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Abstract

We consider a model of long-range first-passage percolation on the d dimensional square
lattice Zd in which any two distinct vertices x,y ∈ Zd are connected by an edge having
exponentially distributed passage time with mean ‖x− y‖α+o(1), where α > 0 is a fixed
parameter and ‖·‖ is the `1–norm on Zd. We analyze the asymptotic growth rate of the
set Bt, which consists of all x ∈ Zd such that the first-passage time between the origin 0
and x is at most t, as t → ∞. We show that depending on the values of α there are four
growth regimes: (i) instantaneous growth for α < d, (ii) stretched exponential growth for
α ∈ (d, 2d), (iii) superlinear growth for α ∈ (2d, 2d + 1) and finally (iv) linear growth
for α > 2d+1 like the nearest-neighbor first-passage percolation model corresponding to
α =∞.
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1 Introduction

We consider the infinite complete graph on the vertex set Zd, say Gd, and a non-
increasing positive function r : (0,∞) → (0,∞]. To each edge e of Gd we assign an
independent random weight of the form ωe/re, where re is given by the value of the func-
tion r evaluated at the Euclidean distance between the endpoints of the edge e and {ωe}’s
are i.i.d. nonnegative random variables with common distribution F . The weight of an
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2 S. CHATTERJEE AND P. S. DEY

edge is interpreted as its passage time. Based on these passage times, one can define a
first-passage metric on Zd, in which the distance between two vertices is the minimum
time required to reach one of them from the other using any of the paths in Gd joining the
two, and study the asymptotic growth of the associated t–ball (the set of vertices which can
be reached within time t from the origin) as t tends to infinity.

In this paper, we focus on the case in which F is the exponential distribution, and
show that the family of stochastic growth models (indexed by the set of nonnegative non-
increasing functions) exhibits a wide variety of growth behavior including instantaneous
growth, exponential growth, any stretched exponential growth (the t–ball can have diame-
ter and volume of order exp(tθ+o(1)) for any θ ∈ (0, 1)), any superlinear growth (the t–ball
can have diameter of order tθ+o(1) for any 1 < θ < ∞) and linear growth for different
choices of the function r. This phenomenon occurs in much more general set-up when
F satisfies certain moment condition. In particular the phase transition between different
growth behaviors depend on the behavior of F near 0 and near infinity, here we will depict
this for the case when F is a positive power of exponential distribution.

This problem bridges between two vast areas of study: long-range percolation and
nearest-neighbor first-passage percolation. We briefly discuss both of these areas in the
following two Sections 1.1 and 1.2.

1.1 Long-range Percolation
During the last few decades there has been numerous research contributions which

have led to a thorough understanding about the existence and type of phase transitions in
different models of statistical mechanics. The simplest among such models is perhaps the
Bernoulli bond percolation model, where one obtains a random graph by retaining each of
the edges of a ground graph independently with probability p ∈ (0, 1). The literature on
percolation theory is vast, so we mention only a few relevant references here and ask the
interested readers to look into them for further ones. For an introduction and motivation
to the subject and for earlier works, when the ground graph is Zd with nearest-neighbor
edges, we recommend [28]. See also [41, Chapter 7] for the treatment of percolation on
general transitive graphs including homogeneous trees. Most of the focus in research re-
lated to percolation on the transitive infinite graphs has been on proving the existence of
phase transition (depending on the appearance of infinite cluster(s)), analytic and geomet-
ric properties of the connected components (see e.g., [16] for the properties of connectivity
functions) and scaling limits for critical percolation on Zd (see e.g., [31, 32, 48, 49]). Per-
colation has also been considered on large finite ground graphs such as the complete graph
on n vertices (which gives rise to the famous Erdös-Rényi random graph model), small-
world and scale-free networks (in the context of epidemiology [44, 47]), sparse random
graphs (in the context of robustness of networks [15]) and n-dimensional hypercube [14].

An extension of the Bernoulli bond percolation model is the long-range percolation
(LRP) model, in which each pair of distinct vertices x,y ∈ Zd is connected by an edge
with probability px,y ∼ β ‖x− y‖−α+o(1) (as ‖x− y‖ goes to infinity) for some pa-
rameters α, β > 0. We denote the associated random subgraph of Gd by Gdp, where
p = (px,y | x,y ∈ Zd). This model was originally introduced in the mathematical-
physics literature as an example of a model which exhibits phase transition even in one
dimension, it also displays discontinuous transition of percolation density for α = 2 in
one dimension as β varies. We refer the readers to [45, 1, 46, 35] for more details about
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these works. Later, Benjamini and Berger [4] have proposed LRP on finite cubic lattices to
be models for social networks in connection with the study of “small world” phenomenon
[55]; and in general LRP on Zd has gained interest as models of graphs with nontrivial
volume growth. Most of the research focus in LRP has been on

(a) scaling properties of the random metric Tp(·, ·) on Zd induced by the LRP random
graph Gdp (see [11]),

(b) the volume growth of the associated balls Bpt := {x ∈ Zd : Tp(0,x) 6 t} (see
[12, 52]) and

(c) the growth behavior of the diameter Dp
L of the largest connected component in Gdp ∩

[−L,L]d (the restriction of Gdp to [−L,L]d).

Combining contributions of numerous authors, it is known (sometimes conjectured but
unproved) that for px,y = β ‖x− y‖−α+o(1) there are five distinct regimes depending on
the relative positions of α and d. The diameter Dp

L is

→ dα/(d− α)e for α < d due to [6, Example 6.1]

� logL/ log logL for α = d due to [19]

= (logL)∆(α)+o(1) for d < α < 2d due to [11, 12]

= Lθ(β)+o(1) for pxy = β ‖x− y‖−2d (conjectured in [4] for any d > 1. See [19]
for a general upper bound for θ(β) and [22] for existence of θ(β) in d = 1)

� L for α > 2d (expected [4] for any d > 1, β > 0. See [8] for a lower bound for
all β. The upper bound holds for β large)

Here aL � bL means aL/bL stays away from 0 and infinity with probability tending
to 1 as L → ∞. Other related areas of research involving LRP models include study of
simple random walk on Gdp (e.g., conditions for transience and recurrence [7], bounds for
spectral gap and heat kernel [21], scaling limits to Brownian motion or stable processes)
and on its restrictions to the d-dimensional box [−L,L]d (e.g., mixing time [5]). However,
understanding these aspects require knowledge about much finer structure of the random
graph Gdp.

1.2 First-passage Percolation
Parallel to the development of the percolation theory, there has always been interest

in studying different aspects of shortest paths between two vertices of deterministically
or randomly weighted graphs. In this regard, another classical model, the standard first-
passage percolation (FPP) model, has gained a lot of interest in the mathematical-physics
literature since its introduction in 1965 [30] and has developed into an independent field
by now. FPP was originally introduced for the graph Zd with nearest neighbor edges in
the context of flow of fluids through a random porous medium. We refer to [50, 38] for
an account of earlier works and to [29] for recent results. Later, FPP on Zd has been
used extensively as the basic model in a variety of fields including competing infections
in epidemiology [34, 25, 13], growing interfaces in statistical-physics [39]. Also, FPP
on other large finite graphs (e.g., the complete graph [36], sparse locally tree-like random
graphs [9, 10, 53]) have been used for modeling information spreading and flows through
networks.
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In this model, each edge e of a ground graph is associated with its passage time (or
weight), and the passage times are independent and have common distribution F supported
on [0,∞]. The passage time of a finite path in the ground graph is the sum of passage
times of the edges present in the path, and the first-passage time TF (x,y) between two
vertices x and y of the ground graph is the minimum passage time of a finite path joining
them. Note that TF (·, ·) is always a (random) pseudo-metric, and it is a random metric
(which is called the first-passage metric on Zd associated with F ) if F has no atom at 0.
Moreover, TF (·, ·) can also be interpreted as the time required to communicate between
its two arguments. While percolation theory deals with issues like connectivity of distant
points of some context-dependent space and properties of connected clusters, the main
focus of research in FPP is to analyze

• the first-passage metric – (a) scaling properties, (b) fluctuations, (c) scaling limits,
• the associated first-passage balls BFt := {x : TF (0,x) 6 t} – (a) the time evolution,

(b) existence of asymptotic shape, (c) analytic and geometric properties of the limiting
shape.

It is well known that in any direction x ∈ Zd the first-passage metric TF on Zd

grows linearly with the Euclidean metric, i.e., TF (0, nx)/n has a positive and finite limit
as n → ∞, and TF (0, nx) has sublinear fluctuation provided F (0) < pc(d) (the criti-
cal bond percolation probability for Zd with nearest-neighbor edges). In addition, under
suitable moment condition on F (see [20]), BFt grows linearly in t and has a determin-
istic limiting shape, i.e., BFt ≈ (tB) ∩ Zd as t → ∞ for some nonrandom compact set
B ⊆ Rd. Although many estimates and techniques are available to analyze the distribution
of TF (0, nx), its distributional convergence as n→∞ is almost completely open.

The behavior of FPP on general ground graphs is not universal. There are large finite
ground graphs such that, even with mean one exponentially distributed edge-weights, the
ratio of the first-passage metric and the graph metric evaluated at a typical pair of vertices
of the graph decays to 0 rapidly (in case of complete graph [36]) or slowly (in case of a
family of sparse locally tree-like random graphs [10]) as the size of the graph grows to
infinity. Here, we consider a long-range version of the FPP model on the d-dimensional
lattice and analyze the scaling properties of the associated first-passage metric.

1.3 Appearance of long-range first-passage percolation
Although FPP was originally introduced and extensively studied in the nearest-

neighbor settings, the long-range version of it (which we denote by LRFPP) naturally
appears in many applications. For instance, theoretical biologists have used certain version
of LRFPP for modeling biological invasion of species [42, 17, 51, 24]. Along with many
other factors they use dispersal kernels r(·) with heavy tails as part of their models for dis-
persal mechanism of biological objects (such as seeds, pollen, fungi etc.). However, most
of their conclusions are based on simulations in two dimensional grid and non-rigorous
heuristics. In [17], followed by [42], the authors have recognized two phases of spatio-
temporal behavior, which they call long-distance dispersal and short-distance dispersal,
based on whether the second moment of the dispersal kernel is infinite or finite. They ar-
gue that under finite second moment condition(short-distance dispersal regime) the growth
behavior of the region reachable within time t is same as that in nearest neighbor (or finite
range) FPP. On the other hand, the authors in [24] have recognized one additional phase,
which they call medium-distance dispersal, but they haven’t specified where the transitions
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between different phases occur. As we will prove here, the situation is much more delicate,
and there are at least four distinct phases (with three critical points in between) depending
on the heavy tail index of the dispersal kernel.

Aldous [2] has considered communication of continuously arriving information
through a finite agent network in a certain game theoretic set-up. In one of the cases,
where the network topology is a two dimensional discrete torus and the communication
cost between any two agents is a nondecreasing function of the Euclidean distance be-
tween them, the main technical tool to understand the time evolution of the fraction of
informed agents is the analysis of the LRFPP model, which we propose here, on large
two dimensional discrete torus. Aldous has proposed a simplified version of this LRFPP
model, which he has named short-long FPP, in which agent network topology is a discrete
torus, each pair of nearest-neighbor agents communicate at rate one and all other pairs of
agents communicate at a rate which depends only on the size of the torus regardless of the
distance between the agents. The continuous analogue of the short-long FPP model has
been analyzed rigorously on (two dimensional) real torus [18] and on finite Riemannian
manifolds [3]. Our model is, in a sense, a generalization of the nearest-neighbor FPP and
LRP.

In some sense, ours is not the first attempt to analyze LRFPP rigorously. Mollison [43]
has considered similar models in the context of spatial propagation of simple epidemics in
one dimension. He has proved linear growth in one dimension when the dispersal kernel
has heavy tail index higher than 3 (= 2 · 1 + 1).

In the physics literature, long range interactions for epidemic models have been pro-
posed as more realistic descriptions in different non-equilibrium phenomenon compared
with their short-range counterparts. Grassberger [27] introduced a variation of the epi-
demic processes with infection probability distributions decaying with the distance as a
power-law. The model was analyzed nonrigorously in [37] using field-theoretic calcula-
tions and in [33] using numerical simulations. Both the articles predict α = d + 2 as the
phase transition point to get short-range behavior with linear growth, which is false in di-
mension 2 and above by our result. The main issue is with large but finite cutoff, where
one really gets α = d+ 2 as the phase transition point, with the diffusion coefficient of the
infection probability distributions changing from infinite to finite.

Here we will address the general case in all dimension.

1.4 Our Model
In this paper, we consider a long-range first-passage percolation (LRFPP) model on

Zd for d > 1. We will use ‖·‖ to denote the `1–norm on Zd. Let E := {〈xy〉 : x,y ∈
Zd,x 6= y} be the edge set for the infinite complete graph on Zd. The length of an
edge e = 〈xy〉 ∈ E is taken to be ‖e‖ := ‖x− y‖. Since all `p-norms, p ∈ [1,∞],
are equivalent, one can use anyone of them, however we will stick to the `1–norm for
convenience.

For a given nonnegative communication rate function r(·) on R+, r(‖e‖) will be the
rate of communication through the edge e. To each e ∈ E we also assign an independent
random weight ωe, where {ωe}e∈E are i.i.d. with common distribution F supported on
[0,∞]. The random variable

We :=
ωe

r(‖e‖)
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represents the amount of time needed (i.e., passage time) to pass through the edge e, and
for a finite E -path π (consisting of edges from E ) we define the corresponding passage
time for π to be

Wπ :=
∑
e∈π

We =
∑
e∈π

ωe
r(‖e‖) .(1.1)

Based on these Wπ , the first-passage time T (x,y) to reach x ∈ Zd from y ∈ Zd
associated with the communication rate function r is defined to be the minimum passage
time over all finite E -paths from x to y. More precisely,

T (x,y) := inf{Wπ | π ∈ Px,y} for x,y ∈ Zd,(1.2)

where Px,y is the set of all finite E -paths from x to y.
Clearly, this LRFPP model is a stochastic growth model and T (·, ·) is a random metric

(assuming F has no atom at 0) on Zd, which we will refer to as the LRFPP metric. The
first natural question related to this metric is how does the associated LRFPP ball of radius
t,

Bt := {x ∈ Zd | T (0,x) 6 t},
and its diameter (viewing Bt as a subset of Zd)

Dt := sup{‖x− y‖ | x,y ∈ Bt}, t > 0.

grow as t tends to infinity. We will address these questions for certain cases of r(·) and F .
We will primarily be concerned with the case when r(k) = k−αL(k) for some α > 0

and for some slowly varying function L, and F is exponential distribution with mean one
or its positive power. Note that when “α =∞” we get back the standard (nearest-neighbor)
FPP model with i.i.d. edge-weights, which is also known as Richardson’s model when the
edge-weights have mean one exponential distribution.

Remark 1.1. Our approach of constructing the LRFPP model naturally incorporates the
monotonicity property in r(·), in the sense that if r(·) and r′(·) are two communication
rate functions such that r(k) > r′(k) for all k > 1, then T (x,y) 6 T ′(x,y) for all x and
y, Bt ⊇ B′t and Dt > D′t, where T ′(·, ·),B′t, D′t corresponds to the rate function r′.

