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More Jordan type inequalities

D. Aharonov and U. Elias

Abstract

The function tan(πx/2)/(πx/2) is expanded into a Laurent series of 1− x2, where
the coefficients are given explicitly as combinations of zeta function of even integers.
This is used to achieve a sequence of upper and lower bounds which are very precise
even at the poles at x = ±1.

Similar results are obtained for other trigonometric functions with poles.
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1 Introduction

Jordan’s inequality,
2

π
≤ sinx

x
≤ 1, −π

2
≤ x ≤ π

2
,

has numerous extensions and generalizations. (To simplify the notation we agree that for
x = 0 the value of sinx/x is 1). An exhaustive review of the literature is available in [6].
One of the many types of generalizations is a sequence of the two sided inequalities. The
first of them is the inequality

2

π
+

1

π3
(π2 − 4x2) ≤ sinx

x
≤ 2

π
+

π − 2

π3
(π2 − 4x2), −π

2
≤ x ≤ π

2
(1.1)

by Ling Zhu [10]. It is followed by

2

π
+

1

π3
(π2−4x2)+

12− π2

16π5
(π2−4x2)2 ≤ sinx

x
≤ 2

π
+

π − 2

π3
(π2−4x2)+

π − 3

π5
(π2−4x2)2,

(1.2)
by [11]; Finally Ling Zhu verifies [12] the general

N
∑

n=0

an(π
2−4x2)n+aN+1(π

2−4x2)N+1 ≤ sinx

x
≤

N
∑

n=0

an(π
2−4x2)n+bN+1(π

2−4x2)N+1,

(1.3)
where an are given by a recursion formula. See also [6, Section 3.7].
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Later (1.3) was extended in [13] to

N
∑

n=0

a2n,r(r
2−x2)n+αN+1,r(r

2−x2)N+1 ≤ sinx

x
≤

N
∑

n=0

a2n,r(r
2−x2)n+βN+1,r(r

2−x2)N+1

(1.4)
for |x| ≤ r ≤ π/2. The proofs of inequalities (1.1)–(1.4) are based on a monotone version
of the l’Hospital rule: If g′(x) 6= 0 and f ′(x)/g′(x) is increasing on (a, b), so is the quotient
(f(x)− f(a))/(g(x) − g(a)).

The two sided inequalities (1.3) are closely related to the infinite expansion of [7]

sinx

x
=

2

π
+

∞
∑

n=1

(−1)nRn

n!π2n
(π2 − 4x2)n (1.5)

where Rk =

∞
∑

n=k

(−1)nn!

(2n + 1)!(n − k)!

(π

2

)2n
and (−1)kRk > 0. See also [6, Section 2.3].

Identity (1.5) is verified by a straightforward rearrangement of a double power series. By
direct integration one achieves also

cos x =
1

4π
(π2 − 4x2) +

∞
∑

n=1

(−1)nRn

8(n + 1)!π2n
(π2 − 4x2)n+1.

Similar ideas were developed for Bessel functions in a paper by Baricz and Wu [2]
and are summarized in [3]. In [3, p. 145] the author uses the notation Jp(x) = 2pΓ(p +
1)x−pJp(x), normalized so that Jp(0) = 1. Without normalization the result of Baricz
and Wu are formulated as

N
∑

k=0

r−(p+k)Jp+k(r)

2kk!
(r2 − x2)k + αp(r

2 − x2)N+1 ≤ x−pJp(x)

≤
N
∑

k=0

r−(p+k)Jp+k(r)

2kk!
(r2 − x2)k + βp(r

2 − x2)N+1

(1.6)

for all N and for |x| ≤ r, where 0 < r ≤ jp+1,1 and jp+1,1 denotes the first positive zero of
Jp+1(x).

The aim of this study is to develop similar ideas for the the trigonometric functions
which have singularities, namely, the tan, cot, sec and cosec functions. Our attention was
drawn to this subject in an attempt to refine the inequality of Becker and Stark [4]

8/π2

1− x2
≤ tan(πx/2)

πx/2
≤ 1

1− x2
, −1 < x < 1. (1.7)

Our main result (Theorem 1) is that the function
tan(πx/2)

πx/2
admits a sequence of upper

and lower bounds and these inequalities are closely related to a Laurent series expansion
in powers of 1− x2. The same approach will be applied also to cot, sec and cosec.
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In spite of the similarity, there are several essential differences between our result and
those of Ling Zhu and for sinx/x and of Baricz for the Bessel functions.
(a) Bessel functions and, consequently sinx = x−1/2J1/2(x), are solutions of simple linear
second order differential equations. This is a useful tool in [3]. Unfortunately, we do not
know any simple linear differential equation for the tan function. On the contrary, the
results for tan(πx/2)/(πx/2) are influenced by its poles at x = ±1.
(b) We start our study with the infinite series and the upper and lower bounds appear as
consequences of this alternating series. We do not use the monotone l’Hospital rule. Our
method uses partial fractions expansions.

