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LOCAL FORMULAS FOR THE HYDRODYNAMIC

PRESSURE AND APPLICATIONS

PETER CONSTANTIN

Abstract. We provide local formulas for the pressure of incom-
pressible fluids. The pressure can be expressed in terms of its
average and averages of squares of velocity increments in arbitrary
small neighborhoods. As application, we give a brief proof of the
fact that Cα velocities have C2α (or Lipschitz) pressures. We also
give some regularity criteria for 3D incompressible Navier-Stokes
equations.

Dedicated to the memory of Professor Mark I. Vishik.

1. Introduction

We provide local formulas for the pressure of incompressible fluids.
By this we mean expressions that compute a solution of

−∆p =
3∑

i,j=1

∂2

∂xi∂xj

(uiuj),

where u is a divergence-free velocity, at x ∈ Ω ⊂ R3, from the spherical
average of the pressure,

p(x, r) =
1

4πr2

ˆ

|x−y|=r

p(y)dS(y),

and from integrals of increments (ui(y) − ui(x))(uj(y) − uj(x)), for
|y − x| ≤ r, with arbitrary small r. No knowledge of the behavior
of u outside a small ball is needed. The main ingredient is a kind of
monotonicity equation for a modified object

b(x, r) = p(x, r) +
1

4πr2

ˆ

|x−y|=r

(
y − x

|y − x|
· u(y)

)2

dS(y).
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This allows us to express the pressure as

p(x) = β(x, r) + π(x, r)

where β is just a local average of the pressure,

β(x, r) =
1

r

ˆ 2r

r

p(x, ρ)dρ,

and π(x, r) is given by a couple of integrals (39) of squares of incre-
ments of velocity over a ball and over an annulus of radii 2r. Thus, we
write the pressure as a sum of two local terms, one small, and the other
sufficiently well-behaved. Indeed, β ∈ L∞(R3) is bounded in space (for
any r), if u ∈ L2(R3) (34), and ‖∇β‖L2(R3) is bounded in terms of
‖u‖2

L4(R2) (47). On the other hand, π is of the order r2|∇u|2 for small

r. Well-known criteria for regularity for the 3D incompressible Navier-
Stokes equations in terms of the pressure ([1]), ([6]) do exist. If the
pressure would obey the bounds that β obeys, then regularity of solu-
tions of the 3D Navier-Stokes equations would easily follow. Because
π(x, r) → 0 as r → 0, the suggestion that p obey the same bounds as
β is not unreasonable. On the other hand, bounds on π require some
smoothness of the velocity. Higher regularity in space for velocity for
weak solutions of the 3D Navier-Stokes equations was obtained in ([3])
(see also ([8])). These bounds imply that π(x, r) is small for almost
all time. For instance, ‖π‖L3(R3) ≤ C(t)r2, t − a.e. (52), (59). The
problem is that in general the time integrability of C(t) is too poor

to conclude regularity (C(t)
1

3 is time integrable, whereas C(t) time
integrable would be sufficient for regularity.)
The organization of this paper is as follows: In the next section we

present the basic calculations which lead to the formulas for the pres-
sure. In section 3 we give ensuing bounds for β and π. In section 4 we
give a quick proof of the bounds of higher derivatives of solutions of
the 3D Navier-Stokes equations in the whole space. (The paper ([3])
deals with spatially periodic solutions). In section 5 we give two ap-
plications: the first is a simple proof of the fact that, if u ∈ Cα, then
p ∈ C2α (if 2α < 1; if 2α > 1 then p is Lipschitz). This result was used
recently in ([4]), with a proof based on the Littlewood-Paley decom-
position. A different proof (closer to ours) was obtained before, but
was not published ([7]). The 3D Navier-Stokes equations are regular
if u ∈ L∞([0, T ], L3(R3)) ([2]), ([5]). We give as a second application,
criteria of regularity for the 3D Navier-Stokes equations in terms of π.
These essentially say that if we can find r(t) small such that in some
sense, π is small, and if some integral of r(t)−1 is finite, then we have
regularity.
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Some elementary calculations needed for the formulas are presented in
the Appendix.

