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THE HARDY SPACE H1 IN THE RATIONAL DUNKL SETTING

JEAN-PHILIPPE ANKER, NÉJIB BEN SALEM, JACEK DZIUBAŃSKI, AND NABILA HAMDA

Abstract. This paper consists in a first study of the Hardy space H1 in the rational Dunkl
setting. Following Uchiyama’s approach, we characterizee H1 atomically and by means of the
heat maximal operator. We also obtain a Fourier multiplier theorem for H1. These results
are proved here in the one-dimensional case and in the product case.

1. Introduction

Dunkl theory is a far reaching generalization of Euclidean Fourier analysis, which includes
most special functions related to root systems, such as spherical functions on Riemannian
symmetric spaces. It started in the late eighties with Dunkl’s seminal article [7] and developed
extensively afterwards. We refer to the lecture notes [18] for the rational Dunkl theory, to
the lecture notes [15] for the trigonometric Dunkl theory, and to the books [4, 11] for the
generalized quantum theories.

This paper deals with the real Hardy space H1 in the rational Dunkl setting, where the
underlying space is of homogeneous type in the sense of Coifman-Weiss. In such a setting,
the theory of Hardy spaces goes back to the seventies [6, 12]. Here we follow Uchyama’s
approach [25] and we characterize the Hardy space H1 in two ways, by means of the heat
maximal operator and atomically. The first characterization, which requires precise heat
kernel estimates, has lead us to a seemingly new observation, namely that the heat kernel
has a rather slow decay in certain directions and is in particular not Gaussian in the present
setting (see Remark 2.4). The second characterization is used to prove a Fourier multiplier
theorem for H1.

Throughout the paper we shall restrict to the one-dimensional case and to the product case.
This restriction is due to our present lack of knowledge in general about the behavior of the
Dunkl kernel on the one hand and about generalized translations on the other hand.

After this informal introduction, let us introduce some notation and state our main results.
On R

n we consider the Dunkl operators

Djf(x) =
∂
∂xj

f(x) +
kj
xj

[
f(x)− f(σjx)

]
(j=1, 2, . . . , n)

associated with the reflections

(1.1) σj (x1, x2, . . . , xj , . . . , xn) = (x1, x2, . . . ,−xj, . . . , xn)
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and the multiplicities kj≥ 0. Their joint eigenfunctions constitute the Dunkl kernel

(1.2) E(x,y) =
∏n

j=1
Ekj(xj , yj) ,

where

(1.3)

Ek(x, y) =
Γ(k+ 1

2
)

Γ(k) Γ( 1
2
)

∫ +1

−1
du (1−u)k−1 (1+u)k exyu

= exy Γ(2k+1)
Γ(k) Γ(k+1)

∫ 1

0
dv vk−1(1− v)k e−2xyv

︸ ︷︷ ︸
1F1(k ; 2k+1;−2xy)

(see for instance [18, Example 2.34]). Here 1F1(a; b; z) is the confluent hypergeometric func-
tion, which is also known as the Kummer function and denoted by M(a, b, z). Notice that

E(x,y) = e〈x,y〉 if all multiplicities kj vanish.
Let us first define the Hardy space H1 by means of the heat maximal operator. The Dunkl

laplacian

Lf(x) =
∑n

j=1
D2
j f(x) =

∑n

j=1

{(
∂
∂xj

)2
f(x)+

2kj
xj

∂
∂xj

f(x)− kj
x2j

[
f(x)−f(σjx)

]}

is the infinitesimal generator of the heat semigroup

e tL (t>0),

which acts by linear self-adjoint operators on L2(Rn, dµ) and by linear contractions on Lp(Rn, dµ),
for every 1≤ p≤∞, where

(1.4) dµ(x) = dµ1(x1) . . . dµn(xn) = |x1|2k1 . . . |xn|2kn dx1 . . . dxn
The heat semigroup consists of integral operators

e tLf(x) =

∫

Rn

dµ(y)ht(x,y) f(y)

associated with the heat kernel [17]

(1.5) ht(x,y) = c−1
k
t−

N
2 e−

|x|2+ |y|2
4 t E

(
x√
2t
, y√

2t

)
,

where

(1.6) N = n+
∑n

j=1
2 kj

is the homogeneous dimension and

ck = 2
N
2

∫

Rn

dµ(x) e−
|x|2
2 = 2N

∏n

j=1
Γ(kj+

1
2 ) .

From this point of view, the Hardy space H1 consists of all functions f ∈L1(Rn, dµ) whose
maximal heat transform

(1.7) h∗f(x) = sup t>0

∣∣∣
∫

Rn

dµ(y)ht(x,y) f(y)
∣∣∣

belongs to L1(Rn, dµ) and the norm is given by

‖f‖H1 = ‖h∗f ‖L1 .

Let us turn next to the atomic definition of the Hardy space H1. Notice that Rn, equipped
with the Euclidean distance d(x,y) = |x−y| and with the measure µ, is a space of ho-
mogeneous type in the sense of Coifman-Weiss (see Appendix A). Recall that an atom is a
measurable function a :Rn→C such that
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• a is supported in a ball B ,

• ‖a‖L∞ . µ(B)−1 ,

•
∫

Rn

dµ(x) a(x) = 0.

By definition, the atomic Hardy space H1
atom consists of all functions f ∈L1(Rn, dµ) which

can be written as f =
∑

ℓλℓ aℓ , where the aℓ’s are atoms and
∑

ℓ |λℓ|<+∞, and the norm is
given by

‖f‖H1
atom

= inf
∑

ℓ
|λℓ| ,

where the infimum is taken over all atomic decompositions of f .
Our first main result is the following theorem.

Theorem 1.8. The spaces H1 and H1
atom coincide and their norms are equivalent, i.e., there

exists a constant C>0 such that

C−1 ‖f‖H1 ≤ ‖f‖H1
atom

≤ C ‖f‖H1 .

The Fourier transform in the Dunkl setting is given by

(1.9) Ff(ξ) = c−1
k

∫

Rn

dµ(x) f(x)E(x,−iξ) .

It is an isometric isomorphism of L2(Rn, dµ) onto itself and the inversion formula reads

f(x) = F 2f(−x) .

Notice that, if all multiplicities kj vanish, then (1.9) boils down to the classical Fourier trans-
form

f̂(ξ) = (2π)−
n
2

∫

Rn

dx f(x) e−i〈x,ξ〉 .

Our second main result is the following Hörmander type multiplier theorem (see [10] for the
original multiplier theorem on Lp spaces).

Theorem 1.10. Let χ= χ(ξ) be a smooth radial function on Rn such that

χ(ξ) =

{
1 if |ξ|∈

[
1
2 , 2

]
,

0 if |ξ| /∈
(
1
4 , 4

)
.

If a function m=m(ξ) on R
n satisfies

M = sup t>0 ‖χm(t . )‖
W

N/2+ε
2

< +∞ ,

for some ε>0, then the multiplier operator

Tmf = F−1{m (Ff)}
is bounded on the Hardy space H1 and

‖ Tm ‖H1→H1 . M.

Here W
σ
2 (R

n) denotes the classical L2 Sobolev space on Rn, whose norm is given by

‖g‖
W

σ
2

=
{∫

Rn

dx (1+|x|2)σ |ĝ(x)|2
}1/2

.

Notice that the multiplier m is continuous and bounded, as N
2 + ε > n

2 .
The theory of classical real Hardy spaces in Rn originates from the study of holomorphic

functions of one variable in the upper half-plane. We refer the reader to the original works
of Stein-Weiss [22], Burkholder-Gundy-Silverstein [3] and Fefferman-Stein [9]. An important
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contribution to this theory lies in the atomic decomposition introduced by Coifman [5] and
extended to spaces of homogeneous type by Coifman-Weiss [6] (see also [12]). More information
can be found in the book [21] and references therein.

Our paper is organized as follows. Section 2 is devoted to the heat kernel in dimension 1.
There we analyze its behavior thoroughly and we remove a small part, in order to get Gaussian
estimates similar to the Euclidean setting. These results are extended to the product case in
Section 3. Section 4 is devoted to the proof of Theorem 1.8 and Section 5 to the proof of
Theorem 1.10. Section 6 consists of 3 appendices. Appendix A contains information about
the measure of balls, which is used throughout the paper. Appendices B and C are devoted to
so-called folklore results in connection with Uchiyama’s Theorem, which have been used for
instance in [8].

This paper results from two independent research works, which were carried out by the
first and third authors, respectively by the second and fourth authors, and which have been
merged into a joint article.

2. Heat kernel estimates in dimension 1

Consider first the one-dimensional Dunkl kernel E(x, y) = Ek(x, y). As the case k = 0 is
trivial, we may assume that k > 0.