1.5 LRFPP as a long-distance dispersal model
When λ :=

∑
x∈Zd r(‖x‖) < ∞, the above LRFPP model can also be viewed as a

long-distance dispersal model in the context of information propagation, infection spread-
ing (Susceptible-Infected/SI epidemic model) and biological invasion of species. Note that
for r(k) = k−α, we have λ <∞ if and only if α > d. To fix idea, suppose there is an agent
at every vertex of Zd and the agents are either occupied (informed/infected) or vacant (un-
informed/healthy). Occupied sites never become vacant. Initially the agent at the origin is
occupied at time 0. Whenever an agent becomes occupied, it starts communicating at rate
λ. When the agent at x communicates, it chooses a site y independently with probability
r(‖x− y‖)/λ and makes it occupied. All agents act independently of each other.

Let B̂t denote the set of occupied vertices at time t. Clearly B̂0 = {0} and it is easy to
see that if F is exponential with mean one, then

(Bt : t > 0)
d
= (B̂t : t > 0).
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Thus, our results can also be interpreted as growth results for the associated long-range
dispersal models.

1.6 Main Results
Recall that T (·, ·) andBt denote the (random) LRFPP metric onZd and the correspond-

ing t-ball associated with communication rate function r(·) and exponentially distributed
edge-weights (passage times) for the complete graph on Zd. Throughout the article r(·) is
a non-increasing function and for convenience we will assume that it has the form

r(k) = k−αL(k), k > 1,(1.3)

for some α ∈ [0,∞) and for some slowly varying (at infinity) function L(·) satisfying
L(1) = 1. Recall that, a function L(·) is slowly varying at infinity if for any a ∈ (0,∞)
we have limx→∞ L(ax)/L(x) = 1.

The first natural question is whether all vertices become occupied (i.e., percolation
occurs) at some finite time or not starting from a single occupied vertex (or equivalently
from finitely many occupied vertices) at time 0. Even if percolation does not occur at some
finite time, it is not at all obvious whether |Bt| <∞ a.s. for any t <∞ or not.

Hereafter |A| denotes the size for a set A. Our first result shows that Bt covers the
entire Zd instantaneously (instantaneous percolation regime) when the communication
rate function r(·) satisfies (1.3) for any α < d, whereas |Bt| <∞ a.s. for any t <∞ when
(1.3) holds for any α > d.

Theorem 1.2 (Instantaneous percolation regime). For the communication rate function
r(·), define A to be the integral A :=

∫∞
1
xd−1r(x)dx.

(i) If A = ∞, then P(|Bt| = ∞) = 1 for any t > 0. In particular, if r(·) satisfies (1.3)
for some α < d, then for any t > 0,

P(Bt = Zd) = 1.

(ii) If A <∞, then there exists a constant c > 0 depending only on A and d such that

E(|Bt|) 6 ect for all t > 0.

So for α > d the size of the occupied set grows at a certain finite rate depending on
α and d. Here we show that there are many different growth regions. The first is the
exponential growth regime, which is observed when (1.3) holds with α = d and any L(·)
satisfying some additional restrictions. Note that Theorem 1.2(ii) ensures that if the size of
Bt is finite for any t <∞, then it can grow at most exponentially fast.

Theorem 1.3 (Exponential growth). Let the communication rate function r(·) for the
LRFPP model on the complete graph with vertex set Zd be nonnegative and non-
increasing, and satisfy (1.3) with α = d and some L(·) having the properties∫ ∞

1

L(x)

x
dx <∞ and

∫ ∞
1

− logL(x)

x(log x)2
dx <∞.(1.4)

Then there exist constants 0 < c < C <∞ depending on L(·) such that

lim
‖x‖→∞

P

(
c 6

T (0,x)

log ‖x‖ 6 C
)

= 1.

Moreover, there is a constant a > 0 such that E |Bt| > eat for any t > 0.
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Between the two properties of L(·) mentioned in (1.4), the first one ensures that the
growth of the LRFPP ball is finite at any finite time, whereas the second one enables
us to construct a path between any two vertices of Zd, which are located at large `1-
distance away from each other, such that the passage time of the path is logarithmic in the
Euclidean distance between them. The second condition of (1.4) arises quite naturally and
is somewhat optimal. Note that the same condition also arises in case of the LRP model on
Zd corresponding to exponential growth (see [52]).

Next, we focus on the stretched exponential growth regime, which is observed when
(1.3) holds for some α ∈ (d, 2d).

Theorem 1.4 (Stretched exponential growth). Let the communication rate function r(·)
for the LRFPP model on the complete graph with vertex set Zd be nonnegative and non-
increasing, and satisfy (1.3) for some α ∈ (d, 2d). Define

∆(α, d) :=
log 2

log(2d/α)
∈ (1,∞).

Then, for any ε > 0, we have

(1) lim
‖x‖→∞

P

(
∆(α, d)− ε 6 log T (0,x)

log log ‖x‖ 6 ∆(α, d) + ε

)
= 1, and

(2) lim
t→∞

P

(∣∣∣∣ log logDt

log t
− 1/∆(α, d)

∣∣∣∣ 6 ε) = 1.

Note that as α increases from d to 2d, the value of 1/∆(α, d) strictly decreases from
1 to 0. Thus, the family of the LRFPP models, which satisfies the hypothesis of Theorem
1.4 exhibits all possible “stretched exponential” growth behavior.

This together with the monotonicity property of the LRFPP model (see Remark 1.1)
indicates that when α > 2d, the growth rate of the occupied set is slower than any stretched
exponential. Now we present some bounds for the LRFPP metric and diameter of the
associated LRFPP ball when (1.3) holds with α = 2d and L ≡ 1. These bounds capture
the order of magnitude for the growth of the LRFPP ball at this critical value of α.

Theorem 1.5 (Log correction for α = 2d). Let r(k) = k−2d, k > 1, be the communication
rate function for the LRFPP model on the complete graph with vertex set Zd. There exist
constants 0 < c < C <∞ depending only on d such that

(1) lim
‖x‖→∞

P

(
c 6

log T (0,x)√
log ‖x‖

6 C

)
= 1, and

(2) lim
t→∞

P

(
C−2 6

logDt

(log t)2
6 c−2

)
= 1.

Next, we show that any communication rate function satisfying (1.3) for some α ∈
(2d, 2d + 1) corresponds to the superlinear growth regime, in which the occupied set of
the LRFPP model grows faster than linear at certain polynomial rate.

Theorem 1.6 (Superlinear growth). Let the communication rate function r(·) for the
LRFPP model on the complete graph with vertex set Zd be nonnegative and non-
increasing, and satisfy (1.3) for some α ∈ (2d, 2d+ 1). Define

Γ(α, d) := α− 2d.
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Then, for any ε > 0,

(1) lim
‖x‖→∞

P

(
Γ(α, d)− ε 6 log T (0,x)

log ‖x‖ 6 Γ(α, d) + ε

)
= 1, and

(2) lim
t→∞

P

(∣∣∣∣ logDt

log t
− 1/Γ(α, d)

∣∣∣∣ 6 ε) = 1.

Note that as α increases from 2d to 2d + 1, the value of 1/Γ(α, d) strictly decreases
from infinity to 1. Thus, the family of the LRFPP models, which satisfies the hypothesis
of Theorem 1.6 exhibits all possible “superlinear” growth behavior.

Finally we show that any communication rate function satisfying (1.3) for some α >
2d+ 1 corresponds to linear growth regime, in which the growth of the occupied set in the
LRFPP model is similar to that of the standard (nearest-neighbor) first-passage percolation
model.

Theorem 1.7 (Linear growth). Let the communication rate function r(·) for the LRFPP
model on the complete graph with vertex set Zd be nonnegative and non-increasing, and
satisfy (1.3) for some α > 2d+ 1. Then, for any x ∈ Zd \ {0} there exists ν(x) > 0 such
that for any ε > 0,

lim
n→∞

P
(
(1− ε)ν(x) 6 n−1T (0, nx) 6 (1 + ε)ν(x)

)
= 1.

Moreover, ν(·) can be extended to a function ν : Rd 7→ [0,∞), for which ν(y) 6= 0
whenever y 6= 0 and

P
(
{y ∈ Rd : ν(y) 6 1− ε} ⊆ t−1Bt ⊆{y ∈ Rd : ν(y) 6 1 + ε}

for all sufficiently large t
)

= 1

for all ε > 0.

Note that when the communication rate function r(·) satisfies (1.3) with α = 2d + 1,
then comparing with the growth for other values of α and using the monotonicity property
of the LRFPP model (see Remark 1.1) it is easy to see that T (0,x) grows like ‖x‖1+o(1) as
‖x‖ → ∞. However, our current techniques do not yield the exact growth rate in this case.
Based on the results from [26], we believe the condition

∫∞
1

(∫∞
t
xdr(x)dx

)1/d
dt < ∞

is sufficient and the condition
∫∞

1
x2dr(x)dx < ∞ is necessary to ensure linear growth

for the LRFPP metric with communication rate function r(·). However, here we have not
pursued the problem of finding necessary and sufficient conditions that will imply linear
growth.

Remark 1.8. If the communication rate function r(·) satisfies

lim
k→∞

log r(k)

log k
= −∞,

then combining the monotonicity property of the LRFPP model (see Remark 1.1) together
with Proposition 8.2 below, it is easy to see that the conclusion of Proposition 8.2, and
hence that of Theorem 1.7, also hold for r(·).

Remark 1.9. Our proofs for the above theorems can be extended to the case where the
common distribution of {ωe}e∈E is a positive power γ of the exponential distribution. In
that case, similar phase transitions occur for the associated LRFPP metric, but the phase
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transition points are dγ, 2dγ and 2dγ + 1 instead of d, 2d and 2d + 1 respectively. Also,
the corresponding growth exponents for the stretched exponential and superlinear growth
regimes are ∆(α, dγ) and Γ(α, dγ).

1.7 Heuristics behind the thresholds
In this section, we provide an intuitive explanation for the existence of different phase

transition points. Comparing with the ‘α = ∞ case’ (the nearest-neighbor FPP model),
it is easy to see that the growth of the LRFPP balls are always linear or faster than linear.
For simplicity, assume that r(k) = k−α, k > 1, for some α > 0. Note that when α < d,∑

x∈Zd r(‖x‖) = ∞ and hence minx∈ZdW〈0,x〉 = 0 a.s. Thus |Bt| = ∞ a.s. for any
t > 0.

Now suppose that the growth of the LRFPP ball is polynomial for some α with growth
exponent β = βα in the sense that the Euclidean diameter of the occupied set Bt = B(α)

t

at time t is of order tβ . Clearly we must have β > 1. Then, the size of Bt at time t is
of order tdβ , so the minimum weight among all edges which have one end in Bt and have
length more than ` is exponential with rate approximately of order tdβ`−(α−d). Now note
that if ` � tβ , then this minimum weight edge must have weight more than O(t) w.h.p.,
otherwise the growth of the LRFPP ball will be faster than O(tβ). Thus, using the fact
that P(X > t) = e−λt when X is exponentially distributed with rate λ, we must have
t · tdβ · t−(β+ε)(α−d) = o(1) as t→∞ for any ε > 0, which implies β(α− 2d) > 1.

Clearly for α 6 2d, the above heuristic calculation does not hold (as α − 2d 6 0),
which implies that the growth is faster than any polynomial. In fact, comparing with a
LRP model, in which an edge e ∈ E is present with probability 1 − exp(−‖e‖−α) it
is easy to see [11] that the growth is at least stretched exponential. Thus, one expects
a transition from stretched exponential to polynomial growth as α changes from smaller
than 2d to larger than 2d.

Now, for α ∈ (2d, 2d+ 1] we have (α− 2d)−1 > 1, so the growth exponent β for the
diameter of the LRFPP ball is bigger than (α−2d)−1. Also, for β := (α−2d)−1 intuitively
the growth of the diameter cannot be faster than tβ+ε for any ε > 0, as eventually by time t
all “usable” edges will have Euclidean length� tβ . Thus, for α ∈ (2d, 2d+ 1] the growth
exponent for the diameter of the LRFPP ball must be (α− 2d)−1.

Now note that (α − 2d)−1 = 1 when α = 2d + 1, so by monotonicity one expects
the growth exponent for the diameter to be 6 1 when α > 2d + 1. So, the linear growth
dominates in this case. Moreover, it is easy to see that for any ` � t(d+1)/(α−d) the
minimum weight among all edges which have one end in Bt (which has linear growth)
and have Euclidean length ` is larger than O(t) w.h.p., and thus up to time O(t) none of
the edges having Euclidean length more than O(t(d+1)/(α−d)) will be used. Moreover,
θ := (d + 1)/(α − d) ∈ (0, 1) when α > 2d + 1. This idea will play a crucial role in
proving linear growth. If we break the lattice into boxes of length nθ and if the optimal
path from 0 to nx cannot jump over boxes, then we have a nearest-neighbor path over the
boxes and if the path spends Θ(nθ) time in most of the boxes, the total time is Θ(n). We
will use a renormalization technique to use this idea in proving the linear growth.

1.8 Discussion and Open Problems
As alluded earlier, the long-range percolation model onZd is not well understood when

the associated LRP graph metric is expected to scale polynomially with the Euclidean
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metric. The only available result in this context [22] is the existence of a scaling exponent
in one dimension ensuring polynomial scaling of the LRP metric. Also, the linear growth
of the LRP metric, when relevant, is not fully established. In this article, we have been able
to elucidate those two growth regimes (polynomial and linear) in case of a class of long-
range first-passage percolation model, which can be thought of as a continuous analogue
of the LRP model, in addition to identifying and analyzing other growth regimes for it.
For our model, we have proved linear growth for the associated LRFPP metric along with
a shape theorem for the growth set in case of almost all candidate communication rate
functions. We have also pinned down the growth exponent for all communication rate
functions which correspond to polynomial growth for the occupied set.

In our LRFPP model, all edges-weights are exponentially distributed (or some power
of it). So, a natural question arises: what happens if we replace exponential distribution
by an arbitrary distribution supported on [0,∞). In many places in this article we have
used properties of the exponential distribution to facilitate our calculations. However, the
crucial fact that will imply a similar phase transition is that the distribution of ωe’s satisfy
P(ωe 6 x) = Θ(x) for x � 1. In general, when P(ωe 6 x) = Θ(xs) for x � 1
and for some real number s > 0, the phase transition points will be d/s, 2d/s, 2d/s + 1
respectively under appropriate moment conditions. In a sense, the “effective” dimension
becomes d/s instead of d in that case. Note that when (ωe)

s has exponential distribution
with rate one, it is easy to see that P(ωe 6 x) ≈ xs and one can go through almost all the
computations in this article to see the above phenomenon (see Remark 1.9). The general
case will be dealt with in a forthcoming article.

FIGURE 1.1. Simulated growth for r(k) = k−3.5 in d = 2 upto time t = 24 at
volume 25421. Different colors show the growth pattern at 6 equispaced time
points.

Even for the model that we consider here, there are many fascinating phenomenon that
we have not analyzed yet. We mention some of them below. See Figures 1.1, 1.2 and 1.3
for simulated pictures of the random growth set in two dimension.
(a) What is the limiting distribution of T (0, nx) as n → ∞ when α ∈ (d, 2d)? Heuristi-

cally the limit should be Gaussian at least when α is close to 2d.

