteq Q^{\tilde{\star}} \cap R \subseteq Q^{\star_f} \cap R = Q$, that is Q is a quasi- $\tilde{\star}$ -ideal. Suppose that $Q \notin h$ -QMax^{$\widetilde{\star}(R)$}. Then Q is properly contained in some $P \in h$ -QMax $\widetilde{\star}(R)$. So since $Q \in h\text{-}QMax^{\star_f}(R)$, using Lemma [2.1,](#page-3-1) we must have $P^{\star_f} = R^{\star}$. Thus there is some finitely generated ideal $F \subseteq P$ such that $F^* = R^*$. So for any $r \in R$, $rF \subseteq F \subseteq P$. But then, $r \in P^{\tilde{\star}}$, so $R \subseteq P^{\tilde{\star}}$, which implies that $P^{\tilde{\star}} = R^{\tilde{\star}}$, a contradiction. Therefore, we must have $Q \in h\text{-}QMax^{\tilde{\star}}(R)$.

If $Q \in h$ -QMax^{$\tilde{\star}(R)$}, then $Q = Q^{\tilde{\star}} \cap R \subseteq Q^{\star_f} \cap R \subseteq R$. Suppose that $Q^{\star_f} \cap R = R$, which implies that $Q^{\star_f} = R^{\star}$. Then there is a finitely generated ideal $F \subseteq Q$ such that $F^* = R^*$. Now for any $r \in R$, $rF \subseteq F \subseteq Q$. Therefore $R \subseteq Q^*$, and so $R = Q^{\tilde{\star}} \cap R = Q$, which is a contradiction. So $Q^{\star_f} \cap R \subsetneq R$. Now, since $Q^{\star_f} \cap R$ is a homogeneous quasi- \star_f -ideal, there is a $P \in h$ -QMax^{*f}(R) such that $Q \subseteq Q^{\star_f} \cap R \subseteq P$. From the first half of the proof, we know that $P \in h$ -QMax^{$\tilde{\star}(R)$}. So we must have $P = Q$. Therefore $Q \in h\text{-}QMax^{\star_f}(R)$.

Park in [\[31,](#page-17-8) Lemma 3.4], proved that $I^w = \bigcap_{P \in h \text{-}QMax^w(R)} IR_{H \setminus P}$ for each homogeneous ideal I of R.

Proposition 2.6. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar *operation on* R *such that* $R^* \subsetneq R_H$. Then $I^* = \bigcap_{P \in h \text{-} QMax} I^* (R) I^* (R_H \setminus P)$ for each *homogeneous ideal* I of R. Moreover $I^{\tilde{*}}R_{H\setminus P} = IR_{H\setminus P}$ for all homogeneous ideal *I* of *R* and all $P \in h$ -QMax^{$\tilde{\star}(R)$.}

Proof. By Proposition [2.3,](#page-4-0) $I^{\tilde{\star}}$ is a homogeneous ideal. Also note that $\bigcap_{P \in h} Q_{\text{Max}}(R)$ $IR_{H \setminus P}$ is a homogeneous ideal of R. Let $f \in I^{\tilde{\star}}$ be homogeneous. Then $fJ \subseteq I$ for some homogeneous finitely generated ideal J of R such that $J^* = R^*$. It is easy to see that $\widetilde{J}^* = R^*$. Hence we have $J \nsubseteq P$ for all $P \in h$ -QMax^{$\widetilde{A}(R)$}. Thus $f \in IR_{H\setminus P}$ for all $P \in h\text{-}\mathrm{QMax}^{\widetilde{\star}}(R)$. Conversely, let $f \in \bigcap_{P \in h\text{-}\mathrm{QMax}^{\widetilde{\star}}(R)} IR_{H \setminus P}$ be homogeneous. Then $(I : f)$ is a homogeneous ideal which is not contained in any $P \in h\text{-}QMax^{\tilde{\star}}(R)$. Therefore $(I : f)^\tilde{\star} = R^{\tilde{\star}}$. So that there exist a finitely generated ideal $J \subseteq (I : f)$ such that $J^* = R^*$. Thus $fJ \subseteq I$, i.e., $f \in I^*$. The second assertion follows from the first one. \Box

Let D be a domain with quotient field K , and let X be an indeterminate over K. For each $f \in K[X]$, we let $c_D(f)$ denote the content of the polynomial f, i.e., the (fractional) ideal of D generated by the coefficients of f. Let \star be a semistar operation on D. If $N_{\star} := \{g \in D[X] | g \neq 0 \text{ and } c_D(g)^{\star} = D^{\star}\},\$ then $N_{\star} = D[X] \setminus \bigcup \{P[X] | P \in \mathrm{QMax}^{\star}(\overline{D})\}$ is a saturated multiplicative subset of $D[X]$. The ring of fractions

$$
Na(D,\star) := D[X]_{N_{\star}}
$$

is called the \star -*Nagata domain (of D with respect to the semistar operation* \star). When $\star = d$, the identity (semi)star operation on D, then Na(D, d) coincides with the classical Nagata domain $D(X)$ (as in, for instance [\[28,](#page-17-9) page 18], [\[23,](#page-17-10) Section 33] and [\[18\]](#page-17-7)).

Let $N_{\star}(H) = \{f \in R | C(f)^{\star} = R^{\star}\}.$ It is easy to see that $N_{\star}(H)$ is a saturated multiplicative subset of R. Indeed assume $f, g \in N_*(H)$. Then $C(f)^{n+1}C(g)$ $C(f)^n C(fg)$ for some integer $n \ge 1$ by [\[4,](#page-16-1) Lemma 1.1(2)], and $C(fg) \subseteq C(f)C(g)$. Thus $fg \in N_*(H) \Leftrightarrow C(fg)^* = R^* \Leftrightarrow C(f)^* = C(g)^* = R^* \Leftrightarrow f, g \in N_*(H)$. Also it is easy to show that $N_{\star}(H) = N_{\star_f}(H) = N_{\tilde{\star}}(H)$. We define the graded integral domain analogue of \star -Nagata ring, by the quotient ring $R_{N_{\star}(H)}$. When $\star = v$, $R_{N_{\star}(H)}$ was studied in [\[4\]](#page-16-1), denoted by $R_{N(H)}$.

Lemma 2.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar *operation on* R *such that* $R^* \subsetneq R_H$ *, which sends homogeneous fractional ideals to homogeneous ones.*

(1)
$$
N_{\star}(H) = R \setminus \bigcup_{Q \in h \text{-} \mathrm{QMax}^{\star} f(R)} Q.
$$

(2) $\text{Max}(R_{N_{\star}(H)}) = \{QR_{N_{\star}(H)} | Q \in h \cdot \text{QMax}^{\star_{f}}(R) \}$ *if and only if* R has the *property that if* I *is a nonzero ideal of* R *with* $C(I)^* = R^*$, then $I \cap N_*(H) \neq$ ∅*.*

Proof. (1) Let $x \in R$. Then $x \in N_*(H) \Leftrightarrow C(x)^* = R^* \Leftrightarrow C(x) \nsubseteq Q$ for all $Q \in$ h- QMax^{*f}(R) $\Leftrightarrow x \notin Q$ for all $Q \in h$ - QMax^{*f}(R) $\Leftrightarrow x \in R \setminus \bigcup_{Q \in h} Q_{\text{max}^*f(R)} Q$.

(2) (\Rightarrow) Let I is a nonzero ideal of R with $C(I)^* = R^*$. Then $I \nsubseteq Q$ for all $Q \in h$ -QMax^{*f}(R), and hence $IR_{N_{\star}(H)} = R_{N_{\star}(H)}$. Thus $I \cap N_{\star}(H) \neq \emptyset$.

 (\Leftarrow) Let I be a nonzero ideal of R such that $I \subseteq \bigcup_{Q \in h \text{-} QMax^{\star_{f}}(R)} Q$. If $C(I)^{\star_{f}} =$ R^* , then, by assumption, there exists an $f \in I$ with $C(f)^* = R^*$. But, since $I \subseteq \bigcup_{Q \in h\text{-} QMax^{\star}f(R)} Q$, we have $f \in Q$ for some $Q \in h\text{-} QMax^{\star}f(R)$, a contradiction. Thus $\hat{C}(I)^* \subsetneq R^*$, and hence $I \subseteq Q$ for some $Q \in h$ -QMax^{*}^f(R). Thus $\{QR_{N_{\star}(H)}|Q \in h\text{-}\mathrm{QMax}^{\star_{f}}(R)\}\$ is the set of maximal ideals of $R_{N_{\star}(H)}$ by [\[23,](#page-17-10) Proposition 4.8.

