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EMBEDDINGS OF THE COMPLEX BALL INTO
SIEGEL SPACE

OLIVER BULTEL

ABSTRACT. We study properties of a certain map from the unitary

group U(1,n— 1) to the group U((7 ), ("."))- We explain how it

gives rise to a map between canonical models of Shimura varieties
and we prove that it extends to the ordinary locus of the integral
model. Finally, we extend results of Satake on the endomorphism
ring of a generic image point to positive characteristics.

1. INTRODUCTION

In [14] Satake classifies embeddings of a symmetric Hermitian space
X into Siegel space, let us describe his results in a special case: The
bounded realization of I,,_, is a domain in complex affine p(n — p)-
space which may conveniently be described as the set of complex valued
p X (n — p)-matrices

Bypn—p={A € Mat(p,n —p)| [[A]lc <1}

where || - ||« is the operatornorm (relative to the standard Hilbert
space norms || - || on C? and C"? respectively). If we write S, for
the bounded realization of I11,, then there is a natural holomorphic
embedding

(1) By —p = Sh.

In the special case p = 1 we recover the complex ball in C*~!. Sur-
prisingly () is not the sole symplectic embedding of Bj ,_1, as one has
maps

(2) Bl,n—l — B(n—1)7(n71) — S(Z)

k—1 k
which are induced by sending z € C*~! to the (7_}) x (".')-matrix A
with entries
{(—1)”-1% I=7—{i}
Arg =

0 otherwise

Key words and phrases. integral models of Shimura varieties, extension prop-
erties of abelian schemes and of p-divisible groups, Subject Classification(2000):
141,05, 14K10, 14C30.
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where I = {iy,...,ix_1} and J = {iy, ..., i} run through all subsets
of {1,...,n — 1} with cardinalities £ — 1 and k. We want to study the
effect of (2)) to quotients of B;,_1 by congruence subgroups and their
canonical models. We consider, in more modern language, a Shimura
datum (G, X), such that G is a Q-form of GL(n,C) and such that the
conjugacy class p of minuscule cocharacters obtained from X is:

z 0 ... 0
01 ... 0

C sz, . . .|€eGL®nC).
00 ... 1

If 1 is as above then all of the n — 1 fundamental dominant weights A

satisfy Deligne’s condition < p, A4 ¢(\) >= 1, ¢ is the Weil-opposition.

Thus one expects by [2, 1.3] that (suitable Q forms of) their highest

weight representations provide maps from the Shimura datum (G, X) to

a symplectic Shimura datum (GSp(2 (Z),Q), Si)). Such a symplectic
k

representation of (G, X) gives rise to the map (2) of the underlying
symmetric Hermitian space, which in our case is the complex ball.
Now consider a neat level structure K C G(A*). By Deligne’s theory
we obtain a Shimura variety

(3) M(C) = GQ\(X x G(A%)/K)

which has weakly canonical models over all fields containing the reflex.
Moreover, the aforementioned symplectic maps provide us with certain
abelian schemes Y *) over M. (Here one has to allow to replace (G, X)
by a certain covering Shimura datum denoted (G, X;) — (G, X) in [2,
Proposition 2.3.10], see body of text for details.) If one assumes that
G and K are sufficiently well behaved at p, then the theory of PEL-
moduli spaces provides us with a smooth model M.

In this paper we study the extension properties of Y ¥) with respect to
the model M. Our result is that Y(®) extends to an abelian scheme
at least over the ordinary locus of M. Our result holds for all primes
including 2.

In a future publication we will show that one can remove the ordinar-
ity hypothesis at the cost of having to restrict to primes bigger than
k 4+ 1 along with somewhat stronger conditions on G and K. More
general results (under similar restrictions on the prime) have already
been shown in [18].

The work is organised as follows: In section 2] we describe the Shimura
datum (G, X;) and the abelian schemes Y*) using the language of
Hodge structures, we do not attempt to work with all possible Q-forms
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of G and of G; but rather confine ourself to what we think is the most
natural one. This allows us to give a very down to earth (and we
hope enlightening) treatment of the covering Shimura datum (Gy, X7)
(denoted (G X©*D) in body of text), and of its symplectic repre-
sentations (which we denote by V®). In section [ we recall canonical
coordinates and canonical lifts, to a large extend with sketchy proof. In
section [l we show that under the usual assumptions on K the variety M
has a smooth model over the ring of integers in the local field E,, where
E' is a certain finite extension of the reflex field and where p is a prime
over p. In section [5] we prove the extension theorem in two steps, we
start with the construction of an extension of the Barsotti-Tate group
of Y®) and then we show that this determines a well-defined extension
of Y#) itself, essentially by Zariski’s main theorem. Finally, we show in
section [Bl how some of Satake’s work on the endomorphism ring of Y *)

can be carried over to the points in the ordinary locus of the special
fibre of M.

I thank Prof. Ivan Fesenko, Prof. Eberhard Freitag, Prof. Winfried
Kohnen, Prof. Richard Pink, Prof. Richard Taylor, and Prof. Rainer
Weissauer for interesting conversations on the topic and further thanks
go to the referee.

2. EXTERIOR POWERS OF HODGE STRUCTURES

Let V be a finitely generated torsion free abelian group. It is called a
(Z-) Hodge structure of weight r if it is equipped with a decomposition

Ve = @ VP
ptg=r

satisfying V4P = VP4, A direct sum
V=P

of (Z-) Hodge structures V, of weight r, we want to call a pure (Z-)
Hodge structure. To give the decomposition over the reals is equivalent
to give a homomorphism of R-algebraic groups

h:C* = GLg(Vi) C GL¢(Ve)

by making z € C* act on VP9 by 27PZz79. If the only non-zero direct
summands amongst the V?%’s are V19 and V%~! then the homomor-
phism above corresponds to a homomorphism between the R-algebras
C and Endg(Vr), which we continue to denote by h. In that case
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V is called a Hodge structure of type {(—1,0),(0,—1)}, and the C-
space V10 can set-theoretically be identified with V& which acquires
its C-vector space structure by the corresponding algebra homomor-
phism h : C — Endg(Vk). Pure Hodge structures form an additive
®-category in an obvious way. The pure Hodge structures of type
{(—1,0),(0,—1)} are an additive full subcategory thereof.