(b) In the stretched exponential growth regime α ∈ (d, 2d), is it possible to formulate and
analyze the boundary behavior of the growth set?
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FIGURE 1.2. Simulated growth for r(k) = k−4(left) and r(k) = k−4.5(right)
upto time t = 48 and t = 60 with volume 46113 and 19635, respectively.
Different colors show the growth pattern at 6 equispaced time points.

FIGURE 1.3. Simulated growth for r(k) = k−5(left) and r(k) = k−5.5(right)
upto time t = 90, with volume 19534 and 12911, respectively. Different colors
show the growth pattern at 6 equispaced time points.

(c) For α ∈ (2d, 2d+ 1), one should have a random ‘shape theorem’. More precisely, for
any fixed direction x ∈ Rd the ratio T (0, bnxc)/nα−2d should converge to a random
variable.

(d) How does T (0, nx) grow as n → ∞ when r(k) = k−(2d+1)? We believe the answer
is Θ(n(log n)−θ) for some θ > 0.

(e) In the linear growth regime, does the fluctuation of the first-passage time have a phase
transition too or the fluctuation is universal?

(f) From simulation results, it is obvious that for α > 2d there is a single large connected
(in Zd) cluster for the growth set, however for α < 2d there are many of them. Is it
possible to analyze the number of “big” components in the growth set Bt?

1.9 Organization of the paper
The paper is organized as follows. In Section 2 we set up our notations and prove the

technical estimates needed later in the proofs. Section 3 contains the proof of Theorem 1.2
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about the transition from instantaneous growth to subexponential growth. In Sections 4
and 5 we develop a Multi-scale analysis and Self bounding recursion for the expected vol-
ume that will be used crucially to find appropriate lower and upper bounds for the growth
set at time t. Finally we prove the main Theorems 1.4 – 1.5, 1.6 and 1.7 in Sections 6, 7
and 8 respectively.

2 Notations and Estimates

Recall that Gd = (Zd,E ) denotes the infinite complete graph on the vertex set Zd and
edge set E := {〈xy〉 : x,y ∈ Zd,x 6= y}. Also {ωe}e∈E is a collection of i.i.d. expo-
nentially distributed random variables with mean one, and the passage time for the edge
e = 〈xy〉 ∈ E is We = ωe/r(‖e‖), where ‖e‖ = ‖x− y‖. Recall that r satisfies (1.3),
i.e., r is non-increasing and is of the form

r(k) = k−αL(k), k > 1

for some α > 0 and a slowly varying function L(·) with L(1) = 1.
For a finite E -path π, the passage time is defined as Wπ :=

∑
e∈πWe and the first-

passage metric on Zd is

T (x,y) := inf
π∈Px,y

Wπ,

where Px,y := {〈x0x1 . . .xk〉 : x0 = x,xk = y,xi 6= xi−1, i = 1, 2, . . . , k}.

Bt denotes the ball of radius t around the origin for the random metric T (·, ·), and Dt

denotes the diameter of that ball.
The following tail estimate for sums of exponential random variables will be useful in

our analysis.

Lemma 2.1. Let X1, X2, . . . be i.i.d. exponential random variables with mean 1. Let
λ1, λ2, . . . be a sequence of positive real numbers. Then for any t > 0 and k > 1 we have

tk∏k
i=1(k + λit)

k∏
i=1

λi 6 P

(
k∑
i=1

Xi/λi 6 t

)
6

(
et

k

)k k∏
i=1

λi.

Moreover, if λi > λ for all i and Λ :=
∑k
i=1 1/λi, then for any t > Λ we have

P

(
k∑
i=1

Xi/λi > t

)
6 exp

(
−λ(t− Λ)2

2t

)
.

Proof. Using exponential Markov inequality and the fact that

E(e−θXi) = 1/(1 + θ), for θ > −1(2.1)

we have

P

(
k∑
i=1

Xi/λi 6 t

)
6 eθt

k∏
i=1

(1 + θ/λi)
−1 6 eθt

k∏
i=1

λi
θ
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for all θ > 0. Taking θ = k/t we get the required upper bound for the lower tail of∑k
i=1Xi/λi. For the lower bound we use independent events. Clearly

P

(
k∑
i=1

Xi/λi 6 t

)
> P(Xi 6 λit/k for all i)

=

k∏
i=1

(1− e−λit/k) >
k∏
i=1

λit

k + λit
,

where the last inequality follows from the fact that 1− e−x > x/(1 + x) for all x > 0.
For the upper tail bound we use the Markov inequality and (2.1) to have

P

(
k∑
i=1

Xi/λi > t

)
6 e−θλt

k∏
i=1

(1− θλ/λi)−1

for all θ ∈ [0, 1). Also using the monotonicity of the function − log(1− x)/x, we have

logP

(
k∑
i=1

Xi/λi > t

)
6 −θλt−

k∑
i=1

λ

λi
log(1− θ) = −λ(θt+ Λ log(1− θ)).

Taking θ = 1−Λ/t and using the fact that 1− x+ x log x > (1− x)2/2 for all x ∈ [0, 1]
we finally have

logP

(
k∑
i=1

Xi/λi > t

)
6 −λt(1− Λ/t)2

2
= −λ(t− Λ)2

2t
.

This completes the proof. �

Lemma 2.2. Let X1, X2, . . . be i.i.d. exponential random variables with mean 1. Let
λ1, λ2, . . . be a sequence of positive real numbers. Then for any t > 0, k > m > 0, we
have

P

(
k∑
i=1

Xi/λi 6 t,
m∑
i=1

Xi/λi +

2k−m∑
i=k+1

Xi/λi 6 t

)
6

(et)2k−m

(k −m)2k−2mmm

2k−m∏
i=1

λi.

Proof of Lemma 2.2. It is easy to see that

P

(
k∑
i=1

Xi

λi
6 t,

m∑
i=1

Xi

λi
+

2k−m∑
i=k+1

Xi

λi
6 t

)

6 P

(
m∑
i=1

Xi

λi
6 t,

2k−m∑
i=k+1

Xi

λi
6 t,

k∑
i=m+1

Xi

λi
6 t

)

= P

(
m∑
i=1

Xi

λi
6 t

)
P

(
2k−m∑
i=k+1

Xi

λi
6 t

)
P

(
k∑

i=m+1

Xi

λi
6 t

)
.

Applying Lemma 2.1 to bound each of the above terms we get the desired inequality. �

The inequalities in Lemma 2.1 and 2.2 clearly suggests that the behavior of the tail
probabilities for the passage time of a finite E -path π depends on

∏
e∈π r(‖e‖) (which
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corresponds to the term
∏
i λi in the two lemmas). So analyzing this quantity for cer-

tain collection of paths is important in order to understand the growth of the first-passage
metric. Keeping that in mind, we now estimate the following

For any positive integer k > 1 and x,y ∈ Zd, let

Pk(x,y) be the set of all finite E -paths
of length (no. of edges) k from x to y.

(2.2)

We define

S r
k (x,y) :=

∑
π∈Pk(x,y)

∏
e∈π

r(‖e‖).(2.3)

In order to estimate the growth of S r
k , first we need the following bound.

Lemma 2.3. Let r(·), q(·) be non-increasing functions onN→ (0,∞) satisfying

sup
x>1

x |r(x+ 1)− r(x)|
r(x)

6 c, sup
x>1

x |q(x+ 1)− q(x)|
q(x)

6 c,(2.4)

for some constant c > 0. Then, for any x ∈ Zd we have∑
y 6=0,x

r(‖x− y‖)q(‖y‖) 6 a
(
r(‖x‖)

∫ ‖x‖
1

xd−1q(x)dx

+ q(‖x‖)
∫ ‖x‖

1

xd−1r(x)dx+

∫ ∞
‖x‖

xd−1r(x)q(x)dx

)
for some constant a <∞ depending only on c, d.

Proof. Let m := 1
4 ‖x‖2. Here ‖x‖2 = (

∑
x2
i )

1/2 is the `2–norm and B2(x, r) = {y :

‖x− y‖2 6 t} is the `2–ball of radius t centered at x. Note that d−1/2 ‖x‖ 6 ‖x‖2 6
‖x‖. Define the sets

A1 := B2(0, 3m) \ {0}, A2 := B2(x, 3m) \ {x} and A3 := B2(x/2,
√

5m)c.

A1 A2

Ac
3

0 x

FIGURE 2.1. Decomposition of Zd \ {0,x} into Ai, i = 1, 2, 3.

It is easy to see that
⋃3
i=1Ai = Zd \ {0,x}, as the distance between x/2 and any

vertex outside A1 ∪A2 is at least
√

(3/4)2 − (1/2)2 ‖x‖2 =
√

5m. Therefore we have∑
y 6=0,x

r(‖x− y‖)q(‖y‖) 6
3∑
i=1

∑
y∈Ai

r(‖x− y‖)q(‖y‖).
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Now y ∈ A1 implies ‖x− y‖ > ‖x− y‖2 > m. Moreover the conditions (2.4) imply that
supk>1 r(ak)/r(k) < ∞, supk>1 q(ak)/q(k) < ∞ for all a > 0. In particular, r(‖x‖)
and r(‖x‖2) are equivalent upto constant multiplication.

Thus we have∑
y∈A1

r(‖x− y‖)q(‖y‖) 6 r(m)

3m∑
i=1

id−1q(i) 6 ar(‖x‖)
∫ ‖x‖

1

xd−1q(x)dx

for some constant a > 0. Similarly, we have∑
y∈A2

r(‖x− y‖)q(‖y‖) 6 aq(‖x‖)
∫ ‖x‖

1

xd−1r(x)dx.

Finally, using triangle inequality we have

‖y‖2 > ‖y − x/2‖2 − 2m and ‖x− y‖2 > ‖y − x/2‖2 − 2m,

and thus ∑
y∈A3

r(‖x− y‖)q(‖y‖) 6 a′
∑
s>5m2

sd/2−1r(
√
s− 2m)q(

√
s− 2m)

6 a′′
∫ ∞
‖x‖

xd−1r(x)q(x)dx

for some constant a′′. �

Corollary 2.4. For α, β > 0 there exists constant c > 0 depending on α, β and d such
that for any x ∈ Zd

(a)
∑

y 6=0,x ‖y‖
−β ‖x− y‖−α 6 c ‖x‖d−β−α if 0 < α, β < d and α+ β > d,

(b)
∑

y 6=0,x ‖y‖
−α ‖x− y‖−α 6 c ‖x‖−α if α > d.

We now use Lemma 2.3 to estimate the growth of S r
k . We use S α

k when r(k) = k−α.

Lemma 2.5. Let r(·) satisfy 1.3. For any fixed k > 1 and any x,y ∈ Zd,

(a) α 6 (k − 1)d/k implies S α
k (x,y) =∞,

(b) (k − 1)d/k < α < d implies

ak−1 ‖x− y‖(k−1)d−kα 6 S α
k (x,y) 6 bk−1 ‖x− y‖(k−1)d−kα

for some constant a, b > 0 depending only on α and d,

(c) A :=
∫∞

1
xd−1r(x)dx <∞ implies that

ak−1r(‖x− y‖) 6 S r
k (x,y) 6 bk−1r(‖x− y‖)

for some constant a, b > 0 depending only on A and d.

Proof of Lemma 2.5. Let z be a lattice point closest to x/2. Define `i := 2i ‖x‖ for i > 0
and consider the open annulus Ai around z of in-radius `i and out-radius 2`i. Clearly
|Ai| > cd`di for some constant cd > 0.

Let Pi, i > 0 be the set of all paths from 0 to x with k edges where all the vertices on
the path, except the first and last one, are in Ai. Clearly Pi’s are disjoint and ‖e‖ 6 4`i
for every edge e belonging to some π ∈ Pi, so the contribution of Pi in S α

k (0,x) is
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> ak`d(k−1)−αk
i for some constant a > 0.

(a) For α 6 (k − 1)d/k, the index of `i is nonnegative, so summing over i we get
S α
k (0,x) =∞. This proves (a).

(b) Note that we have already proved that

S α
k (0,x) >

∑
π∈P0

∏
e∈π
‖e‖−α > ak ‖x‖(k−1)d−kα

.

To show that this is the correct order for α ∈ ((1 − 1/k)d, d), we will use induction to
show that

S α
L (0,x) 6 cL−1

1 ‖x‖(L−1)d−Lα for all x ∈ Zd(2.5)

and for any 1 6 L < d/(d− α),

for some positive constant c1. For L = 1, it is trivial to see that S α
1 (0,x) = ‖x‖−α and

(2.5) holds. Assuming (2.5) holds for L = l and l + 1 < d/(d− α), we have

S α
l+1(0,x) 6

∑
y 6=0,x

S α
l (0,y) ‖x− y‖−α 6 cl−1

1

∑
y 6=0,x

‖y‖(l−1)d−lα ‖x− y‖−α .

So applying Corollary 2.4 with β = lα− (l − 1)d, we have

S α
l+1(0,x) 6 cl1 ‖x‖d−α−β = cl1 ‖x‖ld−(l+1)α

,

and thus (2.5) holds for L = l + 1. This proves (b).

(c) Now, we move to the proof of the case when A :=
∫∞

1
xd−1r(x)dx < ∞. To see

the lower bound for S r
k (0,x), it is enough to consider a path that starting from 0 moves

among the set {y : ‖y‖ = 1} and finally jumps to x at the k-th step. For the upper bound,
we follow the induction argument which leads to the proof of (2.5) to prove

S r
k (0,x) 6 ck−1r(‖x‖) for all x ∈ Zd for any k > 1,

where c is as in Corollary 2.4(b). The main step is to bound
∑

y r(‖y‖)r(‖x− y‖), for
which we use Corollary 2.4(b). �

Lemma 2.5 together with Lemma 2.1 gives an estimate for the first-passage time when
α > d.

Lemma 2.6. Assume A :=
∫∞

1
xd−1r(x)dx <∞. There exists a constant c = c(A, d) >

0 such that for any x ∈ Zd and t > 0,

P(T (0,x) 6 t) 6 (ect − 1)r(‖x‖).

Proof. For Pk(0,x) as defined in (2.2) we use union bound to have

P(T (0,x) 6 t) 6
∞∑
k=1

∑
π∈Pk(0,x)

P(Wπ 6 t).
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Applying Lemma 2.1 to bound the summands of the above display and recalling the defi-
nition of S r

k from (2.3), we have

P(T (0,x) 6 t) 6
∞∑
k=1

(
et

k

)k ∑
π∈Pk(0,x)

∏
e∈π

r(‖e‖)

=

∞∑
k=1

(
et

k

)k
S r
k (0,x) 6

∞∑
k=1

(
ebt

k

)k
r(‖x‖)

for some constant b = b(A, d) > 0, where the last inequality follows by applying
Lemma 2.5(c). The rest of the proof follows easily as

∑∞
k=1

(
ebt
k

)k
6 eebt − 1. �

3 Instantaneous Percolation Regime

Proof of Theorem 1.2. (i) When A :=
∫∞

1
xd−1r(x) = ∞, it is trivial to show that

|Bt| =∞ for any t > 0. So we consider the case when r(k) = k−α with α < d. It suffices
to show that P(T (0,x) > ε) = 0 for any ε > 0 and x ∈ Zd. To prove this assertion we
will define a sequence {Pj}j>0 of subsets of P(0,x), which is the set of finite E -paths
joining 0 and x, such that whenever j 6= j′, any π ∈ Pj and π′ ∈ Pj′ are edge disjoint,
and

Tj := inf{Wα
π : π ∈ Pj} satisfies P(Tj > ε) 6 1− δ(3.1)

for some δ > 0, which does not depend on j. Clearly {Tj}j>0 will be a sequence of
independent random variables, so that

P(T (0,x) > ε) 6
∏
j>0

P(Tj > ε).