We will say that R satisfies property $(\#_{\star})$ if, for any nonzero ideal I of R, $C(I)^* = R^*$ implies that there exists an $f \in I$ such that $C(f)^* = R^*$.

Example 2.8. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and let \star be a *semistar operation on* R*. If* R *contains a unit of nonzero degree, then* R *satisfies property* $(\#_{\star})$ *(see* [\[4,](#page-16-1) Example 1.6] *for the case* $\star = t$ *)*.

The next result is a generalization of the fact that $I^{\tilde{\star}} = I \text{ Na}(R, \star) \cap K$, where K is the quotient field of R [\[18,](#page-17-7) Proposition 3.4(3)].

Lemma 2.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar *operation on* R *such that* $R^* \subsetneq R_H$ *, with property* $(\#_*)$ *. Then* $I^* = IR_{N_*(H)} \cap R_H$ and $I^{\tilde{*}}R_{N_{\star}(H)} = IR_{N_{\star}(H)}$ for each homogeneous ideal I of R. In particular $R^{\tilde{*}}$ is *integrally closed if and only if* $R_{N_{\star}(H)}$ *is integrally closed.*

Proof. If $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_H$, then it is easy to see that $I^{\tilde{\star}}R_{N_{\star}(H)} = IR_{N_{\star}(H)}$. Hence it suffices to show that $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_H$.

(⊆) Let $f \in I^{\tilde{\star}}(\subseteq R_H)$, and let J be a finitely generated ideal of R such that $J^* = R^*$ and $fJ \subseteq I$. Then $C(J)^* = R^*$, and since R satisfies property $(\#_*)$, there exists an $h \in J$ with $C(h)^* = R^*$. Hence $h \in N_*(H)$ and $fh \in I$. Thus $f \in IR_{N_{\star}(H)} \cap R_H.$

 $(\supseteq) \text{ Let } f = \frac{g}{h} \in IR_{N_{\star}(H)} \cap R_H$, where $g \in I$ and $h \in N_{\star}(H)$. Then $fh = g \in I$, and since $C(h)^{m+1}C(f) = C(h)^mC(fh)$ for some integer $m \ge 1$ by [\[4,](#page-16-1) Lemma 1.1(1)], we have $fC(h)^{m+1} \subseteq C(f)C(h)^{m+1} = C(h)^mC(fh) = C(h)^mC(g) \subseteq I$. Also note that $(C(h)^{m+1})^* = R^*$, since $C(h)^* = R^*$. Thus $f \in I^*$.

For the in particular case, assume that $R_{N_{\star}(H)}$ is integrally closed. Using [\[3,](#page-16-0) Proposition 2.1], R_H is a GCD-domain, hence is integrally closed. Therefore $R^{\widetilde{\star}} = R_{N_{\star}(H)} \cap R_H$ is integrally closed. Conversely, assume that $R^{\widetilde{\star}}$ is integrally closed. Then R_Q is integrally closed by [\[14,](#page-17-11) Proposition 3.8] for all $Q \in \mathrm{QSpec}^{\tilde{\star}}(R)$. Let $QR_{N_{\star}(H)}$ be a maximal ideal of $R_{N_{\star}(H)}$ for some $Q \in h\text{-}Q\text{Max}^{\tilde{\star}}(R)$. Then $(R_{N_{\star}(H)})_{QR_{N_{\star}(H)}} = R_Q$ is integrally closed. Thus $R_{N_{\star}(H)}$ is integrally closed. \square

Lemma 2.10. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar *operation on* R *such that* $R^* \subsetneq R_H$ *, with property* $(\#_*)$ *. Then for each nonzero finitely generated homogeneous ideal* I of R, I is \star_f -invertible if and only if, IR_{N_{\star}(H)} *is invertible.*

Proof. Let I be nonzero finitely generated homogeneous ideal of R, such that I is \star_f -invertible. Let $QR_{N_{\star}(H)} \in \text{Max}(R_{N_{\star}(H)})$, where $Q \in h$ -QMax^{$\widetilde{\star}(R)$} by Lemma [2.7\(](#page-5-0)2). Thus by [\[22,](#page-17-12) Theorem 2.23], $(IR_{N_{\star}(H)})_{QR_{N_{\star}(H)}} = IR_Q$ is invertible (is principal) in R_Q . Hence $IR_{N_{\star}(H)}$ is invertible by [\[23,](#page-17-10) Theorem 7.3]. Conversely, assume that I is finitely generated, and $IR_{N_{\star}(H)}$ is invertible. By flatness we have $I^{-1}R_{N_{\star}(H)} = (R : I)R_{N_{\star}(H)} = (R_{N_{\star}(H)} : IR_{N_{\star}(H)}) = (IR_{N_{\star}(H)})^{-1}$. Therefore, $(II^{-1})R_{N_{\star}(H)} = (IR_{N_{\star}(H)})(I^{-1}R_{N_{\star}(H)}) = (IR_{N_{\star}(H)})(IR_{N_{\star}(H)})^{-1} = R_{N_{\star}(H)}$. Hence $II^{-1} \cap N_*(H) \neq \emptyset$. Let $f \in II^{-1} \cap N_*(H)$. So that $R^* = C(f)^* \subseteq (II^{-1})^{*f} \subseteq$ R^* . Thus I is \star_f -invertible.

Corollary 2.11. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ *be a graded integral domain, and* \star *be a semistar operation on* R *such that* $R^* \subsetneq R_H$ *, with property* $(\#_*)$ *and* $0 \neq f \in R$ *. Then the following conditions are equivalent:*

- (1) $C(f)$ *is* \star_f *-invertible.*
- (2) $C(f)R_{N_{\star}(H)}$ is invertible.
- (3) $C(f)R_{N_{\star}(H)} = fR_{N_{\star}(H)}$.

Proof. Exactly is the same as [\[4,](#page-16-1) Corollary 1.9].

$$
\Box
$$

Let Z be the additive group of integers. Clearly, the direct sum $\Gamma \oplus \mathbb{Z}$ of Γ with \mathbb{Z} is a torsionless grading monoid. So if y is an indeterminate over $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, then $R[y, y^{-1}]$ is a graded integral domain graded by $\Gamma \oplus \mathbb{Z}$. In the following proposition we use a technique for defining semistar operations on integral domains, due to Chang and Fontana [\[9,](#page-17-13) Theorem 2.3].

Proposition 2.12. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with quotient *field* K, let y, X be two indeterminates over R and let \star be a semistar operation *on* R such that $R^* \subsetneq R_H$. Set $T := R[y, y^{-1}]$, $K_1 := K(y)$ and take the following *subset of* $Spec(T)$ *:*

$$
\triangle^* := \{ Q \in \text{Spec}(T) \mid Q \cap R = (0) \text{ or } Q = (Q \cap R)R[y, y^{-1}] \text{ and } (Q \cap R)^{\star_f} \subsetneq R^{\star} \}.
$$

Set $S^{\star} := T[X] \setminus (\bigcup \{ Q[X] | Q \in \triangle^{\star} \})$ and:

$$
E^{\star\prime} := E[X]_{S^{\star}} \cap K_1, \text{ for all } E \in \overline{\mathcal{F}}(T).
$$

- (a) The mapping $\star : \overline{\mathcal{F}}(T) \to \overline{\mathcal{F}}(T)$, $E \mapsto E^{\star'}$ is a stable semistar operation of *finite type on* T *, i.e.,* $\widetilde{\star}$ *i* = \star *i*.
- (b) $(\widetilde{\star})\prime = (\star_f)\prime = \star\prime$ *.*
- (c) $(ER[y, y^{-1}])^{\star}$ ∩ $K = E^{\tilde{\star}}$ *for all* $E \in \overline{\mathcal{F}}(R)$ *.*
- (d) $(ER[y, y^{-1}])^{\star\prime} = E^{\tilde{\star}}R[y, y^{-1}]$ *for all* $E \in \overline{\mathcal{F}}(R)$ *.*
- (e) $T^{\star\prime} \subsetneq T_{H'}$, where H' is the set of nonzero homogeneous elements of T , and ⋆′ *sends homogeneous fractional ideals to homogeneous ones.*
- (f) $Q\text{Max}^{*'}(T) = \{Q|Q \in \text{Spec}(T) \text{ such that } Q \cap R = (0) \text{ and } c_R(Q)^{*_{f}} = R^*\} \cup$ $\{PR[y, y^{-1}] | P \in \text{QMax}^{\star_f}(R)\}.$
- (g) $h\text{-}\mathrm{QMax}^{\star\prime}(T) = \{PR[y, y^{-1}]]P \in h\text{-}\mathrm{QMax}^{\widetilde{\star}}(R)\}.$
- (h) $(w_R)' = (t_R)' = (v_R)' = w_T$.