Lemma 2.1. (a) E(x, y) is a holomorphic function of (x, y)∈C
2.

(b) E(x, y)> 0 for every x, y∈R.
(c) E(x, y) has the following symmetry and rescaling properties :

{
E(x, y) = E(y, x) ∀ x, y∈C,

E(λx, y) = E(x, λy) ∀ λ, x, y∈C.

(d) For every y∈C, x 7→E(x, y) is an eigenfunction of the Dunkl operator

Df(x) = f ′(x) + k
x {f(x)−f(−x)}

and of the Dunkl laplacian

Lf(x) = D2f(x) = f ′′(x) + 2k
x f

′(x)− k
x2

{f(x)−f(−x)} .
More precisely

DxE(x, y) = y E(x, y) and LxE(x, y) = y2E(x, y) .

(e) As xy→ 0,

E(x, y) = 1 + O(|xy |) .
(f) As xy→+∞,

E(x, y) =
2k Γ(k+ 1

2
)√

π
exy (xy)−k

{
1− k2

2
1
xy +O( 1

x2y2
)
}
.

(g) As xy→−∞,

E(x, y) =
2k−1k Γ(k+ 1

2
)√

π
e−xy (−xy)−k−1

{
1+ k2−1

2
1
xy +O( 1

x2y2 )
}
.

Proof. The first four properties are known to hold in general. In dimension 1, they can be also
deduced from the explicit expression (1.3), as does (e). As already observed in [20, Section 2]
(see also [18, Example 5.1]), the asymptotics of E(x, y) at infinity follow from the asymptotics
of the confluent hypergeometric function, which read, let say for 0< a< b,

1F1(a; b; z) ∼ Γ(b)
Γ(a) e

z za−b
∑+∞

ℓ=0

(1−a)ℓ (b−a)ℓ
ℓ ! z−ℓ
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as z→+∞ and

1F1(a; b; z) ∼ Γ(b)
Γ(b−a) |z|

−a ∑+∞
ℓ=0

(a)ℓ (a−b+1)ℓ
ℓ ! |z|−ℓ

as z→−∞ (see for instance [1, (13.5.1)] or [14, (13.7.2)]). �

Consider next the one-dimensional heat kernel

(2.2) ht(x, y) = c−1
k t−k−

1
2 e−

x2+y2

4t E( x√
2t
, y√

2t
) = c−1

k t−k−
1
2 e−

(x−y)2

4t 1F1(k ; 2k+1;−xy
t ),

where ck = 22k+1Γ(k+ 1
2).

Proposition 2.3. (a) ht(x, y) is a C∞ function of (t, x, y)∈(0,+∞)×R2.
(b) ht(x, y)> 0 for every t>0 and x, y∈R.
(c) ht(x, y) has the following symmetry and rescaling properties :

{
ht(x, y) = ht(y, x) ∀ x, y∈R,

hλ2t(λx, λy) = |λ|−2k−1 ht(x, y) ∀ λ∈R
∗, ∀ t>0, ∀ x, y∈R.

(d) ht(x, y) satisfies the heat equation
{
∂tht(x, y) = Lyht(x, y),

lim tց0 ht(x, y) |y|2kdy = δx(y).

(e) The heat kernel has the following global behavior :

ht(x, y) ≍





t−k−
1
2 e−

x2+y2

4t if |xy |≤ t,

t−
1
2 (xy)−k e−

(x−y)2

4t if xy ≥ t,

t
1
2 (−xy)−k−1 e−

(x+y)2

4t if −xy ≥ t,

and the following asymptotics :

ht(x, y) =





c−1
k t−k−

1
2 e−

x2+y2

4t

{
1+ O

( |xy|
t

)}
if xy

t → 0,

1
2
√
π
e−

(x−y)2

4t t−
1
2 (xy)−k

{
1− k2 t

xy +O( t2

x2y2
)
}

if xy
t →+∞,

k
2
√
π
e−

(x+y)2

4t t
1
2 (−xy)−k−1

{
1+ O(− t

xy )
}

if xy
t →−∞.

(f) The following gradient estimates hold for the heat kernel :

∣∣ ∂
∂y ht(x, y)

∣∣ .





t−k−
3
2 (|x|+|y|) e−x2+y2

4t if |xy |≤ t,
{
t−

3
2 |x−y |+ t− 1

2 |y|−1
}
(xy)−k e−

(x−y)2

4t if xy ≥ t,
{
t−

1
2 |x+y |+ t 1

2 (|x|−1+ |y|−1)
}
(−xy)−k−1 e−

(x+y)2

4t if −xy ≥ t.

Proof. The first five properties follow from the expression (2.2) and from Lemma 2.1. Let us
turn to the proof of (f). By differentiating (2.2) with respect to y and by using the well-known
formula

d
dz 1F1(a; b; z) =

a
b 1F1(a+1; b+1; z)

(see for instance [1, (13.4.8)] or [14, (13.3.15)]), we get

∂
∂y ht(x, y) = c−1

k t−k−
1
2 e−

(x−y)2

4t

{ x−y
2 t 1F1(k ; 2k+1;−xy

t )− k
2k+1

x
t 1F1(k+1; 2k+2;−xy

t )
}
.

We conclude by using again the behavior of the confluent hypergeometric function. �
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Remark 2.4. It follows from Proposition 2.3.(e) and Appendix A that

ht(x, x) ≍ µ(B(x,
√
t ))−1 and ht(x,−x) ≍ µ(B(x,

√
t ))−1 t

t+ x2

for every t> 0 and x∈R. Observe in particular that the heat kernel has no global Gaussian
behavior and decays rather slowly in certain directions. This phenomenon is even more striking
in the product case (3.1), where

ht(x,y) ≍ µ(B(x,
√
t ))−1 t

t + |x−y |2

if t>0, x∈R
n and y= (−x1, x2, . . . , xn).

Let us eventually introduce a variant of the heat kernel with a Gaussian behavior. Given
two smooth bump functions χ1 and χ2 on R such that





0≤ χ1≤1,

χ1=1 on
[
−1,+1

2

]
,

suppχ1⊂
[
−2,+2

3

]
,

and





0≤ χ2≤1,

χ2=1 on
[
0,+1

2

]
,

suppχ2 ⊂
[
−1,+1

]
,

consider the smooth cutoff function

χt(x, y) =

{
χ1

(x+y
x

)
χ2

(
t
x2

)
if x 6=0 ,

0 if x=0 ,

and the truncated heat kernel

Ht(x, y) = {1− χt(x, y)}ht(x, y) ∀ t>0, ∀ x, y∈R.

Remark 2.5. The truncated heat kernel Ht(x, y) inherits the following properties of the heat
kernel ht(x, y) :

(a) Smoothness : Ht(x, y) is a C∞ function of (t, x, y)∈(0,+∞)×R2.
(b) Non-negativity : Ht(x, y)≥ 0 for every t>0 and x, y∈R.
(c) Rescaling : Hλ2t(λx, λy) = |λ|−2k−1Ht(x, y) for every λ∈R

∗, t>0 and x, y∈R.
(d) Approximation of identity : lim tց0 Ht(x, y) |y|2kdy = δx(y) for every x, y∈R.

Theorem 2.6. The following estimates hold for the truncated heat kernel Ht(x, y).

(a) On-diagonal estimate :

Ht(x, x) ≍ µ(B(x,
√
t ))−1 ∀ t>0, ∀ x∈R.

(b) Off-diagonal Gaussian estimate :

0 ≤ Ht(x, y) . µ(B(x,
√
t ))−1 e−

(x−y)2

c t ∀ t>0, ∀ x, y∈R.

(c) Gradient estimate :
∣∣ ∂
∂yHt(x, y)

∣∣ . t−
1
2 µ(B(x,

√
t ))−1 e−

(x−y)2

c t ∀ t>0, ∀ x, y∈R.

(d) Lipschitz estimates :

|Ht(x, y)−Ht(x, y
′)| . µ(B(x,

√
t ))−1 |y−y ′|√

t
∀ t>0, ∀ x, y, y ′∈R,

with the following improvement, if |y−y ′| ≤ 1
2 |x−y | :

|Ht(x, y)−Ht(x, y
′)| . µ(B(x,

√
t ))−1 e−

(x−y)2

c t
|y−y ′|√

t
.



THE HARDY SPACE H1 IN THE RATIONAL DUNKL SETTING 7

Here c denotes some positive constant and the ball measure has the following behavior, ac-
cording to Appendix A :

µ(B(x,
√
t )) ≍

{
t k+

1
2 if |x| ≤

√
t ,

|x|2k
√
t if |x| ≥

√
t .