In analogy with (1.4) and (1.6) we also expand
tan(πx/2)

πx/2
into a Laurent series of r2−

x2, with 0 < r < 1. This expansion has different properties from that which corresponds
to r = 1.

2 Inequalities and series for the tan function

In this section we present an infinite series expansion for the tan function and two sets of
upper and lower bounds, one with an even number of terms and one with odd number of
terms.

Theorem 2.1 (a) We have the infinite expansion

tan(πx/2)

πx/2
=

8

π2

[

1

1− x2
+

∞
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k

]

, (2.1)

where

Tp = (−1)p



2

[p/2]
∑

m=1

(

2p− 2m− 1

p− 1

)

ζ(2m)−
(

2p− 1

p− 1

)



 , p = 1, 2, . . . . (2.2)

All the coefficients Tp are positive. The infinite series in (2.1) converges for |x| < 3.

(b) For all even number 2N and −1 < x < 1, we have the pair of inequalities

8

π2

[

1

1− x2
+

2N−1
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k +H2N+1(1− x2)2N

]

≤ tan(πx/2)

πx/2
≤ 8

π2

[

1

1− x2
+

2N
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k

]

,

(2.3)

where

H2N+1 =
π2

8
−
(

1 +
T1

4
− T2

42
+− · · · − T2N

42N

)
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and 0 < H2N+1 <
T2N+1

42N+1
. The left hand side inequality of (2.3) is strict for x = 0.

(c) For all odd number 2N + 1 and −1 < x < 1, we have

8

π2

[

1

1− x2
+

2N+1
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k

]

≤ tan(πx/2)

πx/2

≤ 8

π2

[

1

1− x2
+

2N
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k −H2N+2(1− x2)2N+1

]

,

(2.4)

where

H2N+2 = −π2

8
+

(

1 +
T1

4
− T2

42
+− · · ·+ T2N+1

42N+1

)

and 0 < H2N+2 <
T2N+2

42N+2
. The right hand side inequality of (2.4) is strict for x = 0.

Examples. The first coefficients are T1 = 1, T2 = 2ζ(2) −
(

3

1

)

= π2/3 − 3 and

T3 = −2

(

3

2

)

ζ(2) +

(

5

2

)

= −6ζ(2) + 10 = 10− π2. Accordingly,

H1 =
π2

8
− 1 , H2 = −

(

π2

8
− 1− T1

4

)

=
10− π2

8
.

The first two special cases of (2.3) (for 2N = 0) and (2.4) (for 2N + 1 = 1) are

8/π2

1− x2
+

π2 − 8

π2
≤ tan(πx/2)

πx/2
≤ 8/π2

1− x2
+

2

π2
, (2.5)

and

8/π2

1− x2
+

2

π2
− π2 − 9

6π2
(1− x2) ≤ tan(πx/2)

πx/2
≤ 8/π2

1− x2
+

2

π2
− 10− π2

π2
(1− x2). (2.6)

Proof of Theorem 2.1 For sake of convenience we divide the proof into several steps.

(i) The infinite expansion for tan . Our starting point is the partial fraction expansion

tan z =
∞
∑

n=0

8z

(2n+ 1)2π2 − 4z2
which holds in every domain which contains no poles. It

follows that

tan(πx/2)

πx/2
=

8

π2

∞
∑

n=0

1

(2n + 1)2 − x2
=

8

π2

[

1

1− x2
+

∞
∑

n=1

1

4n(n+ 1) + (1− x2)

]

. (2.7)

Each term of the series may be expanded into a geometric series, provided that |1− x2| <
4n(n+ 1) for n = 1, 2, . . ., i.e., for |x| < 3. This yields

tan(πx/2)

πx/2
=

8

π2

[

1

1− x2
+

∞
∑

n=1

( ∞
∑

k=0

(−1)k(1− x2)k

(4n(n+ 1))k+1

)]

=
8

π2

[

1

1− x2
+

∞
∑

k=0

( ∞
∑

n=1

1

nk+1(n+ 1)k+1

)

(−1)k

4k+1
(1− x2)k

]

.