Proof. Set $\nabla^* := \{Q \in \text{Spec}(T) | Q \cap R = (0) \text{ and } c_D(Q)^{*_f} = R^* \text{ or } Q = PR[y, y^{-1}]$ and $P \in QMax^{*f}(D)$. Then it is easy to see that the elements of ∇^* are the maximal elements of Δ^* (see proof of [\[9,](#page-17-13) Theorem 2.3]). Thus

$$
S^\star:=T[X]\backslash (\bigcup\{Q[X]|Q\in\triangle^\star\})=T[X]\backslash (\bigcup\{Q[X]|Q\in\nabla^\star\}).
$$

(a) It follows from [\[9,](#page-17-13) Theorem 2.1 (a) and (b)], that $\star\prime$ is a stable semistar operation of finite type on T .

(b) Since $\mathbf{QMax}^{*f}(D) = \mathbf{QMax}^{*}(D)$, the conclusion follows easily from the fact that $S^{\tilde{\star}} = S^{\star_f} = S^{\star}$.

(c) and (d) Exactly are the same as proof of $[9,$ Theorem 2.3(c) and (d).

(e) From part (d) we have $T^{\star\prime} = R^{\tilde{\star}} R[y, y^{-1}] \subsetneq R_H R[y, y^{-1}] = T_{H'}$. The second assertion follows from Proposition [2.3,](#page-4-0) since $\tilde{\star}$ = \star / by (a).

(f) Follows from [\[9,](#page-17-13) Theorem 2.1(e)] and the remark in the first paragraph in the proof.

(g) Let $M \in h$ -QMax^{*}'(T). Since $y, y^{-1} \in T$, clearly we have $M \cap R \neq (0)$. Then by (f), there is $P \in \text{QMax}^{\star_f}(R)$ such that $M \subseteq PR[y, y^{-1}]$. If $P \in h\text{-}QMax^{\tilde{\star}}(R)$, then $M = PR[y, y^{-1}]$ and we are done. So suppose that $P \notin h\text{-}QMax^{\tilde{\star}}(R)$. Then note that $P_h \in h\text{-QSpec}^{\widetilde{\star}}(R)$ and $M \subseteq P_hR[y, y^{-1}] = (PR[y, y^{-1}])_h$; hence $M = P_h R[y, y^{-1}]$, because M is a homogeneous maximal quasi- \star '-ideal. Note that in this case $P_h \in h\text{-}QMax^{\tilde{\star}}(R)$ by [\[16,](#page-17-4) Lemma 4.1, Remark 4.5]. So that $M \in \{PR[y, y^{-1}] | P \in h\text{-}QMax^{\tilde{\star}}(R)\}.$ The other inclusion is trivial.

(h) Suppose that $\star_f = t$. Note that if $M \in \text{QMax}^{\star'}(T)$, and $M \cap R \neq (0)$, then, $M = (M \cap R)[y, y^{-1}]$ and $M \cap R \in \text{QMax}^{t}(R)$ (cf. [\[24,](#page-17-14) Proposition 1.1]). Moreover, if $Q \in \text{Spec}(T)$ is such that $Q \cap R = (0)$, then Q is a quasi-t-maximal ideal of T if and only if $c_R(Q)^t = R$. Indeed, if Q is a quasi-t-maximal ideal of T, and $c_R(Q)^t \subsetneq R$, then there exists a quasi-t-maximal ideal P of R such that $c_R(Q)^t \subseteq P$. Hence $Q \subseteq P[y, y^{-1}]$, and therefore $Q = P[y, y^{-1}]$. Consequently $(0) = Q \cap R = P[y, y^{-1}] \cap R = P$ which is a contradiction. Conversely assume that $c_R(Q)^t = R$. Suppose Q is not a quasi-t-maximal ideal of T, and let M be a quasi-t-maximal ideal of T which contains Q . Since the containment is proper, we have $M \cap R \neq (0)$. Thus $M = (M \cap R)[y, y^{-1}]$ and $M \cap R \in \text{QMax}^{t}(R)$ (cf. [\[24,](#page-17-14) Proposition 1.1]). Since $Q \subseteq M$, $c_R(Q)$ is contained in the quasi-t-ideal $M \cap R$, so that $c_R(Q)^t \neq R$ which is a contradiction. Thus we showed that $Q\text{Max}^t(T)$ = ${Q|Q \in \text{Spec}(T) \text{ such that } Q \cap R = (0) \text{ and } c_R(Q)^{*_f} = R^*} \cup {PR[y, y^{-1}]|P \in \text{Spec}(T)}$ $\text{QMax}^{*_f}(R)$ = $\text{QMax}^{*_f}(T)$, where the second equality is by (f). Thus using (a) and (b), we obtain $(w_R)' = (t_R)' = (v_R)' = w_T$.

It is known that $Pic(D(X)) = 0$ [\[1,](#page-16-3) Theorem 2]. More generally, if $*$ is a star operation on D, then $Pic(Na(D,*)) = 0$, [\[26,](#page-17-15) Theorem 2.14]. Also in the graded case it is shown in [\[4,](#page-16-1) Theorem 3.3], that $Pic(R_{N_v(H)}) = 0$, where $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a graded integral domain containing a unit of nonzero degree. We next show in general that $Pic(R_{N_{\star}(H)}) = 0.$

Theorem 2.13. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree, and* \star *be a semistar operation on* R *such that* $R^{\star} \subsetneq R_H$. Then $Pic(R_{N_{\star}(H)}) = 0.$

Proof. Let y be an indeterminate over R, and $T = R[y, y^{-1}]$. Using Proposition [2.12\(](#page-7-0)e) and (g) and Lemma [2.7,](#page-5-0) we deduce that $\text{Max}(T_{N_{\star}(H)}) = \{QT_{N_{\star}(H)}|Q \in$ h-QMax^{*f}(R)}. Next since $\text{Max}((R_{N_{\star}(H)})(y)) = {P(y)|P}$ is a maximal ideal of $R_{N_{\star}(H)}\},$ [\[23,](#page-17-10) Proposition 33.1], we have $\text{Max}((R_{N_{\star}(H)})(y)) = \{(QR_{N_{\star}(H)})(y)|Q \in$ h-QMax^{*f}(R). Thus by a computation similar to the proof of [\[4,](#page-16-1) Lemma 3.2], we obtain the equality $T_{N_{\star}(H)} = (R_{N_{\star}(H)})(y)$. The rest of the proof is exactly the same as proof of [\[4,](#page-16-1) Theorem 3.3], using Proposition [2.12.](#page-7-0) \Box

Let D be a domain and T an overring of D. Let \star and \star' be semistar operations on D and T, respectively. One says that T is (\star, \star') -linked to D (or that T is a (\star, \star') -linked overring of D) if

$$
F^* = D^* \Rightarrow (FT)^{*'} = T^{*'}
$$

for each nonzero finitely generated ideal F of D . (The preceding definition generalizes the notion of "t-linked overring" which was introduced in [\[13\]](#page-17-16).) It is shown in [\[15,](#page-17-17) Theorem 3.8], that T is a (\star, \star') -linked overring of D if and only if $\text{Na}(D, \star) \subseteq \text{Na}(T, \star')$. We need a graded analogue of linkedness.

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and T be a homogeneous overring of R. Let \star and \star' be semistar operations on R and T, respectively. We say that T *is homogeneously* (\star, \star') -linked overring of R if

$$
F^* = D^* \Rightarrow (FT)^{*'} = T^{*'}
$$

for each nonzero homogeneous finitely generated ideal F of R. We say that T *is homogeneously t-linked overring of* R if T is homogeneously (t, t) -linked overring of R. Also it can be seen that T is homogeneously (\star, \star') -linked overring of R if and only if T is homogeneously $(\widetilde{\star}, \widetilde{\star}')$ -linked overring of R (cf. [\[15,](#page-17-17) Theorem 3.8]).