Proof. As far as (a), (b), (c) are concerned, the case x = 0 follows immediately from the
previous heat kernel estimates. Thus we may assume that x 6= 0 and reduce furthermore to
x= 1 by rescaling.

(a) is immediate :

Ht(1, 1) = ht(1, 1) ≍
{

t−
1
2 if t≤1

t−k−
1
2 if t≥1

}
≍ µ(B(1,

√
t ))−1 .

PSfrag replacements

y

t

0 1
2

1
2

−1
2−1

2

−2

Figure 1. Cases and subcases considered in the proofs of (b) and (c)

Let us next prove (b).

• Case 1. Assume that |y|≤ t.

◦ Subcase 1.1. Assume that t is bounded above, say t≤ 1
2 . Then

Ht(1, y) ≤ ht(1, y) ≍ t−k−
1
2 e−

1+y2

4t = t−
1
2 e−

(1−y)2

8t t−k e−
1+y2

8t e−
y
4t

is bounded above by

µ(B(1,
√
t ))−1 e−

(1−y)2

8 t

as t
1
2 ≍ µ(B(1,

√
t )), t−k . e

1
8t ≤ e

1+y2

8t and e
y
4t ≍ 1.

◦ Subcase 1.2. Assume that t is bounded below, say t≥ 1
2 . Then

Ht(1, y) ≤ ht(1, y) ≍ t−k−
1
2 e−

1+y2

4t = t−k−
1
2 e−

(1−y)2

4t e−
y
2t

with tk+
1
2 ≍ µ(B(1,

√
t )) and e

y
2t ≍ 1.
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• Case 2. Assume that y is close to −x=−1, say −2≤ y ≤−1
2 .

◦ Subcase 2.1. If t≤ 1
2 (≤−y), then

Ht(1, y) = 0 .

◦ Subcase 2.2. If t is bounded below, say t≥ 1
2 , we argue as in Subcase 1.2.

• Case 3. Assume that y ≥ t.

◦ Subcase 3.1. Assume that t is bounded below, say (y≥)t≥ 1
2 . Then

Ht(1, y) ≤ ht(1, y) ≍ t−
1
2 y−k e−

(1−y)2

4t ≤ t−k−
1
2 e−

(1−y)2

4t

with tk+
1
2 ≍ µ(B(1,

√
t )).

◦ Subcase 3.2. Assume that y ≥ 1
2 ≥ t. Then

Ht(1, y) ≤ ht(1, y) ≍ t−
1
2 y−k e−

(1−y)2

4t . t−
1
2 e−

(1−y)2

4t

with t
1
2 ≍ µ(B(1,

√
t )).

◦ Subcase 3.3. Assume that t≤ y ≤ 1
2 . Then

Ht(1, y) ≤ ht(1, y) ≍ t−
1
2 y−k e−

(1−y)2

4t

is bounded above by

µ(B(1,
√
t ))−1 e−

(1−y)2

8 t

as t
1
2 ≍ µ(B(1,

√
t )) and y−k ≤ t−k . e

1
32 t ≤ e

(1−y)2

8t .

• Case 4. Assume that y ≤ −t (< 0) and that y stays away from −1, say y /∈
(
−2,−1

2

)
.

Notice that (1+y)2≥ (1− y)2

9 if and only if y /∈
(
−2,−1

2

)
.

◦ Subcase 4.1. Assume that 2≤ t≤−y . Then

Ht(1, y) ≤ ht(1, y) ≍ t
1
2 (−y)−k−1 e−

(1+y)2

4t ≤ t−k−
1
2 e−

(1−y)2

36 t

with tk+
1
2 ≍ µ(B(1,

√
t )).

◦ Subcase 4.2. Assume that t≤ 2≤−y . Then

Ht(1, y) ≤ ht(1, y) ≍ t
1
2 (−y)−k−1 e−

(1+y)2

4t . t−
1
2 e−

(1−y)2

36 t

with t
1
2 ≍ µ(B(1,

√
t )).

◦ Subcase 4.3. Assume that t≤−y ≤ 1
2 . Then

Ht(1, y) ≤ ht(1, y) ≍ t
1
2 (−y)−k−1 e−

(1+y)2

4t ≤ t−k−
1
2 e−

(1+y)2

8t e−
(1−y)2

72 t

is bounded above by

µ(B(1,
√
t ))−1 e−

(1−y)2

72 t

as t
1
2 ≍ µ(B(1,

√
t )) and t−k . e

1
32 t ≤ e

(1+y)2

8t .

The proof of (c) follows the same pattern. To begin with, observe that the derivative

∂
∂y

{
1−χ1(1+ y)χ2(t)︸ ︷︷ ︸

χt(1,y)

}
= −χ ′

1(1+ y)χ2(t)
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of the cut-off is bounded and vanishes unless y ∈
(
−3,−2

)
∪
(
−1

2 , 0
)
and t≤1. According to

the subcases 1.1, 4.2 and 4.3 above, the contribution of ∂
∂y {1−χt(1, y)}ht(1, y) to ∂

∂yHt(1, y)

is bounded by

µ(B(1,
√
t ))−1 e−

(1−y)2

c t ≤ t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

c t

Thus it remains for us to estimate the contribution of {1−χt(1, y)} ∂
∂y ht(1, y).

• Case 1. Assume that |y|≤ t.

◦ Subcase 1.1. Assume that t≤ 1
2 . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ . t−k−
3
2 (1+|y|) e−

1+y2

4t .

bounded︷ ︸︸ ︷
t−k−

1
2 e−

1+y2

8t e−
y
4t t−1e−

(1−y)2

8t

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

8t

◦ Subcase 1.2. Assume that t≥ 1
2 . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ . t−k−
3
2 (1+ |y|) e− 1+y2

4t . t−k−1e−
(1−y)2

8t

bounded︷ ︸︸ ︷
(1+y2

t

)1
2 e−

1+y2

8t e−
y
4t

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

8t

• Case 2. Assume that −2≤ y ≤−1
2 .

◦ Subcase 2.1. If t≤ 1
2 (≤−y), then

{1−χt(1, y)} ∂
∂y ht(1, y) = 0 .

◦ Subcase 2.2. If t is bounded below, say t≥ 1
2 , we argue as in Subcase 1.2.

• Case 3. Assume that y ≥ t.

◦ Subcase 3.1. Assume that (y≥)t≥ 1
2 . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e−

(1−y)2

4t

. t−k−1 e−
(1−y)2

8t

{
1+ |1−y |√

t
e−

(1−y)2

8t

}

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

8t

◦ Subcase 3.2. Assume that y ≥ 1
2 ≥ t. Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e−

(1−y)2

4t

. t−1 e−
(1−y)2

8t

{√
t+ |1−y|√

t
e−

(1−y)2

8t

}

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

8t
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◦ Subcase 3.3. Assume that t≤ y ≤ 1
2 . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e−

(1−y)2

4t

. t−1 e−
(1−y)2

8t t−k−
1
2 e−

1
32t

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

8t

• Case 4. Assume that y ≤−t (<0) and that y /∈
(
−2,−1

2

)
. Recall that (1+y)2≥ (1− y)2

9 if

and only if y /∈
(
−2,−1

2

)
.

◦ Subcase 4.1. Assume that 2≤ t≤−y . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

1
2 |1+y |+ t

1
2
1+ |y|
|y|

}
|y|−k−1 e−

(1+y)2

4t

. t−k−1 e−
(1+y)2

8t
|1+y|√

t
e−

(1+y)2

8t

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

72 t

◦ Subcase 4.2. Assume that t≤ 2≤−y . Then

{1−χt(1, y)}
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

1
2 |1+y |+ t

1
2
1+ |y|
|y|

}
|y|−k−1 e−

(1+y)2

4t

. t−1 e−
(1+y)2

8t

{
|1+y|√

t
e−

(1+y)2

8t +
√
t
}

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

72 t

◦ Subcase 4.3. Assume that t≤−y ≤ 1
2 . Then

χt(1, y)
∣∣ ∂
∂y ht(1, y)

∣∣ .
{
t−

1
2 |1+y |+ t

1
2
1+ |y|
|y|

}
|y|−k−1 e−

(1+y)2

4t

. t−1 e−
(1+y)2

8t t−k−
1
2 e−

1
32t

︸ ︷︷ ︸
bounded

. t−
1
2 µ(B(1,

√
t ))−1 e−

(1−y)2

72 t

Eventually, (d) is an immediate consequence of (c). For every y ′′∈ [ y, y ′ ], we have indeed

e−
(x−y ′′)2

c t ≤ 1 .