2. Spherical averages

We denote

(1) f(x, r) =
1

4πr2

ˆ

|x−y|=r

f(y)dS(y) =

 

|ξ|=1

f(x+ rξ)dS(ξ)

where
ffl

denotes normalized integral. We consider solutions of

(2) −∆p = ∇ · (u · ∇u)

in Ω ⊂ R3. We assume ∇ · u = 0 and smoothness of u. We start by
computing

∂rp(x, r)
=
ffl

|ξ|=1
ξ · ∇xp(x+ rξ)dS(ξ) = 1

4πr

´

|ξ|=1
ξ · ∇ξp(x+ rξ)dS(ξ)

= 1
4πr

´

|ξ|<1
∆ξp(x+ rξ)dξ = r

4π

´

|ξ|<1
∆xp(x+ rξ)dξ.

We use the equation (2). We note that, in view of the incompressibility
∇ · u = 0, we have

∆p = −∂i∂j((ui − vi)(uj − vj))

for any constant vector v. (We use summation convention, unless ex-
plicitly stated otherwise). We have thus

∂rp(x, r) = − r
4π

´

|ξ|<1
∂i∂j((ui − vi)(uj − vj))(x+ rξ)dξ

= − 1
4π

´

|ξ|<1
∂ξi∂j((ui − vi)(uj − vj))(x+ rξ)dξ

= − 1
4π

´

|ξ|=1
ξi(∂j((ui − vi)(uj − vj))(x+ rξ)dS(ξ)

= − 1
4πr

´

|ξ|=1
ξi∂ξj ((ui − vi)(uj − vj))(x+ rξ)dS(ξ).

So we have

(3) r∂rp(x, r) = −

 

|ξ|=1

ξi∂ξj ((ui − vi)(uj − vj)(x+ rξ)dS(ξ).

Lemma 1. Let Ω be an open set in R3, let x ∈ Ω. Let r < dist(x, ∂Ω),
and let u be a divergence-free vector field in C2(Ω)3. Let v ∈ R3. Let p
solve (2) in Ω. Then

(4)
∂r

{
p(x, r) +

ffl

|ξ|=1
|ξ · (u(x+ rξ)− v)|2dS(ξ)

}

= −1
r

ffl

|ξ|=1
[3|ξ · (u(x+ rξ)− v)|2 − |u(x+ rξ)− v|2] dS(ξ).

Proof. We are going to use the identities

(5)

ffl

|ξ|=1
ξj∂ξjf(x+ rξ)dS(ξ)

= r∂r

[
ffl

|ξ|=1
ξ2j f(x+ rξ)dS(ξ)

]
+
ffl

|ξ|=1
(3ξ2j − 1)f(x+ rξ)dS(ξ)
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valid for each j, (no summation of repeated indices in the formula
above), and

(6)

ffl

|ξ|=1

(
ξi∂ξj + ξj∂ξi

)
f(x+ rξ)dS(ξ)

= r∂r

[
ffl

|ξ|=1
2ξiξjf(x+ rξ)dS(ξ)

]
+
ffl

|ξ|=1
6ξiξjf(x+ rξ)dS(ξ).

The proofs of these identities are elementary; they are given with full
detail in the Appendix. In view of (3), the expression we need to
average is (the negative of)

ξ1∂ξ1(w
2
1) + ξ2∂ξ2(w

2
2) + ξ3∂ξ3(w

2
3) + (ξ1∂ξ2 + ξ2∂ξ1)(w1w2)

+(ξ1∂ξ3 + ξ3∂ξ1)(w1w3) + (ξ2∂ξ3 + ξ3∂ξ2)(w2w3)

where w = u− v and the expression is evaluated at x+ rξ. Using (5),
(6), we group together the terms involving r∂r, and separately the ones
which do not involve r∂r, and sum. We obtain thus from (3)

(7)
r∂rp(x, r) = −r∂r

ffl

|ξ|=1
(ξ · w)2dS(ξ)

−
ffl

|ξ|=1
[3(ξ · w)2 − |w|2] dS(ξ),

which is the same as (4).

