THE HYPERBOLIC AX-LINDEMANN-WEIERSTRASS CONJECTURE

B. KLINGLER, E.ULLMO, A.YAFAEV

1. INTRODUCTION.

1.1. Bi-algebraic geometry and the Ax-Lindemann-Weierstraß property. Let X and S be complex algebraic varieties and suppose $\pi : X^{\text{an}} \longrightarrow S^{\text{an}}$ is a complex analytic, *non-algebraic*, morphism between the associated complex analytic spaces. In this situation the image $\pi(Y)$ of a generic algebraic subvariety $Y \subset X$ is usually highly transcendental and the pairs $(Y \subset X, V \subset S)$ of irreducible algebraic subvarieties such that $\pi(Y) = V$ are rare and of particular geometric significance. We will say that an irreducible subvariety $Y \subset X$ (resp. $V \subset S$) is *bi-algebraic* if $\pi(Y)$ is an algebraic subvariety of S (resp. any analytic irreducible component of $\pi^{-1}(V)$ is an irreducible algebraic subvariety of X). Notice that $V \subset S$ is bi-algebraic if and only if any analytic irreducible component of $\pi^{-1}(V)$ is bi-algebraic.

Example 1.1. Let $\pi := (\exp(2\pi i \cdot), \dots, \exp(2\pi i \cdot)) : \mathbb{C}^n \longrightarrow (\mathbb{C}^*)^n$. One easily shows that an irreducible algebraic subvariety $Y \subset \mathbb{C}^n$ (resp. $V \subset (\mathbb{C}^*)^n$)) is bi-algebraic if and only if Y is a translate of a rational linear subspace of $\mathbb{C}^n = \mathbb{Q}^n \otimes_{\mathbb{Q}} \mathbb{C}$ (resp. V is a translate of a subtorus of $(\mathbb{C}^*)^n$.

Example 1.2. Let $\pi : \mathbb{C}^n \longrightarrow A$ be the uniformizing map of a complex Abelian variety A of dimension n. One checks that an irreducible algebraic subvariety $V \subset A$ is bialgebraic if and only if V is the translate of an Abelian subvariety of A (cf. [\[32,](#page-26-0) prop. 5.1] for example).

More generally, given $Y \subset X$ an algebraic subvariety, one may ask for a description of the Zariski-closure $\overline{\pi(Y)}^{\text{Zar}}$ of its image $\pi(Z)$. We will say that $\pi: X \longrightarrow S$ satisfy the Ax-Lindemann-Weierstraß property if for any such $Y \subset X$ the irreducible components of $\overline{\pi(Y)}^{\text{Zar}}$ are bi-algebraic. One checks that the Ax-Lindemann-Weierstraß property is equivalent to the following: for any algebraic subvariety $V \subset S$, any irreducible algebraic subvariety Y of X contained in $\pi^{-1}(V)$ and maximal for this property is bi-algebraic.

Example 1.3*.* In the situations of Example [1.1](#page-0-0) and Example [1.2](#page-0-1) Ax [\[2\]](#page-25-0) showed that $\pi: X \longrightarrow S$ has the Ax-Lindemann-Weiertraß property. Namely:

Andrei Yafaev was supported by the ERC grant Project 307364 SPGSV.

- if $\pi := (\exp(2\pi i \cdot), \ldots, \exp(2\pi i \cdot)) : \mathbb{C}^n \longrightarrow (\mathbb{C}^*)^n$ and $Y \subset \mathbb{C}^n$ is an algebraic subvariety then any irreducible component of $\overline{\pi(Y)}^{\text{Zar}}$ is the translate of a subtorus of $(\mathbb{C}^*)^n$.

- if $\pi: \mathbb{C}^n \longrightarrow A$ is the uniformizing map of a complex abelian variety A of dimension n and $Y \subset \mathbb{C}^n$ is an algebraic subvariety then any irreducible component of $\overline{\pi(Y)}^{\text{Zar}}$ is the translate of an Abelian subvariety of A.

Remark 1.4. Notice that Ax's theorem for $\pi := (\exp(2\pi i \cdot), \dots, \exp(2\pi i \cdot)) : \mathbb{C}^n \longrightarrow (\mathbb{C}^*)^n$ is the functional analog of the classical Lindemann-Weierstraß transcendence theorem ([\[13\]](#page-25-1), [\[36\]](#page-26-1)) stating that if $\alpha_1, \ldots, \alpha_n$ are Q-linearly independent algebraic numbers then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over Q. This explain our terminology.

1.2. The hyperbolic Ax-Lindemann-Weierstraß conjecture. The main result of this paper is the proof of the Ax-Lindemann-Weierstraß property for the uniformizing map $\pi : X \longrightarrow S := \Gamma \backslash X$ of any *arithmetic variety* S. Here X denotes a Hermitian symmetric domain and Γ is any *arithmetic subgroup* of the real adjoint Lie group G of biholomorphisms of X . This means that there exists a semisimple $\mathbb Q$ -algebraic group **G** and a surjective morphism with compact kernel $p : G(\mathbb{R}) \longrightarrow G$ such that Γ is commensurable with the projection $p(G(\mathbb{Z}))$ (cf. section [2](#page-5-0) for the definition of $G(\mathbb{Z})$) and [\[14\]](#page-25-2) for a general reference on arithmetic lattices).

The Ax-Lindemann-Weierstraß property does not make sense directly for π : the arithmetic variety S admits a natural structure of complex quasi-projective variety via the Baily-Borel embedding $[3]$ but the Hermitian symmetric domain X is not a complex algebraic variety. However X admits a canonical realisation as a bounded symmetric domain $\mathcal{D} \subset \mathbb{C}^N$ (with $N = \dim_{\mathbb{C}} X$) (cf. [\[28,](#page-26-2) §II.4]).

Definition 1.5. We will say that a subset $Y \subset \mathcal{D}$ is an irreducible algebraic subvariety *of* D *if* Y *is an irreducible component of the analytic set* $D \cap \tilde{Y}$ *where* \tilde{Y} *is an algebraic* $subset of \mathbb{C}^N$. An algebraic subvariety of $\mathcal D$ is then defined as a finite union of irreducible *algebraic subvarieties.*

With these definitions the morphism π is far from algebraic (in the simplest case where D is the Poincaré disk and S is the modular curve, the map $\pi : \mathcal{D} \longrightarrow S$ is the usual j-invariant seen on the disk) and it makes sense to study the bi-algebraic subvarieties for π . In [\[32\]](#page-26-0) Ullmo and Yafaev proved that the bi-algebraic subvarieties of S for π are the *weakly special* ones, namely the irreducible complex algebraic subvarieties of S whose smooth locus is totally geodesic in S endowed with its canonical Hermitian metric.

Our main result is the proof of the Ax-Lindemann-Weiertraß property in this context:

Theorem 1.6. *(The hyperbolic Ax-Lindemann-Weierstraß conjecture.) Let* $S = \Gamma \backslash \mathcal{D}$ *be an arithmetic variety with uniformising map* $\pi : \mathcal{D} \longrightarrow S$ *. Let* $Y \subset \mathcal{D}$ *be an algebraic*

subvariety. Then any irreducible component of the Zariski-closure $\overline{\pi(Y)}^{\text{Zar}}$ of $\pi(Y)$ is *weakly special.*

Equivalently, let V *be an algebraic subvariety of* S*. Irreducible algebraic subvarieties of* D *contained in* $\pi^{-1}V$ *and maximal for this property are precisely the irreducible components of the preimages of maximal weakly special subvarieties contained in* V *.*

- *Remarks* 1.7*.* (a) The Ax-Lindemann-Weierstraß property in an hyperbolic context was first proven by Pila in the case where S is a product of modular curves: cf. [\[23,](#page-26-3) section 1.4 and theor. 6.8]. It is a crucial ingredient in Pila's proof of the André-Oort conjecture for product of modular curves. The hyperbolic Ax-Lindemann-Weierstraß conjecture for the uniformizing map of a general connected Shimura variety S is stated in [\[30,](#page-26-4) conjecture 1.2], where Ullmo explains its role in the proof of the André-Oort conjecture. In [\[34\]](#page-26-5) Ullmo and Yafaev prove Theorem [1.6](#page-1-0) in the special case where S is compact. In [\[26\]](#page-26-6), in part inspired by [\[34\]](#page-26-5) and relying on [\[20\]](#page-25-4), Pila and Tsimerman proved Theorem [1.6](#page-1-0) in the special case $S = \mathcal{A}_q$, the moduli space of principally polarised Abelian varieties of dimension g.
	- (b) Mok has a nice, entirely complex-analytic, approach to the hyperbolic Ax-Lindemann-Weierstraß conjecture. In the rank 1 case his approach should extend some of the results of this text to the case where Γ is a non-arithmetic lattice. We refer to [\[16\]](#page-25-5), [\[17\]](#page-25-6) for partial results.
	- (c) We defined algebraic subvarieties of X using the Harish-Chandra realisation $\mathcal D$ of X but we could have used as well any other *realisation* of X in the sense of [\[30,](#page-26-4) section 2.1]. Indeed morphisms of realisations are necessarily semi-algebraic, thus X admits a canonical semi-algebraic structure and a canonical notion of algebraic subvarieties (cf. appendix [B](#page-23-0) for details). Hence one can replace D in Theorem [1.6](#page-1-0) by any other realisation of X , for example the Borel realisation (cf. $[15, p.52]$ $[15, p.52]$.

1.3. Motivation: the André-Oort conjecture. Let (G, X_G) be a Shimura datum. Let X be a connected component of X_G (hence X is a Hermitian symmetric domain). We denote by $\mathbf{G}(\mathbb{Q})_+$ the stabiliser of X in $\mathbf{G}(\mathbb{Q})$. Let K_f be a compact open subgroup of $\mathbf{G}(\mathbb{A}_f)$, where \mathbb{A}_f denotes the finite adèles of Q and let $\Gamma := \mathbf{G}(\mathbb{Q})_+ \cap K_f$ be the corresponding congruence arithmetic lattice of $\mathbf{G}(\mathbb{Q})$.

Then the arithmetic variety $S := \Gamma \backslash X$ is a component of the complex quasi-projective Shimura variety

$$
Sh_K(G, X) := \mathbf{G}(\mathbb{Q})_+ \backslash X \times \mathbf{G}(\mathbb{A}_f) / K_f .
$$

The variety S contains the so-called special points and special subvarieties (these are the weakly special subvarieties of S containing one special point, we refer to $[6]$ or $[18]$ for

the detailed definitions). One of the main motivations for studying the Ax-Lindemann-Weierstraß conjecture is the André-Oort conjecture predicting that irreducible subvarieties of S containing Zariski dense sets of special points are precisely the special subvarieties. The André-Oort conjecture has been proved under the assumption of the Generalised Riemann Hypothesis (GRH) by the authors of this paper([\[31\]](#page-26-7), [\[12\]](#page-25-10)). Recently Pila and Zannier [\[27\]](#page-26-8) came up with a new proof of the Manin-Mumford conjecture for abelian varieties using the flat Ax-Lindemann-Weierstraß theorem. This gave hope to prove the André-Oort conjecture unconditionally with the same strategy. In [\[23\]](#page-26-3) Pila succeeded in applying this strategy to the case where S is a product of modular curves (and more generally, in the context of mixed Shimura varieties, when S is a product of modular curves, of elliptic curves defined over $\mathbb Q$ and of an algebraic torus $\mathbf{G}_{\mathrm{m}}^l$). Roughly speaking, the strategy of [\[23\]](#page-26-3) consists of two main ingredients: the first is the problem of bounding below the sizes of Galois orbits of special points and the second is the hyperbolic Ax-Lindemann-Weierstraß conjecture. We refer to [\[30\]](#page-26-4) for details on how the general hyperbolic Ax-Lindemann-Weierstraß conjecture and a good lower bound on the sizes of Galois orbits of special points imply the full André-Oort conjecture. As a direct corollary of Theorem [1.6](#page-1-0) and the proof of [\[30,](#page-26-4) theor.5.1] one obtains:

Corollary 1.8. The André-Oort conjecture holds for A_6^n for any positive integer n.