Example 2.14. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and let \star be a *semistar operation on* R *such that* $R^* \subsetneq R_H$ *. Let* $P \in h$ -QSpec^{$\tilde{\star}(R)$ *. Then,* $R_{H \setminus P}$} *is a homogeneously* (\star, \star') -linked overring of R, for all semistar operation \star' on $R_{H\setminus P}$ *. Indeed assume that* F *is a nonzero finitely generated homogeneous ideal of* R such that $F^* = R^*$. Then we have $F^* = R^*$. Thus using Proposition [2.6,](#page-5-1) we $have \ FR_{H\setminus P} = F^*R_{H\setminus P} = R^*R_{H\setminus P} = R_{H\setminus P}$.

Lemma 2.15. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree, and let* T *be a homogeneous overring of* R. Let \star (resp. \star') be a *semistar operation on* R *(resp. on* T). Then, T *is a homogeneously* (\star, \star') -linked *overring of* R *if and only if* $R_{N_{\star}(H)} \subseteq T_{N_{\star'}(H)}$.

Proof. Let $f \in R$ such that $C_R(f)^* = R^*$. Then by assumption $C_T(f)^{k'} =$ $(C_R(f)T)^{\star'} = R^{\star'}$. Hence $R_{N_{\star}(H)} \subseteq T_{N_{\star'}(H)}$. Conversely let F be a nonzero homogeneous finitely generated ideal of R such that $F^* = R^*$. Since R has a unit of nonzero degree we can choose an element $f \in R$ such that $C_R(f) = F$. From the fact that $C_R(f)^* = R^*$, we have that f is a unit in $R_{N_*}(H)$ and so by assumption, f is a unit in $T_{N_{\star'}(H)}$. This implies that $C_T(f)^{\star'} = (C_R(f)T)^{\star'} = T^{\star'}$, i.e., $(FT)^{\star'} = T^{\star'}$.

3. Kronecker function ring

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, * an e.a.b. star operation on R. The graded analogue of the well known Kronecker function ring (see [\[23,](#page-17-10) Theorem 32.7) of R with respect to $*$ is defined by

$$
\text{Kr}(R,*) := \left\{ \frac{f}{g} \middle| f, g \in R, g \neq 0, \text{ and } C(f) \subseteq C(g)^* \right\}
$$

in [\[4\]](#page-16-1). The following lemma is proved in [\[4,](#page-16-1) Theorems 2.9 and 3.5], for an e.a.b. star operation ∗. We need to state it for e.a.b. semistar operations. Since the proof is exactly the same as star operation case, we omit the proof.

Lemma 3.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star an **e.a.b.** semistar *operation on* R*, and*

$$
\mathrm{Kr}(R,\star) := \left\{ \frac{f}{g} \middle| \ f,g \in R, \ g \neq 0, \ and \ C(f) \subseteq C(g)^\star \ \right\}.
$$

Then

(1) $Kr(R, \star)$ *is an integral domain.*

In addition, if R *has a unit of nonzero degree, then,*

- (2) $Kr(R, \star)$ *is a Bézout domain.*
- (3) I Kr(R, \star)∩ R _H = I^* for every nonzero finitely generated homogeneous ideal I *of* R*.*

Inspired by the work of Fontana and Loper in [\[20\]](#page-17-2), we can generalize this definition of $Kr(R, \star)$ to all semistar operations on R which send homogeneous fractional ideals, to homogeneous ones, provided that R has a unit of nonzero degree. Before doing that we need a lemma.

Lemma 3.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar operation *on* R *which sends homogeneous fractional ideals to homogeneous ones. Suppose that* $a \in R$ *is homogeneous and* $B, F \in f(R)$ *, with* B *homogeneous and* $F \subseteq R_H$ *,* such that $aF \subseteq (BF)^*$. Then there exists a homogeneous $T \in f(R)$ such that $aT \subseteq (BT)^{\star}.$

Proof. Suppose that F is generated by $y_1, \dots, y_n \in R_H$. Let $y_i = \sum t_{ij}$ be the decomposition of y_i to homogeneous elements for $i = 1, \dots, n$. Then $ay_i \in (BF)^*$ $(\sum y_i B)^{\star} \subseteq (\sum t_{ij} B)^{\star}$. Since $(\sum t_{ij} B)^{\star}$ is homogeneous we have $at_{ij} \in (\sum t_{ij} B)^{\star}$. Let T be the fractional ideal of R, generated by all homogeneous elements t_{ij} . So that $aT \subseteq (BT)^*$ and $T \in f(R)$ is homogeneous.

Theorem 3.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree,* \star *a semistar operation on* R *which sends homogeneous fractional ideals to homogeneous ones, and*

$$
\mathrm{Kr}(R,\star) := \left\{ \frac{f}{g} \middle| \begin{array}{l} f,g \in R, g \neq 0, \text{ and there is } 0 \neq h \in R \\ \text{such that } C(f)C(h) \subseteq (C(g)C(h))^{\star} \end{array} \right\}.
$$

Then

- (1) $\text{Kr}(R, \star) = \text{Kr}(R, \star_a)$.
- (2) $Kr(R, \star)$ *is a Bézout domain.*
- (3) $I\text{Kr}(R, \star) \cap R_H = I^{\star_a}$ *for every nonzero finitely generated homogeneous ideal* I *of* R*.*
- (4) If $f, g \in R$ are nonzero such that $C(f + g)^* = (C(f) + C(g))^*$, then (f, g) Kr $(R, \star) = (f+g)$ Kr (R, \star) *. In particular,* f Kr $(R, \star) = C(f)$ Kr (R, \star) *for all* $f \in R$ *.*

Proof. It it clear from the definition that $Kr(R, \star) = Kr(R, \star_f)$. Thus using Lemma [2.4,](#page-4-1) we can assume, without loss of generality, that \star is a semistar operation of finite type.

Parts (2) and (3) are direct consequences of (1) using Lemma [3.1.](#page-10-0) For the proof of (1) we have two cases:

Case 1: Assume that \star is an **e.a.b.** semistar operation of finite type. In this case, for $f, g, h \in R \backslash \{0\}$ we have

$$
C(f)C(h) \subseteq (C(g)C(h))^* \Leftrightarrow C(f) \subseteq C(g)^*.
$$

Therefore $Kr(R, \star)$ -as defined in this theorem- coincides with $Kr(R, \star)$ of an e.a.b. semistar operation \star , as defined in Lemma [3.1.](#page-10-0) Also in this case $\star = \star_a$ by [\[20,](#page-17-2) Proposition 4.5(5). Hence in this case (1) is true.

Case 2: General case. Let \star be a semistar operation of finite type on R. By definition it is easy to see that, given two semistar operations on R with \star_1 \star_2 , then $\text{Kr}(R, \star_1) \subseteq \text{Kr}(R, \star_2)$. Using [\[20,](#page-17-2) Proposition 4.5(3)] we have $\star \leq \star_a$. Therefore $Kr(R, \star) \subseteq Kr(R, \star_a)$. Conversely let $f/g \in Kr(R, \star_a)$. Then, by Case $1, C(f) \subseteq C(g)^{\star_a}$. Set $A := C(f)$ and $B := C(g)$. Then $A \subseteq B^{\star_a} = \bigcup \{((BH)^{\star} : A \subseteq B \cup B \mid (GH)^{\star_a} \}$. $H||H \in f(R)$. Suppose that A is generated by homogeneous elements $x_1, \dots, x_n \in$ R. Then there is $H_i \in f(R)$, such that $x_i H_i \subseteq (BH_i)^*$ for $i = 1, \dots, n$. Choose $0 \neq$ $r_i \in R$ such that $F_i = r_i H_i \subseteq R$. Thus $x_i F_i \subseteq (BF_i)^*$. Therefore Lemma [3.2](#page-10-1) gives a homogeneous $T_i \in f(R)$ such that $x_i T_i \subseteq (BT_i)^*$. Now set $T := T_1 T_2 \cdots T_n$ which is a finitely generated homogeneous fractional ideal of R such that $AT \subseteq (BT)^{\star}$. Now since R has a unit of nonzero degree, we can find an element $h \in R$ such that $C(h) = T$. Then $C(f)C(h) \subseteq (C(g)C(h))^*$. This means that $f/g \in \text{Kr}(R, \star)$ to complete the proof of (1).