Let Op, be the ring of integers in a totally imaginary quadratic extension
L of a totally real number field L™. Write x for the non-trivial involu-
tion of L/L*. A Hodge structure V is said to have a Op-operation if
a homomorphism ¢ : O, — End(V) is given. If ¢ is fixed we obtain a
refinement of the Hodge decomposition:

Vo = V®L,o‘ C« @V§7q7
2

where we denote for any embedding o : L — C by V" the o-eigenspace
of VP4, Note that we have V2P = VI The Hodge structures with
Op-operation form a ®-category as follows: If V' and W are given, we
can form the finitely generated torsion free Op-module V ®p, W. We
make it into a Hodge structure by declaring the subspace of V, ®@¢ W,
of weight (p, q) to be:

P1,91 pP—p1,9—4q1
P i oc Wi .

p1,q1

In a similar way we define /\ZL V. We want to describe a particu-
larly interesting example of such tensor constructions, to this end fix
a natural number n. Fix two different C M-traces ®©, ®™. [ — C
(= Q-linear maps which arise as ®*)(z) = > oejammo(x) for all z € L

and k € {0,n}, where |®©| |®™| C Homg(L,C)). Let us define:
(4) V() = (n—1)2%(z) + " (x)

Our input is a choice of:

e two Hodge structures of type {(—1,0), (0, —1)} with Op-operation,
i.e. R-linear homomorphisms

(5) h®) . C — End, (V?),

for k € {0,1}, where the V*) are finitely generated, torsion free
Or-modules. We require that:

(6) tr(z]y-10) = o*) (),
hold for all z € L, and k € {0, 1}.
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o two *-skew-Hermitian Q-valued forms ™, and (©® on the
L-spaces V(l), and VQ@, such that firstly the h*) become *-
involution preserving homomorphisms, if the right hand side
of ([B)) is endowed with the Rosati involution, and such that sec-

ondly the forms ¢*) (2, h*) (i)y) on Vﬂék) are positive definite.
Observe that (@) implies that the Oz-modules V() and V(© have the

ranks n and 1. Observe also that we may write the forms ™) and
¢ in a unique way as traces try o ¥V, and try, o ¥(©, where ¥,
and U are sesquilinear forms that are L-valued on V(él), and on V(éo).

Based on the 2nd and 3rd row of the table on page 188 of [14, Chapter
IV, Paragraph 5| we want to consider the following output:

(1) Or-modules V*) defined by:

k
V(O)®OL 1-k ®OL /\ V(l),
Or
for every k € {0,...,n},
(2) Q-valued (L, *)-skew-Hermitian forms ¢*) = try, o ¥*) on V(ék),
here is:

\I](k)(l»(l)_kl’l /\ . /\ xk’ yé_kyl /\ P /\ yk)

= (U (w0, y0))' " det (W™ (25, y5)i5),
for xy,..., 2k, Y1, ..., Yk € V(él), and zg, Yo € V(éo),
(3) *-homomorphisms A*) : C* — Aut(Vng)) defined so that z €
C* acts as:
i F ey A Aap e (BO(2)x) R (2) 2 A ABD (2) 1.

We have to introduce reductive Q-groups as follows, on the category of
all Q-algebras G represents the functor:

k
C = {(7, 1) € Endjgo (V) x C [0 ® (v, vy) = i ® (a, )}
Notice the natural similitude morphisms from G® to G,,. We also
introduce a group GV by the requirement that the diagram

aoxn 9 )

ol

GO —— G,

be cartesian. Finally we introduce Q-rational group homomorphisms
g® - GOV 5 G®) by sending, say (79, 7V) € GOD(C) to the
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element ) V(gk) — Vék) defined by

(1) AP (@t A A xg) = Q@) YD () A A YD (2y).

Let us also pick connected, smooth Z-models G(Zk) (G(ZQ Xl)) of the groups

G®) (GO*1) by taking the schematic closure in the group Z-schemes
GL(V®/Z) (GL(V©® @ V1/Z)). Here the Op-lattices V) c V¥
(VO g vl ¢ V(éo) | V(él)), are as before. The maps ¢*) preserve

these lattices and so give rise to maps gg) : G(ZOXI) — G(Zk). The V®)
are clearly Hodge structures with Op-operation, however much more is
true:

Lemma 2.1. Let (VO VO M) 4O p1) pO) pe as before. Then
(V®) )Y is a Hodge structure of type {(—1,0),(0,—1)} with Op-
operation. Moreover, the quadruples

(L, Vg, o ®, 1)
are PEL-data in the sense of [§], as is the quadruple
(Lo L+ Vg o Vi v @, h® @ ).

The G*)(R)-conjugacy class of h'®) is determined by the formula:

(8) (x| 10) = ®W)(2) = (" . 1) O (2 + (Z - 1) ) (z).

for any * € L. Therefore, when writing E° for the reflex field of
(G°, 1%, we have E®) < EO<Y for all k. Finally, the map g® :
GOx1) _y ) tgkes h(O*D .= RO & L) ¢o pF),

Proof. We first check that the Hodge structure V(*) has weights in the
set {(—1,0),(0,—1)}. The assumption (@) on V1) implies that the

VU(I)_L have the following dimensions, where ¢ : L. — C runs through
all embeddings:

n if 0 € [@O] N |0™)|
- —1 ifo e |®O] - |0™)|
dim. V(l) 1,0 _ n ’
T Yo 1 it o € |pM)] — |3
(

0 if 0 ¢ |0 U |d™|
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and analogous formulas for dim¢ Vg(l)O’_1 hold. Consequently we derive
the following Hodge decomposition for the o-eigenspace of /\'(ZL v,
ALy if o € [®©| N [d™)]
Aver = J AV e A v Hac vt i o € 0] —[at)
AR VAT e ATV e NSV it o e (o)) — |00
ALV if o ¢ [0O] U o)

so that in each of the four cases the o-eigenspace of /\'(ZL V(1) has the
following Hodge weights (with multiplicity):

(Z) X (—k,0) ifo e |(I>(0)| N |<I>(”)|

() x (=k,0), (7)) x 1=k, 1) if o € [@O] — [0
)= (120 s (11— k), (")) % (0o—k) i o € [0)] — [00)]
(Z) x (0, —k) if o ¢ |(I>(0)| U |<I>(”)|

1—k
Comparing this with the Hodge weights of VU(O)(&C , being

(k—1,0) ifoe |00
(p,q) = . )
(0,k—1) ifo¢|DY]

shows that the sole weights of V*) are {(—1,0), (0, —1)} and shows the
formula (8] also.