Notice also that (as explained in [\[30\]](#page-26-4)) a new proof of the André-Oort conjecture under the GRH, alternative to [\[31\]](#page-26-7) and [\[12\]](#page-25-10), is a consequence of three ingredients: Theorem [1.6,](#page-1-0) a lower bound under GRH for the size of Galois orbits of special points (provided by Tsimerman [\[35\]](#page-26-9) in the case of \mathcal{A}_q and by Ullmo-Yafaev [\[33\]](#page-26-10) in general) and an upper bound for the height of special points in Siegel sets. This upper-bound has been announced by C.Daw and M.Orr [\[5\]](#page-25-11).

1.4. Strategy of the proof of Theorem [1.6.](#page-1-0) Our general strategy for proving Theorem [1.6,](#page-1-0) which originates in [\[23\]](#page-26-3), is also the one used in [\[34\]](#page-26-5) and [\[26\]](#page-26-6): it ultimately relies on estimations of rational points in transcendental real-analytic varieties or more generally in spaces definable in a o-minimal structure. Let us describe roughly this strategy and emphasize the new ideas involved.

(i) Let $S := \Gamma \backslash X$ and $\pi \colon X \longrightarrow S$ be the uniformising map. Even though the map π is transcendental, it still enables us to relate the semi-algebraic structures on X and S through a larger o-minimal structure. We refer to $[7]$, $[8]$, $[34]$, section 3 for details on ominimal structures. Recall that a fundamental set for the action of Γ on X is a connected open subset F of X such that $\Gamma \overline{F} = X$ and such that the set $\{ \gamma \in \Gamma \mid \gamma \mathcal{F} \cap \mathcal{F} \neq \emptyset \}$ is finite. Our first result of independent interest is the following:

Theorem 1.9. *There exists a semi-algebraic fundamental set* F *for the action of* Γ *on* X such that the restriction $\pi_{\mid \mathcal{F}} \colon \mathcal{F} \longrightarrow S$ is definable in the o-minimal structure $\mathbb{R}_{\text{an,exp}}$.

- *Remarks* 1.10*.* (a) The special case of Theorem [1.9](#page-4-0) when S is compact is easy and was proven in [\[34,](#page-26-5) Prop.4.2]. In this case, the map $\pi_{\mathcal{F}}$ is even definable in \mathbb{R}_{an} . Theorem [1.9](#page-4-0) in the case where $X = \mathcal{H}_q$ is the Siegel upper half plane of genus g was proven by Peterzil and Starchenko (see [\[20\]](#page-25-4) and [\[21\]](#page-25-14)): in this case they use an explicit description for π in terms of θ -function and delicate computations with these. Their result is a crucial ingredient in [\[26\]](#page-26-6). Notice moreover that this particular case implies Theorem [1.9](#page-4-0) for any special subvariety S of A_q (see Proposition 2.5 of [\[30\]](#page-26-4)).
	- (b) On the other hand Peterzil and Starchenko's method does not generalize to general arithmetic varieties, where an explicit description of π is not available. Moreover, while the definability of π restricted to $\mathcal F$ is of geometric essence, the geometric meaning of computations with θ -functions is difficult to follow. On the contrary our general proof of Theorem [1.9](#page-4-0) is completely geometric: it relies on the general theory of toroidal compactifications of arithmetic varieties (cf. [\[1\]](#page-25-15)). In particular it does not use [\[20\]](#page-25-4) or [\[21\]](#page-25-14).

(ii) Choose a semi-algebraic fundamental set F for the action of Γ as in the Theo-rem [1.9](#page-4-0) above. The choice of a reasonable representation $\rho : \mathbf{G} \longrightarrow \mathbf{GL}(E)$ (cf. section [2\)](#page-5-0) allows us to define a *height function* $H : \Gamma \longrightarrow \mathbb{R}$ (cf. definition [5.1\)](#page-13-0). In section [5](#page-13-1) we show the following result, which is the most original part of the proof (it mixes the geometry of toroidal compactifications and various arguments from hyperbolic geometry, like theorem [5.7](#page-16-0) of Hwang-To):

Theorem 1.11. *Let* Y *be a positive dimensional irreducible algebraic subvariety of* X*. Define*

$$
N_Y(T) = |\{ \gamma \in \Gamma : H(\gamma) \leq T, Y \cap \gamma \mathcal{F} \neq \emptyset \}|.
$$

Then there exists a positive constant c_1 *such that for all positive real number* T *large enough:*

$$
N_Y(T) \geq T^{c_1} .
$$

Remark 1.12. When S is compact Ullmo and Yafaev proved in [\[34,](#page-26-5) theor. 2.7] a more refined result. Indeed let $F := \{ \gamma \in \mathcal{F}, \ \gamma \overline{\mathcal{F}} \cap \overline{\mathcal{F}} \neq 0 \}$ be a finite symmetric set of generators for Γ and let $l : \Gamma \longrightarrow \mathbb{N}$ be the word length function on Γ associated to F. Then Ullmo and Yafaev show that the function $N_Y(n) := |\{\gamma \in \Gamma, \dim(\gamma \mathcal{F} \cap Y) = \dim Y \text{ and } l(\gamma) \leq n\}|$ grows exponentially with $n \in \mathbb{N}$ and Theorem [1.11](#page-4-1) follows in this case. We were not able to obtain such a result in the general case.

(iii) In section [6,](#page-18-0) applying the counting result above and some strong form of Pila-Wilkie's theorem [\[24\]](#page-26-11), we prove:

Theorem 1.13. *Let* V *be an algebraic subvariety of* S *and* Y *a maximal irreducible algebraic subvariety of* $\pi^{-1}V$ *. Let* Θ_Y *denotes the stabiliser of* Y *in* $\mathbf{G}(\mathbb{R})$ *and define* H_Y *as the connected component of the identity of the Zariski closure of* $\mathbf{G}(\mathbb{Z}) \cap \Theta_Y$ *. Then* \mathbf{H}_Y *is a non-trivial* \mathbb{Q} -subgroup of \mathbf{G} *, such that* $\mathbf{H}_Y(\mathbb{R})$ *is non-compact.*

 (iv) Without loss of generality one can assume that V is the smallest algebraic subvariety of S containing $\pi(Y)$. With this assumption we show in section [7](#page-20-0) that \widetilde{V} is invariant under $\mathbf{H}_{Y}(\mathbb{Q})$, where \widetilde{V} is an analytic irreducible component of $\pi^{-1}V$ containing Y, and then conclude that $\pi(Y) = V$ is weakly special using monodromy arguments.

2. NOTATIONS

In the rest of the text:

- X denotes a Hermitian symmetric domain (not necessarily irreducible).
- \bullet G is the adjoint semi-simple real algebraic group, whose set of real points, also denoted by G, is the group of biholomorphisms of X; hence $X = G/K$ where K is a maximal compact subgroup of G.
- $\Gamma \subset G$ is an arithmetic lattice. This means (cf. [\[14\]](#page-25-2)) that there exists a semisimple linear algebraic group **G** over $\mathbb Q$ and $p : \mathbf{G}(\mathbb R) \longrightarrow G$ a surjective morphism with compact kernel such that Γ is commensurable with $p(G(\mathbb{Z}))$. Here we recall that two subgroups of a group are commensurable if their intersection is of finite index in both of them; moreover $\mathbf{G}(\mathbb{Z})$ denotes $\mathbf{G}(\mathbb{Q}) \cap \rho^{-1}(\mathbf{GL}(E_{\mathbb{Z}}))$ for some faithful representation $\rho : G \longrightarrow GL(E)$, where E is a finite-dimensional Qvector space and $E_{\mathbb{Z}}$ is a Z-lattice in E; the commensurability of Γ and $p(\mathbf{G}(\mathbb{Z}))$ is independant of the choice of ρ and $E_{\mathbb{Z}}$.
- We denote by n the dimension of E as a \mathbb{Q} -vector space.
- One easily checks that Theorem [1.6](#page-1-0) holds for Γ if and only if it holds for any Γ' commensurable with Γ. In particular without loss of generality one can and will assume that the group $\mathbf{G}(\mathbb{Z})$ is neat (meaning that for any $\gamma \in \mathbf{G}(\mathbb{Z})$ the group generated by the eigenvalues of $\rho(\gamma)$ is torsion-free) and the group Γ coincides with $p(G(\mathbb{Z}))$ (hence is torsion-free).
- Without loss of generality we can and will assume that *the group* G *is of adjoint type*. Indeed let $\lambda: G \longrightarrow G^{ad}$ denotes the natural algebraic morphism to the adjoint group \mathbf{G}^{ad} of \mathbf{G} (quotient by the centre). As the Lie group G is adjoint

the morphism $p : \mathbf{G}(\mathbb{R}) \longrightarrow G$ factorises through

and Γ is commensurable with $p^{\text{ad}}(\mathbf{G}^{\text{ad}}(\mathbb{Z}))$.

- Without loss of generality we can and will assume that *each* Q*-simple factor of* G *is* R*-isotropic*. Indeed let H be the quotient of G by its R-anisotropic Qfactors. Again, the morphism $p : G(\mathbb{R}) \longrightarrow G$ factorises through $\mathbf{H}(\mathbb{R})$ and Γ is commensurable with the projection of $H(\mathbb{Z})$.
- The group $K_{\infty} := p^{-1}K$ is a maximal compact subgroup of $\mathbf{G}(\mathbb{R})$. Hence $X =$ $\mathbf{G}(\mathbb{R})/K_{\infty}$. We denote by x_0 the base-point eK_{∞} of X.
- The quotient $S := \Gamma \backslash X$ is a smooth complex quasi-projective variety. We denote by $\pi: X \longrightarrow S$ the uniformization map.
- We choose $\|\cdot\|_{\infty}: E_{\mathbb{R}} \longrightarrow \mathbb{R}$ a Euclidean norm which is $\rho(K_{\infty})$ -invariant.
- We denote by $\mathcal X$ any realization of X (cf. appendix [B\)](#page-23-0).

3. Compactification of arithmetic varieties

3.1. Siegel sets. First we recall the definition of Siegel sets for Γ. We refer to [\[4,](#page-25-16) §12] for details. We follow Borel's conventions, except that for us the group G acts on X on the left.

Let **P** be a minimal Q-parabolic subgroup of **G** such that $K_{\infty} \cap \mathbf{P}(\mathbb{R})$ is a maximal compact subgroup of $\mathbf{P}(\mathbb{R})$. Let U be the unipotent radical of P and let A be a maximal split torus of **P**. We denote by **S** a maximal split torus of $GL(E)$ containing $\rho(\mathbf{A})$. We denote by M the maximal anisotropic subgroup of the connected centralizer $\mathbf{Z}(\mathbf{A})^0$ of **A** in **P** and by Δ the set of positive simple roots of **G** with respect to **A** and **P**. We denote by $A \subset S(\mathbb{R})$ the real torus $\mathbf{A}(\mathbb{R})$. For any real number $t > 0$ we let

$$
A_t := \{ a \in A \mid a^{\alpha} \ge t \text{ for any } \alpha \in \Delta \} .
$$

A Siegel set for $\mathbf{G}(\mathbb{R})$ for the data $(K_{\infty}, \mathbf{P}, \mathbf{A})$ is a product:

$$
\Sigma'_{t,\Omega} := \Omega \cdot A_t \cdot K_\infty \subset \mathbf{G}(\mathbb{R})
$$

where Ω is a compact neighborhood of e in $\mathbf{M}^0(\mathbb{R}) \cdot \mathbf{U}(\mathbb{R})$.

The image

$$
\Sigma_{t,\Omega} := \Omega \cdot A_t \cdot x_o \subset \mathcal{X}
$$

of $\Sigma'_{t,\Omega}$ in $\mathcal X$ is called a Siegel set in $\mathcal X$.