The product term equals 0 by the property of Tj , and so the desired assertion will be proved.
In order to define {Pj}, fix an integer k > d/(d − α) and for j > 0 let `j := 2j(k −

1)j ‖x‖. Let z be one of the lattice points closest to x/2. Also let B(j)
i , 1 6 i 6 k − 1, be

the annulus centered at z and having in-radius (2i − 1)`j and out-radius 2i`j . With these
ingredients, define

Pj := {π = 〈x0x1 . . .xk〉 : x0 = 0,xk = x,xi ∈ B(j)
i for i = 1, 2, . . . , k − 1}.

It is easy to see that

(a) |Pj | = |B(j)
1 | · |B

(j)
2 | · . . . · |B

(j)
k−1|

(b) cil
d
j 6 |B(j)

i | 6 Cildj for some constants ci and Ci, and(3.2)

(c) lj 6 ‖e‖ 6 4(k − 1)lj for all e belonging to some π ∈ Pj .

In order to obtain (3.1) we use a standard second moment argument involvingNj := |{π ∈
Pj : Wπ 6 ε}| to have

P(Tj 6 ε) = P(Nj > 1) >
(E(Nj))

2

E(N2
j )

.(3.3)
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Now using the first inequality of Lemma 2.1

E(Nj) =
∑
π∈Pj

P

(∑
e∈π
‖e‖α ωe 6 ε

)
>
∑
π∈Pj

(
ε

k + ε

)k∏
e∈π
‖e‖−α .

Combining the last inequality with (3.2),

E(Nj) >

(
ε

k + ε

)k
(4(k − 1)lj)

−αk|Pj | > A(k, ε) · ld(k−1)−αk
j(3.4)

for some constant A(k, ε) > 0. On the other hand, noting that for the paths π, π′ ∈ Pj
either π = π′ or |π ∩ π′| 6 k − 2,

E(N2
j ) =

∑
π,π′∈Pj

P

(∑
e∈π
‖e‖α ωe 6 ε,

∑
e∈π′
‖e‖α ωe 6 ε

)

=
∑
π∈Pj

P

(∑
e∈π
‖e‖α ωe 6 ε

)

+

k−2∑
m=0

∑
π,π′∈Pj :|π∩π′|=m

P

(∑
e∈π
‖e‖α ωe 6 ε,

∑
e∈π′
‖e‖α ωe 6 ε

)
.

Using Lemma 2.1 and 2.2 to bound the summands of the first and second term respectively
in the right hand side of the above display,

E(N2
j ) 6

∑
π∈Pj

c(k, ε)
∏
e∈π
‖e‖−α

+

k−2∑
m=0

∑
π,π′∈Pj :|π∩π′|=m

c(k,m, ε)
∏

e∈π∪π′
‖e‖−α .

(3.5)

Now (3.2) suggests that |Pj | 6
∏k
i=1 Cil

d(k−1)
j and for any fixed π ∈ Pj and 0 6 m 6

k − 2,

|{π′ ∈ Pj : |π ∩ π′| = m}| 6
k∏
i=1

Cil
d(k−1−m)
j ,

as π ∩ π′| = m implies that there are at most k − 1 −m end points of edges present in
π′ but absent in π. So the number of summands in the inner sum for the second term in
(3.5) is at most (

∏k
i=1 Ci)

2l
d(2k−2−m)
j . From (3.2) we also have that the product term in

the first summand of (3.5) is at most
∏k−1
i=1 c

−α
i l−αkj and that in the second summand is at

most
∏k−1
i=1 c

−2α
i l

−α(2k−m)
j . Hence, using the fact that α < d

E(N2
j ) 6

k−1∏
i=1

Cil
d(k−1)
j · c(k, ε)

k−1∏
i=1

c−αi l−αkj

+

k−2∑
m=0

k−1∏
i=1

C2
i l
d(2k−2−m)
j · c(k,m, ε)

k−1∏
i=1

c−2α
i l

−α(2k−m)
j

6 A′(k, ε)(l2d(k−1)−2kα
j + l

d(k−1)−kα
j )

(3.6)



20 S. CHATTERJEE AND P. S. DEY

for some constant A′(k, ε) > 0. Plugging the estimates of (3.4) and (3.6) in
(3.3) and noting that d(k − 1) − kα > 0 by our choice of k we finally have
P(Tj 6 ε) > A(k, ε)2/(2A′(k, ε)) =: δ. This completes the argument.

(ii) We have

E(|Bt|) =
∑
x∈Zd

P(T (0,x) 6 t)

6 1 +
∑

x∈Zd,x6=0

r(‖x‖)(ect − 1) = 1 + Cα(ect − 1) 6 ec(1∨Cα)t

where the first inequality follows from Lemma 2.6 and the second from the fact that∑
x∈Zd,x 6=0

r(‖x‖) = Cα <∞.

This completes the proof of the Theorem. �

4 Multi scale analysis

In this section, our goal is to find suitable upper bound for the first-passage time T (0,x)
in terms of ‖x‖ when α ∈ (d, 2d+ 1). For simplicity, we will only consider the case when
r(k) = k−α for k > 1.

Proposition 4.1. Assume that r(k) = k−α, k > 1 with α ∈ (d, 2d + 1). Define ∆(α) :=
1/ log2(2d/α) for α ∈ (d, 2d). For any t > 0, there exist constants c, C > 0 depending
only on α, d such that

(a) P
(
T (0,x) > (1 + t)c ‖x‖α−2d) 6 exp

(
− Ct2

1 + t

)
for α ∈ (2d, 2d+ 1)

(b) P
(
T (0,x) > c(1 + t) exp

(
2
√

2d log 2 log ‖x‖
))
6 exp

(
− t2

1 + t
exp(C

√
log n)

)
for α = 2d and

(c) P
(
T (0,x) > (1 + t)c(log ‖x‖)∆(α)

)
6 exp

(
−C t2

t+ 1
(log ‖x‖)∆(α)

)
for α ∈

(d, 2d).

In order to prove Proposition 4.1, we look at a general ansatz for the optimal path that
will give us an appropriate upper bound for the minimum time to reach a point from the
origin. The idea is to get hold of the minimum among all functions f : R+ → R+ such
that the longest edge in the optimal path joining any two points separated by Euclidean
distance n from each other connects the Euclidean balls of radius f(n) around those two
points with high probability as n increases to infinity. Identifying this will enable us to
understand the structure of some near-optimal paths, and hence to obtain upper bound for
the minimum time to communicate between two points.

Let B(y, k) denote the `∞–ball of radius k around y, so the volume of B(y, k) is at
least ckd for some constant c. Fix a point x with ‖x‖ = n. Obviously

P(T (0,x) > t) 6 P(Wπ(x) > t)
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for any (possibly random) path π(x) joining 0 and x. We will work with some particular
choices of π(x), for which first we need to introduce some notations.

Fix a function f : R+ → R+ such that f(x) < x/2 for all x > 1, and let f0 = n and
fk = f(fk−1) inductively for 1 6 k 6 K := max{k : fk > 1}. Define

u0 := 0,u1 := x, B0 := B(u0, f1), B1 := B(u1, f1),(4.1)

and let u01 ∈ B0 and u10 ∈ B1 be random vertices such that the edge 〈u01u10〉 has
minimum passage time among all edges connecting the two Euclidean balls B0 and B1,
i.e.,

〈u01u10〉 := argmin
{
W〈uv〉 : u ∈ B0,v ∈ B1

}
.

In general, for i > 0 and σ ∈ {0, 1}i we identify uσ0 with uσ00 and uσ1 with uσ11; then
we inductively define

Bσj := B(uσj , fi+1) for j ∈ {0, 1},
and let uσ01 ∈ Bσ0 and uσ10 ∈ Bσ1 be random points such that

〈uσ01uσ10〉 := argmin
{
W〈uv〉 : u ∈ Bσ0,v ∈ Bσ1

}
.

We denote the length of σ by ‖σ‖, that is ‖σ‖ := i for σ ∈ {0, 1}i.
Now we define a collection of finite E -paths {π̂k}Kk=1 joining 0 and x as follows.

Since uσ00,uσ01 ∈ Bσ0 and ‖uσ00 − uσ01‖ 6 f‖σ‖+1, there are nearest-neighbor paths
of length at most f‖σ‖+1 joining uσ00 and uσ01 and staying inside Bσ0. Choose one such
path πσ0. Similarly, choose one nearest-neighbor path πσ1 of length at most f‖σ‖+1 joining
uσ10 and uσ11 and staying inside Bσ1. Using the edges {〈uσ01uσ10〉 : σ ∈ ∪i>0{0, 1}i}
and the path segments {(πσ0, πσ1) : σ ∈ ∪i>0{0, 1}i} as ingredients define the paths
{π̂k}16k6K by

π̂k :=
⋃

σ∈{0,1}k−1

(πσ0 ∪ πσ1)

k⋃
i=1

⋃
σ∈{0,1}i−1

〈uσ01uσ10〉.

In words, π̂k consists of the nearest-neighbor path segments πσ0 (which stays inside
the balls Bσ0 and connects uσ00 and uσ01) and πσ1 (which stays inside the balls Bσ1

and connects uσ10 and uσ11) for σ ∈ {0, 1}k−1 (there are 2k such path segments, all
having length at most fk) and the edges 〈uσ01uσ10〉 connecting the balls Bσ0 and Bσ1 for
σ ∈ ∪k−1

i=0 {0, 1}i. See Figure 4.1 for a pictorial description of the path π̂3 in the Ansatz.

u0

u1

u01

u10

u001

u010

u110

u101

FIGURE 4.1. Pictorial description of the paths π̂k in the Ansatz for k = 3.
Vertices in the small boxes are connected by nearest-neighbor paths.
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Having defined the paths {π̂k}, we now estimate their passage times. Basic properties
of exponential distribution and the fact that ‖u− v‖ 6 f‖σ‖ + 2f‖σ‖+1 for u ∈ Bσ0 and
v ∈ Bσ1 imply that the passage time for 〈uσ01uσ10〉 is exponentially distributed with rate∑

u∈Bσ0,v∈Bσ1

‖v − u‖−α > c(f‖σ‖ + 2f‖σ‖+1)−αf2d
‖σ‖+1.(4.2)

Also the passage times of 〈uσ01uσ10〉, σ ∈ ∪K−1
i=0 {0, 1}i, are independent, as their defini-

tion involves minimum over disjoint sets of edges.
Combining the last observation with the inequality in (4.2) and the fact that the passage

times for the nearest-neighbor edges are i.i.d. and exponentially distributed with mean one,
it is easy to see that Wπ̂k is stochastically dominated by

∑
σ∈{0,1}k

fk∑
i=1

Xσ,i +

k∑
i=1

∑
σ∈{0,1}i−1

c(fi−1 + 2fi)
αf−2d

i Xσ,

where {Xσ} and {Xσ,i} are i.i.d. and exponentially distributed with mean one. Now the
second assertion of Lemma 2.1 with

Λ = Λf,k := c

k∑
i=1

2i−1(fi−1 + 2fi)
αf−2d

i + 2kfk

and λ = λf,k :=

[
1 + max

16i6k
(fi−1 + 2fi)

αf−2d
i

]−1
(4.3)

together with the fact that T (0,x) 6Wπ̂k implies

P(T (0,x) > (t+ 1)Λf,k) 6 exp

(
− t2

2(t+ 1)
Λf,kλf,k

)
(4.4)

for any t > 0 and for any f : R+ → R+ such that f(x) 6 x/2. We need to minimize the
value of Λf,k over the choices of the function f and 1 6 k 6 K.

4.1 Case 1: α ∈ (2d, 2d+ 1)

(Proof of Proposition 4.1(a)).
In this case, we consider the collection of functions {fa(·) : a > 2}, where fa(x) =

x/a. The optimal choice of a will be specified later. We will use a in the superscript
to denote the dependence on a. In that case, fak = n/ak and Ka = blog n/ log ac. To
understand the order of magnitude of Λfa,k note that

Λfa,k = c

k∑
i=1

2i−1(a+ 2)αa(2d−α)inα−2d + 2kna−k

=

{
c(n/a)α−2d(a+ 2)α · 1−[2a2d−α]k

1−2a2d−α + 2kna−k if 2a2d−α 6= 1

c(n/a)α−2d(a+ 2)α · k + 2kna−k if 2a2d−α = 1
(4.5)

=


c1n

α−2d(1− [2a2d−α]k) + (2/a)kn if aα−2d > 2

c1n
α−2dk + (2/a)kn if aα−2d = 2

c1n
α−2d[2a2d−α]k + (2/a)kn if aα−2d < 2
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for some constant c1 > 0 depending on α, d and a. To minimize the last expressions with
respect to k note that the functions

y 7→


c1n

α−2d(1− [2a2d−α]y) + (2/a)yn if aα−2d > 2

c1n
α−2dy + (2/a)yn if aα−2d = 2

c1n
α−2d[2a2d−α]y + (2/a)yn if aα−2d < 2

are minimized when y = log n/ log a+ c2 for some constant c2. Now note that n(2/a)k =
O(nlog 2/ log a) when k = log n/ log a+ c for some constant c. Keeping in mind that k can
be at most Ka = blog n/ log ac, let ka = blog n/ log a + min{c2, 0}c. Considering the
dominating terms, we have

min
k6Ka

Λfa,k = Λfa,ka =


O(nα−2d) if aα−2d > 2

O(nα−2d log n)� O(nα−2d) if aα−2d = 2

O(nlog 2/ log a)� O(nα−2d) if aα−2d < 2.

So our choice of a should satisfy aα−2d > 2. Therefore, (4.5) implies

min
a,k6Ka

Λfa,k = Λfa0 ,ka0 = (A0 + o(1))nα−2d

for

a0 := argmin{(a+ 2)α/(aα−2d − 2) : aα−2d > 2}
and A0 := (a0 + 2)α/(aα−2d

0 − 2).

Also, it is easy to see that λfa0 ,ka0 = [1 + nα−2d(a0 + 2)α/aα−2d
0 ]−1, so Λfa0 ,ka0

λfa0 ,ka0 = C2 +o(1) for some constant C2 > 0. Therefore, replacing (f, k) by (fa0 , ka0)
in (4.4) and recalling that ‖x‖ = n we see that if α ∈ (2d, 2d+1), then there are constants
c(α), C(α) > 0 such that the desired bound holds. �

4.2 Case 2: α = 2d

(Proof of Proposition 4.1(b)).
In this case, we consider the sequences {an}, which satisfy an � 1 and log an �

log n, and (following the notations of (4.3)) define

Λ({an}, k) := c

k∑
i=1

2i−1

(
n

(an)i−1
+ 2

n

(an)i

)2d(
n

(an)i

)−2d

+ 2k
n

(an)k

and λ({an}, k) :=

[
1 + max

16i6k

(
n

(an)i−1
+ 2

n

(an)i

)2d(
n

(an)i

)−2d
]−1

.