(2.8)
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The expansion (2.1) will follow if we show that the sums Tp =
∞
∑

n=1

1

np(n+ 1)p
are

given explicitly by (2.2) for p = 1, 2, . . .. The proof is based on the following identity [7,
Ex. 39, p. 246]: If xy = x+ y, then for every m,k ≥ 1,

xmyk =
m
∑

j=1

(

m+ k − j − 1

k − 1

)

xj +
k
∑

j=1

(

m+ k − j − 1

m− 1

)

yj . (2.9)

(2.9) may be verified by mathematical induction on m and k. We take in (2.9) m = k = p,

x = − 1

n
, y =

1

n+ 1
, and conclude that

(−1)p

np(n + 1)p
=

p
∑

j=1

(

2p − j − 1

p− 1

)[

(−1)j

nj
+

1

(n + 1)j

]

. (2.10)

To calculate Tp we sum (2.10) for n = 1, 2, . . . and separate j = 1 from j = 2, . . . , p :

(−1)pTp = (−1)p
∞
∑

n=1

p
∑

j=1

(

2p− j − 1

p− 1

)[

(−1)j

nj
+

1

(n+ 1)j

]

=

(

2p − 2

p− 1

) ∞
∑

n=1

[

− 1

n
+

1

n+ 1

]

+

p
∑

j=2

(

2p − j − 1

p− 1

)

[

(−1)jζ(j) +
(

ζ(j)− 1
)

]

=

(

2p − 2

p− 1

)

· (−1) +

p
∑

j=2

(

2p− j − 1

p− 1

)

[

(

(−1)j + 1
)

ζ(j)− 1
)

]

= 2
∑

2≤2m≤p

(

2p − 2m− 1

p− 1

)

ζ(2m)−
p
∑

j=1

(

2p − j − 1

p− 1

)

.

Since

p
∑

j=1

(

2p− j − 1

p− 1

)

=

(

2p − 1

p− 1

)

, formula (2.2) is verified and part (a) of the theorem

follows.

We remark that similar sums

∞
∑

n=1

1

(n− 1/2)p(n+ 1/2)p
are mentioned in [9, p. 70,

(373)] for p = 1, 2, 3 and 4.

(ii) The inequalities . Let us write the series (2.1) as

tan(πx/2)

πx/2
=

8

π2

[

1

1− x2
+

m
∑

k=0

(−1)k
Tk+1

4k+1
(1− x2)k +Rm+1(x)

]

,

with the remainder term

Rm+1(x) = (−1)m+1(1− x2)m+1
∞
∑

ℓ=0

(−1)ℓ
Tℓ+m+2

4ℓ+m+2
(1− x2)ℓ .

For each x, 0 ≤ x ≤ 1, the series

Fm+1(x) =
∞
∑

ℓ=0

(−1)ℓ
Tℓ+m+2

4ℓ+m+2
(1− x2)ℓ

5



and its derivative series

F ′
m+1(x) = 2x

∞
∑

ℓ=1

(−1)ℓ−1ℓ
Tℓ+m+2

4ℓ+m+2
(1− x2)ℓ−1

are alternating series with smaller and smaller terms. Indeed,

1

2p
< Tp =

∞
∑

n=1

1

np(n+ 1)p
<

1

2p
ζ(p) <

1

2p
ζ(2) <

1

2p−1
,

thus
Tℓ+m+2

4ℓ+m+2
>

1

2ℓ+m+2 4ℓ+m+2
>

1

2ℓ+m+2 4ℓ+m+3
>

Tℓ+m+3

4ℓ+m+3

and similarly

ℓ
Tℓ+m+2

4ℓ+m+2
> (ℓ+ 1)

Tℓ+m+3

4ℓ+m+3
.

Thus, by properties of alternating series, Fm+1(x) and F ′
m+1(x) are positive functions for

0 ≤ x ≤ 1. Consequently Fm+1(x) increases for 0 ≤ x ≤ 1, and is bounded from below
and from above by

0 <
∞
∑

ℓ=0

(−1)ℓ
Tℓ+m+2

4ℓ+m+2
= Fm+1(0) ≤ Fm+1(x) ≤ Fm+1(1) =

Tm+2

4m+2
.