Theorem 3.1. [\[4,](#page-25-16) theor.13.1] *Let* X, G, G, Γ , P, A, K_{∞} , and X *be as above. Then for any Siegel set* $\Sigma_{t,\Omega}$ *, the set* $\{\gamma \in \Gamma \mid \gamma \Sigma_{t,\Omega} \cap \Sigma_{t,\Omega} \neq \emptyset\}$ *is finite. There exist a Siegel set (called a Siegel set for* Γ) $\Sigma_{t_0,\Omega}$ *and a finite subset* J *of* $\mathbf{G}(\mathbb{Q})$ *such that* $\mathcal{F} := J \cdot \Sigma_{t_0,\Omega}$ *is a fundamental set for the action of* Γ *on* \mathcal{X} *.*

When Ω is chosen to be semi-algebraic the Siegel set $\Sigma_{t,\Omega}$ and the fundamental set $\mathcal F$ are semi-algebraic as by definition of a complex realisation (cf. appendix [B\)](#page-23-0) the action of $\mathbf{G}(\mathbb{R})$ on X is semi-algebraic and the subset $\Omega \cdot A_t$ of $\mathbf{G}(\mathbb{R})$ is semi-algebraic.

We will only consider semi-algebraic Siegel sets in the rest of the text.

3.2. Boundary components. General references for this section and the next one are [\[19\]](#page-25-17) and [\[1\]](#page-25-15).

Let $\mathcal{D} \hookrightarrow \mathbb{C}^N$ be the Harish-Chandra realisation of X as a bounded symmetric domain. The action of G extends to the closure $\overline{\mathcal{D}}$ of \mathcal{D} in \mathbb{C}^N . The boundary $\partial \mathcal{D} := \overline{\mathcal{D}} \backslash \mathcal{D}$ is a smooth manifold which decomposes into a (continuous) union of *boundary components*, which are defined as maximal complex analytic submanifolds of $\partial \mathcal{D}$ (or alternatively as holomorphic path components of $\partial \mathcal{D}$). Explicitly, let us say that a real affine hyperplane $H \subset \mathbb{C}^N$ is a supporting hyperplane if $H \cap \overline{\mathcal{D}}$ is nonempty but $H \cap \mathcal{D}$ is empty. Let H be a supporting hyperplane and let $\overline{F} = H \cap \overline{\mathcal{D}} = H \cap \partial \mathcal{D}$. Let L be the smallest affine subspace of \mathbb{C}^N which contains \overline{F} . Then \overline{F} is the closure of a nonempty open subset $F \subset L$ which is then a single boundary component of \mathcal{D} (cf. [\[28,](#page-26-2) §III.8.11]). The boundary component F turns out to be a bounded symmetric domain in L .

Fix a boundary component F. The normaliser $N(F) := \{ g \in G \mid gF = F \}$ turns out to be a proper parabolic subgroup of G. The Levi decomposition $N(F) = R(F) \cdot W(F)$ (where $W(F)$ denotes the unipotent radical of $N(F)$ and $R(F)$ is the unique reductive Levi factor stable under the Cartan involution corresponding to K) can be refined into

(3.1)
$$
N(F) = (G_h(F) \cdot G_l(F) \cdot M(F)) \cdot V(F) \cdot U(F) ,
$$

where:

 $- U(F)$ is the centre of $W(F)$. It is a real vector space;

 $V(F) = W(F)/U(F)$ turns out to be abelian. It is a real vector space of even dimension 2l, and we get a decomposition $W(F) = V(F) \cdot U(F)$ using "exp";

- $G_l(F) \cdot M(F) \cdot V(F) \cdot U(F)$ acts trivially on F and $G_h(F)$ modulo a finite center is $\operatorname{Aut}^0(F);$

 $-G_h(F) \cdot M(F) \cdot V(F) \cdot U(F)$ commutes with $U(F)$ and $G_l(F)$ modulo a finite central group acts faithfully on $U(F)$ by inner automorphisms;

 $-M(F)$ is compact.

The boundary component F is said to be *rational* if $\Gamma_F := \Gamma \cap N(F)$ is an arithmetic subgroup of $N(F)$. There are only finitely many Γ-orbits of rational boundary components, we choose representatives F_1, \ldots, F_r for these Γ-orbits. Then the Baily-Borel compactification of S is

$$
\overline{S}^{BB} = S \cup \bigcup_{i=1}^{r} (\Gamma_{F_i} \backslash F_i)
$$

with a suitable analytic structure.

3.3. Toroidal compactifications and local coordinates. Let X^{\vee} be the compact dual of X and $\mathcal{D} \hookrightarrow X^{\vee}$ be the Borel embedding. Recall that X^{\vee} has an algebraic action by $G_{\mathbb{C}}$. Given a boundary component F of D we define, following [\[19,](#page-25-17) section 3], an open subset \mathcal{D}_F of X^\vee containing $\mathcal D$ as follows:

$$
\mathcal{D}_F = \bigcup_{g \in U(F)_{\mathbb{C}}} g \cdot \mathcal{D} .
$$

The embedding of $\mathcal D$ in $\mathcal D_F$ is Piatetskii-Shapiro's realisation of $\mathcal D$ as Siegel Domain of the third kind. In fact there is a canonical holomorphic isomorphism (we refer to the proof of Lemma [4.2](#page-11-0) for a precise description of this isomorphism):

$$
\mathcal{D}_F \stackrel{j}{\simeq} U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \ .
$$

This biholomorphism defines complex coordinates (x, y, t) on \mathcal{D}_F , such that

$$
\mathcal{D} \stackrel{j}{\simeq} \{(x, y, t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \mid \text{Im}(x) + l_t(y, y) \in C(F)\} \subset \mathcal{D}_F
$$

where Im(x) is the imaginary part of x, $C(F) \subset U(F)$ is a self-adjoint convex cone homogeneous under the $G_l(F)$ -action on $U(F)$ and $l_t: \mathbb{C}^l \times \mathbb{C}^l \longrightarrow U(F)$ is a symmetric R-bilinear form varying real-analytically with $t \in F$. The group $U(F)_{\mathbb{C}}$ acts on \mathcal{D}_F and in these coordinates the action of $a \in U(F)(\mathbb{C})$ is given by:

$$
(x, y, t) \longrightarrow (x + a, y, t).
$$

From now on we fix a Γ-admissible collection of polyhedra $\sigma = (\sigma_{\alpha})$ (cf. [\[1,](#page-25-15) definition 5.1) such that the associated toroidal compactification $\overline{S} = \overline{S}_{\sigma}$ constructed in [\[1\]](#page-25-15) is smooth projective and the complement $\overline{S} \setminus S$ is a divisor with normal crossings. We refer to [\[1\]](#page-25-15) for details and we just recall what is needed for our purposes.

The compactification \overline{S} is covered by a finite set of coordinates charts constructed as follows (cf. [\[19,](#page-25-17) p.255-256]):

(a) Take a rational boundary component F of \mathcal{D} ;

(b) We may choose some complex coordinates $x = (x_1, \ldots, x_k)$ on $U(F)_{\mathbb{C}}$ (depending on the choice of σ) such that the following diagram commutes:

(3.2)
\n
$$
\mathcal{D} \longrightarrow \mathcal{D}_F \stackrel{j}{\cong} U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F
$$
\n
$$
\xrightarrow[\text{exp}_F]{\text{exp}_F}
$$
\n
$$
\xrightarrow[\text{exp}_F]{\text{exp}_F} \mathbb{C}^k \times \mathbb{C}^l \times F \longrightarrow \mathbb{C}^k \times \mathbb{C}^l \times F
$$
\n
$$
\xrightarrow[\text{exp}_F]{\text{exp}_F}
$$
\n
$$
\xrightarrow[\text{exp}_F]{\text{exp}_F}
$$

where $\exp_F: U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \to \mathbb{C}^{*k} \times \mathbb{C}^l \times F$ is given by

(3.3)
$$
(x, y, t) \mapsto (\exp(2i\pi x), y, t)
$$
, where $\exp(2i\pi x) = (\exp(2i\pi x_1), \dots, \exp(2i\pi x_k))$.

(c) Define the "partial compactification of $\exp_F(\mathcal{D})$ in the direction F" to be the set $\exp_F(\mathcal{D})^{\vee}$ of points P in $\mathbb{C}^k \times \mathbb{C}^l \times F$ having a neighborhood Θ such that

$$
\Theta \cap \mathbb{C}^{*k} \times \mathbb{C}^l \times F \subset \exp_F(\mathcal{D}) \ .
$$

Then there exists an integer $m, 1 \leq m \leq k$, such that $\exp_F(\mathcal{D})^{\vee}$ contains

$$
S(F, \sigma) = \bigcup_{i=1}^m \{ (z, y, t) | z = (z_1, \ldots, z_k), z_i = 0 \}.
$$

(d) The basic property of \overline{S} is that the covering map $\pi_F : \exp_F(\mathcal{D}) \to S$ extends to a local homeomorphism $\overline{\pi_F} : \exp_F(\mathcal{D})^{\vee} \to \overline{S}$ making the diagram

commutative. Moreover every point P of $\overline{S} - S$ is of the form $\overline{\pi}_F((z, y, t))$ with $z_i = 0$ for some $i \leq m$, for some F.

The following proposition summarizes what we will need:

Proposition 3.2. *Let* $\Sigma = \Sigma_{t,\Omega} \subset \mathcal{D}$ *be a Siegel set for the action of* Γ *. Then* Σ *is covered by a finite number of open subsets* Θ *having the following properties. For each* ^Θ *there is a rational boundary component* ^F*, a simplicial cone* ^σ [∈] ^σ *with* ^σ [⊂] ^C(F)*, a* $point\ a \in C(F)$, relatively compact subsets U' , Y' and F' of $U(F)$, \mathbb{C}^l and F respectively

such that the set Θ *is of the form*

j

$$
\Theta \stackrel{j}{\simeq} \{(x, y, t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F, \text{Re}(x) \in U', y \in Y', t \in F' \mid \text{Im}(x) + l_t(y, y) \in \sigma + a\}
$$

$$
\subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \stackrel{j-1}{\simeq} \mathcal{D}_F.
$$

Proof. Let us provide a proof of this proposition, essentially stated without proof in [\[19,](#page-25-17) p.259]. Let $\mathcal{D} \stackrel{\Psi}{\simeq} W(F) \times C(F) \times F$ be the real-analytic isomorphism deduced from the group-theoretic isomorphism (3.1) constructed in [\[1,](#page-25-15) p.233]. Following [1, p.266, corollary of proof], the Siegel set Σ is covered by a finite number of sets Θ of the form

$$
\Theta \stackrel{\Psi} \simeq \omega_F \times (C_0 \cap \sigma_\alpha^F) \times E ,
$$

where $E \subset F$ and $\omega_W \subset W(F)$ are compact, $C_0 \subset C(F)$ is a rational core and σ_{α}^F is one of the polyhedra in our decomposition of $C(F)$.

Considering $C(F)$ as a cone in $\sqrt{-1} \cdot U(F)$ and decomposing $W(F)$ as $U(F) \cdot V(F)$, the isomorphism Ψ extends to the real-analytic isomorphism $\mathcal{D}_F \stackrel{\Psi}{\simeq} U(F)_{\mathbb{C}} \times V(F) \times F$ constructed in [\[1,](#page-25-15) p.235]. Hence the Siegel set Σ is covered by a finite number of sets Θ of the form

(3.5)
$$
\Theta \stackrel{\Psi}{\simeq} \Psi(\mathcal{D}) \cap \{(x, s, t) \in U(F)_{\mathbb{C}} \times V(F) \times F \quad | \quad \text{Re}(x) \in U', s \in S', t \in F'\}
$$

where $F' \subset F$, $U' \subset U(F)$ and $S' \subset V(F)$ are relatively compact.