We still have to verify that the pairings ¢® (2, h¥)(i)y) are positive
definite. Every embedding ¢ : L — C is a *x-homomorphism, there-
fore one obtains sesquilinear C-valued pairings U on VI for ev-
ery k. Consider the forms ES” = 0¥ (2, A®(i)y). By assumption
O (z, AV (i)y), and © (z, A (i)y) are positive definite on V3", and
Vﬂéo), so these forms restrict to positive definite forms E((fl), and E” on
Vg(l), and V. By utilizing the formulas for ¥®*) and h*) we see the

positive definiteness of E((,k), as

Ec(rk) (.flf(l]_kl’l/\' . 'Al’k, yé_kyl/\ . /\yk) = E((TO) (.CL’(), yo)l_k det(E((Tl) (LUZ‘, yj)i,j)-

Finally just check that ¢®) (x, h¥)(3)y) is the sum of various E® (x,y)’s.
U

We turn to Shimura varieties which correspond to our choice of
V. w0, h?, for 6 € {(0x1),(0),...,(n)}. Let X° be the conjugacy
class of h® in G2, (we set ROV = (O ¢ h()) then one puts according
to [1]:

KkMc(G°, X°) = GP(Q\(X° x G°(A%)/K)
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for the Shimura varieties, of which the projective limit 11<im1 kMo (G2, X°)
—

is equal to
Me(G°, X%) = GY(Q\(X° x G°(A%)),

by [2, Corollaire 2.1.11]. One writes x M (G°, X°) and M(G?, X°), for
their weakly canonical models over a choice of any field containing
the reflex. We will prefer to always work over the field E©*Y  being
the largest of the reflex fields £, thus our M(G® X *)’s are strictly
speaking base changes via X zw E©*1) of the canonical models.
Let us briefly sketch the moduli interpretations due to Deligne [I,
Scholie 4.11]. If F//E©Y is an algebraically closed field then there is a
Aut goxn (F) x G®) (A*®)-equivariant bijection between F-valued points
of M(G™, X*)) and isogeny classes of quadruples (Y *) ,*) \(*) (k)
such that:

(a) Y®) is an abelian variety over F up to isogeny.

(b) ¥ : L — End®(Y®) is a homomorphism such that

ey ) (L(k) (z)) = o (x)
for all x € L.

(c) A*®) is a homogeneous polarization of Y*) of which the Rosati
involution restricts to the CM involution on L.

(d) a L-linear level structure n® : Veo®) — H (Y ®) A%®) which
becomes a symplectic snnlhtude if one imposes the Weil pairing
on the right and the pairing ¥*) on the left.

(e) the skew-Hermitian L-module H;(Y®) x C, Q) is isomorphic
to (V(k) 77b(k))

and similarly for M (G©*V | X©x1) Tn fact a more thorough treatment
can be found in [§]: The scheme M (G©O*Y  x©x1)) represents a functor
taking a £(*Y-scheme S to the set of tuples (Y ) B XR) (k)Y with
properties analogous to (a)-(e). From now on let us plck a level [ which
is > 3. The compact open groups

(9) K'={yeGiZ)y=1 (modl)}

are neat and satisfy ¢ (K ®) c K©*V. This is most useful as it sets
up maps between the characteristic zero Shimura varieties

(10) 9™ ¢ oy MGV XODY o M(G®), X W)

that are induced from the group theoretic maps of lemma 2.1l accord-
ing to [I, Corollaire 5.4]. Note that these maps do not have a natural
moduli interpretation. Nevertheless we do obtain a homogeneously po-
larized abelian scheme Y *) up to isogeny over K(oxl)M(G(OXI) X (Ox1)y,
with Op-operation (*), and appropriate level structure ), by pulling
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back the universal family on xu M (G®, X*®)) via g(¥). Here, we wish
to consider the particular representative of the isogeny class Y(k which
is determined by the constraint n(k)(VZ(k)) = HI(YE(R),Z). Within the
homogeneous class of polarizations A®), coming from the data Qi)

we wish to pick some effective representative and write dj for its de-
gree. Note that the homogeneous class Q¢®) depends only on the
homogeneous class Q(¢)(® @ ™) of polarizations on V© @ V1) but
the choice of an effective representative is arbitrary. Note also that (%)
may well be ineffective even if (@ @ () is effective, see lemma [5.1]
below, however. Having made the above choice we obtain a further
map:

(11) g(k) : K(0x1)M(G(OXl), X(OXD) — Agk,dk,l
where gy is [LT : Q](}), and A,, 4, is the fine moduli space of polar-

ized abelian gg-folds of degree dy with level [-structure. We finish this
section with two more results on Y *):

Lemma 2.2. Let VO h? 9% K° be as above. Let F/E®YV be a field
and let

5: SpecF — K(om)M(G(OXl),X(OXI))
be a point, let Yg(k)/F be the abelian varieties which correspond to
g®) (&) wvia (a)-(e) above (and leveled by the constraint n(k)(VZ(k)) =
(Y, Z)). Then:

k
ac —k ac
H(Y" xp F, Z)%% ™ 00, N\ Hi(Y xp F*,Zy)
O,
18 1somorphic to
H1 (Y XF Fee Zz)
as a Or,[Gal(F*/F)]-module.
Proof. We can lift £ to a point & : Spec F*¢ — M (G©*V | XX ysing
the moduli interpretation of M©*Y) (see section @ below) we can find
the associated tuple
YO,V 0O 0 0 0
where A©*1 is a homogeneous polarization of Y(O X Y ) and n©, pM
are L-linear s1m1htudes
VAoo — H1 (Y Aoo)

and
0) . VAOO(O) N Hl(Y'g(O)’Aoo)
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of which the multipliers agree. Now let 7 be an element of Gal(F*/F),
as ¢ and 7(¢') have the same image in joxn M GOV XO<D) one can
find v = (v, 7M) € KO with 7(¢") = €. Due to the GO*D(A>)-
equivariance of the map M (G©*Y, X0y — M (G® | XR) it follows
that 7(g®™ (&) = g™ (£).9% (7). However, £'.v is by definition equal
to:

(Y, Y00 @ XD () 6 40 ) 6 40)),

and analogously for ¢ (¢/).g%®)(y). Now use the formula () and one
is done. U

Corollary 2.3. If the assumptions are as above, then:

k
HfR(yg(o)/F)@p@Ll—k BFeL /\ H{ZR(Y'g(l)/F)
F®L
18 1somorphic to
H{M (V" /F)

as F ® L-module with Hodge filtration and Gauss-Manin connection.

Proof. Without loss of generality one can assume that F' is a finitely

generated extension of F(©*). We choose an embedding of F' into

C. By very construction of the map ¢ : joxy M(GO*D, XOx1))
w0 M(G®) | X *)) there are isomorphisms of Hodge structures with Op-
operation:

H(YV(C), )% * @0, Nb, Hi(YV(C),Z)
t(k)J,
1y (c),z)

Let us denote by tgg and tgf) the de Rham and étale realizations which
are obtained from t*) by composing with the comparison isomorphisms:

HM(YP /) = H(Y{M(0),0)

and
H, (Y’E(k) X Fac’ Z) ~ H, (Y's(k) (C)’ Z)
k-1
The pairs (tgg, té’f)) are Hodge cycles (on the abelian variety Yg(o) T F

Yg(l) ><FY§(k)) in the sense of [3, Paragraph 2]. By [3| Theorem 2.11] these
are absolute Hodge cycles (on the aforementioned product of abelian
varieties over F°). By [3, Proposition 2.5] this implies that the de



EMBEDDINGS OF THE COMPLEX BALL INTO SIEGEL SPACE 11
Rham components tgl}% are horizontal with respect to the Gauss-Manin
connection, in particular they descend to isomorphisms over [

0 ac ac — k 1 ac
HEEYLO JFoee)yrecetl =k @ gy Niuegy HIF(YLD JFae)

J8) J
dR
k ac
H{R (Y P,

according to [3, Corollary 2.7]. Moreover, the subgroup of Gal(F*/F)
fixing tgg is the same as the subgroup of Gal(F*/F) fixing tgf), es-
sentially because Galois conjugates of absolute Hodge cycles are again
absolute Hodge cycles, [3, Proposition 2.9]. Lemma finishes our
proof as tgf), is indeed rational over F', so that our horizontal map tgg

descends to F":
HflR(Y'E(O)/F)@FQcLl—k RFeL /\I;‘®L HflR(Y'g(l)/F)

£ l
dR
HiR(y M /)
too. O

Remark 2.4. As we can identify G(©) with a subgroup of GV, we can
identify G(©*1 with the product G© x G where G is the kernel of the
map ¢© : GOV — GO, We even get a product of Shimura data
(GO x Oy = (GO X)) x (G, X), where X is the projection of
X©x1) onto the G-factor.

Notice however, that (G, X) is not the type of Shimura datum, that can
arise from any PFE L-datum, nor is it of Hodge type. This is because
its weight homomorphism is trivial. In fact one can think of M¢(G, X)

as a moduli space for the Hodge structures V©%r ™ @, V1 which
have weight zero.

3. DEFORMATIONS OF ORDINARY POINTS

3.1. Canonical Coordinates. In this subsection L is a finite exten-
sion of Q,, let O be its ring of integers, p its maximal ideal, and
F = Op/p its residue field. We need some background material on
Barsotti-Tate groups with Op-operation. Let R be a noetherian local
Oyp-algebra, complete with respect to the maximal ideal m. Assume
that the residue field K = R/m is an algebraically closed field extension
of F. Let G be a Barsotti-Tate group over R. Let ¢ : O, — End(G) be
a homomorphism. The pair (G,¢) is called a Op-Barsotti-Tate group,
if O acts on LieG by means of the structural morphism O — R,
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see [9], for the definition of Lie G. A few numerical invariants are note-
worthy: the Op-height htp, G of G is defined by |G[p]| = |O/p|"or 9,
and the dimension of G is the rank of the projective module LieG.
Every Op-Barsotti-Tate group sits in a unique exact sequence:
0 — G° G — G —— 0

where G° is connected and G¢ is étale. One calls G ordinary if and
only if dim§ = htp,G°, in general one has an inequality dimG <
htp, G°. It follows from the Dieudonné-Manin classification that over
an algebraically closed field there is one and only one ordinary Op-
Barsotti-Tate group of say dimension a and Op-height a + b, cf. [6,
(29.8)]. Also, by the rigidity of étale covers there is one and only one

étale Op-Barsotti-Tate group of given Op-height over any R. In fact
the same is true at the other extreme:

Lemma 3.1. Let R be as above and let a be an integer. The category
of Or-Barsotti-Tate groups G over R with a = dimG = htp, G, is
equivalent to the category of Or-Barsotti-Tate groups G over k = R/m
with a = dim G = htp, G.

Proof. Let R be artinian, let I C R be an ideal of square zero, let
us endow it with the trivial divided power structure. Consider a Op-
Barsotti-Tate group Gy over Ry = R/I with associated crystal D(Gy),
see [9]. Notice that the value D(Gy)g over R is a free R® Or-module of
rank a. We have to show that Gy has a unique lift to a Op-Barsotti-Tate
group G over R. So consider all sequences:

0 —— Fill —— D(Gy)p — LieG —— 0

where the quotient Lie G is a free R-module of rank a on which the Op
action factors through Op — R. This last condition actually means
that Lie G is a quotient of the R-module R ®p, Of = R®. Due to rank
reasons we then have equality. 0

From this it follows easily that we have canonical coordinates for
ordinary Op-Barsotti-Tate groups, we write ¥/, for the Lubin-Tate
one, i/ Oy, for its formal group, by i(R) we mean the set m which is
given a Or-module structure by the group law of 3.

