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On the solutions of a singular elliptic equation

concentrating on two orthogonal spheres

B. B. Manna∗, P. N. Srikanth †

April 7, 2019

Abstract

Let A = {x ∈ R
2m : 0 < a < |x| < b} be an annulus. Consider the following

singularly perturbed elliptic problem on A

−ε2∆u+ |x|ηu = |x|ηup, in A

u > 0 in A

u = 0 on ∂A

1 < p < 2∗ − 1. We shall prove the existence of a positive solution uε which
concentrates on two different orthogonal spheres of dimension (m−1) as ε → 0.
We achieve this by studying a reduced problem on an annular domain in R

m+1

and analyzing the profile of a two point concentrating solution in this domain.

1 Introduction

Consider the following singularly perturbed elliptic equation with super linear non-
linearity on an annulus in R

2m

−ε2∆u+ |x|ηu = |x|ηup, in A
u > 0 in A
u = 0 on ∂A

(1.1)
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†P. N. Srikanth ,TIFR CAM , Bangalore, email: srikanth@math.tifrbng.res.in
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1 < p < 2∗ − 1, ε is a singular perturbation parameter. A = {x ∈ R
2m : 0 < a <

|x| < b}. η = 2m−2
m−2

. Let us take a suitable polar co-ordinate on the annulus A as

A = I × (J × Sm−1 × Sm−1).

Where I = (a, b), J = [0, π/2) and Sm−1 has the standard polar co-ordinate rep-
resentation. For x ∈ A we can write x ≡ x(r, θ, θ11, θ

1
2, . . . , θ

1
m−1, θ

2
1, θ

2
2 . . . , θ

2
m−1),

where r ∈ I, θ ∈ J and θi1 ∈ [0, 2π) for i = 1, 2 and θij ∈ [0, π) for i = 1, 2 and
j = 2, . . . , m− 1. In this paper we shall prove the following result

Theorem 1.1. The equation (1.1) has a solution uε which concentrates on two
orthogonal spheres as ε → 0. The radial co-ordinate of the spheres is (a + b)/2 and
placed at the angle θ = 0 and θ = π/2.

This is the first result of its kind where one shows the concentration along two
spheres which are orthogonal to each other.

The existence of least energy solution of such singularly perturbed elliptic prob-
lem concentrating at a point has been well studied in the papers [8],[9],[10],[11]. In
[11] the authors have studied similar type of problem with Dirichlet data and have
shown that the least energy solution the concentrates at a single point as ε → 0 and
the point of concentration converges to a point with the maximum distance from the
boundary of the domain. Also in [8] and [9] the same problem has been studied for
Neumann data. There authors have proved that for ε small enough the unique point
of maxima goes to the point with maximum mean curvature of the boundary.

Different type of Sn concentration phenomena has been studied by several
authors. One of the pioneer works has been done by Ruf and srikanth [13] where the
authors have considered the similar type of problem in 4-dimension and have shown
the solutions concentrate on a circle. Pacella and Srikanth in [12] have shown the
(m− 1) dimensional spherical concentration for the similar type of problem.

Here in this work we shall first reduce the problem on an annulus in R
m+1 first.

There we shall look for least energy solution in an appropriate space and shall show
the existence of solution which concentrates exactly at two points. Dancer and Yan
in [2], have shown the existence of multi peak solution for domains with holes. See
the work of Monica Clapp et al. in [7] for similar type of result. However our result,
even it is specific, gives precise information of the concentrating solution and their
profile.

Also we can extend our result for any η and we can prove the following result
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Theorem 1.2. The equation (1.1) has a solution uε which concentrates on two
orthogonal spheres as ε → 0. The spheres are placed at the angle θ = 0 and θ = π/2
and radial co-ordinate of the spheres is

(i) r = a if η < 2m−2
m−2

.

(ii) r = (a+ b)/2 if η = 2m−2
m−2

.

(iii) r = b if η > 2m−2
m−2

.