Using the definition of j given in [\[37,](#page-26-12) $\S7$] and recalled in the proof of Lemma [4.2](#page-11-0) below, it follows, as stated in [\[1,](#page-25-15) p.238], that the diffeomorphism $j \circ \Psi^{-1} : U(F)_{\mathbb{C}} \times V(F) \times F \simeq$ $U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F$ is a change of trivialisation of the real-analytic bundle

studied in [\[1,](#page-25-15) p.237]. Here the map π'_F is a $U(F)_{\mathbb{C}}$ -principal homogeneous space, the map p_F is a $V(F)$ -principal homogeneous space, and the map $j \circ \Psi^{-1}$ is $U(F)_{\mathbb{C}}$ -equivariant and respects the fibrations over F. These two properties ensure that $j \circ \Psi^{-1}$ identifies the set $\Psi(\Theta)$ of [\(3.5\)](#page-10-0) to a set of the required form

$$
\Theta \stackrel{j}{\simeq} \{(x, y, t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F, \text{Re}(x) \in U', y \in Y', t \in F' \mid \text{Im}(x) + l_t(y, y) \in \sigma + a\}
$$

$$
\subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F.
$$

 \Box

4. Definability of the uniformisation map: proof of Theorem [1.9.](#page-4-0)

First notice that, although the variety S does not canonically embed into some \mathbb{R}^n , the statement of Theorem [1.9](#page-4-0) makes sense as S has a canonical structure of real algebraic manifold, hence of $\mathbb{R}_{an,exp}$ -manifold: cf. appendix [A.](#page-23-1)

By Theorem [3.1](#page-7-1) there exist a semi-algebraic Siegel set Σ and a finite subset J of $\mathbf{G}(\mathbb{Q})$ such that $\mathcal{F} := J \cdot \Sigma$ is a (semi-algebraic) fundamental set for the action of Γ on D. Hence Theorem [1.9](#page-4-0) follows from the following more precise result.

Theorem 4.1. *The restriction* $\pi_{\Sigma}: \Sigma \longrightarrow S$ *of the uniformising map* $\pi: \mathcal{D} \longrightarrow S$ *is definable in* Ran,exp*.*

Proof. By the Proposition [3.2](#page-9-0) we know that Σ is covered by a finite union of open subsets Θ with the following properties. For each Θ there is a rational boundary component F, a simplicial cone $\sigma \in \sigma$ with $\sigma \subset \overline{C(F)}$, a point $a \in C(F)$, relatively compact subsets U', Y' and F' of $U(F)$, \mathbb{C}^l and F respectively such that the set Θ is of the form

$$
(4.1)
$$

$$
\Theta \stackrel{j}{\simeq} \{(x, y, t) \in U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F, \text{Re}(x) \in U', y \in Y', t \in F' \mid \text{Im}(x) + l_t(y, y) \in \sigma + a\}
$$

$$
\subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F.
$$

We first prove that the holomorphic coordinates we introduced on \mathcal{D}_F are definable:

Lemma 4.2. *The canonical isomorphism* $j: \mathcal{D}_F \simeq U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F$ *is semi-algebraic.*

Proof. The isomorphism j was studied in [\[22\]](#page-26-13) and in full generality in [\[37,](#page-26-12) $\S7$] (cf. [\[3,](#page-25-3) §1.6] for a survey). To keep the amount of definitions at a reasonable level we follow in this proof (and this proof only) the notations of Wolf and Koranyi in [\[37\]](#page-26-12). For example our X, resp. X^{\vee} is denoted by M, resp. M^* .

Let $\xi : \mathfrak{p}^- = \mathbb{C}^N \longrightarrow M^*$ be the Harish-Chandra morphism defined by $\xi(E) = \exp(E) \cdot$ x (cf. [\[37,](#page-26-12) p.901]; in the notations of Wolf and Koranyi x is the base point of M^*). This is a holomorphic embedding onto a dense open subset of M^* . Notice that the map ξ is real algebraic: indeed \mathfrak{p}^- is a nilpotent sub-algebra of $\mathfrak{g}^{\mathbb{C}}$ hence the exponential is polynomial in restriction to \mathfrak{p}^- . The bounded symmetric domain $\mathcal D$ is $\xi^{-1}(G^0(x))$.

Let Δ be a maximal set of strongly orthogonal positive non-compact roots of $\mathfrak{g}^{\mathbb{C}}$ as in [\[37,](#page-26-12) p.901]. For any $\alpha \in \Delta$ let $c_{\alpha} \in G$ be the partial Cayley transform of M associated to α (cf. [\[37,](#page-26-12) p.902], recall that with the notations of Wolf and Koranyi G is the compact form of the complexified group $\mathbf{G}^{\mathbb{C}}$!). For a subset $\theta \subset \Delta$ we denote by $c_{\theta} := \prod_{\alpha \in \theta} c_{\alpha}$ the partial Cayley transform associated with θ (cf. [\[37,](#page-26-12) §4.1]).

Following [\[37,](#page-26-12) theor. 4.8] there exists a unique subset $\theta \subset \Delta$ such that $F = \xi^{-1} c_{\Delta - \theta} M_{\theta}$, where $M_{\theta} = G_{\theta}^{0}(x)$ is defined in [\[37,](#page-26-12) p.912]. Let $\mathfrak{p}_{\theta}^{-1} \subset \mathfrak{p}^{-}$ be defined as in [37, p.912],

let $\mathfrak{p}_{\Delta}^ \bar{\Delta}$ −θ,1 be the (+1)-eigenspace of ad(c ⁴ Δ −θ) on $\mathfrak{p}^ \bar{\Delta}$ and $\mathfrak{p}_2^{\theta,-}$ $2^{\sigma,-}$ be the (-1) -eigenspace of $ad(c_{\Delta-\theta}^4)$ on \mathfrak{p}^- . One has a canonical decomposition (cf. [\[37,](#page-26-12) p.933]):

(4.2)
$$
\mathfrak{p}^- = \mathfrak{p}_{\Delta-\theta,1}^- \oplus \mathfrak{p}_2^{\theta,-} \oplus \mathfrak{p}_{\theta}^-.
$$

The decomposition [\(3.1\)](#page-7-0) of the normalizer $N(F) = B^{\theta}$ (cf. [\[37,](#page-26-12) remark 3 p.932]) is proven in [\[37,](#page-26-12) theorem 6.8]. In particular it follows that $\exp_{\Delta-\theta} := \exp \circ \text{ad } c_{\Delta-\theta}$: $\mathfrak{p}^-_{\Delta-\theta,1}\longrightarrow U(F)_{\mathbb{C}}$ and $\exp:\mathfrak{p}^{\theta,-}_2\longrightarrow\mathbb{C}^l$ are polynomial isomorphisms, while $F\subset\mathfrak{p}^-$ is a bounded symmetric domain of $\mathfrak{p}_{\theta}^ \frac{1}{\theta}$.

Following [\[37,](#page-26-12) §7.6 and §7.7] the map $j: \mathcal{D} \longrightarrow U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F \subset U(F)_{\mathbb{C}} \times \mathbb{C}^l \times \mathfrak{p}_{\theta}^$ θ is the composition of the semi-algebraic holomorphic maps

$$
\mathcal{D} \xrightarrow{\xi^{-1}c_{\Delta-\theta}\xi} \mathfrak{p}^- = \mathfrak{p}^-_{\Delta-\theta,1} \oplus \mathfrak{p}^{\theta,-}_2 \oplus \mathfrak{p}^-_\theta \xrightarrow{(\exp_{\Delta-\theta}, \exp,\mathrm{Id})} U(F)_{\mathbb{C}} \times \mathbb{C}^l \times \mathfrak{p}^-_\theta
$$

which finishes the proof of Lemma [4.2.](#page-11-0)

The previous lemma enables us to forget about the definable biholomorphism j . From now on and for simplicity of notations we simply write $\mathcal{D}_F = U(F)_{\mathbb{C}} \times \mathbb{C}^l \times F$.

In the description [\(4.1\)](#page-11-1) we may and do assume that U' , Y' and F' are semi-algebraic subsets respectively of $U(F)_{\mathbb{C}}$, \mathbb{C}^l and F. Then the set Θ is definable in \mathbb{R}_{an} because:

- the function $\psi: Y' \times F' \to U(F)$ defined by $\psi(y,t) = l_t(y,y)$ is analytic and defined on a compact semi-algebraic set.
- the cone σ is polyhedral, hence semi-algebraic.

Hence the restriction $\pi_{\vert\Sigma} : \Sigma \longrightarrow S$ is definable in $\mathbb{R}_{\text{an,exp}}$ if and only if the restriction $\pi_{\Theta} : \Theta \longrightarrow S$ to any set Θ appearing in the proposition [3.2](#page-9-0) is definable in $\mathbb{R}_{\text{an,exp}}$.

Fix such a set

$$
\Theta = \{(x, y, t), y \in Y', t \in F', \text{Re}(x) \in U' | \text{Im}(x) + l_t(y, y) \in \sigma + a\}
$$

associated to a rational boundary component $F \in \{F_1, \ldots, F_r\}.$

Consider the left-hand side of the diagram [\(3.4\)](#page-9-1):

Recall that $\exp_F : \mathcal{D}_F \to \mathbb{C}^{*k} \times \mathbb{C}^l \times F$ is given by

 $(x, y, t) \mapsto (\exp(2i\pi x, y, t), \text{ where } \exp(2i\pi x) = (\exp(2i\pi x_1), \dots, \exp(2i\pi x_k))$.

The function $\text{Re}(x_i)$, $1 \leq i \leq k$, is bounded on Θ hence the restriction to Θ of the map $x \mapsto \exp(2i\pi \text{Re}(x))$ is definable in \mathbb{R}_{an} . On the other hand the restriction to Θ of the function $x \mapsto \exp(-2\pi \text{Im}(x))$ is definable in \mathbb{R}_{\exp} by definition of \mathbb{R}_{\exp} . Thus the restriction to Θ of the map \exp_F is definable in $\mathbb{R}_{\text{an,exp}}$ and we are reduced to showing that $\pi_F : \exp_F(\Theta) \longrightarrow S$ is definable in $\mathbb{R}_{\text{an,exp}}$.

Consider the lower part of the diagram [\(3.4\)](#page-9-1):

$$
\exp_F(\mathcal{D}) \longrightarrow \exp_F(\mathcal{D})^{\vee}
$$

$$
\downarrow \pi_F
$$

$$
S \longrightarrow \overline{S}.
$$

As U', V', F' are relatively compact and the imaginary part of x has a lower bound on Θ , the closure $\overline{\exp_F(\Theta)}$ of $\exp_F(\Theta)$ is compact in $\exp_F(\mathcal{D})^{\vee}$. Hence $\pi_F : \exp_F(\Theta) \longrightarrow S$, which is the restriction of the analytic map $\overline{\pi}_F$: $\exp_F(\mathcal{D})^{\vee} \longrightarrow \overline{S}$ to the relatively compact subset $\exp_F(\Theta)$ of $\exp_F(\mathcal{D})^{\vee}$, is definable in \mathbb{R}_{an} .

 \Box

5. Proof of Theorem [1.11](#page-4-1)

5.1. Distance, norm, height.

5.1.1. *Distance.* Let $*$ be the adjunction on $E_{\mathbb{R}}$ associated to the Hilbert structure $\|\cdot\|_{\infty}$ on $E_{\mathbb{R}}$. The restriction of the bilinear form $(u, v) \mapsto \text{tr}(u^*v)$ to the Lie algebra $\text{Lie}(\mathbf{G}(\mathbb{R}))$ defines a $\mathbf{G}(\mathbb{R})$ -invariant Kähler metric g_X on X. We denote by $d: X \times X \longrightarrow \mathbb{R}$ the associated distance and by ω the associated Kähler form.

5.1.2. *Norm.* We still denote by $\|\cdot\|_{\infty} : \text{End } E_{\mathbb{R}} \longrightarrow \mathbb{R}$ the operator norm associated to the norm $\|\cdot\|_{\infty}$ on $E_{\mathbb{R}}$. By restriction we also denote by $\|\cdot\|_{\infty} : \mathbf{G}(\mathbb{R}) \longrightarrow \mathbb{R}$ the function $\|\cdot\|_{\infty} \circ \rho$. As K_{∞} preserves the norm $\|\cdot\|_{\infty}$ on $E_{\mathbb{R}}$, the function $\|\cdot\|_{\infty} : \mathbf{G}(\mathbb{R}) \longrightarrow \mathbb{R}$ is K_{∞} -bi-invariant, in particular descends to a K_{∞} -invariant function $\|\cdot\|_{\infty} : X \longrightarrow \mathbb{R}$.

