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THE HYPERBOLIC AX-LINDEMANN-WEIERSTRASS

CONJECTURE

B. KLINGLER, E.ULLMO, A.YAFAEV

1. Introduction.

1.1. Bi-algebraic geometry and the Ax-Lindemann-Weierstraß property. Let

X and S be complex algebraic varieties and suppose π : Xan −→ San is a complex

analytic, non-algebraic, morphism between the associated complex analytic spaces. In

this situation the image π(Y ) of a generic algebraic subvariety Y ⊂ X is usually highly

transcendental and the pairs (Y ⊂ X,V ⊂ S) of irreducible algebraic subvarieties such

that π(Y ) = V are rare and of particular geometric significance. We will say that an

irreducible subvariety Y ⊂ X (resp. V ⊂ S) is bi-algebraic if π(Y ) is an algebraic

subvariety of S (resp. any analytic irreducible component of π−1(V ) is an irreducible

algebraic subvariety of X). Notice that V ⊂ S is bi-algebraic if and only if any analytic

irreducible component of π−1(V ) is bi-algebraic.

Example 1.1. Let π := (exp(2πi·), . . . , exp(2πi·)) : Cn −→ (C∗)n. One easily shows that

an irreducible algebraic subvariety Y ⊂ Cn (resp. V ⊂ (C∗)n)) is bi-algebraic if and only

if Y is a translate of a rational linear subspace of Cn = Qn ⊗Q C (resp. V is a translate

of a subtorus of (C∗)n).

Example 1.2. Let π : Cn −→ A be the uniformizing map of a complex Abelian variety

A of dimension n. One checks that an irreducible algebraic subvariety V ⊂ A is bi-

algebraic if and only if V is the translate of an Abelian subvariety of A (cf. [32, prop.

5.1] for example).

More generally, given Y ⊂ X an algebraic subvariety, one may ask for a description of

the Zariski-closure π(Y )
Zar

of its image π(Z). We will say that π : X −→ S satisfy the

Ax-Lindemann-Weierstraß property if for any such Y ⊂ X the irreducible components

of π(Y )
Zar

are bi-algebraic. One checks that the Ax-Lindemann-Weierstraß property is

equivalent to the following: for any algebraic subvariety V ⊂ S, any irreducible algebraic

subvariety Y of X contained in π−1(V ) and maximal for this property is bi-algebraic.

Example 1.3. In the situations of Example 1.1 and Example 1.2 Ax [2] showed that

π : X −→ S has the Ax-Lindemann-Weiertraß property. Namely:
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- if π := (exp(2πi·), . . . , exp(2πi·)) : Cn −→ (C∗)n and Y ⊂ Cn is an algebraic

subvariety then any irreducible component of π(Y )
Zar

is the translate of a subtorus of

(C∗)n.

- if π : Cn −→ A is the uniformizing map of a complex abelian variety A of dimension

n and Y ⊂ Cn is an algebraic subvariety then any irreducible component of π(Y )
Zar

is

the translate of an Abelian subvariety of A.

Remark 1.4. Notice that Ax’s theorem for π := (exp(2πi·), . . . , exp(2πi·)) : Cn −→ (C∗)n

is the functional analog of the classical Lindemann-Weierstraß transcendence theorem

([13], [36]) stating that if α1, . . . , αn are Q-linearly independent algebraic numbers then

eα1 , . . . , eαn are algebraically independent over Q. This explain our terminology.

1.2. The hyperbolic Ax-Lindemann-Weierstraß conjecture. The main result of

this paper is the proof of the Ax-Lindemann-Weierstraß property for the uniformizing

map π : X −→ S := Γ\X of any arithmetic variety S. Here X denotes a Hermitian

symmetric domain and Γ is any arithmetic subgroup of the real adjoint Lie group G of

biholomorphisms of X. This means that there exists a semisimple Q-algebraic group

G and a surjective morphism with compact kernel p : G(R) −→ G such that Γ is

commensurable with the projection p(G(Z)) (cf. section 2 for the definition of G(Z)

and [14] for a general reference on arithmetic lattices).

The Ax-Lindemann-Weierstraß property does not make sense directly for π: the arith-

metic variety S admits a natural structure of complex quasi-projective variety via the

Baily-Borel embedding [3] but the Hermitian symmetric domain X is not a complex

algebraic variety. However X admits a canonical realisation as a bounded symmetric

domain D ⊂ CN (with N = dimCX) (cf. [28, §II.4]).

Definition 1.5. We will say that a subset Y ⊂ D is an irreducible algebraic subvariety

of D if Y is an irreducible component of the analytic set D ∩ Ỹ where Ỹ is an algebraic

subset of CN . An algebraic subvariety of D is then defined as a finite union of irreducible

algebraic subvarieties.

With these definitions the morphism π is far from algebraic (in the simplest case where

D is the Poincaré disk and S is the modular curve, the map π : D −→ S is the usual

j-invariant seen on the disk) and it makes sense to study the bi-algebraic subvarieties for

π. In [32] Ullmo and Yafaev proved that the bi-algebraic subvarieties of S for π are the

weakly special ones, namely the irreducible complex algebraic subvarieties of S whose

smooth locus is totally geodesic in S endowed with its canonical Hermitian metric.

Our main result is the proof of the Ax-Lindemann-Weiertraß property in this context:

Theorem 1.6. (The hyperbolic Ax-Lindemann-Weierstraß conjecture.) Let S = Γ\D
be an arithmetic variety with uniformising map π : D −→ S. Let Y ⊂ D be an algebraic
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subvariety. Then any irreducible component of the Zariski-closure π(Y )
Zar

of π(Y ) is

weakly special.

Equivalently, let V be an algebraic subvariety of S. Irreducible algebraic subvarieties

of D contained in π−1V and maximal for this property are precisely the irreducible com-

ponents of the preimages of maximal weakly special subvarieties contained in V .

Remarks 1.7. (a) The Ax-Lindemann-Weierstraß property in an hyperbolic context

was first proven by Pila in the case where S is a product of modular curves:

cf. [23, section 1.4 and theor. 6.8]. It is a crucial ingredient in Pila’s proof

of the André-Oort conjecture for product of modular curves. The hyperbolic

Ax-Lindemann-Weierstraß conjecture for the uniformizing map of a general con-

nected Shimura variety S is stated in [30, conjecture 1.2], where Ullmo explains

its role in the proof of the André-Oort conjecture. In [34] Ullmo and Yafaev

prove Theorem 1.6 in the special case where S is compact. In [26], in part in-

spired by [34] and relying on [20], Pila and Tsimerman proved Theorem 1.6 in the

special case S = Ag, the moduli space of principally polarised Abelian varieties

of dimension g.

(b) Mok has a nice, entirely complex-analytic, approach to the hyperbolic Ax-Lindemann-

Weierstraß conjecture. In the rank 1 case his approach should extend some of

the results of this text to the case where Γ is a non-arithmetic lattice. We refer

to [16], [17] for partial results.

(c) We defined algebraic subvarieties of X using the Harish-Chandra realisation D
of X but we could have used as well any other realisation of X in the sense of

[30, section 2.1]. Indeed morphisms of realisations are necessarily semi-algebraic,

thus X admits a canonical semi-algebraic structure and a canonical notion of

algebraic subvarieties (cf. appendix B for details). Hence one can replace D in

Theorem 1.6 by any other realisation of X, for example the Borel realisation (cf.

[15, p.52]).

1.3. Motivation: the André-Oort conjecture. Let (G,XG) be a Shimura datum.

Let X be a connected component of XG (hence X is a Hermitian symmetric domain).

We denote by G(Q)+ the stabiliser of X in G(Q). Let Kf be a compact open subgroup

of G(Af ), where Af denotes the finite adèles of Q and let Γ := G(Q)+ ∩ Kf be the

corresponding congruence arithmetic lattice of G(Q).