Moreover, if |y−y ′|≤ 1
2 |x−y |, then |x−y ′′| ≥ |x−y | − |y−y ′′| ≥ |x−y | − |y−y ′| ≥ 1

2 |x−y |,
hence

e−
(x−y ′′)2

ct ≤ e−
(x−y)2

4ct .

�
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Remark 2.7. Contrarily to ht(x, y), Ht(x, y) is not symmetric in the space variables x, y .
Nevertheless, according to the following result, we may replace µ(B(x,

√
t )) by µ(B(y,

√
t ))

in the estimates (b), (c) and in the second estimate (d).

Lemma 2.8. For every ε>0, there exists C>0 such that

µ(B(x,
√
t))

µ(B(y,
√
t))

≤ C e ε
(x−y)2

t ∀ x, y∈R, ∀ t>0.

Proof. By rescaling (see Appendix A), we can reduce to the case t=1. The estimate

µ(B(x,1))
µ(B(y,1)) . eε(x−y)

2

is obvious if x and y are bounded or if |x|/|y| is bounded from above. In the remaining case,
let say when |x| ≥ 1+2|y|, we have |x| ≤ |x−y|+ |y| ≤ |x−y|+ 1

2 |x|, hence |x| ≤ 2 |x−y|.
Furthermore, as |x−y| ≥ |x|− |y| ≥ 1, we have |x| ≤ 2 (x−y)2. Thus

µ(B(x,1))
µ(B(y,1)) . µ(B(x, 1)) ≍ (|x|+1)2k . e

ε
2
|x| . e ε(x−y)

2
.

�

Next proposition, which will be used in the proof of Theorem 1.8, shows that the truncated
heat kernel Ht(x, y) captures the main features of the heat kernel ht(x, y).

Proposition 2.9. The maximal operator

Q∗f(x) = supt>0

∣∣∣
∫

R

dµ(y)Qt(x, y) f(y)
∣∣∣,

associated with the error

Qt(x, y) = ht(x, y)−Ht(x, y) = χt(x, y)ht(x, y) ≥ 0 ,

is bounded from L1(R, dµ) into itself.

Proof. It suffices to check that

sup y∈R

∫

R

dµ(x) sup t>0Qt(x, y) < +∞ .

The case y = 0 is trivial, as χt(x, 0) and hence Qt(x, 0) vanish, for every t > 0 and x ∈ R.
Consider next the case y∈R∗, which reduces to y = 1 by rescaling. Then χt(x, 1) and Qt(x, 1)
vanish, unless t<9 and −3<x<−1

3 , and in this range (see Proposition 2.3)

ht(x, 1) ≍ t
1
2 e−

(x+1)2

4t

is bounded. Hence

∫

R

dµ(x) sup t>0Qt(x, 1) .

∫ − 1
3

−3
dx sup 0<t<9 ht(x, 1) < +∞ .

�
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3. Heat kernel estimates in the product case

According to (1.5) and (1.2), the heat kernel in the product case splits up into one-
dimensional heat kernels :

(3.1) ht(x,y) =
∏n

j=1
h
(j)
t (xj , yj) .

By expanding

h
(j)
t (xj , yj) = {1−χt(xj , yj)}h(j)t (xj , yj)︸ ︷︷ ︸

H
(j)
t (xj , yj)

+ χt(xj, yj)h
(j)
t (xj , yj)︸ ︷︷ ︸

Q
(j)
t (xj , yj)

,

we get

ht(x,y) = Ht(x,y) +Pt(x,y).

Here

Ht(x,y) =
∏n

j=1
H

(j)
t (xj, yj)

and Pt(x,y) is the sum of all possible products

P̃t(x, y) =
∏n

j=1
p
(j)
t (xj , yj) ,

where each factor p
(j)
t (xj , yj) is equal to H

(j)
t (xj , yj) or Q

(j)
t (xj, yj), and at least one factor

p
(j)
t (xj, yj) is equal to Q

(j)
t (xj , yj). Notice the rescaling property

hλ2t(λx, λy) = |λ|−N ht(x,y) ∀ λ∈R
∗, ∀ t>0, ∀ x,y∈R

n,

and similarly for the other product kernels. The following estimates follow from the one-
dimensional case (see Theorem 2.6 and Remark 2.7).

Theorem 3.2. (a) On-diagonal estimate :

Ht(x,x) ≍ µ(B(x,
√
t ))−1 ∀ t>0, ∀ x∈R

n.

(b) Off-diagonal Gaussian estimate :

0 ≤ Ht(x,y) . max
{
µ(B(x,

√
t )), µ(B(y,

√
t ))

}−1
e−

|x−y |2
c t

for every t>0 and for every x,y∈Rn.
(c) Gradient estimate :

|∇yHt(x,y)| . t−
1
2 max

{
µ(B(x,

√
t )), µ(B(y,

√
t ))

}−1
e−

|x−y |2
c t

for every t>0 and x,y∈Rn.
(d) Lipschitz estimates :

|Ht(x,y)−Ht(x,y
′)| . µ(B(x,

√
t ))−1 |y−y ′|√

t
,

for every t>0 and x,y,y′∈Rn, with the following improvement, if |y−y′| ≤ 1
2 |x−y| :

|Ht(x,y)−Ht(x,y
′)| . max

{
µ(B(x,

√
t )), µ(B(y,

√
t ))

}−1
e−

|x−y |2
c t

|y−y ′|√
t

.

Let us turn to the analog of Proposition 2.9 in the product case.

Proposition 3.3. The maximal operator

P∗f(x) = supt>0

∣∣∣
∫

Rn

dµ(y)Pt(x,y) f(y)
∣∣∣ ,

is bounded from L1(Rn,µ) into itself.
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Proof. We will show again that

supy∈Rn

∫

Rn

dµ(x) sup t>0 Pt(x,y) < +∞ ,

but the proof will be more involved in the product case than in the one-dimensional case. Let
us begin with some observations. First of all, by using the symmetries

H
(j)
t (xj , yj) = H

(j)
t (−xj ,−yj) and Q

(j)
t (xj, yj) = Q

(j)
t (−xj,−yj)

and by interchanging variables, we may reduce to products of the form

P̃t(x, y) = Q
(1)
t (x1, y1) . . . Q

(n ′)
t (xn ′, yn ′)︸ ︷︷ ︸

Q ′
t(x

′,y ′)

H
(n ′+1)
t (xn ′+1, yn ′+1) . . . H

(n)
t (xn, yn)︸ ︷︷ ︸

H ′′
t (x

′′,y ′′)

where 1≤ n ′≤ n and 0≤ y1≤ . . . ≤ yn ′ . Next we may assume that, for every 1≤ j ≤ n ′,

yj> 0 , −3yj< xj<− 1
3 yj and x2j > t,

because otherwise χt(xj , yj) and hence Q
(j)
t (xj , yj) vanish. Eventually, by rescaling, we may

reduce to the case y1 = 1. Consequently, t is bounded by x2
1 < 9 y21 = 9 and each factor

Q
(j)
t (xj, yj) is bounded by

t
1
2 (−xj yj)−kj−1 e−

(xj+yj)
2

4 t 1I (−3yj ,− 1
3
yj)(xj) . t

1
2 y

−2kj−2
j 1I (−3yj ,− 1

3
yj)(xj) .

Thus, on the one hand, the integral

I ′(y ′) =
∫

Rn′
dµ ′(x ′) sup t>0 t

−n′
2 Q ′

t(x
′,y ′)

.

∫ − 1
3

−3
dµ1(x1) y

−2k2−2
2

∫ − 1
3
y2

−3y2

dµ2(x2) . . . y
−2kn′−2
n ′

∫ − 1
3
yn ′

−3yn ′
dµn ′(xn ′)

is bounded, uniformly in y ′. On the other hand, let us prove the uniform boundedness of

I ′′(y ′′) =
∫

Rn′′
dµ ′′(x ′′) sup 0<t<9 t

n′
2 H ′′

t (x
′′,y ′′) ,

when n ′′= n−n ′>0. For this purpose, let us deduce from the Gaussian estimate

H ′′
t (x

′′,y ′′) . µ ′′(B(y ′′,
√
t ))−1 e−

|x ′′−y ′′|2
c t

that

sup0<t<9 t
n′
2 H ′′

t (x
′′,y ′′) . |x ′′−y ′′| µ′′(B(y ′′, |x ′′−y ′′|))−1 e−

|x ′′−y ′′|2
18 c .