Choose (e_1, \ldots, e_n) a basis of $E_{\mathbb{Z}}$ in which **A** diagonalizes. It will be useful to compare the norm $\|\cdot\|_{\infty}$ with the norm $|\cdot|_{\infty} : \text{End } E_{\mathbb{R}} \longrightarrow \mathbb{R}$ defined by

(5.1)
$$
\forall \varphi \in \text{End } E_{\mathbb{R}}, \quad |\varphi|_{\infty} = \max_{i,j} |\varphi_{ij}|,
$$

where (φ_{ij}) is the matrix of φ in the basis (e_1, \ldots, e_n) of $E_{\mathbb{R}}$.

5.1.3. *Height.*

Definition 5.1. *We define the (multiplicative) height function* $H : \text{End } E_{\mathbb{Z}} \longrightarrow \mathbb{R}$ as

$$
\forall \varphi \in \text{End}\, E_{\mathbb{Z}}, \ \ H(\varphi) = \max(1, \|\varphi\|_{\infty}) \ .
$$

Remark 5.2. When dim_Q $E = 1$, this height function coincides with the classical multiplicative height function on rational numbers.

By restriction, we also denote by $H : \mathbf{G}(\mathbb{Z}) \longrightarrow \mathbb{R}$ the function $H \circ \rho$. Notice that for $\varphi \in \text{End } E_{\mathbb{R}}$, $\|\varphi\|_{\infty}$ is the square root of the largest eigenvalue of the positive definite matrix $\varphi^* \varphi$. If $\varphi \in \text{End } E_{\mathbb{Z}}$ it follows that $\|\varphi\|_{\infty}$ is at least 1, hence

$$
\forall \varphi \in \mathbf{G}(\mathbb{Z}), \ \ H(\varphi) = \|\varphi\|_{\infty} \geq 1 \ \ .
$$

We also define H_{class} the classical multiplicative height on End E using the basis $(e_i^* \otimes e_j)_{i,j}$. In particular if $\varphi \in \text{End } E_{\mathbb{Z}}$ then $H_{\text{class}}(\varphi) = |\varphi|_{\infty}$. As the norms $\|\cdot\|_{\infty}$ and $|\cdot|_{\infty}$ are equivalent on End $E_{\mathbb{R}}$ we obtain the following:

Lemma 5.3. *There exist a positive number* C *such that*

$$
\forall \varphi \in \text{End}\, E_{\mathbb{Z}}, \ \ \frac{1}{C} \cdot H_{\text{class}}(\varphi) \le H(\varphi) \le C \cdot H_{\text{class}}(\varphi) \ \ .
$$

5.2. Comparing norm and distance.

Lemma 5.4. *For any* $g \in \mathbf{G}(\mathbb{R})$ *the following inequality holds:*

$$
\log \|g\|_{\infty} \leq d(g \cdot x_0, x_0) .
$$

Proof. Let $\mathbf{G}(\mathbb{R}) = K_{\infty} \cdot A_{\infty} \cdot K_{\infty}$ be a Cartan decomposition of $\mathbf{G}(\mathbb{R})$ associated to K_{∞} , where A_{∞} is a maximal split real torus of G containing A. Let $g \in \mathbf{G}(\mathbb{R})$ and write $g = k_1 \cdot a \cdot k_2$ its Cartan decomposition, with k_1, k_2 in K_∞ and $a \in A_\infty$. As $\|\cdot\|_\infty$ is K_∞-bi-invariant and d is **G**(\mathbb{R})-equivariant the equalities $\log ||g||_{\infty} = \log ||a||_{\infty}$ and $d(g \cdot x_0, x_0) = d(a \cdot x_0, x_0)$ do hold.

The torus A_{∞} is diagonalisable in an orthonormal basis (f_1, \ldots, f_n) of $E_{\mathbb{R}}$. Write $a = diag(a_1, \ldots, a_n)$ in this basis, then:

$$
\log ||a||_{\infty} = \max_{i} \log |a_i|
$$
 and $d(a \cdot x_0, x_0) = \sqrt{\sum_{i=1}^{n} (\log |a_i|)^2}$

hence the result. \Box

5.3. Comparing height and norms. The main result of this section is the following:

Lemma 5.5. Let $\mathcal{F} \subset X$ be the fundamental domain described in the Theorem [3.1.](#page-7-1) *There exists a positive number* B *such that:*

(5.2) $\forall \gamma \in \mathbf{G}(\mathbb{Z}), \quad \forall u \in \gamma \mathcal{F}, \qquad H(\gamma) \leq B \cdot ||u||_{\infty}^n$.

Proof. Write $u = \gamma \cdot j \cdot x$ with $j \in J$ and $x = \omega \cdot a \cdot k \in \Sigma'_{t_0, \Omega} = \Omega \cdot A_{t_0} \cdot K_{\infty}$. Thus:

(5.3)
$$
u = j \cdot (j^{-1} \gamma j) \cdot a \cdot (a^{-1} \omega a) \cdot k .
$$

Notice that for each $j \in \mathbf{G}(\mathbb{Q})$ the groups $\mathbf{G}(\mathbb{Z})$ and $j^{-1}\mathbf{G}(\mathbb{Z})j$ are commensurable (i.e. their intersection is of finite index in both of them). As the subset $J \subset \mathbf{G}(\mathbb{Q})$ is finite, it follows that the subgroup $\mathbf{G}(\mathbb{Z})_J := \mathbf{G}(\mathbb{Z}) \bigcap (\bigcap_{j \in J} j^{-1} \mathbf{G}(\mathbb{Z})j)$ is of finite index in $j^{-1}\mathbf{G}(\mathbb{Z})j$, $j \in J$. Choose a finite set S of representatives in $\mathbf{G}(\mathbb{Q})$ for the cosets $j^{-1}\mathbf{G}(\mathbb{Z})j/\mathbf{G}(\mathbb{Z})_J, j \in \{1\} \cup J$. Hence there exists a unique $s \in S$ and $\gamma' \in \mathbf{G}(\mathbb{Z})_J \subset$ $\mathbf{G}(\mathbb{Z})$ such that $j^{-1}\gamma j = s \cdot \gamma'$. We deduce from [\(5.3\)](#page-14-0):

(5.4)
$$
u = j s \cdot (\gamma' \cdot a) \cdot (a^{-1} \omega a) \cdot k .
$$

The set $J \cdot S$ is finite. The group K_{∞} is compact. Moreover the set $\bigcup_{a \in A_{t_0}} a^{-1} \Omega a$ is relatively compact in G by [\[4,](#page-25-16) Lemma 12.1]. As $\|\cdot\|_{\infty}$ is sub-multiplicative, it follows from [\(5.4\)](#page-15-0) that there exists a positive number b, depending only on Ω and t_0 , such that

(5.5)
$$
||u||_{\infty} \ge b ||\gamma' \cdot a||_{\infty} .
$$

As $j^{-1}\gamma j = s \cdot \gamma'$ and J and S are finite sets, there exists a positive number b', depending only on Ω and t_0 , such that

$$
||\gamma'||_{\infty} \ge b' ||\gamma||_{\infty} .
$$

Thus Lemma [5.5](#page-14-1) follows the equality $H(\gamma) = ||\gamma||_{\infty}$, inequalities [\(5.5\)](#page-15-1) and [\(5.6\)](#page-15-2) and the Sublemma [5.6](#page-15-3) below.

Sublemma 5.6. *There exists a positive number* B *depending only on* Ω *and* t_0 *such that for all* $\gamma \in \mathbf{G}(\mathbb{Z})$ *and* $a \in A_{t_0}$ *the following inequality holds:*

(5.7)
$$
\|\gamma\|_{\infty} \leq B \cdot \|\gamma \cdot a\|_{\infty}^{n} .
$$

Proof. As the norm $\|\cdot\|_{\infty}$ on End $E_{\mathbb{R}}$ is equivalent to the norm $|\cdot|_{\infty}$, it is enough to show that $|\gamma|_{\infty} \leq |\gamma \cdot a|_{\infty}^n$.

Let $\gamma = (\gamma_{k,l})$ be the matrix of γ in the basis (e_1,\ldots,e_n) of $E_{\mathbb{Z}}$. As the torus **A** is diagonalisable in the basis (e_1, \ldots, e_n) , we write $a = diag(a_1, \ldots, a_n)$, with $a_i \in \mathbb{R}^{>0}$. It follows that:

(5.8)
$$
\forall k, l \in \{1, ..., n\}, \quad (\gamma \cdot a)_{kl} = \gamma_{kl} \cdot a_l.
$$

As γ is invertible, there exists for each $s \in \{1, \ldots, n\}$ an index $r_s \in \{1, \ldots, n\}$ such that $\gamma_{r_s,s} \neq 0$. It follows from equation [\(5.8\)](#page-15-4) that:

$$
(5.9) \ \forall \ k, l \in \{1, \ldots, n\}, \quad (\gamma \cdot a)_{k,l} \cdot \prod_{s \neq l} (\gamma \cdot a)_{r_s,s} = \gamma_{k,l} \cdot \prod_{s \neq l} \gamma_{r_s,s} \cdot \prod_{s=1}^n a_s = \gamma_{k,l} \cdot \prod_{s \neq l} \gamma_{r_s,s} ,
$$

where we used that $\prod_{l=1}^{n} a_i = 1$ as $\rho(\mathbf{G}) \subset \mathbf{SL}(E)$.

Notice that $\Gamma = \mathbf{G}(\mathbb{Z})$ hence each $\gamma_{k,l}$ is an integer. It follows from the equation [\(5.9\)](#page-15-5) that:

$$
\forall k, l \in \{1, \ldots, n\}, \quad |\gamma_{k,l}| \leq |\gamma_{k,l} \cdot \prod_{s \neq l} \gamma_{r_s,s}| = |(\gamma \cdot a)_{k,l} \cdot \prod_{s \neq l} (\gamma \cdot a)_{r_s,s}| \leq (\max_{r,s} |(\gamma \cdot a)_{r,s}|)^n.
$$

In other words: $|\gamma|_{\infty} \leq |\gamma \cdot a|_{\infty}^n$. Hence the inequality [\(5.7\)](#page-15-6) follows.

5.4. Lower bound for the volume of an algebraic curve. In [\[11,](#page-25-18) Corollary 3 p.1227], Hwang and To prove the following lower bound for the area of any complex analytic curve in \mathcal{D} :

Theorem 5.7 (Hwang and To). *Let* C *be a complex analytic curve in* D*. For any point* $x_0 \in C$ there exist positive constants a_1, b_1 such that for any positive real number R one *has :*

(5.10)
$$
\text{Vol}_C(C \cap B(x_0, R)) \ge a_1 \exp(b_1 \cdot R) .
$$

Here Vol_C denotes the area for the Riemanian metric on C restriction of the metric g_X on D and $B(x_0, R)$ denotes the geodesic ball of D with center x_0 and radius R.