Then the arithmetic variety S := Γ\X is a component of the complex quasi-projective

Shimura variety

ShK(G,X) := G(Q)+\X ×G(Af )/Kf .

The variety S contains the so-called special points and special subvarieties (these are the

weakly special subvarieties of S containing one special point, we refer to [6] or [18] for
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the detailed definitions). One of the main motivations for studying the Ax-Lindemann-

Weierstraß conjecture is the André-Oort conjecture predicting that irreducible subvari-

eties of S containing Zariski dense sets of special points are precisely the special sub-

varieties. The André-Oort conjecture has been proved under the assumption of the

Generalised Riemann Hypothesis (GRH) by the authors of this paper ([31], [12]). Re-

cently Pila and Zannier [27] came up with a new proof of the Manin-Mumford conjecture

for abelian varieties using the flat Ax-Lindemann-Weierstraß theorem. This gave hope

to prove the André-Oort conjecture unconditionally with the same strategy. In [23] Pila

succeeded in applying this strategy to the case where S is a product of modular curves

(and more generally, in the context of mixed Shimura varieties, when S is a product of

modular curves, of elliptic curves defined over Q and of an algebraic torus Gl
m). Roughly

speaking, the strategy of [23] consists of two main ingredients: the first is the problem

of bounding below the sizes of Galois orbits of special points and the second is the hy-

perbolic Ax-Lindemann-Weierstraß conjecture. We refer to [30] for details on how the

general hyperbolic Ax-Lindemann-Weierstraß conjecture and a good lower bound on the

sizes of Galois orbits of special points imply the full André-Oort conjecture. As a direct

corollary of Theorem 1.6 and the proof of [30, theor.5.1] one obtains:

Corollary 1.8. The André-Oort conjecture holds for An
6 for any positive integer n.

Notice also that (as explained in [30]) a new proof of the André-Oort conjecture under

the GRH, alternative to [31] and [12], is a consequence of three ingredients: Theorem 1.6,

a lower bound under GRH for the size of Galois orbits of special points (provided by

Tsimerman [35] in the case of Ag and by Ullmo-Yafaev [33] in general) and an up-

per bound for the height of special points in Siegel sets. This upper-bound has been

announced by C.Daw and M.Orr [5].

1.4. Strategy of the proof of Theorem 1.6. Our general strategy for proving Theo-

rem 1.6, which originates in [23], is also the one used in [34] and [26]: it ultimately relies

on estimations of rational points in transcendental real-analytic varieties or more gener-

ally in spaces definable in a o-minimal structure. Let us describe roughly this strategy

and emphasize the new ideas involved.

(i) Let S := Γ\X and π : X −→ S be the uniformising map. Even though the map π

is transcendental, it still enables us to relate the semi-algebraic structures on X and S

through a larger o-minimal structure. We refer to [7], [8], [34, section 3] for details on o-

minimal structures. Recall that a fundamental set for the action of Γ on X is a connected

open subset F of X such that ΓF = X and such that the set {γ ∈ Γ |γF ∩ F 6= ∅} is

finite. Our first result of independent interest is the following:
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Theorem 1.9. There exists a semi-algebraic fundamental set F for the action of Γ on

X such that the restriction π|F : F −→ S is definable in the o-minimal structure Ran,exp.

Remarks 1.10. (a) The special case of Theorem 1.9 when S is compact is easy and

was proven in [34, Prop.4.2]. In this case, the map π|F is even definable in Ran.

Theorem 1.9 in the case where X = Hg is the Siegel upper half plane of genus g

was proven by Peterzil and Starchenko (see [20] and [21]): in this case they use

an explicit description for π in terms of θ-function and delicate computations

with these. Their result is a crucial ingredient in [26]. Notice moreover that

this particular case implies Theorem 1.9 for any special subvariety S of Ag (see

Proposition 2.5 of [30]).

(b) On the other hand Peterzil and Starchenko’s method does not generalize to

general arithmetic varieties, where an explicit description of π is not available.

Moreover, while the definability of π restricted to F is of geometric essence, the

geometric meaning of computations with θ-functions is difficult to follow. On the

contrary our general proof of Theorem 1.9 is completely geometric: it relies on

the general theory of toroidal compactifications of arithmetic varieties (cf. [1]).

In particular it does not use [20] or [21].

(ii) Choose a semi-algebraic fundamental set F for the action of Γ as in the Theo-

rem 1.9 above. The choice of a reasonable representation ρ : G −→ GL(E) (cf. section 2)

allows us to define a height function H : Γ −→ R (cf. definition 5.1). In section 5 we

show the following result, which is the most original part of the proof (it mixes the ge-

ometry of toroidal compactifications and various arguments from hyperbolic geometry,

like theorem 5.7 of Hwang-To):

Theorem 1.11. Let Y be a positive dimensional irreducible algebraic subvariety of X.

Define

NY (T ) = |{γ ∈ Γ : H(γ) ≤ T, Y ∩ γF 6= ∅}| .

Then there exists a positive constant c1 such that for all positive real number T large

enough:

NY (T ) ≥ T c1 .

Remark 1.12. When S is compact Ullmo and Yafaev proved in [34, theor. 2.7] a more re-

fined result. Indeed let F := {γ ∈ F , γF∩F 6= 0} be a finite symmetric set of generators

for Γ and let l : Γ −→ N be the word length function on Γ associated to F . Then Ullmo

and Yafaev show that the functionNY (n) := |{γ ∈ Γ, dim(γF ∩ Y ) = dimY and l(γ) ≤ n}|
grows exponentially with n ∈ N and Theorem 1.11 follows in this case. We were not

able to obtain such a result in the general case.
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(iii) In section 6, applying the counting result above and some strong form of Pila-

Wilkie’s theorem [24], we prove:

Theorem 1.13. Let V be an algebraic subvariety of S and Y a maximal irreducible

algebraic subvariety of π−1V . Let ΘY denotes the stabiliser of Y in G(R) and define

HY as the connected component of the identity of the Zariski closure of G(Z) ∩ ΘY .

Then HY is a non-trivial Q-subgroup of G, such that HY (R) is non-compact.

(iv) Without loss of generality one can assume that V is the smallest algebraic subvari-

ety of S containing π(Y ). With this assumption we show in section 7 that Ṽ is invariant

under HY (Q), where Ṽ is an analytic irreducible component of π−1V containing Y , and

then conclude that π(Y ) = V is weakly special using monodromy arguments.

2. Notations

In the rest of the text:

• X denotes a Hermitian symmetric domain (not necessarily irreducible).

• G is the adjoint semi-simple real algebraic group, whose set of real points, also

denoted by G, is the group of biholomorphisms of X; hence X = G/K where K

is a maximal compact subgroup of G.

• Γ ⊂ G is an arithmetic lattice. This means (cf. [14]) that there exists a semi-

simple linear algebraic groupG over Q and p : G(R) −→ G a surjective morphism

with compact kernel such that Γ is commensurable with p(G(Z)). Here we recall

that two subgroups of a group are commensurable if their intersection is of finite

index in both of them; moreover G(Z) denotes G(Q) ∩ ρ−1(GL(EZ)) for some

faithful representation ρ : G −→ GL(E), where E is a finite-dimensional Q-

vector space and EZ is a Z-lattice in E; the commensurability of Γ and p(G(Z))

is independant of the choice of ρ and EZ.

• We denote by n the dimension of E as a Q-vector space.

• One easily checks that Theorem 1.6 holds for Γ if and only if it holds for any Γ′

commensurable with Γ. In particular without loss of generality one can and will

assume that the group G(Z) is neat (meaning that for any γ ∈ G(Z) the group

generated by the eigenvalues of ρ(γ) is torsion-free) and the group Γ coincides

with p(G(Z)) (hence is torsion-free).

• Without loss of generality we can and will assume that the group G is of adjoint

type. Indeed let λ : G −→ Gad denotes the natural algebraic morphism to the

adjoint group Gad of G (quotient by the centre). As the Lie group G is adjoint
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the morphism p : G(R) −→ G factorises through

G(R)
λ

//

p
$$❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

Gad(R)

pad

��

G

and Γ is commensurable with pad(Gad(Z)).