The lower bound of Fm+1(x),
Tm+2

4m+2 − Tm+3

4m+3 + − · · · may be written as a finite sum: For
x = 0, (2.1) yields

1 =
8

π2

[

1 +

∞
∑

k=0

(−1)k
Tk+1

4k+1

]

, (2.11)

so

0 < Hm+2 :=
Tm+2

4m+2
− Tm+3

4m+3
+− · · ·

= (−1)m+1

[

π2

8
−
(

1 +
T1

4
− T2

42
+− · · ·+ (−1)m

Tm+1

4m+1

)]

.
(2.12)

Consequently Rm+1(x) = (−1)m+1(1 − x2)m+1Fm+1(x) is bounded for m = 2N and for
m = 2N − 1, respectively, by

−(1− x2)2N+1T2N+2

42N+2
≤ R2N+1(x) ≤ −(1− x2)2N+1H2N+2 < 0,

0 < (1− x2)2NH2N+1 ≤ R2N (x) ≤ (1− x2)2N
T2N+1

42N+1
.

and parts (b) and (c) of the theorem follow.

The remainder term satisfies |Rm+1(x)| ≤ (1 − x2)m+1Tm+2

4m+2
≤ (1− x2)m+1

23m+5
, hence

it decreases rapidly, in particular near the poles x = ±1. For example, for x = 0.9 and
m = 4 we have R5(0.9) < 0.195/217 ≈ 2 · 10−9.

The bounds in (2.4) and (2.3) are also very precise near the poles x = ±1. Indeed,
the difference between the m-th upper and lower bounds (m odd or even) is less then
Tm+3

4m+3
(1− x2)m+1 <

1

23m+8
(1− x2)m+1 .

6



It is interestiong to compare the convergence of the series (2.1) with that of the Taylor
series [14, Section 3:14]

tan(πx/2)

πx/2
= 1 +

8

π2

∞
∑

k=1

λ(2k + 2)x2k, |x| < 1, (2.13)

where λ(p) =
∑∞

n=0 1/(2n + 1)p denotes the Dirichlet lambda function. Since 1 < λ(p) <
1 + 2/3p, the remainder of the series (2.13) after m terms is

8

π2

∞
∑

k=m+1

λ(2k + 2)x2k =
8

π2

x2m+2

1− x2
(1 + o(1)).

Here o(1) is uniformly small for large values of m. On the other hand, we saw above that

the remainder of the series (2.1) after m terms is
8

π2
(1− x2)m+1O(1)

23m
.

After extracting m-th root from the two remainders for large m, we compare, up to
1 + o(1), x2 with (1 − x2)/8. The consequence is that after m terms, for large m, the
Taylor series (2.13) yields a smaller remainder for |x| < 1/3, while for 1/3 < |x| < 1, the
series (2.1) has a smaller remainder. �

Due to (1.4) and (1.6) it is also natural to expand
tan(πx/2)

πx/2
into power series of

r2 − x2. Formally we follow (2.7) and (2.8):

tan(πx/2)

πx/2
=

8

π2

∞
∑

n=0

1

(2n+ 1)2 − x2
=

8

π2

∞
∑

n=0

1
(

(2n + 1)2 − r2
)

+ (r2 − x2)

=
8

π2

[ ∞
∑

k=0

( ∞
∑

n=0

1

(n+ 1−r
2 )k+1(n+ 1+r

2 )k+1

)

(−1)k

4k+1
(r2 − x2)k

]

.

=
8

π2

∞
∑

k=0

(−1)k
T̃k+1(r)

4k+1
(r2 − x2)k ,

(2.14)

with

T̃p(r) =

∞
∑

n=0

1

(n+ 1−r
2 )p(n+ 1+r

2 )p
. (2.15)

Note that T̃p(r) differs from Tp by it’s range of summation and it is not defined for r = 1.

Equations (2.14) and (2.8) are superficially similar. However, they describe different
phenomena. (2.8) describes the function tan(πx/2)/(πx/2) in the interval (−3, 3), includ-
ing its singularities at x = ±1. Expansion (2.14) is valid when |r2 − x2| < (2n + 1)2 − r2

for all n = 0, 1, 2, . . . . Assuming r < 1, this holds when |r2 − x2| < 1− r2, i.e.,

2r2 − 1 < x2 < 1,

which includes the points x = ±r and their neighborhoods. Note that in the complex
plane |r2 − z2| < C is the interior of a lemniscate with focal points z = ±r.
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Inequalities analogous to (2.3) and (2.4) may be deduced from expansion (2.14). We
do not attempt to calculate the sums (2.15) explicitly as functions of r. Rather we shall
obtain a recursive formula for the coefficients T̃p(r).