We can express a point x ∈ A in precise as x = (x1, x2), xi ∈ R
m Let ρ1 = r cosθ

and ρ2 = r sinθ. Then we can express x1, x2 as x1 ≡ x1(ρ1, σ1) and x2 ≡ x2(ρ2, σ2),
σi ∈ Sm−1 ⊂ R

m Thus finally we can express x precisely as

x ≡ x(r, σ1, σ2, θ) (1.2)

. The expression of the Laplacian in this co-ordinate given as

∆R2mu = urr +
2m− 1

r
ur +

m− 1

r2
uθ

[2cos2θ

sin2θ

]

+
uθθ

r2
+

2
∑

i=1

1

r2cos2θ
∆σi

Sm−1u (1.3)

where ∆σi

Sm−1 is the Laplace-Beltrami operator on Sm−1 in σi variable. Define

X = {u ∈ H1
0 (A) : u is independent of θ21, θ

2
2 . . . , θ

2
m−1} (1.4)

Then for u ∈ X we have

∆R2mu = urr +
2m− 1

r
ur +

m− 1

r2
uθ

[2cos2θ

sin2θ

]

+
uθθ

r2
+

1

r2cos2θ
∆σ1

Sm−1u (1.5)

Consider the riemannian submersion ϕ : A → Ω given by

ϕ(x(r, σ1, σ2, θ)) = y(s, σ1, 2θ).

Where Ω is the annulus I ′ × Sm, I ′ = s(I) and s(r) =
[

m(m−2)2

(2m−3)(2m2−4m+1)

]1/2

r
2m−3

m−2 .

For u ∈ X we can define v(s, σ1, 2θ) := u(r, σ1, σ2, θ). Then for η = 2m−2
m−2

, we can
easily check that , u satisfies (1.1) iff v satisfies

−ε2∆v + v = vp, in Ω
v > 0 in Ω
v = 0 on ∂Ω

(1.6)

Our aim is to prove the existence of two-peak solutions of (1.6) and the location of
the peaks as ε → 0. From this the theorem1.1 shall follow easily.
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2 Existence of two peak solutions

Let us define H♯(Ω) ⊂ H1
0 (Ω) as

H♯(Ω) = {u ∈ H1
0 (Ω) : u(x1, . . . , xm, xm+1) ≡ u(

√

x2
1 + · · ·+ x2

m, |xm+1|)}.

Note that any solution in H♯ shall have at least two local maxima (antipodal
points). We shall show that there exists a solution with exactly two local maximas
for ε ≪ 1.

Lemma 2.1. H♯(Ω) is a closed subspace of H1
0 (Ω) and H1

0,rad(Ω) ⊂ H♯(Ω).

The energy functional Jε(u) is defined as

Jε(u) =

∫

Ω

(
ε2

2
|∇u|2 +

u2

2
)dx−

1

p+ 1

∫

Ω

up+1
+ dx (2.1)

Lemma 2.2. The Morse index of any radial solution of (1.6) is ≥ 2.

Proof. Let u ∈ H1
0,rad(Ω) satisfies (1.6). Then

D2Jε(u)[u, u] =

∫

Ω

(ε2|∇u|2 + u2)dx− p

∫

Ω

up+1dx < 0

as p > 1 and u 6= 0.

Now let v = u cos(2θ) where the coordinate system of Ω is taken as standard
polar co-ordinate. Note that u being radial we have v ≡ v(r, θ). Then ∆v in standard
polar co-ordinate takes the form

∆v = vrr +
m

r
vr +

1

r2
vθθ +

m− 1

r2
cosθ

sinθ
vθ.

So we have

∆v = (urr +
m

r
ur)cos2θ −

4

r2
u cos2θ −

2(m− 1)

r2
cosθ

sinθ
sin2θ u

−ε2∆v = (−ε2∆u)cos2θ +
4ε2

r2
u cos2θ +

4(m− 1)ε2

r2
cos2θ u
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= (−u+ up)cos2θ +
4ε2

r2
u cos2θ +

4(m− 1)ε2

r2
cos2θ u

Hence

〈−ε2∆v + (1− pup−1v, v〉

=(1− p)

∫

Ω

up+1cos22θdx+

∫

Ω

4ε2

r2
u2 cos22θdx+

∫

Ω

4(m− 1)ε2

r2
cos2θcos2θ u2dx

=C

∫ b

a

∫ π

0

[

(1− p)rmup+1cos22θ + 4ε2rm−2u2 cos22θ + 4(m− 1)ε2rm−2u2cos2θcos2θ
]

drdθ

Integrating over θ and using a > 0 as the lower bound of r we get, for some
positive constant(generic) C

〈−ε2∆v + (1− pup−1v, v〉 ≤ C

∫ b

a

[

(1− p)up+1 + Cε2u2
]

rmdr

u being a radial solution of (1.6) we have

∫ b

a

[up+1 − u2]rmdr =

∫ b

a

|ur|
2rmdr > 0

Hence the result follows by taking ε small enough such that (1 − p) + Cε2 < 0. So
u and v being orthogonal we see that the Morse index of any radial solution u is
greater or equal to 2.

Remark. Note that H♯ is closed in H1
0 (Ω) (hence compactly embedded in L2(Ω)).