• Without loss of generality we can and will assume that each Q-simple factor of

G is R-isotropic. Indeed let H be the quotient of G by its R-anisotropic Q-

factors. Again, the morphism p : G(R) −→ G factorises through H(R) and Γ is

commensurable with the projection of H(Z).

• The group K∞ := p−1K is a maximal compact subgroup of G(R). Hence X =

G(R)/K∞. We denote by x0 the base-point eK∞ of X.

• The quotient S := Γ\X is a smooth complex quasi-projective variety. We denote

by π : X −→ S the uniformization map.

• We choose ‖ · ‖∞ : ER −→ R a Euclidean norm which is ρ(K∞)-invariant.

• We denote by X any realization of X (cf. appendix B).

3. Compactification of arithmetic varieties

3.1. Siegel sets. First we recall the definition of Siegel sets for Γ. We refer to [4, §12]
for details. We follow Borel’s conventions, except that for us the group G acts on X on

the left.

Let P be a minimal Q-parabolic subgroup of G such that K∞ ∩ P(R) is a maximal

compact subgroup of P(R). Let U be the unipotent radical of P and let A be a maximal

split torus of P. We denote by S a maximal split torus of GL(E) containing ρ(A). We

denote by M the maximal anisotropic subgroup of the connected centralizer Z(A)0 of

A in P and by ∆ the set of positive simple roots of G with respect to A and P. We

denote by A ⊂ S(R) the real torus A(R). For any real number t > 0 we let

At := {a ∈ A | aα ≥ t for any α ∈ ∆} .

A Siegel set for G(R) for the data (K∞,P,A) is a product:

Σ′
t,Ω := Ω · At ·K∞ ⊂ G(R)

where Ω is a compact neighborhood of e in M0(R) ·U(R).

The image

Σt,Ω := Ω · At · xo ⊂ X

of Σ′
t,Ω in X is called a Siegel set in X .
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Theorem 3.1. [4, theor.13.1] Let X, G, G, Γ, P, A, K∞, and X be as above. Then

for any Siegel set Σt,Ω, the set {γ ∈ Γ | γΣt,Ω ∩ Σt,Ω 6= ∅} is finite. There exist a Siegel

set (called a Siegel set for Γ) Σt0,Ω and a finite subset J of G(Q) such that F := J ·Σt0,Ω

is a fundamental set for the action of Γ on X .

When Ω is chosen to be semi-algebraic the Siegel set Σt,Ω and the fundamental set F
are semi-algebraic as by definition of a complex realisation (cf. appendix B) the action

of G(R) on X is semi-algebraic and the subset Ω · At of G(R) is semi-algebraic.

We will only consider semi-algebraic Siegel sets in the rest of the text.

3.2. Boundary components. General references for this section and the next one are

[19] and [1].

Let D →֒ CN be the Harish-Chandra realisation ofX as a bounded symmetric domain.

The action of G extends to the closure D of D in CN . The boundary ∂D := D\D is a

smooth manifold which decomposes into a (continuous) union of boundary components,

which are defined as maximal complex analytic submanifolds of ∂D (or alternatively as

holomorphic path components of ∂D). Explicitly, let us say that a real affine hyperplane

H ⊂ CN is a supporting hyperplane if H ∩ D is nonempty but H ∩ D is empty. Let

H be a supporting hyperplane and let F = H ∩ D = H ∩ ∂D. Let L be the smallest

affine subspace of CN which contains F . Then F is the closure of a nonempty open

subset F ⊂ L which is then a single boundary component of D (cf. [28, §III.8.11]). The
boundary component F turns out to be a bounded symmetric domain in L.

Fix a boundary component F . The normaliser N(F ) := {g ∈ G | gF = F} turns out

to be a proper parabolic subgroup of G. The Levi decomposition N(F ) = R(F ) ·W (F )

(where W (F ) denotes the unipotent radical of N(F ) and R(F ) is the unique reductive

Levi factor stable under the Cartan involution corresponding to K) can be refined into

(3.1) N(F ) = (Gh(F ) ·Gl(F ) ·M(F )) · V (F ) · U(F ) ,

where:

- U(F ) is the centre of W (F ). It is a real vector space;

- V (F ) = W (F )/U(F ) turns out to be abelian. It is a real vector space of even

dimension 2l, and we get a decomposition W (F ) = V (F ) · U(F ) using “exp”;

- Gl(F ) ·M(F ) · V (F ) · U(F ) acts trivially on F and Gh(F ) modulo a finite center is

Aut0(F );

- Gh(F ) ·M(F ) ·V (F ) ·U(F ) commutes with U(F ) and Gl(F ) modulo a finite central

group acts faithfully on U(F ) by inner automorphisms;

- M(F ) is compact.
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The boundary component F is said to be rational if ΓF := Γ∩N(F ) is an arithmetic

subgroup of N(F ). There are only finitely many Γ-orbits of rational boundary com-

ponents, we choose representatives F1, . . . , Fr for these Γ-orbits. Then the Baily-Borel

compactification of S is

S
BB

= S ∪
r⋃

i=1

(ΓFi
\Fi)

with a suitable analytic structure.

3.3. Toroidal compactifications and local coordinates. Let X∨ be the compact

dual of X and D →֒ X∨ be the Borel embedding. Recall that X∨ has an algebraic action

by GC. Given a boundary component F of D we define, following [19, section 3], an

open subset DF of X∨ containing D as follows:

DF =
⋃

g∈U(F )C

g · D .

The embedding of D in DF is Piatetskii-Shapiro’s realisation of D as Siegel Domain of

the third kind. In fact there is a canonical holomorphic isomorphism (we refer to the

proof of Lemma 4.2 for a precise description of this isomorphism):

DF
j≃ U(F )C × Cl × F .

This biholomorphism defines complex coordinates (x, y, t) on DF , such that

D j≃ {(x, y, t) ∈ U(F )C ×Cl × F | Im(x) + lt(y, y) ∈ C(F )} ⊂ DF

where Im(x) is the imaginary part of x, C(F ) ⊂ U(F ) is a self-adjoint convex cone

homogeneous under the Gl(F )-action on U(F ) and lt : C
l ×Cl −→ U(F ) is a symmetric

R-bilinear form varying real-analytically with t ∈ F . The group U(F )C acts on DF and

in these coordinates the action of a ∈ U(F )(C) is given by:

(x, y, t) −→ (x+ a, y, t).

From now on we fix a Γ-admissible collection of polyhedra σ = (σα) (cf. [1, definition

5.1]) such that the associated toroidal compactification S = Sσ constructed in [1] is

smooth projective and the complement S \S is a divisor with normal crossings. We refer

to [1] for details and we just recall what is needed for our purposes.

The compactification S is covered by a finite set of coordinates charts constructed as

follows (cf. [19, p.255-256]):

(a) Take a rational boundary component F of D;
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(b) We may choose some complex coordinates x = (x1, . . . , xk) on U(F )C (depending

on the choice of σ) such that the following diagram commutes:

(3.2) D

��

�

�

// DF
j≃ U(F )C × Cl × F

expF

��

expF (D) = Γ ∩ UF \D
πF

��

�

�

// C∗k × Cl × F �

�

// Ck × Cl × F

S

where expF : U(F )C × Cl × F → C∗k × Cl × F is given by

(3.3) (x, y, t) 7→ (exp(2iπx), y, t), where exp(2iπx) = (exp(2iπx1), . . . , exp(2iπxk)) .

(c) Define the “partial compactification of expF (D) in the direction F” to be the set

expF (D)∨ of points P in Ck × Cl × F having a neighborhood Θ such that

Θ ∩ C∗k × Cl × F ⊂ expF (D) .