Lemma 3.2. Let k = R/m be as above and let Gy be an ordinary
Op-Barsotti-Tate group over k/F. Consider the Or-modules:

T' = Homp, (L/Oy, G)

and
T" = HOHI@L(Z X0 k‘, g())
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There exists an equivalence of categories between lifts G/ R of Gy and

A

maps ¢ € Home, (T",T") ®o, X(R), the equivalence being established
by decreeing G to be the following push out:

0 — G° —— g — g —_—
[ I -
0 — 7" — T"®p, L — T"®0, L/O, ——

where G° =T" Rp, ¥ Xo, R.

0
[,
0

Proof. The proof is word for word the same as in [7, Paragraph 2], so
we are brief. It is enough to consider lifts G over artinian Op-algebras
R. According to lemma [B.] the group G° is canonically isomorphic
to T" ®p, % Xp, R. Moreover, by the rigidity of quasi-isogenies the
extension class of:

0 — T"®o, ¥ X0, R g T'®o, L/O, —— 0
is torsion, say killed by p™. It follows that every element in
Exty, (T" ®o, L/OL, T" ®o, ¥ X0, R)

is induced from an element in

Homop, (T" ®o, p"O0L/O0L, T" @0, ¥ X0, R)
which is unique as

Homo, (T" ®o, L/O1,T" ®0, ¥ Xo, R) = 0.

O

In the sequel we will frequently use that the category of Barsotti-Tate
groups over R is equivalent to the category of projective systems of
Barsotti-Tate groups over R/M where M runs through all m-primary
ideals [9 Chapter II, Lemma(4.16)], in particular we can talk about
the generic fibre of a deformation. In the ordinary case these can be
obtained as follows:

Lemma 3.3. Let Gy be an ordinary Op-Barsotti-Tate group over k /T,
with dimension a and Op-height a +b. Let T', T", R/Oy, and ¢ €

A

Homp, (T, T") ®p, X(R) with corresponding deformation G/R be as
in lemmal32 Let K/L be a field extension together with a Op-linear
homomorphism R — K. Pick Op-bases €},... e, of T', and €7,... e

’Ya

of T", and let ¢; ; € ‘Z(R) be the entries of the matrixz which represents
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¢. Let further G, ; be the Or-Barsotti-Tate group over R defined by the
push out:

0 — ¥Xpo, R — G;; — L/O, —— 0

@ e [ .

0 — O — L — L/ O, —— 0

and let ¢y : Gal(L*/L) — Of be the character obtained from the Tate
module Or(1) of ¥ X, L*. Then the operation of Gal(K*/K) on the
Tate module of G X p K is:

ClEa C
0 E
where C' = (c¢;;) 1s the a x b-matriz such that ¢;; : Gal(K*/K) —

Or(1) is any 1-cocycle representing the continuous cohomology class in
H! (Gal(K%*/K,Or(1)) which is obtained from the extension (I2)).

Proof. By addition of extension classes we may assume without loss of
generality that at most one entry ¢;, j, is non-zero. In this case G is
isomorphic to G, j, ® (X X, R)*™' & (L/Or)""! and the assertion is
obvious. U

3.2. Canonical Lifts. We turn to consequences for abelian schemes
with Op-operation, where L is a C'M-field. In analogy to subsection 3.1l
we fix a rational prime p and assume that, every prime of LT over p is
split in L, hence there exists a set 7 = {q, ..., qm} of primes of L over
p, such that {q1,...,qm, q3,-..,q%,} exhaust all the primes of L over p,
consequently we have a decomposition:

(13) 0L®Z,= PO, P Or,.

i=1 i=1
We write eq,...,en, €], ... e € O ® Z, for the corresponding idem-
potents. Moreover for ¢ € {1,...,r}, we want to fix embeddings
o; : Lg, — Qg where we fix an algebraic closure Q3¢ of Q,. We

put Op¢ for the integers in Q}°, and *B|p for the maximal ideal. Finally,
E is the field generated by the o;(Lg,)’s, with ring of integers Op, max-
imal ideal p, and residue field F,.

Let S be a base scheme over O and let A be an abelian scheme over
S, and let A be a p-principal quasipolarization on A/S. We will say
that some operation ¢ : O — End(A), makes (A4, \) into a Op-abelian
scheme if and only if for every ¢ € {1,...,7} the induced operation on
the projective Og-module e; Lie A coincides with scalar multiplication
by means of the map o; : O, — Op — I'(5,0), and if ¢; Lie A = 0
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for the remaining i € {r + 1,...,m}. More specifically let k£ be an
algebraically closed field extension of F,. Then a O-abelian scheme
(A, A, 1) over k gives rise to Oy, -Barsotti-Tate groups A[q;°]. We will
say that (A, A, ¢) is ordinary if this holds for all of the A[q°]. In this
case we can apply the Serre-Tate canonical coordinates to study defor-
mations of the Op-abelian scheme (A, A, ¢) over any Spec k < Spec R,
such that R is a noetherian local Og-algebra that is complete with
respect to its maximal ideal. In particular let us look at the unique
unramified extension B/E of complete discretely valued fields that has
k/TF, as residue field extension. The lift (A, X, ¢) to Op with the canon-
ical coordinates of all the A[q°] the trivial ones is called the canonical
lift. We have the following important fact:

Lemma 3.4. Fir 7 = {qi,...,qm} and o; : Ly, — Q¢ for i €
{1,...,7} as above. Let (A, \, 1) be a Op-abelian variety over the alge-
braically closed field extension k over F,. Let (A, \, 1) be the canonical
lift over Op. Then Endp, (A) = Endoe, (A), as Z-algebras with involu-
tion.