The proof of (4) is exactly the same as [\[4,](#page-16-1) Theorem 2.9(3)]. \Box

4. Graded P⋆MDs

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star be a semistar operation on R , H be the set of nonzero homogeneous elements of R, and $N_{\star}(H) = \{f \in R | C(f)^{\star} =$ R^{\star} . In this section we define the notion of graded Prüfer \star -multiplication domain (graded $P*MD$ for short) and give several characterization of it.

We say that a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ with a semistar operation \star , is a graded Prüfer \star -multiplication domain (graded P \star *MD)* if every nonzero finitely generated homogeneous ideal of R is a \star_f -invertible, i.e., $(II^{-1})^{\star_f} = R^{\star}$ for every nonzero finitely generated homogeneous ideal I of R . It is easy to see that a graded P[★]MD is the same as a graded P[★] f MD by definition, and is the same as a graded P $\widetilde{\star}$ MD by [\[22,](#page-17-12) Proposition 2.18]. When $\star = v$ we recover the classical notion of a *graded Prüfer* v-multiplication domain (graded Pv*MD*) [\[2\]](#page-16-4). It is known that R is a graded PvMD if and only if R is a PvMD [\[2,](#page-16-4) Theorem 6.4].

Also when $\star = d$, a graded PdMD is called a *graded Prüfer domain* [\[4\]](#page-16-1). It is clear that every graded Prüfer domain is a graded $PvMD$ and hence a $PvMD$. In particular every graded Prüfer domain is an integrally closed domain. Although R is a graded PvMD if and only if R is a PvMD, Anderson and Chang in [\[4,](#page-16-1) Example 3.6] provided an example of a graded Prüfer domain which is not Prüfer. It is known that if A, B, C are ideals of an integral domain D, then $(A + B)(A + C)(B + C) =$ $(A + B + C)(AB + AC + BC)$. Thus $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a graded Prüfer domain if and only if every nonzero ideal of R generated by two homogeneous elements is invertible. We use this result in this section without comments.

The following proposition is inspired by [\[23,](#page-17-10) Theorem 24.3].

Proposition 4.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the fol*lowing conditions are equivalent:*

 (1) *R is a graded Prüfer domain.*

- (2) *Each finitely generated nonzero homogeneous ideal of* R *is a cancelation ideal.*
- (3) If A, B, C are finitely generated homogeneous ideals of R such that $AB =$ AC and A is nonzero, then $B = C$.
- (4) *R is integrally closed and there is a positive integer* $n > 1$ *such that* $(a, b)^n =$ (a^n, b^n) *for each* $a, b \in H$ *.*
- (5) R *is integrally closed and there exists an integer* $n > 1$ *such that* $a^{n-1}b \in$ (a^n, b^n) *for each* $a, b \in H$ *.*

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are clear.

 $(3) \Rightarrow (4)$ By the same argument as in the proof of part $(2) \Rightarrow (3)$, in [\[23,](#page-17-10) Proposition 24.1, we have that R is integrally closed in R_H . Therefore by [\[3,](#page-16-0) Proposition 5.4], R is integrally closed. Now if $a, b \in H$ we have $(a, b)^3 = (a, b)(a^2, b^2)$. Thus by (3) we obtain that $(a, b)^2 = (a^2, b^2)$.

 $(5) \Rightarrow (1)$ If (5) holds then [\[23,](#page-17-10) Proposition 24.2], implies that each nonzero homogeneous ideal generated by two homogeneous elements is invertible. Therefore R is a graded Prüfer domain.

The ungraded version of the following theorem is due to Gilmer (see [\[23,](#page-17-10) Corollary 28.5]).

Theorem 4.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree. Then* R *is a graded Prüfer domain if and only if* $C(f)C(g) = C(fg)$ *for all* $f, g \in R_H$.

Proof. (\Rightarrow) Let $f, g \in R_H$. Then by [\[4,](#page-16-1) Lemma 1.1(1)], there exists some positive integer *n* such that $C(f)^{n+1}C(g) = C(f)^nC(fg)$. Now since *R* is a graded Prüfer domain, the homogeneous fractional ideal $C(f)^n$ is invertible. Thus $C(f)C(g)$ = $C(fg)$ for all $f, g \in R_H$.

 (\Leftarrow) Let $\alpha \in H$ be a unit of nonzero degree. Assume that $C(f)C(g) = C(fg)$ for all $f, g \in R_H$. Hence R is integrally closed by [\[2,](#page-16-4) Theorem 3.7]. Now let $a, b \in H$ be arbitrary. We can choose a positive integer n such that $\deg(a) \neq \deg(\alpha^n b)$. So that $C(a + \alpha^n b) = (a, b)$. Hence, since $(a + \alpha^n b)(a - \alpha^n b) = a^2 - (\alpha^n b)^2$, we have $(a, b)(a, -b) = (a^2, -b^2)$. Consequently $(a, b)^2 = (a^2, b^2)$. Thus by Proposition [4.1,](#page-11-0) we see that R is a graded Prüfer domain. \square

Lemma 4.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain and P be a homoge*neous prime ideal. Then, the following statements are equivalent:*

- (1) $R_{H\setminus P}$ *is a graded Prüfer domain*
- (2) R^P *is a valuation domain.*
- (3) *For each nonzero homogeneous* $u \in R_H$, u *or* u^{-1} *is in* $R_{H \setminus P}$ *.*

Proof. (1) \Rightarrow (2) Suppose that $R_{H\setminus P}$ is a graded Prüfer domain. In particular $R_{H\setminus P}$ is a (graded) PvMD and each nonzero homogeneous ideal of $R_{H\setminus P}$ is a tideal. So that h -QMax^t $(R_{H\setminus P}) = \{PR_{H\setminus P}\}\$. Thus by [\[10,](#page-17-18) Lemma 2.7], we see that $(R_{H\setminus P})_{PR_{H\setminus P}} = R_P$ is a valuation domain.

 $(2) \Rightarrow (3)$ Let $0 \neq u \in R_H$. Thus by the hypothesis u or u^{-1} is in R_P . Thus u or u^{-1} is in $R_{H\setminus P}$.

(3) \Rightarrow (1) Let I, J be two nonzero homogeneous ideals of $R_{H\setminus P}$ and assume that $I \nsubseteq J$. So there is a homogeneous element $a \in I \backslash J$. For each $b \in J$, we have $\frac{a}{b} \notin R_{H\setminus P}$, since otherwise we have $a = (\frac{a}{b})b \in J$. Thus by the hypothesis

 $\frac{b}{a} \in R_{H \setminus P}$. Hence $b = (\frac{b}{a})a \in I$. Thus we showed that $J \subseteq I$, and so every two homogeneous ideal are comparable.

Now Let (a, b) be an ideal generated by two homogeneous elements of $R_{H\setminus P}$. Now by the first paragraph $(a, b) = (a)$ or $(a, b) = (b)$. Thus (a, b) is invertible. Hence $R_{H\setminus P}$ is a graded Prüfer domain.

Theorem 4.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar *operation on* R *such that* $R^* \subsetneq R_H$ *. Then, the following statements are equivalent:*

- (1) R *is a graded P* \star *MD*.
- (2) $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h\text{-QSpec}^{\widetilde{\star}}(R)$.
- (3) $R_{H\setminus P}$ *is a graded Prüfer domain for each* $P \in h$ -QMax^{$\tilde{\star}(R)$ *.*}
- (4) R_P *is a valuation domain for each* $P \in h\text{-QSpec}^{\widetilde{\star}}(R)$ *.*
- (5) R_P *is a valuation domain for each* $P \in h\text{-}QMax^{\tilde{\star}}(R)$.

Proof. (2) \Rightarrow (3) is trivial, and, (2) \Leftrightarrow (4) and (3) \Leftrightarrow (5), follow from Lemma [4.3.](#page-12-0)

 $(1) \Rightarrow (2)$ Let I be a nonzero finitely generated homogeneous ideal of R. Then I is $\tilde{\star}$ -invertible. Therefore, for each $P \in h\text{-QSpec}^{\tilde{\star}}(R)$, since $II^{-1} \nsubseteq P$, we have $R_{H\setminus P} = (II^{-1})R_{H\setminus P} = IR_{H\setminus P}I^{-1}R_{H\setminus P} = (IR_{H\setminus P})(IR_{H\setminus P})^{-1}$. So that $IR_{H\setminus P}$ is invertible. Thus $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h\text{-QSpec}^{\tilde{\star}}(R)$.