Then there exists an integer m, 1 ≤ m ≤ k, such that expF (D)∨ contains

S(F,σ) = ∪m
i=1{(z, y, t)|z = (z1, . . . , zk), zi = 0}.

(d) The basic property of S is that the covering map πF : expF (D) → S extends to a

local homeomorphism πF : expF (D)∨ → S making the diagram

(3.4) D
expF

��

π

''

expF (D)

πF

��

�

�

// expF (D)∨

πF

��

S �

�

// S

commutative. Moreover every point P of S − S is of the form πF ((z, y, t)) with zi = 0

for some i ≤ m, for some F .

The following proposition summarizes what we will need:

Proposition 3.2. Let Σ = Σt,Ω ⊂ D be a Siegel set for the action of Γ. Then Σ is

covered by a finite number of open subsets Θ having the following properties. For each

Θ there is a rational boundary component F , a simplicial cone σ ∈ σ with σ ⊂ C(F ), a

point a ∈ C(F ), relatively compact subsets U ′, Y ′ and F ′ of U(F ), Cl and F respectively
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such that the set Θ is of the form

Θ
j≃ {(x, y, t) ∈ U(F )C × Cl × F, Re(x) ∈ U ′, y ∈ Y ′, t ∈ F ′ | Im(x) + lt(y, y) ∈ σ + a}

⊂ U(F )C × Cl × F
j−1

≃ DF .

Proof. Let us provide a proof of this proposition, essentially stated without proof in [19,

p.259]. Let D Ψ≃ W (F ) × C(F ) × F be the real-analytic isomorphism deduced from

the group-theoretic isomorphism (3.1) constructed in [1, p.233]. Following [1, p.266,

corollary of proof], the Siegel set Σ is covered by a finite number of sets Θ of the form

Θ
Ψ≃ ωF × (C0 ∩ σFα )× E ,

where E ⊂ F and ωW ⊂W (F ) are compact, C0 ⊂ C(F ) is a rational core and σFα is one

of the polyhedra in our decomposition of C(F ).

Considering C(F ) as a cone in
√
−1 · U(F ) and decomposing W (F ) as U(F ) · V (F ),

the isomorphism Ψ extends to the real-analytic isomorphism DF
Ψ≃ U(F )C × V (F )× F

constructed in [1, p.235]. Hence the Siegel set Σ is covered by a finite number of sets Θ

of the form

(3.5) Θ
Ψ≃ Ψ(D) ∩ {(x, s, t) ∈ U(F )C × V (F )× F | Re(x) ∈ U ′, s ∈ S′, t ∈ F ′}

where F ′ ⊂ F , U ′ ⊂ U(F ) and S′ ⊂ V (F ) are relatively compact.

Using the definition of j given in [37, §7] and recalled in the proof of Lemma 4.2 below,

it follows, as stated in [1, p.238], that the diffeomorphism j ◦Ψ−1 : U(F )C×V (F )×F ≃
U(F )C × Cl × F is a change of trivialisation of the real-analytic bundle

DF

π′

F

��

πF

��

D′
F

pF
��

F

studied in [1, p.237]. Here the map π′F is a U(F )C-principal homogeneous space, the map

pF is a V (F )-principal homogeneous space, and the map j ◦ Ψ−1 is U(F )C-equivariant

and respects the fibrations over F . These two properties ensure that j ◦ Ψ−1 identifies

the set Ψ(Θ) of (3.5) to a set of the required form

Θ
j≃ {(x, y, t) ∈ U(F )C × Cl × F, Re(x) ∈ U ′, y ∈ Y ′, t ∈ F ′ | Im(x) + lt(y, y) ∈ σ + a}
⊂ U(F )C × Cl × F .

�
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4. Definability of the uniformisation map: proof of Theorem 1.9.

First notice that, although the variety S does not canonically embed into some Rn, the

statement of Theorem 1.9 makes sense as S has a canonical structure of real algebraic

manifold, hence of Ran,exp-manifold: cf. appendix A.

By Theorem 3.1 there exist a semi-algebraic Siegel set Σ and a finite subset J of

G(Q) such that F := J · Σ is a (semi-algebraic) fundamental set for the action of Γ on

D. Hence Theorem 1.9 follows from the following more precise result.

Theorem 4.1. The restriction π|Σ : Σ −→ S of the uniformising map π : D −→ S is

definable in Ran,exp.

Proof. By the Proposition 3.2 we know that Σ is covered by a finite union of open subsets

Θ with the following properties. For each Θ there is a rational boundary component F ,

a simplicial cone σ ∈ σ with σ ⊂ C(F ), a point a ∈ C(F ), relatively compact subsets

U ′, Y ′ and F ′ of U(F ), Cl and F respectively such that the set Θ is of the form

Θ
j≃ {(x, y, t) ∈ U(F )C × Cl × F, Re(x) ∈ U ′, y ∈ Y ′, t ∈ F ′ | Im(x) + lt(y, y) ∈ σ + a}
⊂ U(F )C × Cl × F .

(4.1)

We first prove that the holomorphic coordinates we introduced on DF are definable:

Lemma 4.2. The canonical isomorphism j : DF ≃ U(F )C × Cl × F is semi-algebraic.

Proof. The isomorphism j was studied in [22] and in full generality in [37, §7] (cf. [3,

§1.6] for a survey). To keep the amount of definitions at a reasonable level we follow in

this proof (and this proof only) the notations of Wolf and Koranyi in [37]. For example

our X, resp. X∨ is denoted by M , resp. M∗.

Let ξ : p− = CN −→M∗ be the Harish-Chandra morphism defined by ξ(E) = exp(E)·
x (cf. [37, p.901]; in the notations of Wolf and Koranyi x is the base point of M∗). This

is a holomorphic embedding onto a dense open subset of M∗. Notice that the map ξ

is real algebraic: indeed p− is a nilpotent sub-algebra of gC hence the exponential is

polynomial in restriction to p−. The bounded symmetric domain D is ξ−1(G0(x)).

Let ∆ be a maximal set of strongly orthogonal positive non-compact roots of gC as in

[37, p.901]. For any α ∈ ∆ let cα ∈ G be the partial Cayley transform of M associated

to α (cf. [37, p.902], recall that with the notations of Wolf and Koranyi G is the compact

form of the complexified group GC!). For a subset θ ⊂ ∆ we denote by cθ :=
∏

α∈θ cα

the partial Cayley transform associated with θ (cf. [37, §4.1]).
Following [37, theor. 4.8] there exists a unique subset θ ⊂ ∆ such that F = ξ−1c∆−θMθ,

where Mθ = G0
θ(x) is defined in [37, p.912]. Let p−1

θ ⊂ p− be defined as in [37, p.912],
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let p−∆−θ,1 be the (+1)-eigenspace of ad(c4∆−θ) on p
−
∆−θ and p

θ,−
2 be the (−1)-eigenspace

of ad(c4∆−θ) on p−. One has a canonical decomposition (cf. [37, p.933] ):

(4.2) p
− = p

−
∆−θ,1 ⊕ p

θ,−
2 ⊕ p

−
θ .

The decomposition (3.1) of the normalizer N(F ) = Bθ (cf. [37, remark 3 p.932])

is proven in [37, theorem 6.8]. In particular it follows that exp∆−θ := exp ◦ ad c∆−θ :

p
−
∆−θ,1 −→ U(F )C and exp : pθ,−2 −→ Cl are polynomial isomorphisms, while F ⊂ p− is

a bounded symmetric domain of p−θ .

Following [37, §7.6 and §7.7] the map j : D −→ U(F )C × Cl × F ⊂ U(F )C × Cl × p
−
θ

is the composition of the semi-algebraic holomorphic maps

D
ξ−1c∆−θξ

// p− = p
−
∆−θ,1 ⊕ p

θ,−
2 ⊕ p

−
θ

(exp∆−θ,exp,Id)
// U(F )C × Cl × p

−
θ

which finishes the proof of Lemma 4.2. �

The previous lemma enables us to forget about the definable biholomorphism j. From

now on and for simplicity of notations we simply write DF = U(F )C × Cl × F .