Assume first that |x ′′−y ′′| ≥
√
t with 0<t<9. Then, by using (6.4),

t
n′
2 H ′′

t (x
′′,y ′′) . t

n′
2

µ ′′(B(y ′′, |x ′′−y ′′|))
µ′′(B(y ′′,

√
t ))

µ′′(B(y ′′, |x ′′−y ′′|))−1 e−
|x ′′−y ′′|2

c t

. |x ′′−y ′′|
( |x ′′−y ′′|√

t

)N ′′
e−

|x ′′−y ′′|2
2 c t

︸ ︷︷ ︸
. 1

µ′′(B(y ′′, |x ′′−y ′′|))−1 e−
|x ′′−y ′′|2

18 c .
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Assume next that 0< |x ′′−y ′′| ≤
√
t (≤ 3). Then, by using again (6.4),

t
n′
2 H ′′

t (x
′′,y ′′) . t

n′
2

.
(

|x ′′−y ′′|√
t

)n′′

︷ ︸︸ ︷
µ ′′(B(y ′′, |x ′′−y ′′|))

µ ′′(B(y ′′,
√
t ))

µ′′(B(y ′′, |x ′′−y ′′|))−1

≍ 1
︷ ︸︸ ︷
e−

|x ′′−y ′′|2
c t

. t
n′−1

2

︸ ︷︷ ︸
. 1

( |x ′′−y ′′|√
t

)n′′−1

︸ ︷︷ ︸
. 1

|x ′′−y ′′| µ′′(B(y ′′, |x ′′−y ′′|))−1 e−
|x ′′−y ′′|2

18 c

︸ ︷︷ ︸
≍ 1

.

Now that we have estimated t
n′
2 H ′′

t(x
′′,y ′′), let us split up the integral

I ′′(y ′′) =
∑

j∈Z
I ′′j (y

′′)

according to the decomposition Rn
′′
r{0} =

⊔
j∈Z {x ′′∈R

n′′ | 2 j− 1
2 ≤ |x ′′−y ′′|< 2 j+

1
2 }︸ ︷︷ ︸

Ωj

. Let

us show that

| I ′′j (y ′′)| . 2−|j| .

If j ≥ 0, we have indeed

I ′′j (y
′′) .

∫

Ωj

dµ′′(x′′)µ′′(B(y ′′, |x ′′−y ′′|))−1

︸ ︷︷ ︸
≍ µ′′(B(y ′′,2j))−1

|x ′′−y ′′| e−
|x ′′−y ′′|2

18 c

︸ ︷︷ ︸
. 2−j

.
µ ′′(Ωj)

µ ′′(B(y ′′,2j))︸ ︷︷ ︸
. 1

2−j

and, if j ≤ 0,

I ′′j (y
′′) .

∫

Ωj

dµ′′(x′′)µ′′(B(y ′′, |x ′′−y ′′|))−1

︸ ︷︷ ︸
≍ µ′′(B(y ′′,2j))−1

|x ′′−y ′′|︸ ︷︷ ︸
. 2j

e−
|x ′′−y ′′|2

18 c

︸ ︷︷ ︸
. 1

.
µ ′′(Ωj)

µ ′′(B(y ′′,2j))︸ ︷︷ ︸
. 1

2 j .

By summing up over j∈Z, we obtain the uniform boundedness of I ′′(y ′′). �

4. Proof of Theorem 1.8

Theorem 1.8 relies on the following result due to Uchiyama [25].

Theorem 4.1. Assume that a set X is equipped with

• a quasi-distance d̃ i.e. a distance except that the triangular inequality is replaced by
the weaker condition

d̃(x, y) ≤ A {d̃(x, z) + d̃(z, y)} ∀ x, y, z∈X,
• a measure µ whose values on quasi-balls satisfy

r
A ≤ µ(B̃(x, r)) ≤ r ∀ x∈X, ∀ r>0 ,

• a continuous kernel Kr(x, y)≥0 such that, for every r>0 and x, y, y ′∈X,

◦ Kr(x, x) ≥ 1
Ar ,

◦ Kr(x, y) ≤ r−1
(
1+ d̃(x,y)

r

)−1−δ
,

◦
∣∣Kr(x, y)−Kr(x, y

′)
∣∣≤ r−1

(
1+ d̃(x,y)

r

)−1−2δ ( d̃(y,y ′)
r

)δ
when d̃(y, y ′)≤ r+ d̃(x,y)

4A .

Here A≥1 and δ>0. Then the following definitions of the Hardy space H1(X) are equivalent :

• Maximal definition : H1(X) consists of all functions f ∈L1(X) such that

K∗f(x) = sup r>0

∣∣∣
∫

X
dµ(y)Kr(x, y) f(y)

∣∣∣

belongs to L1(X) and the norm ‖f‖H1 is comparable to ‖K∗f‖L1 .
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• Atomic definition : H1(X) consists of all functions f ∈L1(X) which can be written as
f =

∑
ℓλℓaℓ , where the aℓ’s are atoms (1) and

∑
ℓ |λℓ|<+∞, and the norm ‖f‖H1

is comparable to the infimum of
∑

ℓ |λℓ| over all such representations.

Going back to X = R
n, equipped with the Euclidean distance d(x,y) = |x− y| and the

measure (1.4), set

d̃(x,y) = inf µ(B) ∀ x,y∈R
n,

where the infimum is taken over all closed balls B containing x and y, and

(4.2) Kr(x,y) = Ht(x,y), ∀ r>0, ∀ x,y∈R
n,

where t= t(x, r) is defined by µ(B(x,
√
t )) = r. In Appendixes B and C, we check that these

data satisfy the assumptions of Uchiyama’s Theorem with δ = 1
N
. Actually the conditions in

Theorem 4.1 are obtained up to constants and they can be achieved by considering suitable
multiples of µ and Kr(x,y). Thus the conclusion of Uchiyama’s Theorem hold for the quasi-

distance d̃ and for the maximal operator K∗ .
On the one hand, d and d̃ define the same Hardy space H1, as balls and quasi-balls are

comparable. Let us elaborate. For every x,y∈Rn and t>0, we have

|x−y| ≤
√
t =⇒ d̃(x,y)≤ r =⇒ |x−y| .

√
t ,

where r = µ(B(x,
√
t )). The first implication is an immediate consequence of the definition

of d̃ and the second one is obtained by combining Lemma 6.6.(b) in Appendix B with (6.4)
in Appendix A. Hence there exists a constant c>0 such that

B(x,
√
t ) ⊂ B̃(x, r) ⊂ B(x, c

√
t )

and these sets have comparable measures, according to Appendix A.
On the other hand, the maximal operators K∗ and H∗ coincide and they define the same

Hardy space H1 as the heat maximal operator h∗ , according to Propositions 2.9 and 3.3.
Indeed, for every f ∈L1(Rn, dµ), the integrals

∫

Rn

dµ(x) h∗f(x) and

∫

Rn

dµ(x) H∗f(x)

differ at most by a multiple of ‖f‖L1 , which is itself controlled by either integral above, as
ht(x,y) dµ(y) and Ht(x,y) dµ(y) are approximations of the identity.

In conclusion, the atomic Hardy space H1 associated with Euclidean balls coincide with
the Hardy space H1 defined by the heat maximal operator h∗ .

�

5. Proof of Theorem 1.10

The proof of Theorem 1.10 requires some weighted estimates in Dunkl analysis, which are
well-known in the Euclidean setting corresponding to k= 0. Let us first prove a weak analog
of the Euclidean estimate

‖(1+|ξ|)σ f̂(ξ)‖L1(dξ) . ‖f‖
W

σ+n/2+ε
2

.

Lemma 5.1. For every ℓ∈N and r>0, there is a constant C =Cℓ,r>0 such that

sup ξ∈Rn (1+|ξ|)ℓ |Ff(ξ)| ≤ C ‖f‖Cℓ ,

for every f ∈Cℓ(Rn) with supp f⊂B(0, r).

1 Recall that an atom is a measurable function a : X → C such that a is supported in a quasi-ball B̃ ,

‖a‖L∞ . µ(B̃)−1 and

∫

X

dµ a= 0.
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Proof. By using the Riemann-Lebesgue lemma for the Fourier transform (1.9), we get

sup ξ∈Rn (1+|ξ|)ℓ |Ff(ξ)| . supξ∈Rn

(
1+

∑n

j=1
|ξj|ℓ

)
|Ff(ξ)|

≤ ‖f‖L1(dµ) +
∑n

j=1
‖Dℓ

j f ‖L1(dµ) .

The last expression is bounded by ‖f‖Cℓ as, by induction on ℓ, supp(Dℓ
j f) ⊂ B(0, r) and

‖Dℓ
j f ‖L∞ . ‖f‖Cℓ . �

Corollary 5.2. For every ℓ∈N, r>0 and ε>0, there is a constant C =Cℓ,r,ε>0 such that

‖(1+|ξ|)ℓ−N/2−εFf(ξ)‖L2(dµ(ξ)) ≤ C ‖f‖
W

ℓ+n/2+ε
2

,

for every f ∈W ℓ+n/2+ε
2 (Rn) with supp f⊂B(0, r).