Proof. The proof in [9 Chapter V,Theorem(3.3)] translates word for
word to our situation. O

4. THE INTEGRAL MODEL M (01

4.1. The moduli problem. Recall the two CM traces ®© and &™)
for L, as in section 2 and recall also our choice of (V1 VO ),
@ pM O giving rise to Shimura data (G©1), X©*) and of the
level [ > 3. We fix a prime P|p in Q*¢, the algebraic closure of Q in C,
and assume (#) the following:

e the pairings ") and ¢*) induce Z,)-valued perfect pairings on
VZ((lp)) and VZ(?p))’
e p is coprime to [,
e there exists a set m of primes of L over p such that

@] ={o: L - Q*|o™!(P) € 7},

o if |(I>(n)| - |(I)(O)| = {0’1, .. ~>0r} then q = Ul_l(m)a s e =

o, 1(*B) are pairwise distinct prime ideals of L.
We write {q;]i = r+ 1,...,m} for the remaining primes in 7. The
primes in 7* are nothing else then {q7,...,q’ }, consequently we have
a decomposition as in (I3]) with corresponding idempotents ey, ..., e,
ey, ..., e, € Op®Z, We write E for the field generated by the

oi(L)’s, we write p for the prime ideal induced in E by 8, and denote
as usual by Op, the integers in the completion of £ at p, notice that F



16 OLIVER BULTEL

contains the reflex field E®1) and that F, may well be ramified over
EéOXD. The moduli interpretation for M©*V that we will give is only
defined over the extension Op,.

The first two #-conditions imply that the group K@<V  as intro-
duced in (@), allows a factorization K©VP KV where KOVP
GO (A%P) is compact open, and Ky " = GYV(Z,) looks like
Zx <112, Zqi x [T~ GL(n, Of, ). We begin by introducing a moduli
space of abelian varieties. We need the following set valued functor,
over a Og,-scheme S its points consist of:

(a’) Y and Y, abelian schemes over S, up to Zg)-isogeny,

(b") operations (V) : Op — End(YW) ® Zg) and (9 : O —
End(Y®) ® Z,, such that for k € {0, 1} the Og-modules
e; LieY®) are projective of rank 1 if k = 1 and i € {1,...,r}
and of rank 0 otherwise, moreover in the former case the Op-
operation on e; Lie YV is given by o;.

(¢’) A<D 3 homogeneous class of polarizations on Y(© x Y1) con-

taining a representative of degree in Z(Xp X

() level- K ©*DP_structure 7OV, i.e. for some choice of geometric
point ¢ of S one has a (S, &)-invariant K"~ (resp. K©7-)
class of O ® A*P-linear symplectic similitudes:

VO @ AP — Hy (YD, A7)
(resp.
0. VO A% 5 H (Y, A7)

), of which the multipliers agree.

The above functor is representable by a Op,-scheme MO The gen-
eral fibre of it is canonically isomorphic to

(14) MOx1) HK(om)M G0x1) X0><1)) X gox)) By

where i indexes all the locally trivial G©*Y-torsors, and where GZ(-OXD
is the automorphism group of the ith G©*D-torsor. It is clear that
the constructions in section 2, can be applied to each of the Shimura
varieties in (I4]) at a time, i.e. there are Shimura data (ng),X(k))

corresponding to each of the locally trivial G(O*V-torsors and there are
maps

(15) 9™ oy M(GOD X Oy o MG, X W)
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generalizing the morphism (I0). In particular, by our conventions
on the compact open subgroups K©Y and K®*) we obtain homo-
geneously polarized abelian schemes with properties as expressed in
lemma 2 over each of the Shimura varieties ox1 M (G, X (©xD),
We will continue to denote these by Y¥). The same remark applies to
the induced classifying maps (1) which generalize to give maps:

(16) g™ MOY 5 Ay g
Here is g, = [L* : Q|(}), and dj is the degree of some choice of an

effective polarization within the homogeneous class A\*).
Lemma 4.1. If & holds, then M©*V is smooth over Og,.

Proof. We use the concept of a local model M"¢ over O E,, following the
method of [I0]. In the case at hand, the functor which M"* represents,
can be described as follows, over S/ Spec O, the points consist of pairs
(t,¢) where tis a (P2, O, )@z, Os module, and ¢ : (P, Or, )" @z,
Os —tisa (B, OL%) ®z, Og-linear surjective map such that:

e ¢;t is a line bundle on S, for all i € {1,...,r}, moreover O,

acts on it by o;.
ect=0forallie{r+1,...,m}

One sees that M'¢ is smooth, as the fibres are isomorphic to (P"~1)*".
U

4.2. Stratification. Let k be an algebraically closed field over F, and
let £ : Spec k — M©*D be a point corresponding to data, (Yg(l), Yg(o), c)
Ifi € {r+1,...,m}, then the Or, -Barsotti-Tate group Yg(l)[q;?o] is
étale, if ¢ € {1,...,r} it is one-dimensional, hence isomorphic to

Or,. )
Gl,flyfi—l @ (Lqi/OLqi)fl

for some f; € {0,...,n — 1}, here the notation is from [0 (29.8)]. The
formal Or, -module is in this case isomorphic to

Or,.
Gl,n‘ﬁfi—l
We call ¢ ordinary if f{ = -+ = f, = n — 1, i.e. if and only if all
the Op, -Barsotti-Tate groups Yg(l)[q;?o] are ordinary in the sense of

section Bl The ordinary locus is Zariski open by [11]. We let Mf)?;” be

the open subscheme of M(©*1) obtained by removing the non-ordinary
locus in the special fibre.



18 OLIVER BULTEL

5. AN EXTENSION THEOREM

k

We continue the study of the abelian schemes Y *) we begin with a

lemma on the degree of Y*):

Lemma 5.1. Let (V) VO M 4O and corresponding (V&) 1)),
be as in section[@. If V) and O induce Z,)-valued perfect pairings
on VZ%?) and VZ((OP)), then ¥*) induces a Lpy-valued perfect pairing on
Vi

Proof. The data ¢ gives rise to a Zpy-valued perfect pairing on the
Or ® Z)-module VZ(Z)) if and only if

k k —
L R N A LY/ A

has this property, where Dy, is the different of Op. If one has this for
k € {0,1}, then the same follows for the exterior pairing

2 k
(1) (1) —k

/\ VZ(p) X /\ VZ(p) = D" ® L),

o o

induced by U™ and for the 1 — k-fold self-product of ¥(©):

Qo 1-k ®o, 1-k

(0) (0) k—
VZ(p) X VZ(p) — DL 1 & Z(p).