The function tan x satisfies the first order, quadratic Riccati differential equation y′ =

1 + y2. It easy to see that u(x) =
tan(πx/2)

πx/2
satisfies x

du

dx
= 1 − u+

π2

4
x2u2 for |x| < 1.

If we let z = r2 − x2 and u(x) = v(z), then v(z) satisfies

−2(r2 − z)
dv

dz
= 1− v +

π2

4
(r2 − z)v2

for −1+r2 < z < r2. Substitution of v(z) =
8

π2

∑∞
k=0(−1)k

T̃k+1(r)

4k+1
zk , v(0) =

tan(πr/2)

πr/2

and comparison of coefficients lead to the following quadratic recursion formula for T̃k(r),
0 < r < 1:

T̃1(r) =
π2

2

tan(πr/2)

πr/2
,

r2T̃2(r) = π2 − 2T̃1(r) + r2T̃ 2
1 (r),

(k + 1)r2T̃k+2(r) = −(4k + 2)T̃k+1 + r2
k
∑

j=0

T̃j+1T̃k−j+1 + 4

k−1
∑

j=0

T̃j+1T̃k−j , k = 1, 2, . . .

(2.16)

3 Inequalities for the secant function.

Expansions and inequalities of similar type are available for the cot, sec and cosec functions.
In this section we present the results for the secant function. We remind, in analogy with
inequalities (1.7) and (4.1 ), that

1

1− x2
≤ sec

πx

2
≤ 4/π

1− x2
, −1 < x < 1. (3.1)

To prove (3.1), it is sufficient to show that the even function (1 − x2) sec(πx/2) increases
for 0 ≤ x ≤ 1. This indeed holds, since by (1.7)

d

dx

(

(1− x2) sec(πx/2)
)

= 2x sec(πx/2)

[

π2

8
(1− x2)

tan(πx/2)

πx/2
− 1

]

≥ 0. (3.2)

The constants in (3.1) follow now by the limit values for x = 0 and as x → 1−.

Our aim is to generalize the right hand side of (3.1) into an infinite sequence of in-
equalities.

Theorem 3.1 (a) We have the infinite expansion

sec(πx/2) =
4

π

[

1

1− x2
−

∞
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k

]

, (3.3)

8



where

Sp = (−1)p





(

2p− 2

p− 2

)

−
(

2p− 2

p− 1

)

+ 2
∑

2≤2m≤p

[

(

2p − 2m− 2

p− 2

)

−
(

2p − 2m− 2

p− 1

)

]

η(2m)





(3.4)
for p = 1, 2, . . . and η denotes the Dirichlet eta function. All the coefficients Sp are positive.

(b) For all even number 2N and −1 < x < 1, we have the pair of inequalities

4

π

[

1

1− x2
−

2N
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k

]

≤ sec(πx/2)

≤ 4

π

[

1

1− x2
−

2N−1
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k − J2N+1(1− x2)2N

]

,

(3.5)

where

J2N+1 = −π

4
+

(

1− S1

4
+

S2

42
−+ · · ·+ S2N

42N

)

and 0 < J2N+1 <
S2N+1

42N+1
. The right hand side inequality of (3.5) is strict for x = 0.

(c) For all odd number 2N + 1 and −1 < x < 1, we have

4

π

[

1

1− x2
−

2N
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k + J2N+2(1− x2)2N+1

]

≤ sec(πx/2) ≤ 4

π

[

1

1− x2
−

2N+1
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k

]

,

(3.6)

where

J2N+2 =
π

4
−
(

1− S1

4
+

S2

42
−+ · · · − S2N+1

42N+1

)

and 0 < J2N+2 <
S2N+2

42N+2
. The left hand side inequality of (3.6) is strict for x = 0.

Examples. The first coefficients are S1 = 1, S2 = −1 + 2η(2) = π2/6 − 1 and
S3 = 2− 2η(2) = 2− π2/6. Accordingly,

J1 = −π

4
+ 1 , J2 =

π

4
− 1 +

1

4
=

π − 3

4
.