5.5. Upper bound for the volume of algebraic curves on Siegel sets.

Lemma 5.8. (i) *There exists a constant* A⁰ > 0 *such that for any algebraic curve* C ⊂ D *of degree* d *we have the bound*

$$
\text{Vol}_C(C \cap \Sigma) \leq A_0 \cdot d \enspace .
$$

(ii) *There exists a constant* $A > 0$ *such that for any algebraic curve* $C \subset \mathcal{D}$ *of degree* d *we have the bound*

$$
\text{Vol}_C(C \cap \mathcal{F}) \leq A \cdot d \enspace .
$$

Proof. We first prove (*i*). Recall that Σ is covered by a finite union of open subsets Θ described in Proposition [3.2:](#page-9-0) there is a rational boundary component F , a simplicial cone $\sigma \in \Sigma$ with $\sigma \subset \overline{C(F)}$, a point $a \in C(F)$, relatively compact subsets U' , Y' and F' of $U(F)$, \mathbb{C}^l and F respectively such that the set Θ is of the form

$$
\Theta = \{(x, y, t) \in \mathcal{D}_{\mathcal{F}}, y \in Y', t \in F', \text{Re}(x) \in U' | \text{Im}(x) + l_t(y, y) \in \sigma + a\} \subset \mathcal{D}_F = U(F) \subset \mathcal{K}^l \times F.
$$

Recall that ω denotes the natural Kähler form on X. As $C \subset X$ is a complex analytic curve, one has:

$$
Vol_C(C \cap \Theta) = \int_{C \cap \Theta} \omega .
$$

 \Box

On the other hand let $\omega_{\mathcal{D}_F}$ be the Poincaré metric on \mathcal{D}_F defined in the Siegel coordinates by:

$$
\omega_{\mathcal{D}_F} = \sum \frac{dx_i \wedge d\overline{x}_i}{\text{Im}(x_i)^2} + \sum dy_j \wedge d\overline{y}_j + \sum df_k \wedge d\overline{f}_k
$$

.

Mumford [\[19,](#page-25-17) Theor.3.1] proved that there exists a positive constant c such that on \mathcal{D} :

$$
\omega \leq c \cdot \omega_{\mathcal{D}_F} \; .
$$

Hence:

$$
\text{Vol}_C(C \cap \Theta) \leq c \int_{C \cap \Theta} \omega_{\mathcal{D}_F} .
$$

Let p_{x_i}, p_{y_j} and p_{f_k} be the projections on \mathcal{D}_F to the coordinates x_i, y_j and f_k .

As the curve C has degree d the restriction of these maps to $C \cap \Theta$ are either constant or at most d to 1, hence

$$
\text{Vol}_C(C\cap \Theta)\leq c\cdot d\cdot (\sum\int_{p_{x_i}(\Theta)}\frac{dx_i\wedge d\overline{x}_i}{\text{Im}(x_i)^2}+\sum\int_{p_{y_j}(\Theta)}dy_j\wedge d\overline{y}_j+\sum\int_{p_{f_k}(\Theta)}df_k\wedge d\overline{f}_k).
$$

Let *i* be such that the map p_{x_i} is not constant. In view of the description of Θ the projection $p_{x_i}(\Theta)$ is contained in a usual fundamental set of the upper-half plane, of finite hyperbolic area.

Let w be a coordinate y_j , f_k and p_w be the associated projection on the w axis. By the definition of Θ the projection $p_w(\Theta)$ is a relatively compact open set of the plane, hence of finite Euclidean area.

This finishes the proof of (i) .

Let us prove (ii). As $C \cap \mathcal{F} = C \cap J \cdot \Sigma$, one has the inequality:

$$
\text{Vol}_C(C \cap \mathcal{F}) \le \sum_{j \in J} \text{Vol}_C(C \cap j \cdot \Sigma) = \sum_{j \in J} \text{Vol}_{j^{-1}C}(j^{-1}C \cap \Sigma) \le |J| \cdot A_0 \cdot d
$$

where we used part (i) applied to the algebraic curves $j^{-1}C$ of $D, j \in J$, which are of degree d.

This finishes the proof of Lemma 5.8.

5.6. Proof of Theorem [1.11.](#page-4-1) Choose $C \subset Y$ an irreducible algebraic curve. To prove Theorem [1.11](#page-4-1) for Y it is enough to prove it for C .

Consider the set

$$
C(T) := \{ z \in C \text{ and } ||z||_{\infty} \leq T \} .
$$

As ${\mathcal F}$ is a fundamental domain for the action of Γ one has on the one hand:

$$
C(T) = \bigcup_{\substack{\gamma \in \Gamma \\ \gamma \neq 0 \subset \gamma}} \{u \in \gamma \in \Gamma \land C \text{ and } ||u||_{\infty} \leq T\}
$$

$$
\subset \bigcup_{\substack{\gamma \in \Gamma \\ \gamma \neq 0 \subset \gamma \neq \emptyset \\ H(\gamma) \leq B \cdot T^n}} \{u \in \gamma \in \Gamma \cap C\} \text{ by Lemma 5.5.}
$$

Taking volumes:

$$
\text{Vol}_C(C(T)) \le \sum_{\substack{\gamma \in \Gamma \\ T \subset \gamma \subset \gamma \\ H(\gamma) \le B \cdot T^n}} \text{Vol}_C(\mathcal{F} \cap \gamma^{-1}C)
$$

hence

(5.11)
$$
\text{Vol}_C(C(T)) \leq (A \cdot d) \cdot N_C(B \cdot T^n)
$$

where we applied Lemma 5.8(ii) to the algebraic curves $\gamma^{-1}C, \gamma \in \Gamma$, which are all of degree d.

On the other hand if follows from Lemma [5.4](#page-14-2) that

$$
C \cap B(x_0, \log T) \subset C(T) ,
$$

hence

(5.12)
$$
\operatorname{Vol}_C(C \cap B(x_0, \log T)) \leq \operatorname{Vol}_C(C(T)) .
$$

Finally:

$$
(A \cdot d) \cdot N_C(B \cdot T^n) \ge \text{Vol}_C(C(T)) \text{ by inequality (5.11)}
$$

\n
$$
\ge \text{Vol}_C(C \cap B(x_0, \log T)) \text{ by inequality (5.12)}
$$

\n
$$
\ge a_1 \exp(b_1 \log T) \text{ by Theorem 5.7}.
$$

Hence the result.

6. Stabilisers of a maximal algebraic subset: proof of Theorem [1.13.](#page-5-1)

6.1. Pila-Wilkie theorem.

Definition 6.1. *The classical height* $H_{\text{class}}(x)$ *of a point* $x = (x_1, \ldots, x_m) \in \mathbb{Q}^m$ *is defined as*

$$
H_{\text{class}}(x) = \max(H(x_1), \dots, H(x_m))
$$

where H *is the usual multiplicative height of a rational number.*

 \Box

Let $Z \subset \mathbb{R}^m$ be a subset and $T \geq 0$ a real number, we define:

$$
\Psi_{\text{class}}(Z,T) := \{ x \in Z \cap \mathbb{Q}^m : H_{\text{class}}(x) \le T \}
$$

and

$$
N_{\rm class}(Z,T) := |\Psi_{\rm class}(Z,T)|.
$$

For $Z \subset \mathbb{R}^m$ a definable set in a o-minimal structure we define the algebraic part Z^{alg} of Z to be the union of all positive dimensional semi-algebraic subsets of Z.

Recall (cf. definition 3.3 of [\[34\]](#page-26-5)), that a semi-algebraic block of dimension w in \mathbb{R}^m is a connected definable set $W \subset \mathbb{R}^m$ of dimension w, regular at every point, such that there exists a semi-algebraic set $A \subset \mathbb{R}^m$ of dimension w, regular at every point with $W \subset A$.

The following result is a strong form, proven by Pila [\[23,](#page-26-3) theor.3.6], of the original theorem of Pila and Wilkie [\[24\]](#page-26-11):

Theorem 6.2 (Pila-Wilkie). Let $Z \subset \mathbb{R}^m$ be a definable set in a o-minimal structure. *For every* $\epsilon > 0$ *, there exists a constant* $C_{\epsilon} > 0$ *such that*

$$
N_{\text{class}}(Z\backslash Z^{\text{alg}}, T) < C_{\epsilon} T^{\epsilon}
$$

and the set $\Psi_{\text{class}}(Z,T)$ is contained in the union of at most $C_{\epsilon}T^{\epsilon}$ semi-algebraic blocks.

As a corollary of Theorem [6.2](#page-19-0) and Lemma [5.3](#page-14-3) one obtains:

Corollary 6.3. Let $Z \subset \text{End } E_{\mathbb{R}}$ be a definable set in a o-minimal structure. Define $\Psi(Z,T) := \{x \in Z \cap \text{End } E_{\mathbb{Z}} : H(x) \leq T\}$ and $N(Z,T) := |\Psi(Z,T)|$ *. For every* $\epsilon > 0$ *, there exists a constant* $C_{\epsilon} > 0$ *such that*

$$
N(Z\backslash Z^{\mathrm{alg}},T)
$$

and the set $\Psi(Z,T)$ is contained in the union of at most $C_{\epsilon}T^{\epsilon}$ semi-algebraic blocks.

6.2. Proof of Theorem [1.13.](#page-5-1) Let V be an algebraic subvariety of S and Y a maximal irreducible algebraic subvariety of $\pi^{-1}V$. Let Θ_Y be the stabiliser of Y in $\mathbf{G}(\mathbb{R})$ and \mathbf{H}_Y be the neutral component of the Zariski-closure of $\mathbf{G}(\mathbb{Z}) \cap \Theta_Y$ in \mathbf{G} . We want to show that \mathbf{H}_Y is a non-trivial subgroup of G, acting non-trivially on X.

Via $\rho : \mathbf{G} \hookrightarrow \mathbf{GL}(E)$, we view $\mathbf{G}(\mathbb{R})$ as a semi-algebraic (and hence definable) subset of End $E_{\mathbb{R}}$. As $\pi_{\mathcal{F}} : \mathcal{F} \longrightarrow S$ is definable by Theorem [1.9,](#page-4-0) lemmas 5.1 and 5.2 of [\[34\]](#page-26-5) show the following:

Proposition 6.4. *Let us define*

$$
\Sigma(Y) = \{ g \in \mathbf{G}(\mathbb{R}) : \dim(gY \cap \pi^{-1}V \cap \mathcal{F}) = \dim(Y) \}
$$

and
$$
\Sigma'(Y) = \{ g \in \mathbf{G}(\mathbb{R}) : g^{-1}\mathcal{F} \cap Y \neq \emptyset \}.
$$

The following properties hold:

- *(1)* The set $\Sigma(Y)$ *is definable and for all* $g \in \Sigma(Y)$ *,* $gY \subset \pi^{-1}V$ *.*
- (2) For all $\gamma \in \Sigma(Y) \cap \mathbf{G}(\mathbb{Z})$, γY *is a maximal algebraic subset of* $\pi^{-1}V$ *.*
- *(3) The following equality holds:*

$$
\Sigma(Y) \cap \mathbf{G}(\mathbb{Z}) = \Sigma'(Y) \cap \mathbf{G}(\mathbb{Z}) .
$$

It follows that the number $N_Y(T)$ defined in Theorem [1.11](#page-4-1) coincide with $|\Theta(Y,T)|$, where

$$
\Theta(Y,T) := \mathbf{G}(\mathbb{Z}) \cap \Psi(\Sigma(Y),T) .
$$

We can now finish the proof of the theorem [1.13](#page-5-1) in exactly the same way as the proof of theorem 5.4 of [\[34\]](#page-26-5). For the sake of completeness, we reproduce it here. As $\Theta(Y,T) \subset$ $\Psi(\Sigma(Y),T)$ it follows from Corollary [6.3](#page-19-1) that for T large enough, the set $\Theta(Y,T^{\frac{1}{2n}})$ is contained in at most $T^{\frac{c_1}{4n}}$ semi-algebraic blocks. As $|\Theta(Y,T^{\frac{1}{2n}})| = N_Y(T^{\frac{1}{2n}}) \geq T^{\frac{c_1}{2n}}$ by Theorem [1.11,](#page-4-1) we see that there is a semi-algebraic block W in $\Sigma(Y)$ containing at least $T^{\frac{c_1}{4n}}$ elements $\gamma \in \Sigma(Y) \cap \mathbf{G}(\mathbb{Z})$ such that $H(\gamma) \leq T^{\frac{1}{2n}}$.