Proof. This result is deduced from Lemma 5.1, by using on the left hand side the finiteness of
the integral ∫

Rn

dµ(ξ) (1+|ξ|)−N−2ε

and on the right hand side the Euclidean Sobolev embedding theorem. �

Proposition 5.3. For every σ> 0, r > 0 and ε> 0, there is a constant C = Cσ,r,ε> 0 such
that

‖(1+|ξ|)σFf(ξ)‖L2(dµ(ξ)) ≤ C ‖f‖W σ+ε
2

,

for every f ∈W σ+ε
2 (Rn) with supp f⊂B(0, r).

Proof. Let χ ∈ C∞
c (Rn). Following an argument due to Mauceri-Meda [13], this result is

obtained by interpolation between the L2 estimate

‖F(χf)‖L2(dµ) = const. ‖χf ‖L2(dµ) . ‖f‖L2(dx) ,

which is deduced from Plancherel’s formula, and the following estimate for ℓ∈N large, which
is deduced from Corollary 5.2 :

‖(1+|ξ|)ℓ−N/2−ε ′F(χf)(ξ)‖L2(dµ(ξ)) . ‖χf ‖
W

ℓ+n/2+ε ′
2

. ‖f‖
W

ℓ+n/2+ε ′
2

.

�

By using the Cauchy-Schwartz inequality, we deduce eventually the following result.

Corollary 5.4. For every σ>0, r>0 and ε>0, there is a constant C =Cσ,r,ε>0 such that
∫

Rn

dµ(ξ) (1+|ξ|)σ |Ff(ξ)| ≤ C ‖f‖
W

σ+N/2+ε
2

,

for every f ∈W σ+N/2+ε
2 (Rn) with supp f⊂B(0, r).

Let us next prove analogs in the Dunkl setting of the Euclidean estimates∫

Rn

dx (1+|x|)δ |f ∗ g(x)| ≤
∫

Rn

dz (1+|z|)δ |f(z)|
∫

Rn

dy (1+|y|)δ |g(y)| ,

and ∫

RnrB(y,r)
dx |f(x−y)| . r−δ ‖(1+|x|)δf(x)‖L1(dx) .

Recall that Dunkl translations are defined via the Fourier transform (1.9) by

(τyf)(x) = c−1
k

∫

Rn

dµ(ξ)Ff(ξ)E(x, iξ)E(y, iξ)
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(see [17, 24, 19, 23]) and have an explicit integral representation

(τyf)(x) =

∫

Rn

dνx,y(z) f(z) ,

in dimension 1 (see [16, 23, 2]) and hence in the product case. Specifically,

dνx,y(z) = dν (1)
x1,y1(z1) . . . dν

(n)
xn,yn(zn) ,

where

dν (j)
xj ,yj(zj) =





νj(xj , yj, zj) |zj |2kj dzj if xj, yj ∈R∗,

dδyj(zj) if xj= 0,

dδxj(zj) if yj= 0,

and

νj(xj , yj , zj) =
Γ(kj+

1
2
)

√
π 22kj Γ(kj)

(xj+yj+zj)(−xj+yj+zj)(xj−yj+zj)
xj yj zj

× {(|xj |+|yj|+|zj |)(−|xj |+|yj|+|zj |)(|xj |−|yj|+|zj|)(|xj |+|yj|−|zj|)}kj−1

|xj yj zj |2kj−1

× 1I [||xj|−|yj ||, |xj|+|yj|] (|zj |) .

Thus νx,y is a signed measure, which is supported in the product

Ix,y = Ix1,y1 × . . . × Ixn,yn
of one-dimensional sets

Ixj ,yj =
{
zj ∈R |

∣∣|xj |− |yj |
∣∣≤ |zj | ≤ |xj|+ |yj |

}

=
[
−|xj |−|yj|,−

∣∣|xj |−|yj|
∣∣] ∪

[∣∣|xj |−|yj |
∣∣ , |xj |+|yj |

]

and which is generically given by

dνx,y(z) = ν1(x1, y1, z1) . . . νn(xn, yn, zn)︸ ︷︷ ︸
ν(x,y,z)

dµ(z) .

Moreover, it is known (see [16, 23, 2]) that

supx,y∈Rn |νx,y |(Rn) < +∞ .

Lemma 5.5. For every δ ≥ 0, L1((1+ |x|)δdµ(x)) is an algebra with respect to the Dunkl
convolution product

f ∗ g(x) =
∫

Rn

dµ(y) (τ−yf)(x) g(y) .

Proof. By using the symmetries

ν(x,−y, z) = ν(−z,−y,−x) = ν(z,y,x) ,

we have

f ∗ g(x) =
∫

Rn

dµ(z) f(z)

∫

Rn

dµ(y) g(y)ν(z,y,x) .

We conclude by estimating
∫

Iz,y

dµ(x) (1+|x|)δ |ν(z,y,x)| . (1+|z|)δ (1+|y|)δ .

�
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Lemma 5.6. For every δ > 0, there is a constant C > 0 such that, for every y ∈ R
n and

r>0, ∫

RnrO(y,r)
|(τ−yf)(x)| dµ(x) ≤ C r−δ ‖f‖L1((1+|x|)δdµ(x)) ,

where
O(y, r) = {x∈R

n | ||xj |− |yj || ≤ r ∀ 1≤ j ≤n }
is the orbit of the ball B(y, r) under the group generated by the reflections (1.1).

Proof. As R
n
rO(y, r) is contained in the union of the sets

Aj = {x∈R
n | ||xj |− |yj||> n−1/2 r } (j = 1, . . . , n),

we have∫

RnrO(y,r)
|(τ−yf)(x)| dµ(x) ≤

∑n

j=1

∫

Aj

dµ(x)

∫

Ix,y

dµ(z) |ν(x,−y, z)| |f(z)| .

As
|z| ≥ |zj | ≥ ||xj |− |yj|| > n−1/2 r

when x∈Aj and z∈Ix,y , the latter expression is bounded above by

nδ/2 r−δ
∫

Rn

dµ(z) |z|δ |f(z)|
∫

Rn

dµ(x) |ν(x,−y, z)| .

We conclude by using the uniform estimate∫

Rn

dµ(x) |ν(x,−y, z)| =
∫

Rn

dµ(x) |ν(z,y,x)| ≤ C.

�

Let us turn to the proof of Theorem 1.10, which consists in estimating

(5.7) ‖h∗(Tma)‖L1(dµ) .M,

for every atom a in the Hardy space H1. By rescaling it suffices to prove (5.7) for any atom
a associated with a unit ball B(z, 1). As h∗ and Tm are bounded on L2(Rn, dµ), we have

‖h∗(Tma)‖L1(O(z,2),dµ) .M.

Thus it remains for us to show that

(5.8) ‖h∗(Tma)‖L1(RnrO(z,2),dµ) .M.

For this purpose, let us introduce a dyadic partition of unity on the Dunkl transform side.
More precisely, given a smooth radial function ψ on R

n such that

suppψ ⊂ { ξ∈R
n | 12 ≤ |ξ| ≤ 2 } and

∑
ℓ∈Z

ψ(2−ℓξ)2 = 1 ∀ ξ∈R
n
r{0} ,

let us split up

e−t|ξ|
2
m(ξ) =

∑
ℓ∈Z

ψ(2−ℓξ) e−t|ξ|
2
ψ(2−ℓξ)m(ξ) .

Set

mt,ℓ(ξ) =

ψt,ℓ(ξ)︷ ︸︸ ︷
ψ(ξ) e−t|2

ℓξ|2
mℓ(ξ)︷ ︸︸ ︷

ψ(ξ)m(2ℓξ),

ft,ℓ = F−1(mt,ℓ) = F−1(ψt,ℓ)︸ ︷︷ ︸
gt,ℓ

∗ F−1(mℓ)︸ ︷︷ ︸
wℓ

.

Then e−t|ξ|
2
m(ξ) =

∑
ℓ∈Z

mt,ℓ(2
−ℓξ). Consider the convolution kernel

Ft,ℓ(x,y) = τ−y F−1
{
mt,ℓ(2

−ℓ .)
}
(x) = 2Nℓ(τ−2ℓyft,ℓ)(2

ℓx).



THE HARDY SPACE H1 IN THE RATIONAL DUNKL SETTING 19

Lemma 5.9. (a) On the one hand, for every 0≤δ<ε, we have
∫

RnrO(z,2)
dµ(x) sup

t>0
|Ft,ℓ(x,y)| . M 2−δℓ ∀ ℓ∈Z, ∀ z∈R

n, ∀ y∈O(z, 1).