For 2N = 0 we get on −1 < x < 1

4

π

[

1

1− x2
− 1

4

]

≤ sec(πx/2) ≤ 4

π

[

1

1− x2
− 1 +

π

4

]

and for 2N + 1 = 1,

4

π

[

1

1− x2
− 1

4
+

π − 3

4
(1− x2)

]

≤ sec(πx/2) ≤ 4

π

[

1

1− x2
− 1

4
+

π2 − 6

96
(1− x2)

]

.
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Proof. We start with the partial fraction expansion sec z = π
∞
∑

n=0

(−1)n(2n+ 1)

(n+ 1/2)2π2 − z2
.

Then for −1 < x < 1,

sec(πx/2) =
4

π

∞
∑

n=0

(−1)n(2n + 1)

(2n + 1)2 − x2

=
4

π

[

1

1− x2
−

∞
∑

n=1

(−1)n−1(2n + 1)

4n(n+ 1) + (1− x2)

]

=
4

π

[

1

1− x2
−

∞
∑

k=0

( ∞
∑

n=1

(−1)n−1(2n+ 1)

nk+1(n+ 1)k+1

)

(−1)k
(1− x2)k

4k+1

]

=
4

π

[

1

1− x2
−

∞
∑

k=0

(−1)k
Sk+1

4k+1
(1− x2)k

]

,

where Sp =

∞
∑

n=1

(−1)n−1(2n + 1)

np(n+ 1)p
> 0 for p = 1, 2, . . . .

The coefficients Sp may be presented explicitly by finite sums of the Dirichlet η func-
tion. Let us multiply (2.10) by 2n + 1 ≡ 2(n + 1)− 1 and separate j = 1 from 2 ≤ j ≤ p:

(−1)p(2n+ 1)

np(n+ 1)p
=−

(

2p− 2

p− 1

)[

1

n
+

1

n+ 1

]

+

p
∑

j=2

(

2p− j − 1

p− 1

)[

2
(−1)j

nj−1
+

(−1)j

nj
+ 2

1

(n + 1)j−1
− 1

(n + 1)j

]

.

We multiply the last equation by (−1)n−1 and sum it for n = 1, 2, . . . . With the Dirichlet
eta function

η(p) =

∞
∑

n=1

(−1)n−1

np
,

∞
∑

n=1

(−1)n−1

(n + 1)p
= −η(p) + 1, p ≥ 1, (3.7)

we get

(−1)pSp = −
(

2p− 2

p− 1

)

[

η(1) +
(

− η(1) + 1
)]

+

p
∑

j=2

(

2p − j − 1

p− 1

)

[

2(−1)jη(j − 1) + (−1)jη(j) + 2
(

− η(j − 1) + 1
)

−
(

− η(j) + 1
)

]

= −
(

2p− 2

p− 1

)

+

p
∑

j=2

(

2p− j − 1

p− 1

)

+

p
∑

j=2

(

2p− j − 1

p− 1

)

[

2
(

(−1)j − 1
)

η(j − 1) +
(

(−1)j + 1
)

η(j)
]

= −
(

2p− 2

p− 1

)

+

(

2p − 2

p

)

+
∑

2≤2m≤p

2
[

(

2p− 2m− 1

p− 1

)

− 2

(

2p − 2m− 2

p− 1

)

]

η(2m)

=

(

2p− 2

p− 2

)

−
(

2p− 2

p− 1

)

+ 2
∑

2≤2m≤p

[

(

2p − 2m− 2

p− 2

)

−
(

2p − 2m− 2

p− 1

)

]

η(2m).
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Here we used the facts that

p
∑

j=2

(

2p − j − 1

p− 1

)

=

(

2p− 2

p

)

=

(

2p− 2

p− 2

)

and that

(

2p− 2m− 1

p− 1

)

− 2

(

2p− 2m− 2

p− 1

)

=

(

2p − 2m− 2

p− 2

)

−
(

2p − 2m− 2

p− 1

)

.

Thus, (3.4) is proved.

The inequalities (3.5) and (3.6) are verified as in Theorem 2.1. �

The coefficients Tp and Sp are easily related. In the (3.2) we substitute sec(πx/2) and
tan(πx/2)

πx/2
, respectively, by the series (2.1) and (3.3) and compare powers of 1 − x2, the

result is

Sn+1 = Tn+1 +

n−1
∑

k=0

Tk+1Sn−k .