 $(3) \Rightarrow (1)$ Let I be a nonzero finitely generated homogeneous ideal of R. Suppose that I is not $\widetilde{\star}$ -invertible. Hence there exists $P \in h$ -QMax $\widetilde{\star}(R)$ such that $II^{-1} \subseteq P$. Thus $R_{H\setminus P} = (IR_{H\setminus P})(IR_{H\setminus P})^{-1} = II^{-1}R_{H\setminus P} \subseteq PR_{H\setminus P}$, which is a contradiction. So that $II^{-1} \nsubseteq P$ for each $P \in h$ -QMax^{$\vec{\tilde{\star}}(R)$}. Therefore $(II^{-1})^{\tilde{\star}} = R^{\tilde{\star}}$, that is I is $\widetilde{\star}$ -invertible, and hence R is a graded P \star MD.

The ungraded version of the following theorem is due to Chang in the star operation case [\[8,](#page-17-19) Theorem 3.7], and is due to Anderson, Fontana, and Zafrullah in the case of semistar operations [\[6,](#page-16-5) Theorem 1.1].

Theorem 4.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree, and* \star *be a semistar operation on* R *such that* $R^* \subsetneq R_H$ *. Then* R *is a graded P*[★]*MD if and only if* $(C(f)C(g))^{\tilde{*}} = C(fg)^{\tilde{*}}$ *for all* $f, g \in R_H$ *.*

Proof. (\Rightarrow) Let $f, g \in R$ _H. Choose a positive integer n such that $C(f)^{n+1}C(g)$ $C(f)^n C(fg)$ by [\[4,](#page-16-1) Lemma 1.1(1)]. Thus $(C(f)^{n+1} C(g))$ ^{$\tilde{\star} = (C(f)^n C(fg))^{\tilde{\star}}$. Since} R is a graded P \star MD, the homogeneous fractional ideal $C(f)^n$ is $\widetilde{\star}$ -invertible. Thus $(C(f)C(g))^{\widetilde{\star}} = C(fg)^{\widetilde{\star}}$ for all $f, g \in R_H$.

(←) Assume that $(C(f)C(g))$ ^{$\tilde{\star}$} = $C(fg)^{\tilde{\star}}$ for all $f,g \in R_H$. Let $P \in h$ - $\widehat{\text{QMax}^{\mathbf{x}}} (R)$. Then using Proposition [2.6,](#page-5-1) we have $C(f)R_{H\setminus P}C(g)R_{H\setminus P} = C(f)C(g)R_{H\setminus P}$ $(C(f)C(g))^\tilde{\star}R_{H\setminus P} = C(fg)^\tilde{\star}R_{H\setminus P} = C(fg)R_{H\setminus P}$. Since $R_{H\setminus P}$ has a unit of nonzero degree, Theorem [4.2](#page-12-1) shows that $R_{H\setminus P}$ is a graded Prüfer domain. Now Theorem [4.4,](#page-13-0) implies that R is a graded P \star MD.

We now recall the notion of \star -valuation overring (a notion due essentially to P. Jaffard [\[25,](#page-17-20) page 46]). For a domain D and a semistar operation \star on D, we say that a valuation overring V of D is a \star *-valuation overring of* D provided $F^* \subseteq FV$, for each $F \in f(D)$.

Remark 4.6. (1) Let \star be a semistar operation on a graded integral domain $R =$ $\bigoplus_{\alpha \in \Gamma} R_{\alpha}$ *. Recall that for each* $F \in f(R)$ *we have*

$$
F^{\star_a} = \bigcap \{ FV | V \text{ is a } \star \text{-valuation overring of } R \},
$$

by [\[19,](#page-17-21) Propositions 3.3 and 3.4 and Theorem 3.5]*.*

(2) We have $N_{\star}(H) = N_{\tilde{\star}_{a}}(H)$ *. Indeed, since* $\tilde{\star} \leq \tilde{\star}_{a}$ by [\[20,](#page-17-2) Proposition 4.5]*, we* $have N_*(H) = N_{\tilde{\star}}(H) \subseteq N_{\tilde{\star}_a}(H)$. Now if $f \in R \backslash N_*(H)$ then, $C(f)$ ^{$\tilde{\star} \subsetneq R^{\tilde{\star}}$. Thus} *there is a homogeneous quasi-* $\widetilde{\star}$ *-prime ideal* P of R *such that* $C(f) \subseteq P$ *. Let* V *be a valuation domain dominating* R_P *with maximal ideal* M [\[23,](#page-17-10) Corollary 19.7]. *Therefore V is a* $\tilde{\star}$ *-valuation overring of* R *by* [\[18,](#page-17-7) Theorem 3.9]*, and* $C(f)V \subseteq M$ *;* $so\ C(f)^{(\widetilde{\star})_a} \subsetneq R^{(\widetilde{\star})_a}$ and $f \notin N_{\widetilde{\star}_a}(H)$. Thus we obtain that $N_{\star}(H) = N_{\widetilde{\star}_a}(H)$.

In the following theorem we generalize a characterization of $PvMDs$ proved by Arnold and Brewer [\[7,](#page-16-6) Theorem 3]. It also generalizes [\[8,](#page-17-19) Theorem 3.7], [\[4,](#page-16-1) Theorems 3.4 and 3.5], and [\[17,](#page-17-5) Theorem 3.1].

Theorem 4.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree, and* \star *be a semistar operation on* R *such that* $R^{\star} \subsetneq R_H$ *. Then, the following statements are equivalent:*

- (1) R *is a graded P* \star *MD*.
- (2) Every ideal of $R_{N_{\star}(H)}$ is extended from a homogeneous ideal of R.
- (3) *Every principal ideal of* $R_{N_{\star}(H)}$ *is extended from a homogeneous ideal of* R.
- (4) $R_{N_{\star}(H)}$ is a Prüfer domain.
- (5) $R_{N_{\star}(H)}$ is a Bézout domain.
- (6) $R_{N_{\star}(H)} = \text{Kr}(R, \tilde{\star}).$
- (7) $Kr(R, \tilde{\star})$ *is a quotient ring of R.*
- (8) $Kr(R, \tilde{\star})$ *is a flat* R-module.
- (9) $I^{\tilde{\star}} = I^{\tilde{\star}_a}$ for each nonzero homogeneous finitely generated ideal of R.

In particular if R *is a graded P* \star *MD, then* $R^{\tilde{\star}}$ *is integrally closed.*

Proof. By Proposition [2.3](#page-4-0) and Theorem [3.3,](#page-10-2) we have $Kr(R, \tilde{\star})$ is well-defined and is a Bézout domain.

 $(1) \Rightarrow (2)$ Let $0 \neq f \in R$. Then $C(f)$ is $\tilde{\star}$ -invertible, because R is a graded $P \star MD$, and thus $f R_{N_{\star}(H)} = C(f) R_{N_{\star}(H)}$ by Corollary [2.11.](#page-7-1) Hence if A is an ideal of $R_{N_{\star}(H)}$, then $A = IR_{N_{\star}(H)}$ for some ideal I of R, and thus $A = (\sum_{f \in I} C(f))R_{N_{\star}(H)}$. $(2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (1)$ Is the same as part $(3) \Rightarrow (1)$ in [\[4,](#page-16-1) Theorem 3.4].