Using lemma 5.5 of [\[31\]](#page-26-7) which applies verbatim in our case, we see that there exists an element σ in $\Sigma(Y)$ such that $\sigma \Theta_Y$ contains at least $T^{\frac{c_1}{4n}}$ elements $\gamma \in \Sigma(Y) \cap \mathbf{G}(\mathbb{Z})$ such that $H(\gamma) \leq T^{\frac{1}{2n}}$.

Let γ_1 and γ_2 be two elements of $\sigma \Theta_Y \cap \mathbf{G}(\mathbb{Z})$ such that $H(\gamma) \leq T^{\frac{1}{2n}}$.

Let $\gamma := \gamma_2^{-1} \gamma_1 \in \mathbf{G}(\mathbb{Z}) \cap \Theta_Y$. Using elementary properties of heights, we see that $H(\gamma) \leq c_n T^{1/2}$ where c_n is a constant depending on n only. It follows that for all T large enough, Θ_Y contains at least $T^{\frac{c_1}{4n}}$ elements $\gamma \in \mathbf{G}(\mathbb{Z})$ with $H(\gamma) \leq T$. Hence the connected component of the identity H_Y of the Zariski closure of $G(\mathbb{Z}) \cap \Theta_Y$ in G is a positive dimensional algebraic subgroup of **G** contained in Θ_Y . This finishes the proof of the theorem [1.13.](#page-5-1)

7. End of the proof of Theorem [1.6.](#page-1-0)

Let V be an algebraic subvariety of S . Our aim is to show that maximal irreducible algebraic subvarieties Y of $\pi^{-1}V$ are precisely the irreducible components of the preimages of maximal weakly special subvarieties contained in V .

Using Deligne's interpretation of Hermitian symmetric spaces in terms of Hodge theory the representation $\rho : \mathbf{G} \to \mathbf{GL}(E)$ defines a polarized Z-variation of Hodge structure on S. We refer to [\[18,](#page-25-9) section 2] for the definition of the Hodge locus of X and S. Recall that an irreducible analytic subvariety M of X or S is said to be Hodge generic if it is not contained in the Hodge locus. If M is not irreducible we say that M is Hodge generic if all the irreducible components of M are Hodge generic.

Let $V' \subset V$ be the Zariski closure of $\pi(Y)$, as Y is analytically irreducible it easily follows that V' is irreducible. Replacing V by V' we can without loss of generality assume that $\pi(Y)$ is not contained in a proper algebraic subvariety of V. We now have to show that $\pi(Y) = V$ and V is an arithmetic subvariety of S.

Since the group G is adjoint, it is a direct product

$$
\mathbf{G} = \mathbf{G}_1 \times \cdots \times \mathbf{G}_r
$$

where the \mathbf{G}_i 's are the Q-simple factors of \mathbf{G} . This induces decompositions

$$
G = \prod_{i=1}^r G_i, \quad X = \prod_{i=1}^r X_i, \quad \mathbf{G}(\mathbb{Z}) = \prod_{i=1}^r \mathbf{G}_i(\mathbb{Z}), \quad \Gamma = \prod_{i=1}^r \Gamma_i, \quad S = \prod_{i=1}^r S_i,
$$

where G_i is a group of Hermitian type, X_i its associated Hermitian symmetric domain, Γ_i is an arithmetic lattice in G_i , $S_i := \Gamma_i \backslash X_i$ is the associated arithmetic variety and $\pi_i: X_i \longrightarrow S_i$ the associated uniformization map.

Our main Theorem [1.6](#page-1-0) is then a consequence of the following:

Theorem 7.1. Let \tilde{V} be the an analytic irreducible component of $\pi^{-1}V$ containing Y. *In the situation described above, after, if necessary, reordering the factors, one has*

$$
\widetilde{V} = X_1 \times \widetilde{V_{>1}}
$$

where $\widetilde{V_{>1}}$ *is an analytic subvariety of* $X_2 \times \cdots \times X_r$ *(in particular if* $r = 1$ *then* $\widetilde{V} =$ $X_1 = X$.

We first show:

Proposition 7.2. *Theorem [7.1](#page-21-0) implies the main Theorem [1.6.](#page-1-0)*

Proof. Let $t, 1 \leq t \leq r$, be the largest integer such that, after reordering the factors if necessary, we have:

$$
\widetilde{V} = X_1 \times \cdots \times X_t \times \widetilde{V_{>t}}
$$

with $V_{\geq t}$ an analytic irreducible subvariety of $X_{t+1} \times \cdots \times X_r$ which does not (after reordering the factors if necessary) decompose into a product $X_{t+1} \times V_{>t+1}$.

In this case necessarily one has:

$$
Y = X_1 \times \cdots \times X_t \times Y_{>t}
$$

where $Y_{>t}$ is a maximal algebraic subset of $\widetilde{V_{>t}}.$

Suppose that $\dim_{\mathbb{C}}(\widetilde{V_{>t}}) > 0$. Let $x_{\leq t}$ be a special point on $X_1 \times \cdots \times X_t$ and $x_{>t}$ be a Hodge generic point of $Y_{\geq t}$. Let $H \subset G$ be the Mumford-Tate group of the point $(x \leq_t, x >t)$ of X and let $X_H \subset X$ be the $\mathbf{H}(\mathbb{R})$ -orbit of x. Replace G by H the group of biholomorphisms of X_H , X by X_H , G by \mathbf{H}^{ad} , Γ by Γ_H the projection of $\mathbf{H}(\mathbb{Z})$ on H, S by $S_H := \Gamma_H \backslash X_H$, $\pi : X \longrightarrow S$ by $\pi_H : X_H \longrightarrow S_H$, V by $V_H := \pi_H(x_{\leq t} \times V_{\geq t})$ and Y by $x \lt t \times Y_{\geq t}$ and apply Theorem [7.1](#page-21-0) for these new data: this shows that there exists $t' > t + 1$ such that $V_{>t} = X_{t+1} \times \cdots \times X_{t'} \times V_{>t'}$. This contradicts the maximality of t. Hence $\widetilde{V_{>t}}$ is a point (x_{t+1}, \ldots, x_r) . Thus

$$
\tilde{V} = X_1 \times \cdots \times X_t \times (x_{t+1}, \ldots, x_r)
$$

is weakly special, in particular algebraic, hence by maximality

$$
Y = V = X_1 \times \cdots \times X_t \times (x_{t+1}, \ldots, x_r)
$$

and Y is weakly special.

Let us prove theorem [7.1.](#page-21-0) Let \mathbf{H}_Y be the maximal connected \mathbb{Q} -subgroup in the stabiliser of Y in $\mathbf{G}(\mathbb{R})$. By Theorem [1.13](#page-5-1) the group \mathbf{H}_Y is a non-trivial algebraic subgroup of G.

Lemma 7.3. *The group* $\mathbf{H}_Y(\mathbb{Q})$ *stabilises* \widetilde{V} *.*

Proof. Suppose there exists $h \in \mathbf{H}_Y(\mathbb{Q})$ such that

$$
\widetilde{V} \neq h\widetilde{V} .
$$

As Y is contained in $\widetilde{V} \cap h\widetilde{V}$ and Y is irreducible, we can choose an analytic irreducible component V' of $\overline{V} \cap h\overline{V}$ containing Y. Notice that $\pi(V')$ is an irreducible component, say V' , of $V \cap T_h(V)$. As $\dim_{\mathbb{C}}(\widetilde{V'}) < \dim_{\mathbb{C}}(\widetilde{V})$, we have that $\dim_{\mathbb{C}}(V') < \dim_{\mathbb{C}}(V)$.

As $\pi(Y) \subset V'$, this contradicts the assumption that $\pi(Y)$ is Zariski dense in V. \Box

Choose a Hodge generic point z of V^{sm} (smooth locus of V) and a point \tilde{z} of \tilde{V} lying over z. Let

$$
\rho^{\text{mon}}\colon \pi_1(V^{\text{sm}},z)\longrightarrow \mathbf{GL}(E_{\mathbb Z})
$$

be the corresponding monodromy representation. We let $\Gamma_V \subset \mathbf{G}(\mathbb{Z})$ be the image of ρ . By usual topological Galois theory the group Γ_V is the subgroup of $\mathbf{G}(\mathbb{Z})$ stabilising V (cf. section 3 of [\[18\]](#page-25-9)), in particular Γ_V contains $\mathbf{H}_Y(\mathbb{Z})$.

By Deligne's monodromy theorem (see Theorem 1.4 of [\[18\]](#page-25-9)), the connected component of the identity \mathbf{H}^{mon} of the Zariski closure $\overline{\Gamma_V}^{\text{Zar},\mathbb{Q}}$ of Γ_V in \mathbf{G} is a normal subgroup of G. As G is semi-simple of adjoint type, after reordering the factors we may assume that \mathbf{H}^{mon} coincides with $\mathbf{G}_1 \times \cdots \times \mathbf{G}_t \times \{1\}$ for some integer $t \geq 1$. In particular $\mathbf{H}_Y \subset \mathbf{G}_1 \times \cdots \times \mathbf{G}_t \times \{1\}.$

We claim that Γ_V normalises H_Y . Let $\gamma \in \Gamma_V$. Consider the Q-algebraic group **F** generated by H_Y and $\gamma H_Y \gamma^{-1}$. Then $\mathbf{F}(\mathbb{R})^+ \cdot \widetilde{V} = \widetilde{V}$, where $\mathbf{F}(\mathbb{R})^+$ denotes the connected component of the identity of $\mathbf{F}(\mathbb{R})$. Hence $\mathbf{F}(\mathbb{R})^+ \cdot Y \subset V$. By Lemma [B.3](#page-24-0) there exists an irreducible (complex) algebraic subvariety \tilde{Y} of \tilde{V} containing U, hence Y. By maximality of Y one has $\tilde{Y} = Y$ hence

$$
\mathbf{F}(\mathbb{R})^+\cdot Y=Y.
$$

 \Box

By maximality of \mathbf{H}_Y , we have $\mathbf{F} = \mathbf{H}_Y$. This proves the claim.

As \mathbf{H}_Y is normalised by Γ_V , it is normalised by $\mathbf{H}^{\text{mon}} = \mathbf{G}_1 \times \cdots \times \mathbf{G}_t \times \{1\}$. It follows that (after possibly reordering factors) \mathbf{H}_Y contains $\mathbf{G}_1 \times \{1\}$.

The fact that $\mathbf{H}_Y(\mathbb{R})$ stabilises \widetilde{V} shows (by taking the $\mathbf{H}_Y(\mathbb{R})$ -orbit of any point of \widetilde{V}) that $\widetilde{V} = X_1 \times \widetilde{V}_{>1}$. This concludes the proof of Theorem [7.1](#page-21-0) and hence of Theorem [1.6.](#page-1-0)

Appendix A. Definability

A.1. **About Theorem [1.9.](#page-4-0)** Let \mathcal{R} be any fixed o-minimal expansion of \mathbb{R} (in our case $\mathcal{R} = \mathbb{R}_{\text{an,exp}}$. Recall [\[7,](#page-25-12) chap.10] that a *definable manifold* of dimension *n* is an equivalence class (for the usual relation) of triple $(X, X_i, \phi_i)_{i \in I}$ where $\{X_i : i \in I\}$ is a finite cover of the set X and for each $i \in I$:

- (i) we have injective maps $\phi_i: X_i \longrightarrow \mathbb{R}^n$ such that $\phi_i(X_i)$ is an open, definably connected, definable set.
- (ii) each $\phi(X_i \cap X_j)$ is an open definable subset of $\phi_i(X_i)$.
- (iii) the map $\phi_{ij} : \phi_i(X_i \cap X_j) \longrightarrow \phi_j(X_i \cap X_j)$ given by $\phi_{ij} = \phi_j \cap \phi_i^{-1}$ is a definable homeomorphism for all $j \in I$ such that $X_i \cap X_j \neq \emptyset$.

We say that a subset $Z \subset X$ is definable (resp. open or closed) if $\phi_i(Z \cap X_i)$ is a definable (resp. open or closed) subset of $\phi_i(X_i)$ for all $i \in I$. A definable map between abstract definable manifolds is a map whose graph is a definable subset of the definable product manifold.