4 Inequalities for other trigonometric functions.

We outline some other results which may be verified by similar arguments. For the cotan-
gent function, let us recall the inequality [5, Eq. (17)]

2x2

1− x2
≤ 1− πx cot(πx) ≤ π2

3

x2

1− x2
. (4.1)

It is possible generalize the left hand side of (4.1) into the infinite expansion

1− πx cot(πx) = 2x2

[

1

1− x2
+

∞
∑

k=0

(−1)k
Ck+1

4k+1
(1− x2)k

]

, (4.2)

Cp =

∞
∑

n=2

22p

(n2 − 1)p
=

∞
∑

n=1

22p

np(n+ 2)p

= (−1)p





∑

2≤2m≤p

22m+1

(

2p − 2m− 1

p− 1

)

ζ(2m)−
(

2p− 1

p− 1

)

− 22p−1



 , p ≥ 1.

(4.3)

All Cp-s are positive. The infinite series in (4.2) converges for |x| < 2.

For example, C1 = 3, C2 = −11 + 8ζ(2) = 4
3π

2 − 11, C3 = 42− 24ζ(2) = 42− 4π2.

Inequalities in the style of Theorems 2.1 and 3.1 may be proved for 1− πx cot(πx).

(4.2) is obtained from the expansion πx cot(πx) = 1− 2x2
∞
∑

n=1

1

n2 − x2
. For the calcu-

lation of Cp in (4.3), it is useful to take in (2.9), m = k = p, x =
−2

n
, y =

2

n+ 2
and sum
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the result for n = 1, 2, . . .. For the summation of the series, one has to use the binomial

identity

p
∑

j=1

(

2p− j − 1

p− 1

)

2j = 22p−1, [7, p. 167, Eq. 5.20]. �

For the cosecant function we remind, in analogy with (1.7), (3.1) and (4.1), the double
inequality [5, Eq. (19)]

(π2/6)x2

1− x2
≤ πx cosec(πx)− 1 ≤ 2x2

1− x2
, −1 < x < 1. (4.4)

The right hand side of (4.4) may be generalized into the expansion

πx cosec(πx)− 1 = 2x2

[

1

1− x2
−

∞
∑

k=0

(−1)k
Dk+1

4k+1
(1− x2)k

]

, (4.5)

where

Dp =

∞
∑

n=2

(−1)n22p

(n2 − 1)p
=

∞
∑

n=1

(−1)n−122p

np(n+ 2)p

= (−1)p





∑

2≤2m≤p

22m+1

(

2p− 2m− 1

p− 1

)

η(2m)− 22p−1 +

(

2p− 1

p− 1

)



 .

(4.6)

Here D1 = 1, D2 = −5 + 8η(2) = 2
3π

2 − 5, D3 = 22 − 24η(2) = 22− 2π2.

Expansion (4.5) follows from the partial fraction expansion cosec z =
1

z
−2z

∞
∑

n=1

(−1)n

n2 − z2
.

Dp is calculated similarly to Cp. �

If we substitute the series (4.2) and (4.5) into the identity

x
d

dx

(

(1− x2)πx cosec(πx)
)

= πx cosec(πx)
[

− 2x2 + (1− x2)(1 − πx cot(πx))
]

and compare powers of 1− x2, it follows that Cn and Dn are related by

nDn + 4nDn−1 = Cn + 2Cn−1 +
n−1
∑

k=1

DkCn−k +
n−2
∑

k=1

DkCn−k−1 .

5 Inequalities for Bessel functions

Finally we show that our methods are applicable also to Bessel functions and they provide
a short proof of (1.6), based on other principles than those of Baricz and Wu in [2].

An expansion of the form

x−pJp(x) =
∞
∑

k=0

ck(r
2 − x2)k (5.1)
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holds for all x in the complex plane. To see this, put z = r2 − x2, i.e., x =
√
r2 − z.

Since x−pJp(x) is an even analytic function in the whole complex plane, it follows that

x−pJp(x)
∣

∣

∣

x=
√
r2−z

is analytic for all z and may be expanded as
∑∞

k=0 ckz
k. Consequently

(5.1) holds for all x. To calculate the ck-s, let us apply the identity [1, Eq. 9.1.30]
(

1

x

d

dx

)m
(

x−pJp(x)
)

= (−1)mx−(p+m)Jp+m(x), m = 1, 2, . . .

to expansion (5.1). Since
(

1
x

d
dx

)m
(r2 − x2)k = (−2)mk(k− 1) · · · (k−m+1)(r2 −x2)k−m,

we get

(−1)mx−(p+m)Jp+m(x) = (−2)m
∞
∑

k=m

ck k(k − 1) · · · (k −m+ 1)(r2 − x2)k−m.