 $(1) \Rightarrow (4)$ Let A be a nonzero finitely generated ideal of $R_{N_{\star}(H)}$. Then by Corollary [2.11,](#page-7-1) $A = IR_{N_{\star}(H)}$ for some nonzero finitely generated homogeneous ideal I of R. Since R is a graded P \star MD, I is $\widetilde{\star}$ -invertible, and thus $A = IR_{N_{\star}(H)}$ is invertible by Lemma [2.10.](#page-6-0)

 $(4) \Rightarrow (5)$ Follows from Theorem [2.13.](#page-8-0)

 $(5) \Rightarrow (6)$ Clearly $R_{N_{\star}(H)} \subseteq \text{Kr}(R, \tilde{\star})$. Since $R_{N_{\star}(H)}$ is a Bézout domain, then $Kr(R, \tilde{\star})$ is a quotient ring of $R_{N_{\star}(H)}$, by [\[23,](#page-17-10) Proposition 27.3]. If $Q \in h$ -QMax $\tilde{\star}(R)$, then $Q \text{Kr}(R, \tilde{\star}) \subsetneq \text{Kr}(R, \tilde{\star})$. Otherwise $Q \text{Kr}(R, \tilde{\star}) = \text{Kr}(R, \tilde{\star})$, and hence there is an element $f \in Q$, such that f Kr $(R, \tilde{\star}) =$ Kr $(R, \tilde{\star})$. Thus $\frac{1}{f} \in$ Kr $(R, \tilde{\star})$. Therefore $R = C(1) \subseteq C(f)^{(\widetilde{\star})_a} \subseteq R^{(\widetilde{\star})_a}$, so that $C(f)^{(\widetilde{\star})_a} = R^{(\widetilde{\star})_a}$. Hence $f \in N_{(\widetilde{\star})_a}(H)$ $N_{\star}(H)$ by Remark [4.6\(](#page-14-0)2). This means that $Q^{\tilde{\star}} = R^{\tilde{\star}}$, a contradiction. Thus $Q \text{Kr}(R, \widetilde{\star}) \subsetneq \text{Kr}(R, \widetilde{\star})$, and so there is a maximal ideal M of $\text{Kr}(R, \widetilde{\star})$ such that

 $Q\operatorname{Kr}(R, \star) \subseteq M$. Hence $M \cap R_{N_{\star}(H)} = QR_{N_{\star}(H)}$, by Lemma [2.7.](#page-5-0) Consequently $R_Q \subseteq \text{Kr}(R, \widetilde{\star})_M$, and since R_Q is a valuation domain, we have $R_Q = \text{Kr}(R, \widetilde{\star})_M$. Therefore $R_{N_{\star}(H)} = \bigcap_{Q \in h} Q_{\text{max}}(R) R_Q \supseteq \bigcap_{M \in \text{Max}(Kr(R,\widetilde{\star}))} \text{Kr}(R,\widetilde{\star})_M$. Hence $R_{N_{\star}(H)} = \text{Kr}(R, \widetilde{\star}).$

 $(6) \Rightarrow (7)$ and $(7) \Rightarrow (8)$ are clear.

 $(8) \Rightarrow (6)$ Recall that an overring T of an integral domain S is a flat S-module if and only if $T_M = S_{M \cap S}$ for all $M \in \text{Max}(T)$ by [\[32,](#page-17-22) Theorem 2].

Let A be an ideal of R such that $A \text{Kr}(R, \tilde{\star}) = \text{Kr}(R, \tilde{\star})$. Then there exists an element $f \in A$ such that $f\operatorname{Kr}(R, \tilde{\star}) = \operatorname{Kr}(R, \tilde{\star})$ using Theorem [3.3;](#page-10-2) so $\frac{1}{f} \in \mathcal{L}$ $\text{Kr}(R,\widetilde{\star}) = \text{Kr}(R,\widetilde{\star}_a).$ Thus $R = C(1) \subseteq C(f)^{\widetilde{\star}_a} \subseteq R^{\widetilde{\star}_a}$, and so $C(f)^{\widetilde{\star}_a} = R^{\widetilde{\star}_a}.$ Hence $C(f)^{\tilde{\star}} = R^{\tilde{\star}}$. Therefore $f \in A \cap N_{\star}(H) \neq \emptyset$. Hence, if P_0 is a homogeneous maximal quasi- $\widetilde{\star}$ -ideal of R, then P_0 Kr $(R, \widetilde{\star}) \subsetneq$ Kr $(R, \widetilde{\star})$, and since $P_0R_{N_{\star}(H)}$ is a maximal ideal of $R_{N_{\star}(H)}$, there is a maximal ideal M_0 of $\text{Kr}(R, \tilde{\star})$ such that $M_0 \cap R = (M_0 \cap R_{N_*(H)}) \cap R = P_0 R_{N_*(H)} \cap R = P_0$. Thus by (8), $\text{Kr}(R, w)_{M_0} =$ $R_{P_0} = (R_{N(H)})_{P_0 R_{N(H)}}.$

Let M_1 be a maximal ideal of $Kr(R, \tilde{\star})$, and let P_1 be a homogeneous maximal quasi- $\widetilde{\star}$ -ideal of R such that $M_1 \cap R_{N_{\star}(H)} \subseteq P_1 R_{N_{\star}(H)}$. By the above paragraph, there is a maximal ideal M_2 of $Kr(R,\widetilde{\star})$ such that $Kr(R,\widetilde{\star})_{M_2} = (R_{N_{\star}(H)})_{P_1R_{N_{\star}(H)}}$. Note that $\text{Kr}(R, \widetilde{\star})_{M_2} \subseteq \text{Kr}(R, \widetilde{\star})_{M_1}$, M_1 and M_2 are maximal ideals, and $\text{Kr}(R, \widetilde{\star})$ is a Prüfer domain; hence $M_1 = M_2$ (cf. [\[23,](#page-17-10) Theorem 17.6(c)]) and $\text{Kr}(R, \widetilde{\star})_{M_1} =$ $(R_{N_{\star}(H)})_{P_1R_{N(H)}}$. Thus

$$
\mathrm{Kr}(R,\widetilde{\star})=\bigcap_{M\in\mathrm{Max}(\mathrm{Kr}(R,\widetilde{\star}))}\mathrm{Kr}(R,\widetilde{\star})_{M}=\bigcap_{P\in h\text{-}\mathrm{QMax}^{\widetilde{\star}}(R)}(R_{N_{\star}(H)})_{PR_{N_{\star}(H)}}=R_{N_{\star}(H)}.
$$

 $(6) \Rightarrow (9)$ Assume that $R_{N_{\star}(H)} = \text{Kr}(R, \tilde{\star})$. Let I be a nonzero homogeneous finitely generated ideal of R . Then by Lemma [2.9](#page-6-1) and Theorem [3.3\(](#page-10-2)3), we have $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_H = I \operatorname{Kr}(R, \tilde{\star}) \cap R_H = I^{\tilde{\star}_{a}}.$

 $(9) \Rightarrow (1)$ Let a and b be two nonzero homogeneous elements of R. Then $((a, b)^3)^{\tilde{\star}_a} = ((a, b)(a^2, b^2))^{\tilde{\star}_a}$ which implies that $((a, b)^2)^{\tilde{\star}_a} = (a^2, b^2)^{\tilde{\star}_a}$. Hence $((a, b)^2)^{\tilde{\star}} = (a^2, b^2)^{\tilde{\star}}$ and so $(a, b)^2 R_{H\setminus P} = (a^2, b^2) R_{H\setminus P}$ for each homogeneous maximal quasi- $\widetilde{\star}$ -ideal P of R. On the other hand $R^{\widetilde{\star}} = R^{\widetilde{\star}_{a}}$ by (9). Hence $R^{\widetilde{\star}}$ is integrally closed. Thus $R^{\tilde{*}}R_{H\setminus P} = R_{H\setminus P}$ is integrally closed. Therefore by Proposition [4.1,](#page-11-0) $R_{H\setminus P}$ is a graded Prüfer domain for each homogeneous maximal quasi- \star_f -ideal of R. Thus R is a graded P \star MD by Theorem [4.4.](#page-13-0)

The following theorem is a graded version of a characterization of Prüfer domains proved by Davis [\[12,](#page-17-23) Theorem 1]. It also generalizes [\[13,](#page-17-16) Theorem 2.10], in the toperation, and [\[15,](#page-17-17) Theorem 5.3], in the case of semistar operations.

Theorem 4.8. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree, and* \star *be a semistar operation on* R *such that* $R^* \subseteq R_H$ *. Then, the following statements are equivalent:*

- (1) R *is a graded P* \star *MD*.
- (2) *Each homogeneously* (\star, t) *-linked overring of* R *is a PvMD*.
- (3) *Each homogeneously* (\star, d) *-linked overring of* R *is a graded Prüfer domain.*
- (4) *Each homogeneously* (\star, t) *-linked overring of* R, is integrally closed.
- (5) *Each homogeneously* (\star, d) *-linked overring of* R, is integrally closed.