(b) On the other hand,
∫

Rn

dµ(x) sup
t>0

|Ft,ℓ(x,y)−Ft,ℓ(x,y ′)| . M 2ℓ |y−y ′| ∀ ℓ∈Z, ∀ y,y ′∈R
n.

Proof. On the one hand, as
∣∣∂α

ξ

(
ψ(ξ)e−t|ξ|

2)∣∣ ≤ Cα ∀ t>0, ∀ ξ∈R
n,

Lemma 5.1 yields the estimate

|gt,ℓ(x)| ≤ Cd (1+|x|)−d ∀x∈R
n,

which holds for any d ∈ N and which is uniform in t > 0 and ℓ ∈ Z. On the other hand,
Corollary 5.4 yields the estimate

∫

Rn

dµ(x) (1+|x|)δ |wℓ(x)| .M,

which holds uniformly in ℓ∈Z. By resuming the proof of Lemma 5.5, we deduce that

(5.10)

∫

Rn

dµ(x) (1+|x|)δ sup
t>0

|ft,ℓ(x)| .M.

We reach our first conclusion by rescaling and by using Lemma 5.6 :
∫

RnrO(z,2)
dµ(x) sup

t>0
|Ft,ℓ(x,y)| ≤

∫

RnrO(y,1)
dµ(x) sup

t>0
|Ft,ℓ(x,y)|

=

∫

RnrO(2ℓy,2ℓ)
dµ(x) sup

t>0
|(τ−2ℓyft,ℓ)(x)| . M 2−δℓ .

Let us turn to the proof of (b). This time we factorize

mt,ℓ(ξ) =

ψ̃t,ℓ(ξ)︷ ︸︸ ︷
ψ(ξ) e|ξ|

2
e−t|2

ℓξ|2
mℓ(ξ)︷ ︸︸ ︷

ψ(ξ)m(2ℓξ)︸ ︷︷ ︸
m̃t,ℓ(ξ)

e−|ξ|2 ,

and accordingly

ft,ℓ = F−1(mt,ℓ) = F−1(m̃t,ℓ)︸ ︷︷ ︸
f̃t,ℓ

∗ F−1(e−|ξ|2)︸ ︷︷ ︸
h

.

On the one hand, by resuming the proof of (5.10), we get
∫

Rn

dµ(x) sup
t>0

|f̃t,ℓ(x)| .M.

On the other hand, h(x,y) = (τ−yh)(x) is the heat kernel at time t= 1, which satisfies
∫

Rn

dµ(x) |h(x,y)−h(x,y ′)| . |y−y ′| ∀ y,y ′∈R
n,

according to next lemma. After rescaling, we reach our second conclusion :
∫

Rn

dµ(x) sup
t>0

|Ft,ℓ(x,y)−Ft,ℓ(x,y ′)| . M 2ℓ |y−y ′| .

�
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Lemma 5.11. The following gradient estimate holds for the heat kernel :∫

Rn

dµ(x) |∇yht(x,y)| . t−
1
2 ∀ t>0, ∀ y∈R

n.

Proof. We can reduce to the one-dimensional case and moreover to t = 1 by rescaling. It
follows from our gradient estimates for the heat kernel in dimension 1 (see Proposition 2.3)
that ∣∣ ∂

∂y h1(x, y)
∣∣ . 1

1+ |xy|k e
− 1

8
(|x|−|y|)2 .

• Case 1 : Assume that |y| ≤ 2. Then |∂yh1(x, y)|. e−x
2/16, hence

∫ +∞

−∞
dx |x|2k

∣∣ ∂
∂y h1(x, y)

∣∣ . 1 .

• Case 2 : Assume that |y| ≥ 2. Then |x|/|y| ≤ 1+ 1
2

∣∣|x|− |y|
∣∣, hence

|x|2k
∣∣ ∂
∂y h1(x, y)

∣∣ .
( |x|
|y|
)k
e−

1
8
(|x|−|y|)2 .

(
1+

∣∣|x|− |y|
∣∣)k e− 1

8
(|x|−|y|)2 . e−

1
16

(|x|−|y|)2

and ∫ +∞

−∞
dx |x|2k

∣∣ ∂
∂y h1(x, y)

∣∣ .

∫ +∞

0
dx e−

1
16

(x−|y|)2 .
∫ +∞

−∞
dz e−

1
16
z2 . 1 .

�

End of proof of Theorem 1.10. Let us split up and estimate

|h∗(Tma)(x)| ≤
∑

ℓ≥0
|h∗(Tψ(2−ℓ.)2ma)(x)| +

∑
ℓ<0

|h∗(Tψ(2−ℓ.)2ma)(x)|

=
∑

ℓ≥0
supt>0

∣∣∣
∫

B(z,1)
dµ(y)Ft,ℓ(x,y) a(y)

∣∣∣

+
∑

ℓ<0
supt>0

∣∣∣
∫

B(z,1)
dµ(y)

{
Ft,ℓ(x,y)−Ft,ℓ(x, z)

}
a(y)

∣∣∣

≤
∑

ℓ≥0

∫

B(z,1)
dµ(y) |a(y)| supt>0

∣∣Ft,ℓ(x,y)
∣∣

+
∑

ℓ<0

∫

B(z,1)
dµ(y) |a(y)| supt>0

∣∣Ft,ℓ(x,y)−Ft,ℓ(x, z)
∣∣ .

Then (5.8) follows from Lemma 5.9. �

Example 5.1. The Riesz transforms Rj = Dj(−L)−1/2 in the Dunkl setting correspond to
the multipliers ξj/|ξ|, up to a constant. Hence, by Theorem 1.10, they are bounded operators

on the Hardy space H1.

6. Appendixes

6.1. Appendix A : Measure of balls.

Recall that k1, . . . , kn ≥ 0 and N= n+
∑n

j=12kj . On R
n, equipped with the Euclidean

distance, the product measure

(1.4) dµ(x) = dµ1(x1) . . . dµn(xn) = |x1|2k1 . . . |xn|2kn dx1 . . . dxn
has the following rescaling properties :

(6.1) dµ(λx) = |λ|N dµ(x) ∀ λ∈R
∗

and

(6.2) µ(B(λx, |λ|r)) = |λ|N µ(B(x, r)) ∀ x∈R
n, ∀ λ∈R

∗.
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Moreover

(6.3) µ(B(x, r)) ≍ rn
∏n

j=1
(|xj |+ r)2kj .

Hence

(6.4)
(
R
r

)n
.

µ(B(x,R))
µ(B(x,r)) .

(
R
r

)N ∀ x∈R
n, ∀ R≥ r> 0.

In particular, µ is doubling, i.e.,

(6.5) µ(B(x, 2r)) ≍ µ(B(x, r)) ∀ x∈R
n, ∀ r> 0.

Let us prove (6.3) and (6.4). In dimension n= 1, we have

µ(B(x, r)) =

∫ |x|+r

|x|−r
dy |y|2k .

On the one hand, if r ≤ |x|
2 , we deduce that

µ(B(x, r)) ≍ |x|2k
∫ |x|+r

|x|−r
dy ≍ |x|2k r .

On the other hand, if |x| ≤ 2r , we estimate from above

µ(B(x, r)) ≤
∫ 3r

−r
dy |y|2k ≍ r2k+1

and from below

µ(B(x, r)) ≥
∫ r

0
dy y2k ≍ r2k+1 .

Thus µ(B(x, r))≍(|x|+r)2kr in all cases and

µ(B(x, r)) ≍
(
|x|+R
|x|+ r

)2k
R
r ≍





(
R
r

)2k+1
if |x| ≤ r,(

R
|x|
)2k R

r if r ≤ |x| ≤R ,
R
r if |x| ≥R .

The product case follows from the one-dimensional case, since the ball B(x, r) and the cube

Q(x, r) =
∏n

j=1
B(xj , r)

have comparable measures. More precisely, we have

Q(x, r√
n
) ⊂ B(x, r) ⊂ Q(x, r),

with
µ(Q(x, r√

n
)) ≍ µ(Q(x, r)) ≍ rn

∏n

j=1
(|xj |+ r)2kj .

6.2. Appendix B : Distances.

The following result, which is used in Section 4, is certainly known among specialists. We
include nevertheless a proof, for lack of reference and for the reader’s convenience.

Lemma 6.6. Let (X, d, µ) be a metric measure space such that balls have finite positive mea-
sure and satisfy the doubling property, i.e.,

∃ C>0, ∀ x∈X, ∀ r>0, µ(B(x, 2 r)) ≤ C µ(B(x, r)) .