For x = r we obtain that cm =
r−(p+m)Jp+m(r)

2mm!
. Consequently,

x−pJp(x) =

∞
∑

k=0

r−(p+k)Jp+k(r)

2kk!
(r2 − x2)k, |x| < ∞. (5.2)

To prove the inequalities (1.6), we have to estimate the remainder of the expansion
(5.2), namely

x−pJp(x)−
N
∑

k=0

r−(p+k)Jp+k(r)

2kk!
(r2−x2)k = (r2−x2)N+1

∞
∑

k=N+1

r−(p+k)Jp+k(r)

2kk!
(r2−x2)k−N−1.

Let jn,1 denote the first positive zero of Jn(x). It is well known that jn,1 < jn+1,1 and
that Jn(x) > 0 in (0, jn,1). See Figure 1.

1 2 3 4 5

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

j2,1j0,1 j1,1

Figure 1. The first zeros of J0(x), J1(x) and J2(x)

If r satisfies 0 < r < jp+1,1, all the coefficients in the tail series

RN (x) =

∞
∑

k=N+1

r−(p+k)Jp+k(r)

2kk!
(r2 − x2)k−N−1

are positive for all N , hence RN (0) ≥ RN (x) ≥ RN (r). So, in the left hand side of (1.6),

αp = RN (r) =
r−(p+N+1)Jp+N+1(r)

2N+1(N + 1)!
; and on the right hand side of (1.6),

βp = RN (0) = r−2(N+1)
∞
∑

k=N+1

rk−pJp+k(r)

2kk!
.
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βp may be written as a finite sum. As limx→0 x
−pJp(x) = 1/2pΓ(p+1), we get from (5.2)

for x = 0 that
1

2pΓ(p+ 1)
=

∞
∑

k=0

rk−pJp+k(r)

2kk!
.

Thus,

βp =
1/2pΓ(p+ 1)−∑N

k=0 r
k−pJp+k(r)/2

kk!

r2(N+1)
.

Inspired by a remark made by the referee, we suggest the following problem: Find
similar inequalities for other special functions, based on the above methods.
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[2] Baricz, Á and Wu, S., Sharp Jordan-type inequalities for Bessel functions, Publ.
Math. Debrecen, 74 (2009), 107-126.

[3] Baricz, Á., Generalized Bessel Functions of the First Kind, Lecture Notes in Math-
ematics, Volume 1994, Springer Verlag, Berlin Heidelberg, 2010.

[4] Becker, M. and Stark, E., On a hierarchy of quolynomial inequalities for tanx,
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., Fiz 620 (1978), 133-138.

[5] Chen, C. P. and Qi, F., Inequalities of some trigonometric functions, Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat., 15 (2004), 71–78.

[6] Qi, F., Niu, D. W. and Guo, B. N., Refinements, Generalizations and Applications
of Jordan’s inequality and related problems, J. of Inequalities and Applications, Volume
2009, Article ID 271923, 52 pages, doi:10.1155/2009/271293

[7] Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete Mathematics, 2nd
Edition, Addison-Wesley, Reading, Massachusetts, 1994.

[7] Li, J. L., An identity related to Jordan’s inequality, Int. J. Math. Math. Sci., vol. 2006,
Article ID 76782, 6 pages, 2006. doi:10.1155/IJMMS/2006/76782

[9] Jolley, L. B. W., Summation of series, 2nd edition, Dover Publication, N.Y., 1961.

[10] Zhu, L., Sharpening Jordan’s inequality and the Yang Le inequality, Applied Mathe-
matics Letters, 19 (2006), 240-243.

[11] Zhu, L., Sharpening Jordan’s inequality and the Yang Le inequality, II, Applied
Mathematics Letters, 19 (2006), 990-994.

[12] Zhu, L., A general refinement of Jordan-type inequality, Computers and Mathematics
with Applications, 55 (2008), 2498-2505.

14



[13] Zhu, L., General forms of Jordan an Yang-Le inequalities, Applied Mathematics
Letters, 22 (2009), 236-241.

[14] Spanier, J. and Oldham, Keith B., An atlas of functions, Hemisphere Publishing,
Washington, 1987.

Department of Mathematics, Technion — I.I.T., Haifa 32000, Israel
dova@tx.technion.ac.il

elias@tx.technion.ac.il

15


	1  Introduction 
	2  Inequalities and series for the tan function
	3 Inequalities for the secant function. 
	4 Inequalities for other trigonometric functions. 
	5 Inequalities for Bessel functions