It can be easily shown that Jε satisfies (PS)c condition for any critical value c. Also
it has M-P geometry near the origin. Next we shall construct a test function, from
which we shall get a M-P critical level cε. Also using the test function we shall get
an upper bound of cε which shall help us analyzing the behavior of a sequence of
solutions as ε → 0.

Consider the following equation















−∆U + U = Up in R
m+1

U > 0 in R
m+1

lim
|x|→∞

U(x) = 0 U(0) = max
x∈Rm+1

U(x)
(2.2)
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The energy functional J(U) of (2.2) given by

J(U) =
1

2

∫

Rm+1

(|∇U |2 + U2)dx+
1

p+ 1

∫

Rm+1

Up+1dx, U ∈ H1(Rm+1) (2.3)

It is well known that, there exists a least positive critical value c∗ characterize by

c∗ = inf
v 6=0

max
t>0

J(v) (2.4)

. And there is a least energy solution U of (2.2) such that U(x) = U(|x|) and

|DαU(x)| ≤ Cexp(−δ|x|) (2.5)

for some c, δ > 0 and any |α| ≤ 2. Furthermore U satisfies the Pohozaev identity

m− 1

2

∫

Rm+1

|∇U |2dx+
m+ 1

2

∫

Rm+1

U2dx+
m+ 1

p+ 1

∫

Rm+1

Up+1(y)dx = 0 (2.6)

Define

Zγ
ε,t = Φγ

(x−Q

t

)

U
(x−Q

εt

)

+ Φγ

(x+Q

t

)

U
(x+Q

εt

)

(2.7)

where Q = (0, . . . , 0, a+b
2
) ∈ Ω (I ′ = (a, b) say) and φγ is a non-negative smooth

radial function supported in B(0, 2γ) and ∇φγ < 2/γ and

φγ(r) =

{

1 for 0 ≤ r ≤ γ

0 otherwise .

Also γ is choose so that B(0, 2tγ) ⊂ B(0, b−a
2
). We can easily show that Zγ

ε,t ∈ H♯(Ω)

Let us calculate the energy at Zγ
ε,t. First note that the supports of Φγ

(

x−Q
t

)

U
(

x−Q
εt

)

and Φγ

(

x+Q
t

)

U
(

x+Q
εt

)

are disjoint.

Jε(Z
γ
ε,t) =

∫

Ω

(ε2

2
|∇Zγ

ε,t|
2 +

|Zγ
ε,t|

2

2

)

dx−
1

p+ 1

∫

Ω

|Zγ
ε,t|

p+1dx

(2.8)

To get the mountain-pass solution we shall calculate the above energy explicitly.
Denote φ±

γ ≡ φγ(
1
t
(x±Q)) and U± ≡ φγ(

1
εt
(x±Q)) Then

∫

Ω

ε2

2
|∇Zγ

ε,t|
2dx
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=

∫

Ω

ε2

2

∣

∣

∣

(1

t
∇φ−

γ U
− +

1

εt
φ−
γ ∇U−

)

+
(1

t
∇φ+

γ U
+ +

1

εt
φ+
γ ∇U+

)
∣

∣

∣

2

dx

=

∫

Ω

ε2

2

∣

∣

∣

1

t
∇φ−

γ U
− +

1

εt
φ−
γ ∇U−

∣

∣

∣

2

+

∫

Ω

ε2

2

∣

∣

∣

1

t
∇φ+

γ U
+ +

1

εt
φ+
γ ∇U+

∣

∣

∣

2

dx

=I1 + I2 (say)

Make the change of variable y = 1
εt
(x − Q) in I1 and y = 1

εt
(x + Q) in I2 and

using the decay estimate of the solution U of (1.6) we get

∫

Ω

ε2

2
|∇Zγ

ε,t|
2dx

=ε3
∫

B(0,2γ/ε)

(

tφ2
γ(εy)|∇U |2 + 2tεφγ(εy)∇φγ(εy)U(y)∇U(y) + tε2|∇φγ(εy)|

2U2(y)
)

dy

=ε3
(

t

∫

B(0,2γ/ε)

φ2
γ(εy)|∇U |2dy + 2tε

∫

B(0,2γ/ε)

2tεφγ(εy)∇φγ(εy)U(y)∇U(y)dy +O(ε2)
)

=ε3
(

t

∫

Rm+1

|∇U |2dx+O(ε)
)

The Second term is
∫

Ω

1

2
|Zγ

ε,t|
2dx =

∫

A

1

2

∣

∣

∣
φ−
γ U

− + φ+
γ U

+
∣

∣

∣

2

dx

= t3ε3
∫

B(0,2γ/ε)