In the description (4.1) we may and do assume that U ′, Y ′ and F ′ are semi-algebraic

subsets respectively of U(F )C, C
l and F . Then the set Θ is definable in Ran because:

- the function ψ : Y ′ × F ′ → U(F ) defined by ψ(y, t) = lt(y, y) is analytic and

defined on a compact semi-algebraic set.

- the cone σ is polyhedral, hence semi-algebraic.

Hence the restriction π|Σ : Σ −→ S is definable in Ran,exp if and only if the restriction

π|Θ : Θ −→ S to any set Θ appearing in the proposition 3.2 is definable in Ran,exp.

Fix such a set

Θ = {(x, y, t), y ∈ Y ′, t ∈ F ′,Re(x) ∈ U ′|Im(x) + lt(y, y) ∈ σ + a}

associated to a rational boundary component F ∈ {F1, . . . , Fr}.
Consider the left-hand side of the diagram (3.4):

D
expF

��

π

((

expF (D)

πF

��

S

Recall that expF : DF → C∗k × Cl × F is given by

(x, y, t) 7→ (exp(2iπx, y, t), where exp(2iπx) = (exp(2iπx1), . . . , exp(2iπxk)) .
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The function Re(xi), 1 ≤ i ≤ k, is bounded on Θ hence the restriction to Θ of the

map x 7→ exp(2iπRe(x)) is definable in Ran. On the other hand the restriction to Θ of

the function x 7→ exp(−2πIm(x)) is definable in Rexp by definition of Rexp. Thus the

restriction to Θ of the map expF is definable in Ran,exp and we are reduced to showing

that πF : expF (Θ) −→ S is definable in Ran,exp.

Consider the lower part of the diagram (3.4):

expF (D)

πF

��

�

�

// expF (D)∨

πF

��

S �

�

// S .

As U ′, V ′, F ′ are relatively compact and the imaginary part of x has a lower bound on Θ,

the closure expF (Θ) of expF (Θ) is compact in expF (D)∨. Hence πF : expF (Θ) −→ S,

which is the restriction of the analytic map πF : expF (D)∨ −→ S to the relatively

compact subset expF (Θ) of expF (D)∨, is definable in Ran.

�

5. Proof of Theorem 1.11

5.1. Distance, norm, height.

5.1.1. Distance. Let ∗ be the adjunction on ER associated to the Hilbert structure ‖·‖∞
on ER. The restriction of the bilinear form (u, v) 7→ tr(u∗v) to the Lie algebra Lie(G(R))

defines a G(R)-invariant Kähler metric gX on X. We denote by d : X × X −→ R the

associated distance and by ω the associated Kähler form.

5.1.2. Norm. We still denote by ‖ · ‖∞ : EndER −→ R the operator norm associated to

the norm ‖·‖∞ on ER. By restriction we also denote by ‖·‖∞ : G(R) −→ R the function

‖ · ‖∞ ◦ ρ. As K∞ preserves the norm ‖ · ‖∞ on ER, the function ‖ · ‖∞ : G(R) −→ R is

K∞-bi-invariant, in particular descends to a K∞-invariant function ‖ · ‖∞ : X −→ R.

Choose (e1, . . . , en) a basis of EZ in which A diagonalizes. It will be useful to compare

the norm ‖ · ‖∞ with the norm | · |∞ : EndER −→ R defined by

(5.1) ∀ ϕ ∈ EndER, |ϕ|∞ = max
i,j

|ϕij | ,

where (ϕij) is the matrix of ϕ in the basis (e1, . . . , en) of ER.

5.1.3. Height.

Definition 5.1. We define the (multiplicative) height function H : EndEZ −→ R as

∀ϕ ∈ EndEZ, H(ϕ) = max(1, ‖ϕ‖∞) .
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Remark 5.2. When dimQE = 1, this height function coincides with the classical multi-

plicative height function on rational numbers.

By restriction, we also denote by H : G(Z) −→ R the function H ◦ ρ. Notice that for

ϕ ∈ EndER, ‖ϕ‖∞ is the square root of the largest eigenvalue of the positive definite

matrix ϕ∗ϕ. If ϕ ∈ EndEZ it follows that ‖ϕ‖∞ is at least 1, hence

∀ϕ ∈ G(Z), H(ϕ) = ‖ϕ‖∞ ≥ 1 .

We also define Hclass the classical multiplicative height on EndE using the basis

(e∗i ⊗ ej)i,j . In particular if ϕ ∈ EndEZ then Hclass(ϕ) = |ϕ|∞. As the norms ‖ · ‖∞ and

| · |∞ are equivalent on EndER we obtain the following:

Lemma 5.3. There exist a positive number C such that

∀ϕ ∈ EndEZ,
1

C
·Hclass(ϕ) ≤ H(ϕ) ≤ C ·Hclass(ϕ) .

5.2. Comparing norm and distance.

Lemma 5.4. For any g ∈ G(R) the following inequality holds:

log ‖g‖∞ ≤ d(g · x0, x0) .

Proof. Let G(R) = K∞ · A∞ · K∞ be a Cartan decomposition of G(R) associated to

K∞, where A∞ is a maximal split real torus of G containing A. Let g ∈ G(R) and write

g = k1 · a · k2 its Cartan decomposition, with k1, k2 in K∞ and a ∈ A∞. As ‖ · ‖∞
is K∞-bi-invariant and d is G(R)-equivariant the equalities log ‖g‖∞ = log ‖a‖∞ and

d(g · x0, x0) = d(a · x0, x0) do hold.

The torus A∞ is diagonalisable in an orthonormal basis (f1, . . . , fn) of ER. Write

a = diag(a1, . . . , an) in this basis, then:

log ‖a‖∞ = max
i

log |ai| and d(a · x0, x0) =

√√√√
n∑

i=1

(log |ai|)2

hence the result. �

5.3. Comparing height and norms. The main result of this section is the following:

Lemma 5.5. Let F ⊂ X be the fundamental domain described in the Theorem 3.1.

There exists a positive number B such that:

(5.2) ∀ γ ∈ G(Z), ∀ u ∈ γF , H(γ) ≤ B · ‖u‖n∞ .

Proof. Write u = γ · j · x with j ∈ J and x = ω · a · k ∈ Σ′
t0,Ω

= Ω ·At0 ·K∞. Thus:

(5.3) u = j · (j−1γj) · a · (a−1ωa) · k .
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Notice that for each j ∈ G(Q) the groups G(Z) and j−1G(Z)j are commensurable

(i.e. their intersection is of finite index in both of them). As the subset J ⊂ G(Q) is

finite, it follows that the subgroup G(Z)J := G(Z)
⋂
(
⋂

j∈J j
−1G(Z)j) is of finite index

in j−1G(Z)j, j ∈ J . Choose a finite set S of representatives in G(Q) for the cosets

j−1G(Z)j/G(Z)J , j ∈ {1} ∪ J . Hence there exists a unique s ∈ S and γ′ ∈ G(Z)J ⊂
G(Z) such that j−1γj = s · γ′. We deduce from (5.3):

(5.4) u = js · (γ′ · a) · (a−1ωa) · k .

The set J · S is finite. The group K∞ is compact. Moreover the set
⋃

a∈At0
a−1Ωa is

relatively compact in G by [4, Lemma 12.1]. As ‖ · ‖∞ is sub-multiplicative, it follows

from (5.4) that there exists a positive number b, depending only on Ω and t0, such that

(5.5) ‖u‖∞ ≥ b ‖γ′ · a‖∞ .

As j−1γj = s · γ′ and J and S are finite sets, there exists a positive number b′,

depending only on Ω and t0, such that

(5.6) ‖γ′‖∞ ≥ b′ ‖γ‖∞ .