Lemma 2. Let x ∈ Ω ⊂ R3, let 0 < r < dist(x, ∂Ω), and let p solve
(2) with divergence-free u ∈ C2(Ω)3. Let v ∈ R3. Then
(8)

p(x) + 1
3
|u(x)− v|2 = p(x, r) +

ffl

|ξ|=1
|ξ · (u(x+ rξ)− v)|2 dS(ξ)

+
´ r

0
dρ

ρ

ffl

|ξ|=1

[
3 |ξ · (u(x+ ρξ)− v)|2 − |u(x+ ρξ)− v|2

]
dS(ξ)

Proof. This follows immediately from (4) by integration
´ r

0
dρ, not-

ing that

(9) p(x, 0) = p(x)

and
(10)

lim
r→0

 

|ξ|=1

|ξ · (u(x+ rξ)− v)|2 dS(ξ) =
1

3
lim
r→0

 

|ξ|=1

|u(x+rξ)−v|2dS(ξ)

The formula (8) can be specialized by choosing v. Before doing this,
let us introduce

(11) σij(ŷ − x) = 3
(yi − xi)(yj − xj)

|y − x|2
− δij

where

ŷ − x =
y − x

|y − x|
.
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Note that

∂i∂j

(
1

|x− y|

)
=

σij(ŷ − x)

|y − x|3
.

By choosing v = 0 in (8) we obtain
(12)
p(x) + 1

3
|u(x)|2 =

p(x, r) +
ffl

|y−x|=r
|ξ · u(y)|2dS(y) + 1

4π
PV

´

B(x,r)

σij(x̂−y)

|x−y|3
(uiuj)(y)dy.

Remark 1. If Ω = R3, if we integrate R−1
´ 2R

R
dr and let R → ∞ in

(12) we obtain (assuming that R−1
´ 2R

R
pdr decays)

(13) p(x) +
1

3
|u(x)|2 =

1

4π
PV

ˆ

R3

σij(x̂− y)

|x− y|3
(uiuj)(y)dy

a fact that follows also from

p(x) =
1

4π

ˆ

R3

1

|x− y|
∂i∂j(uiuj)(y)dy

by integration by parts. So (12) is a local version of this, valid for any
r > 0.

By choosing v = u(x) in (8), we obtain

(14)
p(x)− p(x, r)−

ffl

|y−x|=r
|ξ · (u(y)− u(x))|2dS(y)

= 1
4π

´

B(x,r)

σij(x̂−y)

|x−y|3
((ui(y)− ui(x))(uj(y)− uj(x))dy

In order to clarify the relationship between (12) and (14) let us observe
that
(15)
 

|y−x|=r

ξi (ξ · u(y))dS(y) +
1

4π
PV

ˆ

B(x,r)

σij(x̂− y)

|x− y|3
uj(y)dy =

1

3
ui(x).

This follows from the obvious fact that

1

4π

ˆ

B(x,r)

yi − xi

|y − x|3
(∇ · u)(y)dy = 0

by integration by parts.

Remark 2. Letting r → ∞ we deduce from (15) in the whole space
case, if u decays, that

(16)
1

4π
PV

ˆ

R3

σij(x̂− y)

|x− y|3
uj(y)dy =

1

3
ui(x)
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a fact that follows also from the fact that Pu = u where P is the pro-
jector on divergence-free functions, using the formula

Pv =
2

3
v +

1

4π
PV

ˆ

R3

σij(x̂− y)

|x− y|3
vj(y)dy.

We write now in the principal value integral in (12)

ui(y)uj(y) = (ui(y)− ui(x))(uj(y)− uj(x))
+ui(x)uj(y) + uj(x)ui(y)− ui(x)uj(x)

and take advantage of the fact that averages of
σij(ŷ−x)

|y−x|3
on spheres

centered at x vanish. Using (15) we obtain

p(x) + 1
3
|u(x)|2 =

p(x, r) +
ffl

|y−x|=r
|ξ · u(y)|2dS(y)+

1
4π
PV

´

B(x,r)

σij (x̂−y)

|x−y|3
(ui(y)− ui(x))(uj(y)− uj(x))dy

−2
ffl

|y−x|=r
(ξ · u(x))(ξ · u(y))dS(y) + 2

3
|u(x)|2

Rearranging, and noting that
 

|y−x|=r

(ξ · u(x))2dS(y) =
1

3
|u(x)|2

we obtain

(17)

p(x) =
p(x, r) +

ffl

|y−x|=r
|ξ · (u(y)− u(x))|2dS(y)+

1
4π

´

B(x,r)

σij(x̂−y)

|x−y|3
(ui(y)− ui(x))(uj(y)− uj(x))dy

We have thus:

Remark 3. The formula (14) follows directly from (12) by using the
formula (15), which is a consequence of the divergence-free condition.