Set
d̃(x, y) = inf µ(B),

where the infimum is taken over all closed balls B containing x and y . Then
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(a) d̃ is a quasi-distance,

(b) d̃(x, y)≍ µ(B(x, d(x, y))) ∀ x, y∈X,

Moreover, if the measure µ has no atoms and µ(X) = +∞, then

(c) µ(B̃(x, r))≍ r, for every x∈X and r>0, where B̃(x, r) denotes the closed quasi-ball
with center x and radius r.

Proof. Let us first prove (b). Set R= d(x, y). On the one hand, we have d̃(x, y)≤ µ(B(x,R)),
as x and y belong to B(x,R). On the other hand, if x and y belong to a ball B =B(z, r), then
R≤ 2 r , hence B(x,R)⊂B(z, 3r) and µ(B(x,R))≤ µ(B(z, 3r))≍ µ(B(z, r)). By taking the

infimum over all balls B containing both x and y , we conclude that µ(B(x,R)) . d̃(x, y).
Let us next prove (a). For every x, y, z∈X, we have d(x, y) ≤ d(x, z)+ d(z, y). Assume that
r = d(x, z)≥ d(z, y). Then x, y∈B(z, r). By using (b), we conclude that

d̃(x, y) ≤ µ(B(z, r) ≍ d̃(z, x) ≤ max {d̃(x, z), d̃(z, y)} ≤ d̃(x, z)+ d̃(z, y) .

Let us eventually prove (c). Given x ∈ X, notice that µ(B(x, r)) is an increasing càdlàg
function of r∈(0,+∞) such that

{
µ(B(x, r)) ց 0 as rց 0 ,

µ(B(x, r)) ր +∞ as rր +∞ .

Here we have used our additional assumptions. Let x∈X and r > 0. On the one hand, for

every y∈ B̃(x, r), we have µ(B(x, d(x, y))≍ d̃(x, y)≤ r . Hence

R = sup {d(x, y)| y∈ B̃(x, r)} < +∞ .

Let y∈ B̃(x, r) such that d(x, y)≥ R
2 . Then B̃(x, r)⊂B(x,R)⊂B(x, 2 d(x, y)). Hence

µ(B̃(x, r)) ≤ µ(B(x, 2 d(x, y)) ≍ µ(B(x, d(x, y)) ≍ d̃(x, y) ≤ r .

On the other hand,

T = inf {t>0 |µ(B(x, t))≥r} > 0 .

As µ(B(x, T2 )) < r, we have d̃(x, y) < r , for every y ∈ B(x, T2 ), hence B(x, T2 ) ⊂ B̃(x, r).
Consequently,

r ≤ µ(B(x, T )) ≍ µ(B(x, T2 )) ≤ µ(B̃(x, r)).

�

6.3. Appendix C : Kernel bounds.

Recall from Section 4 that the kernels Kr(x,y) and Ht(x,y) are related by

(4.2) Kr(x,y) = Ht(x,y) ,

where r = µ(B(x,
√
t )). In this appendix, we check that the Gaussian estimates of Ht(x,y)

in Theorem 3.2 imply the estimates of Kr(x,y) required in Uchiyama’s Theorem (Theorem
4.1). This result is certainly well-known among specialists. We include nevertheless a proof,
for lack of reference and for the reader’s convenience.

According to Appendices A and B, we may consider the quasi-distance d̃ on Rn associated
with the Euclidean distance d(x,y) = |x−y| and the product measure (1.4). The on-diagonal
lower estimate

(6.7) Kr(x,x) ≥ C1
r

is an immediate consequence of Theorem 3.2.(a). For every δ>0, the upper estimate

(6.8) Kr(x,y) ≤ C2
r

(
1+ d̃(x,y)

r

)−1−δ
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follows from Theorem 3.2.(b), more precisely by combining

Kr(x,y) . r−1 e−
|x−y |2

c t

with

(6.9)
(
1+ d̃(x,y)

r

)1+δ ≤
(
1+ µ(B(x, |x−y |))

µ(B(x,
√
t ))

)1+δ
.

(
1+ |x−y |√

t

)N(1+δ)
. e

|x−y |2
c t .

The main problem consists in checking the following Lipschitz estimate.

Lemma 6.10. There exists C3>0 and, for every δ>0, there exists C4>0 such that

(6.11)
∣∣Kr(x,y)−Kr(x,y

′)
∣∣ ≤ C4

r

(
1+ d̃(x,y)

r

)−1−δ ( d̃(y,y ′)
r

) 1
N

if d̃(y,y ′)≤C3max {r, d̃(x,y)}.
Proof. Let us begin with some observations. First of all, (6.11) follows from (6.8), as long as

d̃(y,y ′)≍ r . In this case, we have indeed

1 + d̃(x,y)
r ≍ 1 + d̃(x,y ′)

r .

Next, notice that {
|x−y|.

√
t ⇐⇒ d̃(x,y). r,

|x−y|&
√
t ⇐⇒ d̃(x,y)& r.

This follows indeed from the estimates
d̃(x,y)
r ≍ µ(B(x, |x−y |))

µ(B(x,
√
t ))

and (
R
r

)n
.

µ(B(x,R))
µ(B(x,r)) .

(
R
r

)N
if r.R.

Similarly, we have
|y−y ′|. |y−x| ⇐⇒ d̃(y,y ′). d̃(y,x).

In particular, there exists C3>0 such that

|y−y ′| ≤ 1
2 |x−y| if d̃(y,y ′)≤ C3 d̃(x,y).

Let us turn to the proof of (6.11) and assume first that d̃(x,y)≥ r . In this case, |x−y|&
√
t

and d̃(y,y ′)≤C3 d̃(x,y), hence |y−y ′| ≤ 1
2 |x−y|. Thus, according to Theorem 3.2.(d),

|Kr(x,y)−Kr(x,y
′)| = |Ht(x,y)−Ht(x,y

′)|
is bounded above by

µ(B(x,
√
t ))−1 e−

|x−y |2
c t

|y−y ′|√
t

.

After substituting r = µ(B(x,
√
t )) and estimating
(
1+ d̃(x,y)

r

)1+δ
. e

|x−y |2
2 c t

as in (6.9), it remains for us to show that

(6.12) |y−y ′|√
t

.
( d̃(y,y ′)

r

) 1
N e

|x−y |2
2 c t .

If |y−y ′| ≤
√
t , then

d̃(y,y ′)
r ≍ µ(B(y, |y−y′|))

µ(B(x,
√
t ))

= µ(B(y, |y−y′|))
µ(B(y,

√
t ))

µ(B(y,
√
t ))

µ(B(x,
√
t ))

with
µ(B(y, |y−y′|))
µ(B(y,

√
t ))

&
( |y−y ′|√

t

)N
and

µ(B(y,
√
t ))

µ(B(x,
√
t ))

≥ µ(B(y,
√
t ))

µ(B(y, |x−y |+
√
t ))

&
( √

t
|x−y |+

√
t

)N
=

(
1+ |x−y |√

t

)−N
& e−

N
2

|x−y |2
c t .

If |y−y ′| ≥
√
t , we argue similarly, estimating this time
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µ(B(y, |y−y′|))
µ(B(y,

√
t ))

&
( |y−y ′|√

t

)n
&

( |y−y ′|√
t

)N ( |x−y |√
t

)−(N−n)
&

( |y−y ′|√
t

)N
e−

N
4

|x−y |2
c t

and
µ(B(y,

√
t ))

µ(B(x,
√
t ))

& e−
N
4

|x−y |2
c t .

Assume next that d̃(x,y)≤ r . Then |x−y|.
√
t , d̃(y,y ′)≤C3 r and (6.11) amounts to

∣∣Kr(x,y)−Kr(x,y
′)
∣∣ . r−1

( d̃(y,y ′)
r

) 1
N .

According to Theorem 3.2.(d),

|Kr(x,y)−Kr(x,y
′)| = |Ht(x,y)−Ht(x,y

′)| . µ(B(x,
√
t ))−1 |y−y ′|√

t
.

As
µ(B(y,

√
t )) ≍ µ(B(x,

√
t )) = r ,

we have
d̃(y,y ′)

r ≍ µ(B(y, |y−y ′|))
µ(B(y,

√
t ))

.

As d̃(y,y ′)
r ≤ C3 and µ(B(y, |y−y ′|))

µ(B(y,
√
t ))

is bounded from below by a power of |y−y ′|√
t

, we deduce

first that |y−y ′|.
√
t and next that

d̃(y,y ′)
r &

( |y−y ′|√
t

)N
.

This concludes the proof of Lemma 6.10. �
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