φ2
γ(εy)U

2(y)dy

= ε3
[

t3
∫

Rm+1

U2(y)dy +O(ε)
]

Similarly

1

p+ 1

∫

Ω

|Zγ
ε,t|

p+1 =
2

p+ 1
ε3
[

t3
∫

Rm+1

Up+1(y)dy +O(ε)
]

Combining all those terms we have

ε−3Jε(Z
γ
ε,t) = 2

[ t

2

∫

Rm+1

|∇U |2dx+
t3

2

∫

Rm+1

U2dx+
t3

p+ 1

∫

Rm+1

Up+1(y)dx+O(ε)
]

(2.9)
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Then from (2.9) we have

ε−3Jε(Z
γ
ε,t) = −(

t3

3
− t)

∫

Rm+1

|∇U |2dx+O(ε). (2.10)

We choose t0 such that

− (
t30
3
− t0)

∫

Rm+1

|∇U |2dx+O(ε) < −1.

Now choose γ such that B(0, 2t0γ) ⊂ B(0, b−a
2
). The there exists ε0 such that

Jε(Z
γ
ε,t0) < 0 for all ε < ε0 (2.11)

. We define
cε = inf

β∈P
max
t∈[0,1]

Jε(β(t)). (2.12)

Where P = {β ∈ C([0, 1], H♯) : β(0) = 0, β(1) = Zγ
ε,t0}. From MP-Lemma we have

cε as a critical value of Jε.

Remark. It can be easily shown that Jε satisfies all the hypothesis of [[6], Thm
10.2](also look at [[4],p.222 and Thm 5.1] and [[5]) ,p.1598]). Hence at the level cε
there is a solution uε of (1.6) with Morse Index less or equal to one. then we can
readily see from lemma2.2 that there is a non radial M-P solution corresponding to
the critical value cε. Also note that the solution is not the least energy solution in
the space H1

0 (Ω).

3 profile of the solution

In this section we follow the line of proof in J.Beyon and J.Park, [1]. Let β(t) = Zγ
ε,tt0 .

Then it follows that limt→0 β(t) = 0 and β(1) = Zγ
ε,t0 . Note that Zγ

ε,tt0 ∈ H♯ for all
t ∈ [0, 1]. More over from (2.9) we have

Jε(Z
γ
ε,t) = 2ε3

[tt0
2

∫

Rm+1

|∇U |2dx+
(tt0)

3

2

∫

Rm+1

U2dx+
(tt0)

3

p+ 1

∫

Rm+1

Up+1(y)dx+O(ε)
]

Hence we have

lim
ε→0

ε−3cε ≤ 2 max
t∈(0,t0)

[ t

2

∫

Rm+1

|∇U |2dx+
t3

2

∫

Rm+1

U2dx+
t3

p+ 1

∫

Rm+1

Up+1(y)dx
]

8



We can easily show that the maximum occurs at t = 1 and hence we have

lim
ε→0

ε−3cε ≤ 2J(U). (3.1)

Now by Sobolev embedding and the bootstrap argument we can find {‖uε‖∞} is
bounded and by maximum principle we see that it is bounded away from 0. Also
from Pohozaev’s identity (2.6) we can have {ε−3 ‖uε‖

2
ε} is bounded where

‖uε‖
2
ε =

∫

Ω

(ε2|∇uε|
2 + u2)dx (3.2)

Let qε ∈ A such that lim infε→0 uε(qε) > 0. Consider

ωε = uε(ε(x− qε)) (3.3)

Lemma 3.1. 1
ε
dist(qε, ∂A) → ∞ as ε → 0.

Proof. Similar proof as given in proposition 4 of [13]

Then it can be easily shown that up to a subsequence ωε converges (locally in
C2) to a finite energy solution W of (2.2). Note that W is non-negative and hence
by uniqueness W = U .

Also from (3.1) we can say that, there can be at most finitely many q1ε , · · · , q
k
ε ∈

A satisfying

(i) limε→0
qiε−qjε

ε
= ∞ for i 6= j and

(ii) lim infε→0 uε(q
i
ε) > 0 for j = 1, 2, · · · , k.

Then from comparison principle we get c and C > 0 such that

uε(x) + |∇uε(x)| ≤ Cexp(−
c

ε
dist(x, q1ε , · · · , q

k
ε )) (3.4)

And this implies
lim inf
ε→0

ε−3Jε(uε) = kJ(U) (3.5)

Then from (3.1) we have k ≤ 2. Note that as uε ∈ H♯, then for any point of maxima
qε of uε, the antipodal point −qε is also a max of uε and qε must lie on xm+1 − axis.