By taking the product once more we obtain that
k) . y/(k) (k) -1
VW VY x V) = Dt @ Z,
is perfect, which is what we wanted. O

5.1. Extension of Y *)[q°]. With these gadgets we are now in a posi-
tion to give a Serre-Tate analog of the tensor constructions of section 2
Let us start with an algebraically closed extension k/F, and an ordi-
nary k-valued point & : Speck — Mg%l), that is represented by the
tuple (Yg(l), Yg(o), (D@ NOXD) - Our aim in this subsection is to
define a certain Barsotti-Tate group:

G = PGPl o @69
i=1 i=1

on the universal deformation space Defo, = Spec R of &, in such a
manner that the generic fibre of it matches our Y *)[q>]. Here we use
the usual algebraization results of polarized formal abelian schemes
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to freely switch between Spec R and Spf R. Note that according to
lemma we have a canonical isomorphism

" A~

~ - 1 (1
Spf R = [ [Homo,, (T, T/"") ®0,, %i %oy, 0. Os,
i=1
where Op C B is again the ring of integers in the unique complete
unramified extension B of E, inducing the residue extension k/F,. It
goes without saying that G*®)[q:>°] will be the Serre dual of G*)[q°].
It is then meaningful to put:

k) P
Tz’( ) = Homo, (LCIi/OL%’Y(k) [9:°])

and

7

forie {1,...,m}, and k € {0,1}, and further

2
7V = Homo,, (i X0y, o kY V[a7]),

k
T®" = O Org; ! ’“@oLqi A 70’
Oqu
and
0) _ (0) 201, 1F W N
T =T g, T ®o,, AT
Oqu

Let us also introduce a map:

)//

)

which is defined by contraction of elements, sending ¢ : Ti(l)/ — Ti(l)//
!/ "
to the map ¢ : Ti(k) — Ti(k) defined by

gcan,z )

(k) . HOmoLq_ (Ti(l)/ T-(l)//) N HOmoL (T(k) T(k

k
I(l)_kl’l/\' AT Z(—l)”_lzé_kaS(l)(zy)xl/\- AT, AT, N AT,
v=1
1’ : (k)"
where zy € T — {0} and Ty, Tp € T, . Notice that T’ and

gg;z” are only non-zero if T D" s non-zero, which happens for all 7 in

{1,...,r}. Todefine a Oy, -Barsotti-Tate group G®[q5°] of O, -height

(Z) over Defo; we consider

T ®0, ¥ ko T ®o, Le/O
i ®0Lqi i XOL,, 01 b 1 ®0Lqi qi/ L,

and deform it by gﬁ’;j)” We can finish this subsection with the following
two auxiliary lemmas:
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Lemma 5.2. Let my be a profinite group. Let p be a continuous repre-
sentation thereof into the group GL(n, A), where A is a ring, separated
and complete with respect to the M-adic topology where M is an ideal.
Assume that p has the form

C1 C2 Cn
0 1 0
0 0 1

where ¢ : ™ — A* is a continous character and where the maps cs,
.o, Cp 1 — A are continous 1-cocycles of m with coefficients in
c1 (i.e. representatives of elements in H' .(m,c1)). Then for every

k€ {0,...,n} the representation N"p : 7 — GL((}), A) has the form

<ClE(Zi) ¢ )
(S

where the ("_1) X ("_1) -matrix C' can be described as follows: the rows

k-1 k
are indezed by the set of k — l-element subsets I = {iy,...,ix} C
{2,...,n}, the columns are indexed by the set of k-element subsets

J ={i1,...,ix} C{2,...,n}, and the entry in the I’th row and J’th
column is equal to

{(—1)”-1% I=J-{i}

0 otherwise

Proof. Denote the standard basis of A™ by eq,...,e, the subspace
spanned by e; Ae;, -+ Ae;, is /\k p invariant and the quotient carries
the trivial action. This show that the diagonal blocks are as asserted.
To check the cocycle matrix note that:

k
/\,o(eil/\---/\eik)—eil/\---/\ei,c
k
= Z(—l)”_lciuel A €ig* " A\ €i,_1 A €Z'V+1 A A €ik

U

Lemma 5.3. Let the tuple (Yg(l), Yf(o), (D@ NOD Y over k /T,
be as before, and let Defo = Spec R be the universal deformation space.
Let GO, GW | and G*) be the Barsotti-Tate groups over R constructed
above. Then for every i € {1,...,m} the (étale!) Barsotti-Tate group
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with O, -operation:

k
®0Lqi 1-k

(GOla] X R[},D

is canonically isomorphic to G®[q®°] x g R[%].

Proof. We may regard these objects over R[%] as representations of
m1(Spec R[%], Spec k), now use lemma [5.2] and lemma O

5.2. Extension of Y*), We continue to assume that é is valid:

Theorem 5.4. The abelian scheme Y®) over MV extends to an
abelian scheme Y*) over the whole of/\/loggl It inherits a Or-operation

from the Op-operation 1) on Y*®) in a unique way.

Proof. As ng; is disconnected we consider the connected compo-
nents separetely, let N be one of them, it is an integral scheme, write
N for the generic fibre. We consider the morphism g® : N — A, 4,1,
obtained from the abelian scheme Y*) together with a choice of effec-
tive polarization in the homogeneous class A*)| as we did in (IT)). Here
note that we can choose the effective polarization in the class A*) to
have a degree dj, coprime to p, because of lemma 5.1l Let A be the
normalization of the schematic closure of the graph in N' x A, 4, 1, let

X be the projection from Nj to the N-component. Let Ny, N, and
Ay, a1, be the special fibres of Ny, N, and A, 4, ..