The particular choice of {an} will be specified later.
In this case, k can be at most Kan = blog n/ log(an)c. Now note that

Λ({an}, k) = c

k∑
i=1

2i−1(an + 2)2d + 2kna−kn = c(1 + o(1))2ka2d
n + 2kna−kn .
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The two summands in the last expression will be of same order if ak+2d
n = n. Replacing

an by n1/(k+2d) the right hand side of the last display equals

c(1 + o(1)) exp

(
k log 2 +

2d

k + 2d
log n

)
,

which is minimized when k + 2d ≈
√

2d log2 n. So we choose k0 := b
√

2d log2 n− 2dc
and a0

n := n1/(k0+2d) and hence

Λ({a0
n}, k0) = c(1 + o(1)) exp

(
2
√

2d log 2 log n
)
.

Also, it can be easily checked that k0 6 Ka0
n and

λ({a0
n}, k0) = (1 + o(1))(a0

n)−2d = (1 + o(1)) exp
(
−
√

2d log 2 log n
)
,

which makes Λ({a0
n}, k0)λ({a0

n}, k0) = (1 + o(1)) exp(C
√

log n) for some C > 0.
Therefore, replacing Λf,k and λf,k by Λ({a0

n}, k0) and λ({a0
n}, k0) respectively in (4.4)

and recalling that ‖x‖ = n we see that if α = 2d, then there are constants c(d), C(d) > 0
such that the desired bound holds. �

4.3 Case 3: α ∈ (d, 2d)

(Proof of Proposition 4.1(c)).
In this case, we consider the collection of functions {fγ : γ ∈ (0, 1)}, where fγ(x) =

xγ . The optimal choice of γ will be specified later. We will use γ in the superscript to
denote the dependence on γ. In that case, fγk = nγ

k

so that Kγ = blog log n/ log(1/γ)c.
In order to understand the order of magnitude of of Λfγ ,k, first note that k 6 Kγ implies
that

k∑
i=1

2i−1 62k 6 (log n)log 2/ log(1/γ)

and γk > (log n)−1, and hence n−aγ
k

> e−a.(4.6)

The definition of Λ in (4.3) suggests

Λfγ ,k =

k∑
i=1

2i−1
(

1 + 2n−(1−γ)γi−1
)α

n−(2dγ−α)γi−1

+ 2knγ
k

.

For γ < α/2d, it is easy to see using (4.6) that

Λfγ ,k − n(α−2dγ) 6 n(α−2dγ)

[
o(1) + n(α−2dγ)(γ−1)

k∑
i=2

2i−1cγ

]
= n(α−2dγ)o(1) + 2knγ

k

.

For γ > α/2d, in order to understand the order of magnitude of Λfγ ,k note that

2−(k−1)n(2dγ−α)γk−1

Λfγ ,k −
(

1 + 2n−(1−γ)γk−1
)α

=

k−1∑
i=1

2−(k−i)(1 + cγ)αn−(2dγ−α)(γi−1−γk−1) 6
∞∑
i=0

2−i.
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So

Λfγ ,k =

{
nα−2dγ(1 + o(1)) + 2knγ

k

if γ < α/2d

C(γ)2k−1n−(2dγ−α)γk−1

+ 2knγ
k

if γ > α/2d
(4.7)

For fixed γ, the dominating terms in the last expressions are minimized when γk =

c(γ)/ log n for some constant c(γ). Now note that 2knγ
k

= O((log n)log 2/ log(1/γ)) when
γk = c(γ)/ log n. Keeping in mind that k can be at most

Kγ = blog logn/ log(1/γ)c,
we choose kγ = blog log n/ log(1/γ) + min{c(γ), 0}c, and considering the dominating
terms

min
k6Kγ

Λfγ ,k ≈ Λfγ ,kγ =

{
O(nα−2dγ) if γ < α/2d,
O((log n)log 2/ log(1/γ)) if γ > α/2d.

Clearly the optimal choice of γ to minimize the order of magnitude for the above expresion
is α/2d. Therefore, (4.7) will suggest

min
γ,k6Kγ

Λfγ ,k ≈ Λfα/2d,kα/2d = c(α)(log n)log 2/ log(2d/α)

for some constant c(α) > 0.

Also, by the definition of λ in (4.3)

Λfα/2d,kα/2dλfα/2d,kα/2d >

∑kα/2d

i=1 2i−1

1 +
(

1 + n−(1−α/2d)(α/2d)k
α/2d−1

)α
= C(α)2k

α/2d

= C(α)(log n)log 2/ log(2d/α).

Plugging in the above values of Λ and λ in (4.4) and recalling that ‖x‖ = n, we get the
desired result. �

5 Self-bounding Inequality for Expected Growth

In this section, we will prove an inequality for the expected volume of the random
growth set Bt when α > d. This will lead to a lower bound for the first-passage time
T (0,x) later and is inspired by one of the arguments presented in Trapman [52].

For simplicity we will work with the case r(k) = k−α, k > 1 for L(t) ≡ 1 with fixed
α > d. For general L(·) the proof is similar as for a > 1 and some slowly varying function
L(·), we have

∑
k>n k

−aL(k) = n1−aL̂(n) for another slowly varying function L̂(·) and
thus the exponents remains same if the change the slowly varying function.

Define

g(t) := E |Bt| for t > 0.(5.1)

Theorem 1.2 suggests that g(t) 6 ect for some constant c depending only on α and d. We
will improve upon this bound and will eventually obtain a much better one. For that we
need to define

f(k, t) := sup
‖x‖=k

P(T (0,x) 6 t) ∈ [0, 1]

for k, t > 0.
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The following lemma proves that f(k, t) 6 k−αh(t) for a suitable choice of h(·). Thus
the contribution of the two arguments of f(·, ·) can be separated, which will be helpful in
the analysis of this function.

Lemma 5.1. For any fixed α > d and g as in (5.1), there exist constants c, δ > 0 depending
only on α and d such that f(k, t) 6 ck−αh(t), where

h(t) := tα
∫ t

0

g(t− y)(g(y)− 1)dy + e−δt.

It is easy to see that

g(t) =
∑
x∈Zd

P(T (0,x) 6 t) 6
∞∑
k=0

vd(k)f(k, t),

where vd(k) = |{x ∈ Zd : ‖x‖ = k}| 6 cdk
d−1 for some constant cd > 0. So, Lemma

5.1 together with the fact that f(k, t) 6 1 suggests that for any R > 1

g(t) 6 1 +

∞∑
k=1

cdk
d−1f(k, t)

6 1 +

R∑
k=1

cdk
d−1 +

∑
k>R

cdk
d−1k−αh(t) 6 1 + c′dR

d + c′dh(t)Rd−α.

Taking R = ch(t)1/α and simplifying we see that

(g(t)− 1)α/d 6 ch(t).(5.2)

for some constant c = c(d, α) > 0 and h(·) as in Lemma 5.1.
Lemma 5.1 together with (5.2) gives rise to a recursive inequality involving g(·). Solv-

ing this inequality we get an improved bound for g(·), which leads to the following bound
for the α-th first-passage time T (0,x).

Proposition 5.2. For α > d there are constants c, C > 0 depending only on α and d such
that for γ = log2(2d/α)

logP(T (0,x) 6 t) 6


c(log(1 + t))1−γtγ(1 + o(1))− α log ‖x‖+ c if α ∈ (d, 2d)
4d+2
log 2 (log(1 + t))2(1 + o(1))− α log ‖x‖+ c if α = 2d

α
(

1+α
α−2d log(1 + t)(1 + o(1))− log ‖x‖

)
+ c if α > 2d.

One of the main ingredients in the proof of Proposition 5.2 is the following solution of
a self-bounding inequality for positive functions.

Theorem 5.3. Let g(t) : [0,∞)→ R be a function satisfying

1 6 g(t) 6 eλt and g(t)1/θ 6 c

(
1 + tβ−1

∫ t

0

g(y)g(t− y)dy

)
(5.3)

for all t > 0 for some constants λ > 0, θ ∈ (0, 1), β > 0 and c > 1. Then, there exist a
constant cθ > 1 such that g(t) 6 G(t) for all t > 0, where

logG(t) =


cθ(2λt)

log2(2θ)
(
log(1 + tβ)

)log2(1/θ)
(1 + o(1)) if θ > 1/2

1
β log 2 (log(1 + tβ))2(1 + o(1)) if θ = 1/2
θ

1−2θ log(1 + tβ)(1 + o(1)) if θ < 1/2.
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We will present the proof of Theorem 5.3, followed by that of Proposition 5.2 and
Lemma 5.1 respectively.

Proof of Theorem 5.3. Given (5.3), we claim that

log g(t) 6 exp

(
θ((2θ)k − 1)

2θ − 1
log
(
c(1 + tβ)

)
+ λθkt

)
(5.4)

for all t > 0 for all k > 0. When 2θ = 1, ((2θ)k − 1)/(2θ − 1) is interpreted as k. We
prove (5.4) using induction on k.

The case k = 0 follows readily from our hypothesis. Now assume that (5.4) holds for
k = m. This together with the fact that t 7→ tβ is increasing in t implies∫ t

0

g(t− y)g(y) dy 6
[
(c(1 + tβ))θ((2θ)

m−1)/(2θ−1)
]2

exp(λθmt)

∫ t

0

dy.

Combining this with the inequality in (5.3) suggest that for all t > 0

g(t) 6 cθ
(

1 + tβ−1

∫ t

0

g(y)g(t− y) dy

)θ
6 cθ

(
1 + tβ

(
c(1 + tβ)

)2θ((2θ)m−1)/(2θ−1)
exp(λθmt)

)θ
.

It is easy to see that the factor multiplied with tβ in the above expression is > 1, so the
above implies

g(t) 6 cθ(1 + tβ)θ
[(
c(1 + tβ)

)2θ((2θ)m−1)/(2θ−1)
exp(λθmt)

]θ
.

Simplifying the expression in the right hand side we conclude

g(t) 6
(
c(1 + tβ)

)θ((2θ)m+1−1)/(2θ−1)
exp(λθm+1t),

and thus (5.4) is true for k = m+ 1. This proves the claim (5.4).
Having proved (5.4), we will put suitable values of k there to get the desired result.

Case 1. Suppose θ > 1/2. The optimal value of k should be such that the two terms
containing k in the right hand side of (5.4) are approximately equal. If we equate them,
then we have

2kθk+1

2θ − 1
log
(
c(1 + tβ)

)
= λθkt or k = log2

(2− 1/θ)λt

log (c(1 + tβ))
.

So plugging in k0 := blog2[(2− 1/θ)λt/ log(c(1 + tβ))]c in (5.4) we have

log g(t) 6 2λtθk0 6 2λtθ−1

(
(2− 1/θ)λt

log (c(1 + tβ))

)log2 θ

− θ

2θ − 1
log
(
c(1 + tβ)

)
6 cθ(2λt)

log2(2θ)
(
log
(
c(1 + tβ)

))log2(1/θ)
,

where logθ cθ = −1 + log2(1− 1/(2θ)).

Case 2. Suppose θ < 1/2. Then letting k go to infinity in (5.4), we have

g(t) 6
(
c(1 + tβ)

) θ
1−2θ .
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Case 3. Finally we consider the case θ = 1/2. Here we have

log g(t) 6
k

2
log(c(1 + tβ)) + λt2−k 6

k

2
log(c(1 + tβ)) + λ(c(1 + tβ))1/β2−k.

Similar to our approach in case 1, we will use a value of k for which the two summands
in the right hand side are approximately equal. We see that the summands are equal if
k2k = 2λ(c(1 + tβ))1/β/ log(c(1 + tβ)). In order to capture the dominating term, it is
enough to choose k0 = blog2[λ(c(1 + tβ))1/β ]c to have

log g(t) 6 2 · k0

2
log(c(1 + tβ)) =

1

β log 2
(log(1 + tβ))2(1 + o(t)).

This completes the proof. �

Proof of Proposition 5.2. Let α > d be fixed. From Lemma 5.1 and equation (5.2) we
have

(g(t)− 1)α/d 6 c

(
tα
∫ t

0

g(t− y)(g(y)− 1) dy + e−δt
)

(5.5)

for all t > 0 for some constant c > 0 depending only on α and d. Let θ := d/α ∈ (0, 1).
Combining the previous inequality with the fact that g(t)1/θ 6 21/θ−1(1 + (g(t)− 1)1/θ)
(by Hölder inequality), and noting that 0 6 g(y)− 1 < g(y) and e−δt 6 1 we have

g(t)1/θ 6 C

(
1 + tα

∫ t

0

g(t− y)g(y) dy

)
for all t > 0 for some constantC > 1 depending on α and d. From Theorem 1.2(ii) we also
have g(t) 6 eλt for all t > 0 for some constant λ > 0 depending on α and d. Therefore,
we can apply Theorem 5.3 with β = 1 + α and use the inequality 1 + tβ 6 (1 + t)β to
have g(t) 6 G(t), where

logG(t) =


ctlog2(2d/α)(log(1 + t))log2(α/d)(1 + o(1)) if α ∈ (d, 2d)
2d+1
log 2 (log(1 + t))2(1 + o(1)) if α = 2d
(1+α)d
α−2d log(1 + t)(1 + o(1)) if α > 2d

(5.6)

for some constant c depending only on α and d.
Now we use the definition of f(·, ·) and Lemma 5.1 to have

logP(T (0,x) 6 t) 6 log f(‖x‖ , t)

6 c− α log ‖x‖+ log
(
tα
∫ t

0

g(t− y)(g(y)− 1) dy + e−δt
)

6 c− α log ‖x‖+
α

d
logG(t),

where G(·) is specified in (5.6). Here we used the fact that G(·) satisfies the inequality
(5.5) as equality. Plugging in the expression for logG(t) we get the required result. �

Proof of Lemma 5.1. Fix k, t > 0 and x ∈ Zd with ‖x‖ = k. We begin by estimating
P(T (0,x) 6 t) and then take supremum over all x with ‖x‖ = k. Let N(x) be the
number of edges in the optimal path joining 0 and x. Breaking in terms of the magnitude
of N(x) we have

P(T (0,x) 6 t) 6 P(T (0,x) 6 t,N(x) > at) + P(T (0,x) 6 t,N(x) 6 at)(5.7)
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for any a > 0. We first show that for b as in Lemma 2.5(b) and any a > e · b, the first term
in the right hand side of (5.7) satisfies

P(T (0,x) 6 t,N(x) > at) 6
a

b(a− b)e
−at log(a/eb) ‖x‖−α .

Let Nk be the number of self-avoiding paths between 0 and x which have k many edges
and passage time at most t. Using union bound and then Markov inequality

P(T (0,x) 6 t,N(x) > at) 6
∞∑
k=at

P(Nk > 1) 6
∞∑
k=at

E(Nk)

6
∞∑
k=at

∑
x0=0,xk=x

x1,...,xk−1∈Zd

P

(
k∑
i=1

W〈xi−1xi〉 6 t

)
.(5.8)

In order to estimate the summands we invoke Lemma 2.1 to have for any θ > 0

P

(
k∑
i=1

W〈xi−1xi〉 6 t

)
6 eθtθ−k

k∏
i=1

‖xi − xi−1‖−α .