Notice in particular that $X = \mathbb{P}^n \mathbb{C}$ has a canonical structure of a definable manifold (for any R): take $X_i = \mathbb{C}^n = \{ [z_0, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_n] \in \mathbb{P}^n \mathbb{C} \}$, $0 \le i \le n$ where we identify \mathbb{C}^n with \mathbb{R}^{2n} . As a corollary any complex quasi-projective variety is canonically a definable manifold. This apply in particular to S. In particular the statement of Theorem [1.9](#page-4-0) has an intrinsic meaning.

Appendix B. Algebraic subvarieties of X

Recall from [\[30,](#page-26-4) section 2.1] that a realisation X of X for G is any analytic subset of a complex quasi-projective variety \mathcal{X} , with a transitive holomorphic action of $\mathbf{G}(\mathbb{R})$ on X such that for any $x_0 \in \mathcal{X}$ the orbit map $\psi_{x_0} : \mathbf{G}(\mathbb{R}) \longrightarrow \mathcal{X}$ mapping g to $g \cdot x_0$ is semi-algebraic and identifies $\mathbf{G}(\mathbb{R})/K_{\infty}$ with X. A morphism of realisations is a $\mathbf{G}(\mathbb{R})$ equivariant biholomorphism. By $[30, \text{ lemma } 2.1]$ any realisation of X has a canonical semi-algebraic structure and any morphism of realisations is semi-algebraic. Hence X has a canonical semi-algebraic structure.

Let $\mathcal X$ be a realisation of X for **G**. A subset $Y \subset \mathcal X$ is called an *irreducible algebraic subvariety* of X if Y is an irreducible component of the analytic set $\mathcal{X} \cap \widetilde{Y}$ where \widetilde{Y} is an

algebraic subset of \mathcal{X} . By [\[10,](#page-25-19) section 2] the set Y has only finitely many analytic irreducible components and these components are semi-algebraic. An *algebraic subvariety* of $\mathcal X$ is defined to be a finite union of irreducible algebraic subvarieties of $\mathcal X$.

Lemma B.1. *A subset* Y *of* X *is algebraic if and only if* Y *is a closed complex analytic subvariety of* X *and semi-algebraic in* X *.*

Proof. Let $Y \subset X$ be a closed complex analytic subvariety of \mathcal{X} , semi-algebraic in \mathcal{X} . Without loss of generality we can assume that Y is irreducible as an analytic subvariety, of dimension d. Consider the real Zariski-closure \widetilde{Y} of Y in the real algebraic variety $\text{Res}_{\mathbb{C}/\mathbb{R}}\widetilde{\mathcal{X}}$, where $\text{Res}_{\mathbb{C}/\mathbb{R}}$ denotes the Weil restriction of scalars from \mathbb{C} to \mathbb{R} . Let us show that $\widetilde{Y}_{\mathbb{R}}$ has a canonical structure of a complex subvariety of $\widetilde{\mathcal{X}}$. Choose an affine open cover $(\widetilde{\mathcal{X}}_i)_{i\in I} \subset \mathbb{A}^{n_i}$ of $\widetilde{\mathcal{X}}$ and denote by \widetilde{Y}_i the intersection $\widetilde{Y} \cap \widetilde{\mathcal{X}}_i$. Let $i \in I$ such that \widetilde{Y}_i is non-empty. As Y is semi-algebraic, Y is open in \tilde{Y} for the Hausdorff topology, hence $Y_i := Y \cap \mathcal{X}_i$ is non-empty and open in Y_i for the Hausdorff topology. Consider the Gauss map φ_i from the smooth part $\widetilde{Y}_i^{\text{sm}}$ of \widetilde{Y}_i to the real Grassmannian $\mathbf{Gr}^{2d,2n_i}$ of real $2d$ planes of $\text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{A}^{n_i}$ associating to a point its tangent space. The map φ_i is real analytic and its restriction to the open subset Y_i^{sm} of $\widetilde{Y}_i^{\text{sm}}$ takes values in the closed real analytic subvariety $\mathbf{Gr}_{\mathbb{C}}^{d,n_i} \subset \mathbf{Gr}^{2d,2n_i}$ of complex *d*-planes of $\mathbb{A}_{\mathbb{C}}^{n_i}$. By analytic continuation φ_i takes values in $\mathbf{Gr}_{\mathbb{C}}^{d,n_i}$. Hence \widetilde{Y}_i is a complex algebraic subvariety of \mathbb{A}^{n_i} . As this is true for all $i \in I$, \widetilde{Y} is a complex algebraic subvariety of \widetilde{X} . As $Y \subset \widetilde{Y}$ is open and Y is closed analytically irreducible in X , it follows that Y is an irreducible component of $\mathcal{X} \cap \widetilde{Y}$, hence algebraic.

The other implication is clear. \Box

As any morphism of realisations is an analytic biholomorphism and semi-algebraic the previous lemma implies immediately:

Corollary B.2. Let $\varphi : \mathcal{X}_1 \longrightarrow \mathcal{X}_2$ be a morphism of realisations of X. A subset Y_1 of \mathcal{X}_1 *is algebraic if and only if its image* $Y_2 := \varphi(Y_1) \subset \mathcal{X}_2$ *is algebraic.*

This defines the notion of algebraic subsets of X.

Lemma B.3. Let X be a realisation of a Hermitian symmetric domain X. Let $Z \subset$ $X \subset \mathbb{C}^n$ be a complex analytic subvariety and $W \subset Z$ a semi-algebraic set. There exists *an irreducible complex algebraic subvariety* $Y \subset \mathbb{C}^n$ *such that*

$$
W \subset Y \cap X \subset Z
$$

Proof. This is a consequence of the proof of [\[25,](#page-26-14) lemma 4.1].

REFERENCES

- [1] A. Ash, D. Mumford, M. Rapoport, Y. Tai, *Smooth Compactification of Locally Symmetric varieties*, Lie Groups: History Frontiers and applications vol. 4. Math Sci Press. (1975).
- [2] J. Ax, *On Schanuel's conjecture*, Annals of Math. 93 (1971), 1-24
- [3] W.L. Baily, A. Borel, *Compactification of arithmetic quotients of bounded symmetric domains*, Annals of Math., 84 (1966), 442-528
- [4] A. Borel, *Introduction aux groupes arithm´etiques*, Publications de l'Institut de Math´ematique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341 Hermann, Paris (1969)
- [5] C. Daw, M. Orr, *Heights of pre-special points of Shimura varieties*, [arXiv:1502.00822,](http://arxiv.org/abs/1502.00822) to appear in Math. Annalen
- [6] P. Deligne, *Vari´et´es de Shimura: interpr´etation modulaire et techniques de construction de mod`eles canoniques*, dans *Automorphic Forms, Representations, and* L*-functions* part. 2; Editeurs: A. Borel et W Casselman; Proc. of Symp. in Pure Math. 33, American Mathematical Society (1979) p. 247-290.
- [7] L. van den Dries, *Tame Topology and o-minimal structures.* LMS lecture note series, 248. Cambridge University Press, 1998.
- [8] L. van den Dries, C. Miller *On the real exponential field with restricted analytic functions*, Israel J. Math. 85 (1994), 19–56.
- [9] B. Edixhoven, A. Yafaev, *Subvarieties of Shimura varieties*, Annals of Mathematics (2) 157 (2003) 621-645
- [10] E. Fortuna, S. Lojasiewicz, *Sur l'alg´ebricit´e des ensembles analytiques complexes*, J. Reine Angew. Math. 329 (1981) 215-220
- [11] J.M. Hwang, W.K. To, *Volumes of complex analytic subvarieties of Hermitian symmetric spaces*, Amer. J. Math., 124 (2002), 1221-1246
- [12] B. Klingler, A. Yafaev ,*The André-Oort conjecture*, Annals of Math. **180** (2014) 867-925
- [13] F. Lindemann, *Über die Zahl* π, Math. Ann. **20** (1882), 213-225
- [14] Margulis G.A, Discrete subgroups of semisimple Lie groups, *Ergebnisse der Mathematik und ihrer Grengebiete* 17, Springer-Verlag, (1991)
- [15] N. Mok, *Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds*, Series in Pure Math. 6. World Scientific (1989).
- [16] N. Mok, *On the Zariski closure of a germ of totally geodesic complex submanifold on a subvariety of a complex hyperbolic space form of finite volume*, Complex Analysis, 2-79-300, Trends Math., Birkhäuser Springer (2010).
- [17] N. Mok, *Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric*, J. Eur. Math. Soc. 14 (2012), 1617-1656
- [18] B. Moonen, *Linearity properties of Shimura varieties. I*, J. Algebraic Geom. 7 (1998), 539-567.
- [19] D. Mumford, *Hirzebruch's proportionality theorem in the non-cocompact case*, Inventiones Math. 42, 239-272, 1979
- [20] Y. Peterzil, S. Starchenko, *Definability of restricted theta functions and families of abelian varieties*, Duke Math. J. 162, (2013), 731-765
- [21] Y. Peterzil, S. Starchenko *Tame complex analysis and o-minimality.* Proceedings of the ICM, Hyderabad, 2010. Available on first author's web-page.
- [22] I.I. Pyateskii-Shapiro, *Automorphic functions and the geometry of classical domains*, translated from the Russian, Mathematics and its Applications, Vol. 8, Gordon and Breach Science Publishers (1969)
- [23] J. Pila, *O-minimality and the Andre-Oort conjecture for* \mathbb{C}^n , Annals Math. **173** (2011), 1779-1840.
- [24] J. Pila, A. Wilkie, *The rational points on a definable set*, Duke Math. Journal 133, (2006) 591-616.
- [25] J. Pila, J. Tsimerman, *The André-Oort conjecture for the moduli space of abelian surfaces*, Compos. Math. 149 (2013), 204-216
- [26] J. Pila, J. Tsimerman, *Ax-Lindemann for* A_q . Ann. of Math **179** (2014), 659-681
- [27] J. Pila, U. Zannier, *Rational points in periodic analytic sets and the Manin-Mumford conjecture*. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), no. 2, 149-162.
- [28] I. Satake, *Algebraic structures of symmetric domains*, Kanu Memorial Lectures 4, Iwanami Shoten and Princeton University Press (1980)
- [29] T. Scanlon, *O-minimality as an approach to the André-Oort conjecture*, preprint 2012. Available on author's web-page.
- [30] E. Ullmo, *Applications du th´eor`eme d'Ax-Lindemann hyperbolique*, Compositio Math. 150 (2014), 175-190
- [31] E. Ullmo, A. Yafaev, *Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture,* Annals of Math. 180 (2014) 823-865
- [32] E. Ullmo, A. Yafaev, *A characterisation of special subvarieties.* Mathematika 57 (2011) 263-273
- [33] E. Ullmo, A. Yafaev, *Nombre de classes des tores de multiplication complexe et bornes infrieures pour orbites Galoisiennes de points spciaux*, Bull. Soc. Math. France 143 (2015), no.1, 197-228
- [34] E. Ullmo, A. Yafaev, *Hyperbolic Ax-Lindemann theorem in the cocompact case,* Duke Math. J. 163 (2014) 433-463
- [35] J. Tsimermann, *Brauer-Siegel theorem for tori and lower bounds for Galois orbits of special points*, J. Amer. Math. Soc. 25 (2012), 1091-1117
- [36] K. Weierstraß, *Zu Lindemanns Abhandlung: "Über die Ludolph'sche Zahl"*, Berl. Ber. (1885) 1067-86
- [37] J.A. Wolf, A. Korányi, *Generalized Cailey transformations of bounded symmetric domains*, Amer.J.Math. 87 (1965), 899-939

Bruno Klingler : Université Paris-Diderot (Institut de Mathématiques de Jussieu-PRG, Paris) and IUF.

email : klingler@math.jussieu.fr.

Emmanuel Ullmo : Université Paris-Sud.

email: ullmo@math.u-psud.fr

Andrei Yafaev : University College London, Department of Mathematics. email : yafaev@math.ucl.ac.uk