We want to prove that the fibres of y are all 0-dimensional. By the
semicontinuity of fibre dimensions it is enough to consider Fy“-valued
points xy of Ny, lying over some Fpe-valued point (z,y) of N x Ay, .-
Write R for the local ring of Opypr X0p, Ny at the closed point zy and
let I C R be the stalk at xy of the ideal sheaf to the closed immersion

Fgc XNNO — OEPM' XOEp ./VE]

Write R and [ for their completions at the maximal ideal to xy. Con-
sider the commutative diagram:

SpecR  —— Opgpr X0p, No — Oppr X0p, N X Ag, a1

[ I T

Spec(R/I) —— Fixxy Ny —— F2© X Ag, dp
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Over Spec R we have the pull-back of the universal abelian schemes
YO y® and Y®. From the composition Spec R — Defo,, we also
have Oy, -Barsotti-Tate groups GM[q%°] according to subsection .11
By lemma [5.3] the generic fibre of G*)[q>°] agrees canonically with the
generic fibre of Y (¥)[q2°], according to [I5, Theorem 4] G*)[q5°] agrees
with Y®)[q2°]. Tt follows that Y*)[q2°] is constant on Spec(R/I) be-
cause G®[q>°] is constant there. According to Serre-Tate, [0, Chapter
V,Theorem 2.3] the polarized abelian scheme (Y*), \(¥)) is constant on
Spec(R/I), and on Spec(R/I) as well. This means that the natural
map from the local ring Q of F§® x Ay, 4,1 at y to R/I factors through
y: Q — Fy. Now just notice that /I being the local ring of ;¢ x5 No
at g is finite over @, so that R/I is finite over Fy¢.

We next prove that y is proper, it certainly suffices to show that the
schematic closure of N is proper over N, we check this by using the
valuative criterion of properness, [4, Corollaire 7.3.10(ii)]. Let F" be the
function field of N. Let x : Spec F' — N be the generic point, and let
g*® ox =y : Spec F — M be the composition. Let R be a dis-
crete valuation ring of F', dominating some local ring of Oy. We write
r: Spec R — N for the corresponding morphism, and yg‘” and J/x(l),
(resp. Vi and Yx(l)), for the pull backs of the universal abelian schemes
over MV via ¢ (resp. via x). Choose any prime ¢ different from p.

The ¢-adic Tate modules of Y,” and Y.") are unramified. Therefore, if
Yy(k) denotes the pull back of Y'*¥) to Spec F', the (-adic Tate module of
Yy(k) is unramified as well, by lemma 2.2l Due to Néron-Ogg-Safarevic’s

criterion, [I7, Theorem 1], there exists an abelian scheme yé’“ over R

), moreover yé’“) inherits a polarization of degree d; and

extending Yy(k
a level [-structure from Y;/(k). The corresponding R-valued point in the
moduli space Ay, 4,; establishes a R-valued point f in the schematic

closure of NV, which lies over .

We conclude that x is an isomorphism, by using the Main Theorem
of Zariski [5], Corollaire 4.4.9].

The abelian schemes thus obtained have a O -operation, for example
because homomorphisms between abelian schemes over normal bases
extend, [12] Chap.IX, Corollaire 1.4]. O
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Remark 5.5. The Y*)’s are O, -abelian schemes, because the structure
of the Op-operation on the Lie algebra can be checked in the generic

fibre.

Over algebraically closed fields of characteristic p one can clarify how
the canonical lift of Y relates to the canonical lift of Y'*)

Lemma 5.6. Let k be an algebraically closed field over F,. Let (Y,
Y © @) 0 O 5O pe ¢ kyalued point of MOV, Let (YO,

ord

YO, ...) be the canonical lift over Op. Let ¢ : Spec Op —> M (©x1) pe

ord
the classifying morphism. Then the Op-abelian scheme yx over Op
is the canonical lift of its special fibre.

Proof. We only have to check that all the Oy, -Barsotti-Tate groups
split, again by [15, Theorem 4] this follows if the Galois representation
splits. This is clear, by lemma 2.2] U

6. ENDOMORPHISM RING OF Y (%)

In [I4] the endomorphism ring of the generic Y®) is studied. We

extend this study to the special fibre of Y*). We start with preliminary
remarks on the Mumford-Tate group: Consider a C-valued point (Yf(l),

Yg(o), [0 \Ox1) ) of K(o><1)M(G (0x1) X(0x1))7 then
ViV = Hi(YD(C),Q)

is a Hodge structure with an operation of L on it. Let us write M7 C

GL(VQ@ /L), for the smallest algebraic group over L such that MT X,
C contains for every embedding o : L — C the cocharacter p, : G,, x
C = MT xp, C given by

A
(2) x50 TS
Lo(2) -
z zevV
the following is very well-known:
Theorem 6.1. If EndOL(Yg(l)) = L then the group MT to the Hodge

structure with L-operation V(él) = H1(Y§(1),Q) is the full linear group
GL(V(él)/L), in particular End%(Yg(k)) =L for all k.

Proof. We follow the ideas of [I3, Theorem 3]. Let us remark that V(1)
is semisimple as a representation of M7 . This is because any MT-
invariant subspace W is a Hodge structure with L-operation. Then
take the orthogonal complement WW* with respect to ¢»(). This is again
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a Hodge structure with L-operation, and hence a M7 subrepresenta-
tion complementary to W. So MT is reductive, as it has a faithful
semisimple representation p, namely the natural action on the L vec-
tor space V(él). A similar argument gives that End y7(p) coincides with

End, (V) = L.

Upon base change via some o : L — C we are in a position to ap-
ply [16, Proposition 5] to MT x, C. Here note that we may choose
o in the set |®™| — |®©)] #£ ), so that the group i,(G,,) is contained
in MT XL C.

The assertion on End%(Yg(k)) just follows as the kth exterior power

is an absolutely irreducible representation of GL(V(S) /L). O
Using canonical lifts we easily get an analog in positive characteristic:

Corollary 6.2. Assume that the #-conditions of subsection [{.1] hold.
Consider a point & : Speck — M(OX1), where k is an algebraically

ord

closed field over IF,. If End%(yg(l)) = L, then End%(yg(k)) = L, for all
k.

Proof. Let ¢ : SpecOp — MO correspond to the canonical lift of

ord

(yg”, ygo), (DO NOD ) where Op is as in subsection B2
Choose an embedding Op — C. We have End%(yx(l) xo, C) = L,
because this algebra must be contained in End%(yf(l)) = L. By theo-

rem [6. 1] we infer End%(y;(k) X0, C) = L, and therefore End%(y;(k)) = L.
Now we apply lemmas [3.4] and O
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