Using this bound for the summands in (5.8) and applying Lemma 2.5 for the inner sum,
we see that

P(T (0,x) 6 t,N(x) > at) 6
∞∑
k=at

eθtθ−kbk−1 ‖x‖−α

= b−1eθt(b/θ)at ‖x‖−α /(1− b/θ)
for all θ > b. Taking θ = a > eb we have

P(T (0,x) 6 t,N(x) > at) 6
a

b(a− b)e
−at log(a/eb) ‖x‖−α .(5.9)

To bound the second term in the right hand side of (5.7), first note that if a vertex self-
avoiding path between 0 and x of length (i.e., number of edges) at most at exists, then it
will contain at least one edge shared between two vertices at distance > d‖x‖ /ate from
each other. Then by Markov inequality we have

P(T (0,x) 6 t,N(x) 6 at)

6
∑

x1,x2∈Zd
‖x1−x2‖>d‖x‖/ate

P(T (0,x1) +W〈x1x2〉 + T (x2,x) 6 t).

Recalling that the density of W〈x1x2〉 is at most ‖x1 − x2‖−α 6 ‖x‖−α (at)α whenever
‖x1 − x2‖ > d‖x‖ /ate, the right hand side of the last display is

6
∑

x1,x2∈Zd

∫ t

0

d(P(T (0,x1) 6 s))
∫ t−s

0

P(T (x2,x) 6 y) ‖x‖−α (at)α dy.

Taking the sum inside the integral the above equals

‖x‖−α (at)α
∫ t

0

dg(s)

∫ t−s

0

g(y) dy = ‖x‖−α (at)α
∫ t

0

g(y)

∫ t−y

0

dg(s) dy
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after changing the order of integration. Hence, we conclude

P(T (0,x) 6 t,N(x) 6 at) 6 ‖x‖−α (at)α
∫ t

0

g(y)(g(t− y)− 1) dy.(5.10)

Combining (5.7), (5.9) and (5.10), with a > eb and δ = a log(a/eb) we finally have

P(T (0,x) 6 t) 6 c ‖x‖−α
(
tα
∫ t

0

g(t− y)(g(y)− 1) dy + e−δt
)

for some constant c = c(α, d) > 0 for all x ∈ Zd \ {0}, t > 0. �

6 Stretched Exponential and Exponential Growth Regimes

In this section, we will put the necessary pieces together and complete the proofs of
Theorems 1.4, 1.3 and 1.5. As before we will work in the case when L(k) ≡ 1, so that
r(k) = k−α for k > 1. Proof for the general L(·) is similar as explained in Section 5.

6.1 Proof of Theorem 1.4
The probability estimate in Proposition 4.1(c) suggests that if c > 0 is large enough,

then

lim
‖x‖→∞

P
(
T (0,x) > c(log ‖x‖)∆

)
= 0.(6.1)

Now for any ε > 0 and any x satisfying ‖x‖ = bexp(t1/∆−ε)c,

P
(

logDt < t1/∆−ε
)
6 P (T (0,x) > t)

6 P
(
T (0,x) > (log ‖x‖)∆/(1−ε∆)

)
,

so using (6.1) limt→∞P(logDt < t1/∆−ε) = 0 for any ε > 0.
On the other hand, the probability estimate in Proposition 5.2 suggests that

P
(
T (0,x) 6 (log ‖x‖)∆−ε) 6 exp (−α log ‖x‖ (1− ϕ(‖x‖))) ,

where ϕ is such that liml→∞ ϕ(l) = 0. Hence,

lim
‖x‖→∞

P
(
T (0,x) 6 (log ‖x‖)∆−ε) = 0,

and using union bound

P
(

logDt > t1/∆+ε
)
6

∑
x:‖x‖>exp(t1/∆+ε)

P (T (0,x) 6 t)

6
∑

k:k>exp(t1/∆+ε)

cdk
d−1 exp (−α log k(1− ϕ(k))) .

By the property of ϕ, if t is large enough, then the above is upper bounded by∑
k>exp(t1/∆+ε)

cdk
d−1−(α−δ)

for any given δ > 0. Since α > d, the above series is convergent for small enough δ, which
implies limt→∞P(logDt > t1/∆+ε) = 0. This completes the proof of the Theorem. �
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6.2 Proof of Theorem 1.5
The probability estimate in Proposition 4.1(b) suggests that if c > 0 is large enough,

then
lim
‖x‖→∞

P
(
T (0,x) > c exp

(
2
√

2d log 2 log ‖x‖
))

= 0.

Now for any ε > 0, c <∞ and for any x satisfying

‖x‖ = bexp((1− ε)(log t)2/(8d log 2))c,
we have

P
(

logDt <

(
1− ε

8d log 2
(log t)2

))
6 P (T (0,x) > t)

6 P
(
T (0,x) > c exp(2

√
2d log 2 log ‖x‖)

)
provided t is large enough. This together with the bound of Proposition 4.1(b) gives
limt→∞P(logDt < (1− ε)(log t)2/(8d log 2)) = 0.

On the other hand, the probability estimate of Proposition 5.2 suggests that

P
(
T (0,x) 6 exp

(√
(d− ε) log 2 log ‖x‖ /(4d+ 2)

))
6 c exp (−(d+ ε) log ‖x‖) ,

and so if we let C(d, ε) = 4d+2
(d−ε) log 2 and use union bound, then

P
(
logDt > C(d, ε)(log t)2

)
6

∑
x:‖x‖>exp(C(d,ε)(log t)2)

P
(
T (0,x) 6 exp(

√
log ‖x‖ /C(d, ε)

)
6

∑
k>exp(C(d,ε)(log t)2)

cdk
d−1 exp (−(d+ ε) log k)→ 0

as t→∞, as the above series is convergent. This completes the proof of the Theorem. �

6.3 Proof of Theorem 1.3
As in the proof of Theorem 1.4 and 1.5, we will use Lemma 5.1 to find a lower bound

for T (0,x) and multi-scale analysis to find a matching upper bound. Using Theorem 1.2(ii)
under the assumption that r(k) = k−dL(k), k > 1 with

∫∞
1
x−1L(x)dx <∞ we have

g(t) := E |Bt| 6 eλt, t > 1

for some λ <∞. Combining with the result from Lemma 5.1 we thus have

P(T (0,x) 6 t) 6 cr(‖x‖)h(t)

where

h(t) := td
∫ t

0

g(t− y)(g(y)− 1)dy + e−δt 6 ebt

for some b > 0. Hence, for any ε ∈ (0, 1), we have

P(T (0,x) 6 (d− ε)/b log ‖x‖) 6 cL(‖x‖) ‖x‖−ε

for all x ∈ Zd \ {0}.
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For the upper bound on T (0,x) we will use multi-scale analysis to construct a path
that achieves the log ‖x‖ lower bound. We define the function

f(x) =

√
x

L(x)1/d(log x)1/2d
, x > 2.

The choice of this function is not arbitrary and is almost optimal as seen from the arguments
below.

Using this function, as done in (4.1), we construct a path π(x) from 0 to x. where
f0 = n and fi = f(fi−1) for i = 1, 2, . . .. Using (4.3) we have

Λ := c

k∑
i=1

2i−1fdi−1f
−2d
i /L(fi−1) + 2kfk

= c

k∑
i=1

2i−1L(fi−1) log fi−1 + 2kfk

and λ :=

[
1 + max

16i6k
fdi−1f

−2d
i /L(fi−1)

]−1

=

[
1 + max

16i6k
L(fi−1) log fi−1

]−1

= Θ(1).

(6.2)

Now it is easy to see that n1/2i 6 fi for all i > 0. If we can show that

fi 6 n
c/2i , i > 0(6.3)

for some c ∈ [1,∞), then we have 2i ≈ log n/ log fi−1, i > 1 and hence

Λ ≈
(
c

k∑
i=1

L(fi−1) + 1/ log fk

)
log n = Θ(log n)

as
∫ Ac
A

x−1dx = log c and
∫∞

1
x−1L(x)dx < ∞. Then we are done by (4.4). We claim

that (6.3) holds when ∫ ∞
1

− logL(x)

x(log x)2
dx <∞.

We have
log fi

(1/2) log fi−1
= 1− 2 logL(fi−1) + log log fi−1

d log fi−1
.

Thus (6.3) holds when
k∑
i=1

− logL(fi−1) + log log fi−1

log fi−1

is bounded by a finite constant independent of n. Note that 2k ≈ log n. Now∫ Ac

A

dx

x(log x)2
=

1− c−1

logA

and the proof follows by induction on i. We leave the exact calculation to the interested
reader. The lower bound on E |Bt| follows by comparison to LRP as given in [52, Theo-
rem 1.1(b)]. �
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7 Super-linear Growth Regime

Proof of Theorem 1.6: As before, for simplicity we will restrict ourselves to the rate func-
tion r(k) = k−α, k > 1 where α ∈ (2d, 2d+ 1). It follows easily from Proposition 4.1(a)
that there is a constant c > 0 such that P(T (0,x) > t ‖x‖α−2d

) 6 e−ct for all t large
enough. This in turn implies that

lim
t→∞

P(logDt 6 (1/(α− 2d)− ε) log t) = 0.

For the other direction we will prove using an induction argument that there is a con-
stant C > 1 (to be chosen later) and a recursively defined sequence (γk, k > 0) (see (7.6)
for the precise definition) satisfying

(a) (γk)k>0 is decreasing

(b) γk >
1

α− 2d
for all k and

(c) γk →
1

α− 2d
+ ε/2,

(7.1)

so that

lim
t→∞

P(Bt ⊆ B(0, Ctγk)) = 1.(7.2)

Then, choosing k large enough so that γk < 1/(α − 2d) + ε and applying (7.2) the proof
of the theorem will be complete.

To emphasize the dependence on α, if necessary, we will use the notations T (α)(·, ·),
B(α)
t , D(α)

t instead of T (·, ·),Bt, Dt, respectively when the rate function is k−α, k > 1.
In order to initiate the induction argument for (7.2) we will use the probability estimate

of Proposition 5.2 for α ∈ (2d, 2d + 1). Keeping that in mind, we choose and fix any γ0

satisfying

γ0 >
α(1 + α)/(α− 2d)

α− d− 1
.(7.3)

Now note that if Bt 6⊆ B(0, tγ0), then there is at least one x with ‖x‖ > tγ0 such that
T (0,x) 6 t, so using union bound

P(Bt 6⊆ B(0, tγ0)) 6
∑
k>tγ0

∑
x:‖x‖=k

P(T (0,x) 6 t).

Applying Proposition 5.2 for α ∈ (2d, 2d+1) to bound the summands of the above display
and noting that |{x : ‖x‖ = k}| 6 ckd−1,

P(Bt 6⊆ B(0, tγ0)) 6
∑

k:k>tγ0

ck−2 exp

(
α(1 + α)

α− 2d
log(1 + t)− (α− d− 1) log k

)

6 c exp

(
α(1 + α)

α− 2d
log

1 + t

t

) ∑
k:k>tγ0

k−2 → 0

as t→∞. The last inequality follows from the bound of γ0(α− d− 1) > α(1+α)
α−2d in (7.3)

and the fact that log k > γ0 log t for all the summands. Thus, (7.2) holds for k = 1.
Now suppose γm has been defined and (7.2) holds for k = m. In order to choose

γm+1 < γm so that (7.2) holds for k = m + 1, first we estimate the length of the longest
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edge used in the LRFPP process by time t under our induction hypothesis. Observe that
on the event {Bt ⊆ B(0, Ctγm)}, for any δ > 0

min{W〈x,y〉 : x ∈ Bt,y 6∈ B(x, tδ)} stochastically dominates

min{W〈x,y〉 : x ∈ B(0, Ctγm),y 6∈ B(x, tδ)},
which in turn stochastically dominates an exponential random variable with rate∑

x∈B(0,Ctγm )

∑
y 6∈B(x,tδ)

‖x− y‖−α 6 |B(0, Ctγm)|
∑
k>tδ

∑
u:‖u‖=k

‖u‖−α

6 ctγmd
∑
k>tδ

kd−1−α 6 ctγmd−δ(α−d)

for some constant c > 0. Therefore, using the inequality 1− e−x 6 x we have

P
({

min{W〈x,y〉 : x ∈ Bt,y 6∈ B(x, tδ)} 6 t
}
∩ {Bt ⊆ B(0, Ctγm)}

)
6 1− exp

(
−ct1+γmd−δ(α−d)

)
6 ct1+γmd−δ(α−d).(7.4)

Now if Bt ⊆ B(0, Ctγm) and W〈x,y〉 > t for all x ∈ Bt and y 6∈ B(x, tδ), then all the
edges belonging to the optimal path joining 0 and x ∈ Bt must have Euclidean length at
most tδ . Hence for any β > α, x ∈ Bt implies

t > T (α)(0,x) = inf
π∈P0,x:‖e‖6tδ∀e∈π

∑
e∈π
‖e‖α ωe

> inf
π∈P0,x:‖e‖6tδ∀e∈π

∑
e∈π
‖e‖β t−δ(β−α)ωe

> t−δ(β−α) inf
π∈P0,x

∑
e∈π
‖e‖β ωe = t−δ(β−α)T (β)(0,x),

which in turn implies x ∈ B(β)

t1+δ(β−α) . This shows that if we let

γm+1 := 1 + δ(β − α),

then Bt ⊆ B(0, Ctγm+1) on the event

{Bt ⊆ B(0, Ctγm)} ∩ {W〈x,y〉 > t ∀ x ∈ Bt and y 6∈ B(x, tδ)}(7.5)

∩ {B(β)

t1+δ(β−α) ⊆ B(0, Ct1+δ(β−α))}
for any β > α.

Now we choose β > 2d+ 1 and δ > (1 + γmd)/(α− d) so that

γm+1 := 1 + δ(β − α)

= 1 +
1 + γmd

α− d (2d+ 1− α) +
ε

2

(d+ 1)(α− 2d)

α− d .(7.6)

We also choose C > 1 such that limt→∞P(B(β)
t ⊆ B(0, Ct)) = 1. Proposition 8.2 guar-

anties the existence of such a C. Simple algebraic manipulation confirms that {γk}k>0,
as defined in the last display, satisfies (7.1). Combining (7.4), our induction hypothesis
that (7.2) holds for k = m and our choices of δ and C, the limit of the probability of the
event in (7.5) is 1, and hence

lim
t→∞

P(Bt ⊆ B(0, Ctγm+1)) = 1,
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which completes the proof of the induction argument. �

8 Linear Growth Regime

In this section, we consider the case of fixed α > 2d + 1. Let B(u, r) denote the
Euclidean `∞–ball of radius r around u ∈ Rd. In order to establish linear growth for the
LRFPP balls, we will show that for any fixed η ∈ (0, 2),

inf
z,w∈B(0,n),‖z−w‖∞>ηn

T (z,w)

‖z−w‖∞
> cη > 0

with high probability, where the constant cη does not depend on n. For that we need the
following lemma.

Lemma 8.1. If α > 2d+ 1, θ ∈ (0, 1) and c1, c2 are any positive constants, then

P
(
W〈zw〉 > c1n for all z ∈ B(0, c2n) and w 6∈ B(z, nθ)

)
> 1− Cnd+1−θ(α−d)

for some constant C > 0.