9



4 Location of the spike layers and the proof if The-

orem1.1

We shall determine the location of the peaks by estimating the upper and lower
bounds of the energy. Let qε be one of the maximum points of the solution uε. And
it has been proved that 1

ε
dist(qε, ∂A) → ∞ as ε → 0. Let qε → q as ε → 0. Then

another concentration point is −q.

Consider the following problem in a ball Bρ = {x ∈ R
m+1 : |x| ≤ ρ}, for some

ρ > 0.
−∆u+ u = up, in Bρ

u > 0 in Bρ

u = 0 on ∂Bρ

(4.1)

This functional has a least positive critical value, denoted by cρ , which can be
characterized similarly to (2.12). Using Schwarzs symmetrization, we find at least
one radially symmetric least energy solution of (2.4).

Lemma 4.1.

cρ = c∗ + exp[−2ρ(1 + o(1))],

where c∗ is given in (2.4)

Proof. The proof can be found in lemma 2.1 in [3].

We shall now use the previous lemma to give the upper and lower bound for
cε.

Let Uρ be a corresponding radial least energy solution to (4.1). Define

Uε
ρ = Uρ(ε(x− q)) + Uρ(ε(x+ q))

Then we see that for any ρ > 0 there is an ερ such that Uε
ρ ∈ H♯ for all ε < ερ and

support of Uρ(ε(x − q)) and Uρ(ε(x+ q)) are disjoint. Estimating as before we can
have the energy at Uε

ρ as

Jε(U
ε
ρ) = 2ε3

∫

Bρ(0)

(1

2
(|∇Uρ|

2 + |Uρ|
2)−

1

p+ 1
|Uρ|

p+1
)

= 2ε3cρ (4.2)

Hence we have
cε ≤ 2ε3cρ = 2(c∗ + exp[−2ρ(1 + o(1))]), (4.3)

10



We can take ρ = 1
ε
dist(q, ∂Ω). Then finally we have

cε ≤ 2ε3cρ = 2ε3
(

c∗ + exp
[

−
2

ε
dist(q, ∂Ω)(1 + o(1))

])

, (4.4)

Next we shall estimate cε from below. Let

dε = dist(qε, ∂Ω) = dist(−qε, ∂Ω) → d0 = dist(q̄, ∂Ω) as ε → 0

Given δ choose a number d′0 > 0 such that

vol(B(q̄, d′0)) = vol(Ω ∩B(q̄, d0 + δ)).

. Now take δ′ > 0 slightly smaller than δ with d′0 < d0 + δ′.

Let us consider a C∞ cutoff function ηε(s) such that ηε(s) = 1 for 0 ≤ s ≤ dε+δ′

and ηε(s) = 0 for s ≥ dε+δ, with 0 ≤ ηε ≤ 1 and with uniformly bounded derivative.
Let us sate ũε = uεηε(x− q̄) + uεηε(x+ q̄). Note that the support of uεηε(x− q̄) and
uεηε(x+ q̄) are disjoint and we find that

cε ≥ Jε(tuε) ≥ Jε(tũε)− 2exp
[

−
c

ε
(dε + δ′)

]

(4.5)

for ε sufficiently small. Here we have used the estimates in (3.4). Now note that

Jε(tũε) = Jε(tuεηε(x− q̄)) + Jε(tuεηε(x+ q̄))

So using the same analysis as in [3] we can get dist(qε, ∂Ω) → maxx∈Ω dist(x, ∂Ω).
That is qε concentrates at (0, 0,

a+b
2
).

Proof of the Theorem1.1 :

Proof. Let vε be a non radial M-P solution of 1.6 at the critical level cε with Morse
Index less or equal to 1(actually it is 1 as uε being positive radial solution). Now
from the above discussion we see that,the sequence {vε}ε concentrates exactly at two
points in Ω. Also we have got the co-ordinate of the those concentrating points as
(a+b

2
, 0, 0, . . . , 0) and (a+b

2
, π, 0, . . . , 0). Now corresponding to vε there is a solution

uε of equation (1.1). And we get that {uε}ε concentrates exactly at two m − 1
dimensional spheres in A, placed at the angle θ = 0 and θ = π/2 with the radial
co-ordinate (a + b)/2 .

Remark. In this note we are not detailing the proof of Theorem1.2 since the aim
of this note is just to present the basic idea involved. The details of the proof can
be found in the PHd. thesis of B.B.Manna which is under preparation.
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