Thus Lemma 5.5 follows the equality H(γ) = ‖γ‖∞, inequalities (5.5) and (5.6) and the

Sublemma 5.6 below. �

Sublemma 5.6. There exists a positive number B depending only on Ω and t0 such

that for all γ ∈ G(Z) and a ∈ At0 the following inequality holds:

(5.7) ‖γ‖∞ ≤ B · ‖γ · a‖n∞ .

Proof. As the norm ‖ · ‖∞ on EndER is equivalent to the norm | · |∞, it is enough to

show that |γ|∞ ≤ |γ · a|n∞.

Let γ = (γk,l) be the matrix of γ in the basis (e1, . . . , en) of EZ. As the torus A is

diagonalisable in the basis (e1, . . . , en), we write a = diag(a1, . . . , an), with ai ∈ R>0. It

follows that:

(5.8) ∀ k, l ∈ {1, . . . , n}, (γ · a)kl = γkl · al .

As γ is invertible, there exists for each s ∈ {1, . . . , n} an index rs ∈ {1, . . . , n} such

that γrs,s 6= 0. It follows from equation (5.8) that:

(5.9) ∀ k, l ∈ {1, . . . , n}, (γ ·a)k,l ·
∏

s 6=l

(γ ·a)rs,s = γk,l ·
∏

s 6=l

γrs,s ·
n∏

s=1

as = γk,l ·
∏

s 6=l

γrs,s ,

where we used that
∏n

l=1 ai = 1 as ρ(G) ⊂ SL(E).
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Notice that Γ = G(Z) hence each γk,l is an integer. It follows from the equation (5.9)

that:

∀ k, l ∈ {1, . . . , n}, |γk,l| ≤ |γk,l ·
∏

s 6=l

γrs,s| = |(γ ·a)k,l ·
∏

s 6=l

(γ ·a)rs,s| ≤ (max
r,s

|(γ ·a)r,s|)n.

In other words: |γ|∞ ≤ |γ · a|n∞. Hence the inequality (5.7) follows.

�

5.4. Lower bound for the volume of an algebraic curve. In [11, Corollary 3

p.1227], Hwang and To prove the following lower bound for the area of any complex

analytic curve in D :

Theorem 5.7 (Hwang and To). Let C be a complex analytic curve in D. For any point

x0 ∈ C there exist positive constants a1, b1 such that for any positive real number R one

has :

(5.10) VolC(C ∩B(x0, R)) ≥ a1 exp(b1 · R) .

Here VolC denotes the area for the Riemanian metric on C restriction of the metric

gX on D and B(x0, R) denotes the geodesic ball of D with center x0 and radius R.

5.5. Upper bound for the volume of algebraic curves on Siegel sets.

Lemma 5.8. (i) There exists a constant A0 > 0 such that for any algebraic curve

C ⊂ D of degree d we have the bound

VolC(C ∩ Σ) ≤ A0 · d .

(ii) There exists a constant A > 0 such that for any algebraic curve C ⊂ D of degree

d we have the bound

VolC(C ∩ F) ≤ A · d .

Proof. We first prove (i). Recall that Σ is covered by a finite union of open subsets Θ

described in Proposition 3.2: there is a rational boundary component F , a simplicial

cone σ ∈ Σ with σ ⊂ C(F ), a point a ∈ C(F ), relatively compact subsets U ′, Y ′ and F ′

of U(F ), Cl and F respectively such that the set Θ is of the form

Θ = {(x, y, t) ∈ DF , y ∈ Y ′, t ∈ F ′,Re(x) ∈ U ′|Im(x)+lt(y, y) ∈ σ+a} ⊂ DF = U(F )C×Cl×F .

Recall that ω denotes the natural Kähler form on X. As C ⊂ X is a complex analytic

curve, one has:

VolC(C ∩Θ) =

∫

C∩Θ
ω .
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On the other hand let ωDF
be the Poincaré metric on DF defined in the Siegel coordinates

by:

ωDF
=

∑ dxi ∧ dxi
Im(xi)2

+
∑

dyj ∧ dyj +
∑

dfk ∧ dfk.

Mumford [19, Theor.3.1] proved that there exists a positive constant c such that on D:

ω ≤ c · ωDF
.

Hence:

VolC(C ∩Θ) ≤ c

∫

C∩Θ
ωDF

.

Let pxi
, pyj and pfk be the projections on DF to the coordinates xi, yj and fk.

As the curve C has degree d the restriction of these maps to C∩Θ are either constant

or at most d to 1, hence

VolC(C ∩Θ) ≤ c ·d · (
∑∫

pxi(Θ)

dxi ∧ dxi
Im(xi)2

+
∑∫

pyj (Θ)
dyj ∧ dyj +

∑∫

pfk (Θ)
dfk ∧ dfk).

Let i be such that the map pxi
is not constant. In view of the description of Θ the

projection pxi
(Θ) is contained in a usual fundamental set of the upper-half plane, of

finite hyperbolic area.

Let w be a coordinate yj , fk and pw be the associated projection on the w axis. By

the definition of Θ the projection pw(Θ) is a relatively compact open set of the plane,

hence of finite Euclidean area.

This finishes the proof of (i).

Let us prove (ii). As C ∩ F = C ∩ J · Σ, one has the inequality:

VolC(C ∩ F) ≤
∑

j∈J

VolC(C ∩ j · Σ) =
∑

j∈J

Volj−1C(j
−1C ∩ Σ) ≤ |J | ·A0 · d

where we used part (i) applied to the algebraic curves j−1C of D, j ∈ J , which are of

degree d.

This finishes the proof of Lemma 5.8. �

5.6. Proof of Theorem 1.11. Choose C ⊂ Y an irreducible algebraic curve. To prove

Theorem 1.11 for Y it is enough to prove it for C.

Consider the set

C(T ) := {z ∈ C and ‖z‖∞ ≤ T} .
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As F is a fundamental domain for the action of Γ one has on the one hand:

C(T ) =
⋃

γ∈Γ
γF∩C 6=∅

{u ∈ γF ∩ C and ‖u‖∞ ≤ T}

⊂
⋃

γ∈Γ
γF∩C 6=∅

H(γ)≤B·Tn

{u ∈ γF ∩ C} by Lemma 5.5 .

Taking volumes:

VolC(C(T )) ≤
∑

γ∈Γ
γF∩C 6=∅

H(γ)≤B·Tn

VolC(F ∩ γ−1C)

hence

(5.11) VolC(C(T )) ≤ (A · d) ·NC(B · T n)

where we applied Lemma 5.8(ii) to the algebraic curves γ−1C, γ ∈ Γ, which are all of

degree d.

On the other hand if follows from Lemma 5.4 that

C ∩B(x0, log T ) ⊂ C(T ) ,

hence

(5.12) VolC(C ∩B(x0, log T )) ≤ VolC(C(T )) .

Finally:

(A · d) ·NC(B · T n) ≥ VolC(C(T )) by inequality (5.11)

≥ VolC(C ∩B(x0, log T )) by inequality (5.12)

≥ a1 exp(b1 log T ) by Theorem 5.7 .

Hence the result.

✷

6. Stabilisers of a maximal algebraic subset: proof of Theorem 1.13.

6.1. Pila-Wilkie theorem.

Definition 6.1. The classical height Hclass(x) of a point x = (x1, . . . , xm) ∈ Qm is

defined as

Hclass(x) = max(H(x1), . . . ,H(xm))

where H is the usual multiplicative height of a rational number.
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Let Z ⊂ Rm be a subset and T ≥ 0 a real number, we define:

Ψclass(Z, T ) := {x ∈ Z ∩Qm : Hclass(x) ≤ T}
and

Nclass(Z, T ) := |Ψclass(Z, T )| .
For Z ⊂ Rm a definable set in a o-minimal structure we define the algebraic part Zalg

of Z to be the union of all positive dimensional semi-algebraic subsets of Z.

Recall (cf. definition 3.3 of [34]), that a semi-algebraic block of dimension w in Rm

is a connected definable set W ⊂ Rm of dimension w, regular at every point, such that

there exists a semi-algebraic set A ⊂ Rm of dimension w, regular at every point with

W ⊂ A.