Proof. Note that for any fixed z ∈ Zd, the random variable min{W〈zw〉 | w 6∈ B(z, nθ)}
is exponentially distributed with rate∑

u:‖u‖∞>nθ

‖u‖−α 6
∑
k>nθ

ckd−1 · k−α 6 cnθ(d−α),

and hence the random variable min{W〈zw〉 | z ∈ B(0, c2n),w 6∈ B(z, nθ)} stochastically
dominates an exponential distribution with rate |B(0, c2n)| · cnθ(d−α). Therefore, using
the inequality 1− e−x 6 x and the fact that |B(0, c2n)| 6 cnd we have

P
(
min{W〈zw〉 : z ∈ B(0, c2n),w 6∈ B(z, nθ)} 6 c1n

)
6 1− exp

(
−|B(0, c2n)| · cnθ(d−α) · c1n

)
6 Cnθ(d−α)+d+1

for some constant C > 1. �

Lemma 8.1 ensures that if θ < 1 is sufficiently close to 1, then with high probability
none of the edges, which have `∞–length more than O(nθ) and have at least one end in an
`∞–ball of radiusO(n) around 0, will be a part of the optimal paths which start from 0 and
have passage time O(n). This observation plays a crucial role in proving linear growth for
the LRFPP balls when α > 2d + 1. We now use this key observation to produce a linear
lower bound for T (x,y).

Proposition 8.2. For any α > 2d+ 1 and η ∈ (0, 2), if ε > 0 is small enough, there exist
constants c(η), C > 0 such that

P

(
inf

z,w∈B(0,n):‖z−w‖∞>ηn

T (z,w)

‖z−w‖∞
> c(η)

)
> 1− Cn−(α−2d−1−ε).

Proof. Using an induction argument we will prove that there are constants ε, κ > 0 small
enough, δ, θ ∈ (0, 1), cη := 5η + 3d+ 6 and ` ∈ N large enough such that if `m := `1/θ

m

for m > 0 and if

Ak :=

{
inf

z,w∈B(0,`1+κ
k ):‖z−w‖∞>η`k

T (z,w)

‖z−w‖∞
< `−δ

k−1∏
i=1

(
1− cη`−κi

)}
,(8.1)
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then for all k > 0,

P(Ak) 6 C(η)`
−(α−2d−1−2ε)
k(8.2)

for some constant C. The choices for all the parameters will be specified as we proceed
through the proof. Once we prove (8.2), the proposition will follow by taking k such that
`1/θ

k

= m and c(η) := `−δ
∏∞
i=1(1− cη`−κi ).

To prove (8.2) for k = 0 we use union bound and Proposition 5.2 with T (0,x) replaced
by T (z,w) and t replaced by ‖z−w‖ `−δ to have

P (A0) 6 c
∑

z,w∈B(0,`1+κ):‖z−w‖∞>η`

(
(‖z−w‖ `−δ)(1+α)/(α−2d)

‖z−w‖

)α

6 c(η)(2`1+κ)2d ·
(
`(1+κ−δ)(1+α)/(α−2d)

`

)α
,

as there are at most (2`1+κ)2d terms in the above sum. A simple arithmetic shows that the
exponent of ` in the right hand side of the last display is (2d+ 1 + ε− α) if we take

δ := 1 + κ− (1 + ε− 2dκ)(α− 2d)

α(α+ 1)
.(8.3)

Thus (8.2) is established for k = 0.
Now suppose (8.2) holds for k = m, we will show that it holds for k = m+ 1 as well.

Fix any x1,y1 ∈ B(0, `1+κ
m+1) such that ‖x1 − y1‖∞ > η`m+1 and let the optimal E -path

joining x1 and y1 be π ∈Px1,y1 . We will bound Wπ = T (x1,y1) from below. It is easy
to see that if

Fm+1 :=
{
〈zw〉 : z ∈ B(0, 4`1+κ

m+1),w 6∈ B(z, `m)
}
,

and Hm+1 :=

{
min

e∈Fm+1

We > 2`1+κ
m+1

}
,

then π ∩ Fm+1 = ∅ on the event Hm+1, as ‖x− y‖∞ 6 2`1+κ
m+1.

For the remainder of the argument we will assume that Hm+1 occurs. In that case,
all the edges that belong to π and have at least one of their endpoints in B(0, 4`1+κ

m+1)

must have `∞–length smaller than `m. Our plan is to divide the `∞–ball B(0, 4`1+κ
m+1) into

smaller disjoint `∞–balls having radius `1+κ
m and study the contributions of the segments

of π restricted to those smaller balls to Wπ . In order to do so, let

Om := `1+κ
m ·

{
−4(`m+1/`m)1+κ + 2i− 1 : 1 6 i 6 4(`m+1/`m)1+κ

}
,

Em := `1+κ
m ·

{
−4(`m+1/`m)1+κ + 2i : 0 6 i 6 4(`m+1/`m)1+κ

}
,

and based on these we define the index sets

Im := (Om)d, Ĩ0
m := (Em)d,

Ĩkm := (Om)k−1 × Em × (Om)d−k, 1 6 k 6 d.

We also define the corresponding collections of disjoint balls B := {Bu = B(u, `1+κ
m ) :

u ∈ Im} and B̃k := {B̃kv = B(v, `1+κ
m ) : v ∈ Ĩkm} for 0 6 k 6 d (See Figure 8.1 for a

pictorial description of one element from each of the collections B,Bk, 0 6 k 6 2 in case
of d = 2). It is easy to see that each of the collections of disjoint balls B, B̃k, 0 6 k 6 d,
covers B(0, 4`1+κ

m+1). But the reason behind considering more than one such collection is
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−4`1+κm+1, −4`1+κm+1 + `1+κm , −4`1+κm+1 + 2`1+κm ,−4`1+κm+1 + 3`1+κm ,−4`1+κm+1 + 4`1+κm ,

−4`1+κm+1

−4`1+κm+1 + `1+κm

−4`1+κm+1 + 2`1+κm

−4`1+κm+1 + 3`1+κm

−4`1+κm+1 + 4`1+κm

−4`1+κm+1 + 5`1+κm

u ∈ Im

u2 ∈ Ĩ2m

u1 ∈ Ĩ1m

u0 ∈ Ĩ0m

Bu2

Bu0

Bu

Bu1

FIGURE 8.1. Pictorial description of the balls in B,Bk, 0 6 k 6 2, in case
of d = 2. Here the balls Bu = B(u, `1+κm ) ∈ B and Buk = B(uk, `1+κm ) ∈
Bk, k = 0, 1, 2. Boundary of any ball is in the interior of another ball.

to make sure that the path π spends enough time going through the bulk of one ball or
the other, rather than staying close to their boundaries. By the choice of the collection of
smaller balls, any segment of π which stays close to the boundary of the balls in B must
pass through one of the balls in B̃k for some 0 6 k 6 d.

If u, û ∈ Im and ‖u− û‖∞ = 2`1+κ
m , we say that Bu and Bû are neighbor-

ing balls. Similarly, B̃kv and B̃kv̂ will be called neighboring balls if v, v̂ ∈ Ĩkm and
‖v − v̂‖∞ = 2`1+κ

m . Assuming Hm+1 occurs, each of the edges of π, which have at least
one endpoint in B(0, 4`1+κ

m+1), can either stay within one ball Bu (resp. B̃kv) or go from a
ball Bu (resp. B̃kv) to one of its neighboring balls Bû (resp. B̃kv̂). Now there are two pos-
sibilities for π; either it goes out of the ball B(0, 4`1+κ

m+1) at some point, or the entire path
remains inside B(0, 4`1+κ

m+1). In the first case, in view of the last observation, if 〈zw〉 ∈ π
is the first edge while traversing along π from x1 to y1 such that z ∈ B(0, 4`1+κ

m+1) and
w 6∈ B(0, 4`1+κ

m+1), then ‖z−w‖∞ 6 `m and hence

‖x1 − z‖∞ > ‖x1 −w‖∞ − ‖z−w‖∞ > (3`1+κ
m+1 − `m) > ‖x1 − y1‖∞ ,

as ‖x1 − y1‖∞ 6 2`1+κ
m+1. In the second case, we obviously have ‖x1 − y1‖∞ > η`m+1.

So, in both cases π must have a segment π̃ = 〈x · · ·y〉 which stays within B(0, 4`1+κ
m+1)

and satisfies ‖π̃‖∞ > ‖π‖∞ > η`m+1.

For a ballB ∈ B∪∪dk=0B̃
k and z,w ∈ B let TB(z,w) denotes the minimum passage

time over all paths which join z and w and stay within B. We say that such a ball B is
good (resp. bad) if

inf
z,w∈B:‖z−w‖∞>η`m

TB(z,w)

‖z−w‖∞
> (resp. <) `−δ

m−1∏
k=1

(
1− cη`−κk

)
.(8.4)

Recalling the definition of ‖π‖∞ for an E -path π, we will see that
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Lemma 8.3. If the events Hm+1 and

Lm+1 :={numbers of bad balls in B and B̃k, 0 6 k 6 d,

are at most ‖x− y‖∞ `−(1+2κ)
m }

occurs, then the path π̃ = 〈x · · ·y〉 obtained as above contains disjoint segments {π̃i =
〈zi · · ·wi〉}i>1 such that

• each π̃i stays within some Bi ∈ B ∪ ∪dk=0B̃
k such that Bi is good according to (8.4).

• ‖π̃i‖∞ > η`m for all i
• ∑i>1 ‖π̃i‖∞ > ‖π̃‖∞ (1− cη`−κm ) for cη > 0 defined at the beginning of the proof of

Proposition 8.2.

We postpone the proof of Lemma 8.3, first we will see that this lemma provides a lower
bound for Wπ by bounding

∑
j>1 TBj (zj ,wj), which will enable us to conclude

A c
m+1 ⊇ Hm+1 ∩ Lm+1.(8.5)

By the properties of the path segments {π̃i = 〈zi · · ·wi〉} in Lemma 8.3 and the definition
of good balls in (8.4), it is easy to see that

Wπ >Wπ̃ >
∑
j>1

TBj (zj ,wj) > `
−δ

m−1∏
k=1

(1− cη`−κk )
∑
j>1

‖zj −wj‖∞

> `−δ
m∏
k=1

(1− cη`−κk ) ‖x− y‖∞

on the event Hm+1 ∩ Lm+1. Since ‖x− y‖∞ > ‖x1 − y1‖∞ and x1,y1 ∈ B(0, `1+κ
m+1)

were arbitrary vertices satisfying ‖x1 − y1‖∞ > η`m+1, the above inequality justifies
(8.5). Thus, in order to complete the induction argument it remains to estimate P(Hm+1)
and P(Lm+1). On one hand, in view of Lemma 8.1,

P(Hm+1) > 1− C`(1+κ)(d+1)−θ(α−d)
m+1 .(8.6)

On the other hand, our induction hypothesis (8.2) for k = m suggests that B ∈ B is bad
with probability 6 C`

−(α−2d−1−2ε)
m , as TB > T for every argument. Also, it is easy to

see that if {Bi} is a collection of pairwise disjoint balls, then the events {Bi is good} are
independent. Since |Im| = 4d`

(1/θ−1)(1+κ)d
m , the expected number of bad balls in B is

6 4d`d(1+κ)(1/θ−1)
m · C`−(α−2d−1−2ε)

m .

If we choose ε, θ > 0 such that

ε

[
2 +

d

α− d− ε

]
6 α− 2d− 1 and θ = 1− ε

α− d ,(8.7)

for small enough κ > 0 the exponent of `m in the upper bound for the expected number of
bad balls among {Bu : u ∈ Im} is

d(1 + κ)(1/θ − 1)− (α− 2d− 1− 2ε) < 1/θ − 1− 2κ.

So, if we takeN = 4d(`m+1/`m)d(1+κ) and p = η`
1/θ−1−2κ
m /3N , the number of bad balls

in B is stochastically dominated by the Binomial(N, p) distribution. Now using standard



LONG-RANGE FIRST-PASSAGE PERCOLATION 39

large deviation argument for Binomial distribution and recalling that ‖x− y‖∞ > η`m+1,
we have

P
( ∑
u∈Im

1{Bu is bad} > ‖x− y‖∞ `−(1+2κ)
m

)
6 P(Binomial(N, p) > 3Np)

6 exp(−Np(3 log 3− 2))

= exp
(
−η(log 3− 2/3)`(1/θ−1−2κ)

m

)
.

The same estimate holds for the number of bad balls among {B̃kv : v ∈ Ĩkm} for each
0 6 k 6 d. Thus by union bound,

P(Lcm+1) 6 3 exp
(
−η(log 3− 2/3)`(1/θ−1−2κ)

m

)
.(8.8)

Combining (8.5), (8.6) and (8.8) if κ > 0 is small enough, then

P(Am+1) 6 C`(1+κ)(d+1)−θ(α−d)
m+1 6 C`−(α−2d−1−2ε)

m+1

by the choice of θ. This proves (8.2) for k = m+ 1. �

In order to complete the proof of Proposition 8.2, it remains to prove Lemma 8.3 which
is now presented.

Proof of Lemma 8.3. Recall that π̃ = 〈x · · ·y〉 ⊆ B(0, 4`1+κ
m+1) and ‖π̃‖∞ > η`m+1. Let

{Bûi}i>0, ûi ∈ Im, be a sequence of balls such that Bûi is a neighbor of Bûi−1
for i > 1,

x ∈ Bû0
and for i > 1 the path π̃ enters Bûi after exiting from Bûi−1

. We can think of
{Bûi}i>0 as a trajectory of a nearest-neighbor random walk which takes its values in B. If
a ball Bu is bad according to (8.4) and if it appears more than once in the sequence {Bûj},
then we remove the loop created by the associated random walk at Bu. So a bad ball
can appear at most once in this sequence. Abusing notations, we write {Bûi} for the loop-
erased sequence. Suppose π̃ entersBûi through x̂i and leaves it through ŷi. So, 〈x̂i · · · ŷi〉
is a segment of π̃ staying within Bûi whenever Bûi is good, otherwise 〈x̂i · · · ŷi〉 may not
be a segment of π̃. Also let {ûij}Jj=1 be the subsequence of {ûi}i>0 such that for each j
the portion of π̃ within Bûij

does not stay within B(x̂ij , η`m). To simplify notation, we
will write (ūj , x̄j , ȳj) instead of (ûij , x̂ij , ŷij ), and y0 ≡ x and xJ+1 ≡ y.

We say that the segment 〈x̄j · · · ȳj〉 is admissible (resp. inadmissible) if Būj is good
(resp. bad). In the same spirit, the segment 〈ȳj · · · x̄j+1〉 will be called inadmissi-
ble if it contains a segment of the form 〈x̄k · · · ȳk〉 which is not admissible, otherwise
〈ȳj · · · x̄j+1〉 will be called admissible.

An admissible segment 〈x̄j · · · ȳj〉 will be called short if the entire segment resides
within B(x̄j ,

1
4`

1+κ
m ), otherwise we say that 〈x̄j · · · ȳj〉 is long. In the same spirit, an

admissible segment 〈ȳj · · · x̄j+1〉will be called short if ‖ȳj − x̄j+1‖∞ < 2η`m, otherwise
we call it long. Instead of the entire sequences {x̄j}J+1

j=1 and {ȳj}Jj=0, we need to consider
the following subsequences {x̄jl}L+1

l=1 and {ȳjl}Ll=0. We define {jl} along with disjoint
sets Li ⊆ N,−1 6 i 6 5, inductively starting with j0 := 0 and Li = ∅. Having defined
jl,

1. scan through the segments 〈ȳjl · · · x̄jl+1〉, 〈x̄jl+1 · · · ȳjl+1〉, 〈ȳjl+1 · · · x̄jl+2〉, . . . se-
quentially,
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2. if 〈x̄jl+k · · · ȳjl+k〉 is inadmissible for some k > 1 and all previous segments are short,
then we let jl+1 := jl + k. If

∥∥ȳjl − x̄jl+1

∥∥
∞
> η`m, then we include l in L−1,

otherwise we include l in L0. Then we go back to step (1) with l replaced by l + 1.