Proof. (1) \Rightarrow (2) Let T be a homogeneously (\star, t) -linked overring of R. Thus by Lemma [2.15,](#page-9-0) we have $R_{N_{\star}(H)} \subseteq T_{N_v(H)}$. Since R is a graded P \star MD, by Theorem [4.7,](#page-14-1) we have $R_{N_{\star}(H)}$ is a Prüfer domain. Thus by [\[23,](#page-17-10) Theorem 26.1], we have $T_{N_v(H)}$ is a Prüfer domain. Hence, again by Theorem [4.7,](#page-14-1) we have T is a graded PvMD. Therefore using [\[2,](#page-16-4) Theorem 6.4], T is a PvMD.

 $(2) \Rightarrow (4) \Rightarrow (5)$ and $(3) \Rightarrow (5)$ are clear.

 $(5) \Rightarrow (1)$ Let $P \in h$ -QMax^{$\tilde{\star}(R)$}. For a nonzero homogeneous $u \in R_H$, let $T = R[u^2, u^3]_{H \setminus P}$. Then $R_{H \setminus P}$ and T are homogeneous (\star, d) -linked overring of R by Example [2.14.](#page-9-1) So that $R_{H\setminus P}$ and T are integrally closed. Hence $u \in T$, and since $T = R_{H\setminus P}[u^2, u^3]$, there exists a polynomial $\gamma \in R_{H\setminus P}[X]$ such that $\gamma(u) = 0$ and one of the coefficients of γ is a unit in $R_{H\setminus P}$. So u or u^{-1} is in $R_{H\setminus P}$ by [\[27,](#page-17-24) Theorem 67]. Therefore by Lemma [4.3,](#page-12-0) $R_{H\setminus P}$ is a graded Prüfer domain. Thus R is a graded $P*MD$ by Theorem [4.4.](#page-13-0)

 $(1) \Rightarrow (3)$ Is the same argument as in part $(1) \Rightarrow (2)$.

The next result gives new characterizations of PvMDs for graded integral do-mains, which is the special cases of Theorems [4.4,](#page-13-0) [4.5,](#page-13-1) [4.7,](#page-14-1) and [4.8,](#page-15-0) for $\star = v$.

Corollary 4.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of *nonzero degree. Then, the following statements are equivalent:*

- (1) R *is a (graded) P*v*MD.*
- (2) $R_{H\setminus P}$ *is a graded Prüfer domain for each* $P \in h\text{-}QMax^t(R)$ *.*
- (3) R_P *is a valuation domain for each* $P \in h \text{-}QMax^t(R)$ *.*
- (4) Every ideal of $R_{N_v(H)}$ is extended from a homogeneous ideal of R.
- (5) $R_{N_v(H)}$ is a Prüfer domain.
- (6) $R_{N_v(H)}$ is a Bézout domain.
- (7) $R_{N_v(H)} = \text{Kr}(R, w)$.
- (8) $Kr(R, w)$ *is a quotient ring of R.*
- (9) Kr(R, w) *is a flat* R*-module.*
- (10) *Each homogeneously* t*-linked overring of* R *is a P*v*MD.*
- (11) *Each homogeneously* t*-linked overring of* R*, is integrally closed.*
- (12) $(C(f)C(g))^w = C(fg)^w$ *for all* $f, g \in R_H$.
- (13) $I^w = I^{w_a}$ *for each nonzero homogeneous finitely generated ideal of* R.

ACKNOWLEDGMENT

I am grateful to the referee for carefully reading the first version of this article.

REFERENCES

- 1. D. D. Anderson, *Some remarks on the ring* R(X), Comment. Math. Univ. St. Pauli, 26, (1977), 137–140.
- 2. D. D. Anderson, D. F. Anderson, *Divisorial ideals and invertible ideals in a graded integral domain*, J. Algebra, 76, (1982), 549–569.
- 3. D. D. Anderson, D. F. Anderson, *Divisibility properties of graded domains*, Canad. J. Math. 34, (1982), 196–215.
- 4. D. F. Anderson and G. W. Chang, *Graded integral domains and Nagata rings*, J. Algebra, 387, (2013), 169–184.
- 5. D. D. Anderson, J.S. Cook, *Two star-operations and their induced lattices*, Comm. Algebra, 28, (2000), 2461–2475.
- 6. D.F. Anderson, M. Fontana, and M. Zafrullah, *Some remarks on Pr¨ufer* ⋆*-multiplication domains and class groups*, J. Algebra, 319, (2008), 272–295.
- 7. J. T. Arnold and J. W. Brewer, *Kronecker function rings and flat* D[X]*-modules*, Proc. Amer. Math. Soc. 27, (1971), 483–485.

- 8. G. W. Chang, *Prüfer* *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra, 319, (2008), 309–319.
- 9. G.W. Chang and M. Fontana, *Uppers to zero and semistar operations in polynomial rings*, J. Algebra, 318, (2007), 484–493.
- 10. G. W. Chang, B. G. Kang, J. W. Lim, *Pr¨ufer* v*-multiplication domains and related domains of the form* $D + D_S[\Gamma^*]$, J. Algebra, **323**, (2010), 3124-3133.
- 11. C. C. Chevalley, *La notion d'anneau de d´ecomposition*, Nagoya Math. J. 7, (1954), 21–33.
- 12. E. Davis, *Overrings of commutative rings, II*, Trans. Amer. Math. Soc., 110, (1964), 196–212.
- 13. D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, *t-linked overrings and Prüfer v-multiplication domains*, Comm. Algebra 17 (1989), 2835–2852.
- 14. D. E. Dobbs, and P. Sahandi, *On semistar Nagata rings, Pr¨ufer-like domains and semistar going-down domains*, Houston J. Math. 37, No. 3 (2011), 715–731.
- 15. S. El Baghdadi and M. Fontana, *Semistar linkedness and flatness, Prüfer semistar multiplication domains*, Comm. Algebra 32 (2004), 1101–1126.
- 16. M. Fontana and J. A. Huckaba, *Localizing systems and semistar operations*, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169–197.
- 17. M. Fontana, P. Jara and E. Santos, *Prüfer* \star -multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50.
- 18. M. Fontana and K. A. Loper, *Nagata rings, Kronecker function rings and related semistar operations*, Comm. Algebra 31 (2003), 4775–4801.
- 19. M. Fontana and K. A. Loper, *A Krull-type theorem for semistar integral closure of an integral domain*, ASJE Theme Issue "Commutative Algebra" 26 (2001), 89–95.
- 20. M. Fontana and K. A. Loper, *Kronecker function rings: a general approach*, in: D. D. Anderson and I. J. Papick (Eds.), Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220 (2001), Dekker, New York, 189–205.
- 21. M. Fontana and K. A. Loper, *A historical overview of Kronecker function rings, Nagata rings, and related starand semistar operations*, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding(Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, 169–187.
- 22. M. Fontana and G. Picozza, *Semistar invertibility on integral domains*, Algebra Colloq. 12, No. 4, (2005), 645–664.
- 23. R. Gilmer, *Multiplicative Ideal Theory*, New York, Dekker, 1972.
- 24. E. Houston and M. Zafrullah, *On* t*-invertibility, II*, Comm. Algebra 17, (1989), 1955–1969.
- 25. P. Jaffard, *Les Systèmes d'Idéaux*, Dunod, Paris, 1960.
- 26. B. G. Kang, *Prüfer v-multiplication domains and the ring* $R[X]_{N_v}$, J. Algebra, 123, (1989), 151–170.
- 27. I. Kaplansky, *Commutative Rings*, revised ed., Univ. Chicago Press, Chicago, 1974.
- 28. M. Nagata, *Local Rings*, Wiley-Interscience, New York, 1962.
- 29. D. G. Northcott, *Lessons on ringss, modules, and multiplicities*, Cambridge Univ. Press, Cambridge, 1968.
- 30. A. Okabe and R. Matsuda, *Semistar-operations on integral domains*, Math. J. Toyama Univ. 17 (1994), 1–21.
- 31. M. H. Park, *Integral closure of a graded integral domain*, Comm. Algebra, 35, (2007), 3965– 3978.
- 32. F. Richman, *Generalized quotient rings*, Proc. Amer. Math. Soc. 16, (1965), 794–799.

Department of Mathematics, University of Tabriz, Tabriz, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran Iran

E-mail address: sahandi@tabrizu.ac.ir, sahandi@ipm.ir