The following result is a strong form, proven by Pila [23, theor.3.6], of the original

theorem of Pila and Wilkie [24]:

Theorem 6.2 (Pila-Wilkie). Let Z ⊂ Rm be a definable set in a o-minimal structure.

For every ǫ > 0, there exists a constant Cǫ > 0 such that

Nclass(Z\Zalg, T ) < CǫT
ǫ

and the set Ψclass(Z, T ) is contained in the union of at most CǫT
ǫ semi-algebraic blocks.

As a corollary of Theorem 6.2 and Lemma 5.3 one obtains:

Corollary 6.3. Let Z ⊂ EndER be a definable set in a o-minimal structure. Define

Ψ(Z, T ) := {x ∈ Z ∩ EndEZ : H(x) ≤ T} and N(Z, T ) := |Ψ(Z, T )|. For every ǫ > 0,

there exists a constant Cǫ > 0 such that

N(Z\Zalg, T ) < CǫT
ǫ

and the set Ψ(Z, T ) is contained in the union of at most CǫT
ǫ semi-algebraic blocks.

6.2. Proof of Theorem 1.13. Let V be an algebraic subvariety of S and Y a maximal

irreducible algebraic subvariety of π−1V . Let ΘY be the stabiliser of Y in G(R) and HY

be the neutral component of the Zariski-closure of G(Z) ∩ ΘY in G. We want to show

that HY is a non-trivial subgroup of G, acting non-trivially on X.

Via ρ : G →֒ GL(E), we view G(R) as a semi-algebraic (and hence definable) subset

of EndER. As π|F : F −→ S is definable by Theorem 1.9, lemmas 5.1 and 5.2 of [34]

show the following:

Proposition 6.4. Let us define

Σ(Y ) = {g ∈ G(R) : dim(gY ∩ π−1V ∩ F) = dim(Y )}
and Σ′(Y ) = {g ∈ G(R) : g−1F ∩ Y 6= ∅}.

The following properties hold:
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(1) The set Σ(Y ) is definable and for all g ∈ Σ(Y ), gY ⊂ π−1V .

(2) For all γ ∈ Σ(Y ) ∩G(Z), γY is a maximal algebraic subset of π−1V .

(3) The following equality holds:

Σ(Y ) ∩G(Z) = Σ′(Y ) ∩G(Z) .

It follows that the number NY (T ) defined in Theorem 1.11 coincide with |Θ(Y, T )|,
where

Θ(Y, T ) := G(Z) ∩Ψ(Σ(Y ), T ) .

We can now finish the proof of the theorem 1.13 in exactly the same way as the proof

of theorem 5.4 of [34]. For the sake of completeness, we reproduce it here. As Θ(Y, T ) ⊂
Ψ(Σ(Y ), T ) it follows from Corollary 6.3 that for T large enough, the set Θ(Y, T

1

2n ) is

contained in at most T
c1
4n semi-algebraic blocks. As |Θ(Y, T

1

2n )| = NY (T
1

2n ) ≥ T
c1
2n by

Theorem 1.11, we see that there is a semi-algebraic block W in Σ(Y ) containing at least

T
c1
4n elements γ ∈ Σ(Y ) ∩G(Z) such that H(γ) ≤ T

1

2n .

Using lemma 5.5 of [31] which applies verbatim in our case, we see that there exists

an element σ in Σ(Y ) such that σΘY contains at least T
c1
4n elements γ ∈ Σ(Y ) ∩G(Z)

such that H(γ) ≤ T
1

2n .

Let γ1 and γ2 be two elements of σΘY ∩G(Z) such that H(γ) ≤ T
1

2n .

Let γ := γ−1
2 γ1 ∈ G(Z) ∩ ΘY . Using elementary properties of heights, we see that

H(γ) ≤ cnT
1/2 where cn is a constant depending on n only. It follows that for all T

large enough, ΘY contains at least T
c1
4n elements γ ∈ G(Z) with H(γ) ≤ T . Hence the

connected component of the identity HY of the Zariski closure of G(Z) ∩ ΘY in G is a

positive dimensional algebraic subgroup of G contained in ΘY . This finishes the proof

of the theorem 1.13.

7. End of the proof of Theorem 1.6.

Let V be an algebraic subvariety of S. Our aim is to show that maximal irreducible al-

gebraic subvarieties Y of π−1V are precisely the irreducible components of the preimages

of maximal weakly special subvarieties contained in V .

Using Deligne’s interpretation of Hermitian symmetric spaces in terms of Hodge theory

the representation ρ : G →֒ GL(E) defines a polarized Z-variation of Hodge structure

on S. We refer to [18, section 2] for the definition of the Hodge locus of X and S. Recall

that an irreducible analytic subvariety M of X or S is said to be Hodge generic if it

is not contained in the Hodge locus. If M is not irreducible we say that M is Hodge

generic if all the irreducible components of M are Hodge generic.

Let V ′ ⊂ V be the Zariski closure of π(Y ), as Y is analytically irreducible it easily

follows that V ′ is irreducible. Replacing V by V ′ we can without loss of generality
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assume that π(Y ) is not contained in a proper algebraic subvariety of V . We now have

to show that π(Y ) = V and V is an arithmetic subvariety of S.

Since the group G is adjoint, it is a direct product

G = G1 × · · · ×Gr

where the Gi’s are the Q-simple factors of G. This induces decompositions

G =

r∏

i=1

Gi, X =

r∏

i=1

Xi, G(Z) =

r∏

i=1

Gi(Z), Γ =

r∏

i=1

Γi, S =

r∏

i=1

Si,

where Gi is a group of Hermitian type, Xi its associated Hermitian symmetric domain,

Γi is an arithmetic lattice in Gi, Si := Γi\Xi is the associated arithmetic variety and

πi : Xi −→ Si the associated uniformization map.

Our main Theorem 1.6 is then a consequence of the following:

Theorem 7.1. Let Ṽ be the an analytic irreducible component of π−1V containing Y .

In the situation described above, after, if necessary, reordering the factors, one has

Ṽ = X1 × Ṽ>1

where Ṽ>1 is an analytic subvariety of X2 × · · · ×Xr (in particular if r = 1 then Ṽ =

X1 = X).

We first show:

Proposition 7.2. Theorem 7.1 implies the main Theorem 1.6.

Proof. Let t, 1 ≤ t ≤ r, be the largest integer such that, after reordering the factors if

necessary, we have:

Ṽ = X1 × · · · ×Xt × Ṽ>t

with Ṽ>t an analytic irreducible subvariety of Xt+1 × · · · × Xr which does not (after

reordering the factors if necessary) decompose into a product Xt+1 × V>t+1.

In this case necessarily one has:

Y = X1 × · · · ×Xt × Y>t

where Y>t is a maximal algebraic subset of Ṽ>t.

Suppose that dimC(Ṽ>t) > 0. Let x≤t be a special point on X1 × · · · × Xt and x>t

be a Hodge generic point of Y>t. Let H ⊂ G be the Mumford-Tate group of the point

(x≤t, x>t) of X and let XH ⊂ X be the H(R)-orbit of x. Replace G by H the group of

biholomorphisms of XH , X by XH , G by Had, Γ by ΓH the projection of H(Z) on H,

S by SH := ΓH\XH , π : X −→ S by πH : XH −→ SH , V by VH := πH(x≤t × Ṽ>t) and

Y by x≤t × Y>t and apply Theorem 7.1 for these new data: this shows that there exists

t′ > t+1 such that Ṽ>t = Xt+1 × · · · ×Xt′ × Ṽ>t′ . This contradicts the maximality of t.
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Hence Ṽ>t is a point (xt+1, . . . , xr). Thus

Ṽ = X1 × · · · ×Xt × (xt+1, . . . , xr)

is weakly special, in particular algebraic, hence by maximality

Y = Ṽ = X1 × · · · ×Xt × (xt+1, . . . , xr)

and Y is weakly special.