3. if 〈ȳjl+k−1 · · · x̄jl+k〉 is the first long segment for some k > 1, then we let jl+1 :=
jl + k and jl̃ := jl + k − 1. In addition,
(a) if

∥∥ȳjl − ȳjl̃
∥∥
∞
> η`m, then we include l in L1; otherwise we include l in L2.

(b) if jl+1 = J + 1, then we let L = l and stop, otherwise ȳjl+1
is defined and we go

back to step (1) with l replaced by l + 1.

4. if 〈x̄jl+k · · · ȳjl+k〉 is the first long segment for some k > 1, then we let jl+1 := jl+k.
Here also we include l in L3 or L4 depending on whether

∥∥ȳjl − x̄jl+1

∥∥
∞
> η`m or

not, and we go back to step (1) with l replaced by l + 1.

5. if for some k > 1 all the segments 〈ȳjl+k′−1 · · · x̄jl+k′〉, 1 6 k′ 6 k, and
〈x̄jl+k′ · · · ȳjl+k′〉, 1 6 k′ < k, are short and jl + k = J + 1, then we let L = l
and jL+1 = jl + k. If

∥∥ȳjL − x̄jL+1

∥∥
∞
> η`m, then we include L in L2, otherwise we

let L5 := {L}.

To simplify notations, we write (xl,yl,ul) instead of (x̄jl , ȳjl , ūjl) and l̃ instead of jl̃.

Having defined {xl}L+1
l=1 and {yl}Ll=0, note that if l ∈ L4, then 〈xl+1 · · ·yl+1〉 is a seg-

ment of π̃ and it has a subsegment of the form 〈xl+1 · · · x̃l+1〉 such that ‖xl+1 − x̃l+1‖∞ >
1
4`

1+κ
m . So if |L4| > ‖x− y‖∞ / 1

4`
1+κ
m , then∑

l∈L4

‖〈xl+1 · · · x̃l+1〉‖∞ > ‖x− y‖∞ ,

and hence the segments {〈xl+1 · · · x̃l+1〉 : l ∈ L4} fulfil the criteria of Lemma 8.3.
Otherwise if |L4| < ‖x− y‖∞ / 1

4`
1+κ
m , then using triangle inequality and noting that

y0 = x,xL+1 = y,

∑
l 6∈L−1∪L0

‖xl − yl‖∞ > ‖x− y‖∞ −
5∑

i=−1

∑
l∈Li

‖yl − xl+1‖∞ −
∑

l∈L−1∪L0

‖xl − yl‖∞

> ‖x− y‖∞ −
∑
l∈L1

(∥∥yl − yl̃
∥∥
∞

+
∥∥yl̃ − xl+1

∥∥
∞

)
− η`m(1 + |L0|+ 4 ‖x− y‖∞ /`1+κ

m )

−
∑

l∈L−1∪L2∪L3

‖yl − xl+1‖∞ −
∑

l∈L−1∪L0

‖xl − yl‖∞ .

It is easy to see that |L−1|+ |L0| 6 ‖x− y‖∞ `
−(1+2κ)
m on the event Lm+1, and hence∑

l∈L−1∪L0

‖xl − yl‖∞ 6 ‖x− y‖∞ `−(1+2κ)
m · 2`1+κ

m .

Also recall that ‖x− y‖∞ > η`m+1 > η`1+κ
m if κ > 0 is small enough. So if we define

Π := {〈yl · · ·xl+1〉 : l ∈ L−1 ∪ L2 ∪ L3} ∪ {〈yl · · ·yl̃〉, 〈yl̃ · · ·xl+1〉 : l ∈ L1},
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then the inequality in the previous display reduces to∑
l 6∈L−1∪L0

‖xl − yl‖∞ > ‖x− y‖∞ [1− (3 + 5η)`−κm ]−
∑
π̂∈Π

‖π̂‖∞ .(8.9)

Now we focus on the segments in Π. We claim that each segment π̂ ∈ Π

(a) satisfies ‖π̂‖∞ > η`m, and

(b) (assuming that the event Hm+1 occurs) stays within `∞-distance 1
2`

1+κ
m from the

boundary of some of the balls in B.

To see that (a) holds note that by the definition of L2,

‖yl − xl+1‖∞ >
∥∥yl̃ − xl+1

∥∥
∞
−
∥∥yl − yl̃

∥∥
∞
> 2η`m − η`m = η`m.

The facts that ‖yl − xl+1‖∞ > η`m for l ∈ L3 ∪ L−1 and
∥∥yl − yl̃

∥∥
∞

,
∥∥yl̃ − xl+1

∥∥
∞

> η`m for l ∈ L1 follows trivially from the definition of Li. To see that (b) holds observe
that if Hm+1 occurs, then by the definition of {xj} and {yj} each xj and yj stays within
`∞-distance `m from the boundary of some ballBu, and by the definition of Π any segment
of the form 〈xj · · ·yj〉, which is a part of π̂ ∈ Π, must lie within B(xj ,

1
4`

1+κ
m ).

It is easy to see that by properties (a) and (b) of the segments in Π, any π̂ ∈ Π should
consist of path segments {π̂i}i>1 such that each π̂i satisfies ‖π̂i‖∞ > η`m and stays
within one of the balls B̃kv for v ∈ Ĩkm and 0 6 k 6 d. But we need to discard those
segments which belong to bad balls. In order to do so, for each π̂ ∈ Π we determine the
associated loop-erased sequence of balls {Bj}, as we did in the beginning of the proof.
Then, segregating the portion of π̂ within the bad balls among {Bj} π̂ can be written
as π̂ ≡ π̂I1 π̂

A
1 π̂

I
2 . . . such that {π̂Ii }i>1 are inadmissible segments, whereas {π̂Ai }i>1 are

admissible ones. Separating the segments {π̂Ai :
∥∥π̂Ai ∥∥∞ > η`m} from the rest and using

triangle inequality,∑
π̂∈Π

∑
i>1:‖π̂Ai ‖∞>η`m

∥∥π̂Ai ∥∥∞
>
∑
π̂∈Π

‖π̂‖∞ − |{B̃kv : v ∈ Ĩkm, 0 6 k 6 d, B̃kv is bad }| · (2`1+κ
m + 2η`m).

So, on the event Lm+1 the above inequality reduces to∑
π̂∈Π

∑
i>1:‖π̂Ai ‖∞>η`m

∥∥π̂Ai ∥∥∞ >∑
π̂∈Π

‖π̂‖∞ − (d+ 1) ‖x− y‖∞ `−(1+2κ)
m · 3`1+κ

M .

Combining this inequality with (8.9),∑
l 6∈L−1∪L0

‖xl − yl‖∞ +
∑
π̂∈Π

∑
i>1:‖π̂Ai ‖∞>η`m

∥∥π̂Ai ∥∥∞ > ‖x− y‖∞ (1− cη`−κm ).(8.10)

Now by the definition of {xj} and {yj} it is clear that for l 6∈ L−1 ∪ L0 either
‖xl − yl‖∞ > η`m or 〈xl · · ·yl〉 has a subsegment of the form 〈xl · · · x̃l〉 such that
‖xl − x̃l‖∞ > η`m. So if we define the subsegments {π̃l}l 6∈L−1∪L0

of π̃ by

π̃l :=

{
〈xl · · · x̃l〉 if ‖xl − yl‖∞ 6 η`m
〈xl · · ·yl〉 if ‖xl − yl‖∞ > η`m

,
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then clearly ‖π̃l‖∞ > η`m and ‖π̃l‖∞ > ‖xl − yl‖∞. Combining this with (8.10) we see
that

{π̂Ai : i > 1,
∥∥π̂Ai ∥∥∞ > η`m, π̂ ∈ Π} ∪ {π̃l : l 6∈ L−1 ∪ L0}

fulfill the requirement of this Lemma. �

Before proceeding further let us mention an immediate corollary of Proposition 8.2.

Corollary 8.4. For α > 2d + 1 and x ∈ Zd such that ‖x‖∞ = n, then with probability
1 − o(1) the optimal path joining 0 and x stays within B(0, Cn) for some large constant
C.

Proof. Using Lemma 8.5(c) below P(T (0,x) > c ‖x‖∞) = o(1). If T (0,x) 6 cn,
Lemma 8.1 suggests that there exists θ ∈ (0, 1) such that for any constant C < ∞ the
optimal path does not contain an edge having length more than nθ and one end in B(0, Cn).
So if the optimal path goes out of B(0, Cn) through y ∈ B(0, Cn) for the first time as we
traverse along the path starting from 0, then with probability 1− o(1), ‖y‖∞ > Cn− nθ
and T (0,y) 6 cn, which event again has probability 1−o(1) if we chooseC large enough.
�

Proposition 8.2 ensures that if α > 2d+ 1, then with high probability the first-passage
metric T (x,y) grows at least linearly in ‖x− y‖. For the other direction we have the
following Lemma.

Lemma 8.5. Let x ∈ Zd and α > 0. Then

(a) T (0,x) is stochastically dominated by
∑‖x‖
i=1Ei, where {Ei}’s are i.i.d. and the com-

mon distribution is exponential with mean one.

(b) E(T (0,x)) 6 ‖x‖.
(c) for any λ > 1, P(T (0,x) > λ ‖x‖) 6 exp(−(λ log λ− λ+ 1) ‖x‖).

Proof. Note that (b) follows from (a) trivially. (c) follows from (a) by using standard large
deviation argument for exponential distribution.

To see that (a) holds note that, if π ∈ P0,x consists of ‖x‖ many nearest edges, then

for any α, Wπ
d
=
∑‖x‖
i=1Ei and T (0,x) is stochastically dominated by Wπ . �

Combining Proposition 8.2 and Lemma 8.5 with Liggett’s subadditive ergodic theorem
[40] and a standard ‘Denouement’ argument described in [23, page 17] we get the “shape
result” for LRFPP with α > 2d+ 1.

Proof of Theorem 1.7. For x ∈ Zd and m,n ∈ Z such that m < n, let Xm,n :=
T (mx, nx). Then, from the definition of T (·, ·) it is straight forward to check that

(i) X0,n 6 X0,m +Xm,n whenever 0 < m < n

(ii) the joint distribution of {Xm,m+k, k > 1} does not depend on m

(iii) for each k > 1, {Xnk,(n+1)k, n ∈ Z} is a stationary process.
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Also, using Lemma 8.5(b), E(X0,n) 6 n ‖x‖. So, applying Liggett’s subadditive ergodic
theorem (see [40, Theorem 1.10])

if µ(x) := inf
n

1

n
E(T (0, nx)), then lim

n→∞

1

n
T (0, nx) = µ(x) a.s. provided(8.11)

for each k > 1, {Y kn := Xnk,(n+1)k}n∈Z is an ergodic process.(8.12)

We postpone the argument for (8.12) towards the end of the proof, now we will see the con-
sequence of (8.11). First note that if c > 0 is chosen small enough, then by Proposition 8.2,
we have P(T (0, nx) > cn)→ 1 for any x ∈ Zd \ {0} as n→∞, so

E(T (0, nx)) > cnP(T (0, nx) > cn) > c/2

for all n large enough, which ensures µ(x) > 0 for any x ∈ Zd \ {0}.
We extend the definition of µ(·) to whole of Rd using standard procedure, which we

mention here for the sake of completeness. For y ∈ Rd, let

T (0,y) = min
x∈Zd:‖y−x‖∞61/2

T (0,x).

In view of (8.11), if y ∈ Qd, then for any m such that my ∈ Zd

µ(y) := lim
n→∞

1

n
T (0, ny) =

1

m
µ(my)a.s.

Finally, using subadditivity and Lemma 8.5(a) it is easy to see that if for any x,y,
|T (0,x)−T (0,y)| is stochastically dominated by a sum of dn ‖x− y‖∞emany i.i.d. mean
one exponential random variables. This together with Lemma 8.5(c) and the Borel-Cantelli
lemma implies

µ(x) := lim
y→x,y∈Qd

µ(y) exists for all x ∈ Rd and µ(x) > 0 whenever x 6= 0.

In addition, using Lemma 8.5(c) once again
∑

x∈Zd P(T (0,x) > λ ‖x‖) < ∞, which
implies

{x ∈ Rd : ‖x‖∞ 6 t/λ} ⊆ {x ∈ Rd : T (0,x) 6 t}
for large enough λ. Combining the last two displays, we are in a position to apply the
‘Denouement’ argument (see page 17 of [23]) and conclude about the “shape result” with
A := {x ∈ Rd : µ(x) 6 1}.

Therefore, in order to complete the proof of the theorem it remains to show (8.12).
Fix x ∈ Zd, k > 1 and let ν denote the law of the infinite vector (Y kn )n∈Z and ϕ be the
measure preserving transformation on RZ+ defined by (ϕω)k := ωk+1. In view of [54,
Theorem 1.5], it suffices to show that for any two events A,B satisfying ν(A), ν(B) > 0,
there is an n ∈ N such that ν(A ∩ ϕ−nB) > 0. To prove this assertion we fix ε > 0
and choose k, l large enough so that there exists Aj,l, Bj,l ∈ σ{Y k−k, Y k−k+1, . . . , Y

k
l }

satisfying

ν(A∆Aj,l), ν(B∆Bj,l) 6 ε/4,(8.13)

which implies

|ν(A ∩ ϕ−nB)− ν(Aj,l ∩ ϕ−nBj,l)| 6 ν(A∆Aj,l) + ν(ϕ−nB∆ϕ−nBj,l)

6 ν(A∆Aj,l) + ν(B∆Bj,l) 6 ε/2,
(8.14)

as ϕ is measure preserving.
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Next we see that applying Corollary 8.4 we can have L = L(j, l, ε) large enough such
that

ν(ΩLj,l) > 1− ε/8,
where

ΩLj,l :=
{
Y ki ,−j 6 i 6 l, is determined by the edge weights in

{W〈zw〉 | z,w ∈ B((l − j)x/2, L)}
}
.

Then it is easy to see that∣∣ν(Aj,l)ν(ϕ−nBj,l)− ν(Aj,l ∩ ΩLj,l)ν(ϕ−nBj,l ∩ ΩLj+n,l−n)
∣∣ 6 ε/4,

and if n is chosen large enough depending on L, then Aj,l ∩ΩLj,l and ϕ−nBj,l ∩ΩLj+n,l−n
are independent so that∣∣ν(Aj,l ∩ ϕ−nBj,l)− ν(Aj,l ∩ ΩLj,l)ν(ϕ−nBj,l ∩ ΩLj+n,l−n)

∣∣ 6 ε/4.
Combining the last two displays with (8.13) and (8.14), and recalling that ϕ is measuring
preserving,

|ϕ(A ∩ ϕ−nB)− ϕ(A)ϕ(B)| 6 3ε/2

for large enough n. Starting with small enough ε > 0, we get ν(A ∩ ϕ−nB) > 0. �
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