�

Let us prove theorem 7.1. Let HY be the maximal connected Q-subgroup in the

stabiliser of Y in G(R). By Theorem 1.13 the group HY is a non-trivial algebraic

subgroup of G.

Lemma 7.3. The group HY (Q) stabilises Ṽ .

Proof. Suppose there exists h ∈ HY (Q) such that

Ṽ 6= hṼ .

As Y is contained in Ṽ ∩ hṼ and Y is irreducible, we can choose an analytic irreducible

component Ṽ ′ of Ṽ ∩ hṼ containing Y . Notice that π(Ṽ ′) is an irreducible component,

say V ′, of V ∩ Th(V ). As dimC(Ṽ ′) < dimC(Ṽ ), we have that dimC(V
′) < dimC(V ).

As π(Y ) ⊂ V ′, this contradicts the assumption that π(Y ) is Zariski dense in V . �

Choose a Hodge generic point z of V sm (smooth locus of V ) and a point z̃ of Ṽ lying

over z. Let

ρmon : π1(V
sm, z) −→ GL(EZ)

be the corresponding monodromy representation. We let ΓV ⊂ G(Z) be the image of ρ.

By usual topological Galois theory the group ΓV is the subgroup of G(Z) stabilising Ṽ

(cf. section 3 of [18]), in particular ΓV contains HY (Z).

By Deligne’s monodromy theorem (see Theorem 1.4 of [18]), the connected component

of the identity Hmon of the Zariski closure ΓV
Zar,Q

of ΓV in G is a normal subgroup of

G. As G is semi-simple of adjoint type, after reordering the factors we may assume

that Hmon coincides with G1 × · · · × Gt × {1} for some integer t ≥ 1. In particular

HY ⊂ G1 × · · · ×Gt × {1}.
We claim that ΓV normalises HY . Let γ ∈ ΓV . Consider the Q-algebraic group

F generated by HY and γHY γ
−1. Then F(R)+ · Ṽ = Ṽ , where F(R)+ denotes the

connected component of the identity of F(R). Hence F(R)+ · Y ⊂ Ṽ . By Lemma B.3

there exists an irreducible (complex) algebraic subvariety Ỹ of Ṽ containing U , hence

Y . By maximality of Y one has Ỹ = Y hence

F(R)+ · Y = Y.
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By maximality of HY , we have F = HY . This proves the claim.

As HY is normalised by ΓV , it is normalised by Hmon = G1 × · · · × Gt × {1}. It

follows that (after possibly reordering factors) HY contains G1 × {1}.
The fact that HY (R) stabilises Ṽ shows (by taking the HY (R)-orbit of any point of Ṽ )

that Ṽ = X1× Ṽ>1. This concludes the proof of Theorem 7.1 and hence of Theorem 1.6.

Appendix A. Definability

A.1. About Theorem 1.9. Let R be any fixed o-minimal expansion of R (in our

case R = Ran,exp). Recall [7, chap.10] that a definable manifold of dimension n is an

equivalence class (for the usual relation) of triple (X,Xi, φi)i∈I where {Xi : i ∈ I} is a

finite cover of the set X and for each i ∈ I:

(i) we have injective maps φi : Xi −→ Rn such that φi(Xi) is an open, definably

connected, definable set.

(ii) each φ(Xi ∩Xj) is an open definable subset of φi(Xi).

(iii) the map φij : φi(Xi ∩Xj) −→ φj(Xi ∩Xj) given by φij = φj ∩ φ−1
i is a definable

homeomorphism for all j ∈ I such that Xi ∩Xj 6= ∅.
We say that a subset Z ⊂ X is definable (resp. open or closed) if φi(Z ∩ Xi) is a

definable (resp. open or closed) subset of φi(Xi) for all i ∈ I. A definable map between

abstract definable manifolds is a map whose graph is a definable subset of the definable

product manifold.

Notice in particular that X = PnC has a canonical structure of a definable manifold

(for any R): take Xi = Cn = {[zo, . . . , zi−1, 1, zi+1, . . . , zn] ∈ PnC}, 0 ≤ i ≤ n where we

identify Cn with R2n. As a corollary any complex quasi-projective variety is canonically

a definable manifold. This apply in particular to S. In particular the statement of

Theorem 1.9 has an intrinsic meaning.

Appendix B. Algebraic subvarieties of X

Recall from [30, section 2.1] that a realisation X of X for G is any analytic subset

of a complex quasi-projective variety X̃ , with a transitive holomorphic action of G(R)

on X such that for any x0 ∈ X the orbit map ψx0
: G(R) −→ X mapping g to g · x0 is

semi-algebraic and identifies G(R)/K∞ with X. A morphism of realisations is a G(R)-

equivariant biholomorphism. By [30, lemma 2.1] any realisation of X has a canonical

semi-algebraic structure and any morphism of realisations is semi-algebraic. Hence X

has a canonical semi-algebraic structure.

Let X be a realisation of X for G. A subset Y ⊂ X is called an irreducible algebraic

subvariety of X if Y is an irreducible component of the analytic set X ∩ Ỹ where Ỹ is an
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algebraic subset of X̃ . By [10, section 2] the set Y has only finitely many analytic irre-

ducible components and these components are semi-algebraic. An algebraic subvariety

of X is defined to be a finite union of irreducible algebraic subvarieties of X .

Lemma B.1. A subset Y of X is algebraic if and only if Y is a closed complex analytic

subvariety of X and semi-algebraic in X .

Proof. Let Y ⊂ X be a closed complex analytic subvariety of X , semi-algebraic in X .

Without loss of generality we can assume that Y is irreducible as an analytic subvariety,

of dimension d. Consider the real Zariski-closure Ỹ of Y in the real algebraic variety

ResC/RX̃ , where ResC/R denotes the Weil restriction of scalars from C to R. Let us show

that ỸR has a canonical structure of a complex subvariety of X̃ . Choose an affine open

cover (X̃i)i∈I ⊂ Ani of X̃ and denote by Ỹi the intersection Ỹ ∩X̃i. Let i ∈ I such that Ỹi

is non-empty. As Y is semi-algebraic, Y is open in Ỹ for the Hausdorff topology, hence

Yi := Y ∩X̃i is non-empty and open in Ỹi for the Hausdorff topology. Consider the Gauss

map ϕi from the smooth part Ỹ sm
i of Ỹi to the real Grassmannian Gr2d,2ni of real 2d-

planes of ResC/RA
ni associating to a point its tangent space. The map ϕi is real analytic

and its restriction to the open subset Y sm
i of Ỹ sm

i takes values in the closed real analytic

subvariety Gr
d,ni

C ⊂ Gr2d,2ni of complex d-planes of Ani

C . By analytic continuation ϕi

takes values in Gr
d,ni

C . Hence Ỹi is a complex algebraic subvariety of Ani . As this is

true for all i ∈ I, Ỹ is a complex algebraic subvariety of X̃ . As Y ⊂ Ỹ is open and Y

is closed analytically irreducible in X , it follows that Y is an irreducible component of

X ∩ Ỹ , hence algebraic.

The other implication is clear. �

As any morphism of realisations is an analytic biholomorphism and semi-algebraic the

previous lemma implies immediately:

Corollary B.2. Let ϕ : X1 −→ X2 be a morphism of realisations of X. A subset Y1 of

X1 is algebraic if and only if its image Y2 := ϕ(Y1) ⊂ X2 is algebraic.

This defines the notion of algebraic subsets of X.

Lemma B.3. Let X be a realisation of a Hermitian symmetric domain X. Let Z ⊂
X ⊂ Cn be a complex analytic subvariety and W ⊂ Z a semi-algebraic set. There exists

an irreducible complex algebraic subvariety Y ⊂ Cn such that

W ⊂ Y ∩X ⊂ Z

Proof. This is a consequence of the proof of [25, lemma 4.1]. �
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