Remark 4. The situation in R2 is entirely similar. Instead of (5) and
(6), we have for fixed j = 1, 2,

(18)

ffl

S1
ξj∂ξjf(x+ rξ)dS(ξ)

= r∂r
ffl

S1
ξ2j f(x+ rξ)dS(ξ) +

ffl

S1
(2ξ2j − 1)f(x+ rξ)dS(ξ),

and

(19)

ffl

S1
(ξ1∂ξ2 + ξ2∂ξ1)f(x+ rξ)dS(ξ)

= r∂r
ffl

S1
2ξ1ξ2f(x+ rξ)dS(ξ) +

ffl

S1
2ξ1ξ2f(x+ rξ)dS(ξ),

and consequently, we have instead of (7)

(20)
r∂rp(x, r) = −r∂r

ffl

|ξ|=1
(ξ · w)2dS(ξ)

−
ffl

|ξ|=1
[2(ξ · w)2 − |w|2] dS(ξ),
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where w = u(x+ rξ)− v and v is a constant vector. This again leads
to a local representation formula
(21)

p(x) + 1
2
|u(x)− v|2 = p(x, r) +

ffl

|ξ|=1
|ξ · (u(x+ rξ)− v)|2 dS(ξ)

+
´ r

0
dρ

ρ

ffl

|ξ|=1

[
2 |ξ · (u(x+ ρξ)− v)|2 − |u(x+ ρξ)− v|2

]
dS(ξ)

We conclude this section by mentioning similar formulae for the av-
erage of the gradient of pressure. For instance, starting from the fact
that ∂1p solves the equation

(22) −∆∂1p = ∂i∂j(∂1(uiuj))

obtained by differentiating (2), we arrive at

(23)

∂r∂1p = −∂r
ffl

|ξ|=1
ξiξj (∂x1

(uiuj)(x+ rξ))dS(ξ)

−1
r

ffl

|ξ|=1
(3ξiξj − δij) (∂x1

(uiuj)(x+ rξ))dS(ξ) =

−∂r(
1
r

ffl

|ξ|=1
ξiξj (∂ξ1(uiuj)(x+ rξ))dS(ξ)

− 1
r2

ffl

|ξ|=1
(3ξiξj − δij) (∂ξ1(uiuj)(x+ rξ)) dS(ξ).

We can integrate by parts in (23), using the relations

(24)





ffl

|ξ|=1
ξ1ξ2∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ21ξ2f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
(4ξ21 − 1) ξ2f(x+ rξ)dS(ξ),

ffl

|ξ|=1
ξ1ξ3∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ21ξ3f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
(4ξ21 − 1) ξ3f(x+ rξ)dS(ξ),

ffl

|ξ|=1
ξ21∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ31f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
(4ξ21 − 2) ξ1f(x+ rξ)dS(ξ),

ffl

|ξ|=1
ξ22∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ1ξ
2
2f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
4ξ1ξ

2
2f(x+ rξ)dS(ξ),

ffl

|ξ|=1
ξ23∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ1ξ
2
3f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
4ξ1ξ

2
3f(x+ rξ)dS(ξ),

ffl

|ξ|=1
ξ2ξ3∂ξ1f(x+ rξ)dS(ξ) = r∂r

ffl

ξ1ξ2ξ3f(x+ rξ)dS(ξ)

+
ffl

|ξ|=1
4ξ1ξ2ξ3f(x+ rξ)dS(ξ)

which can be proved in a manner similar to the proofs of (5), (6). After
some calculations using the relations above we arrive at

(25)

∂r∂1p = −
[
∂2
r +

7
r
∂r +

8
r2

] ffl
|ξ|=1

ξ1(ξ · u(x+ rξ))2dS(ξ)

+2
r

[
∂r +

2
r

] ffl
|ξ|=1

u1(x+ rξ) (ξ · u(x+ rξ)) dS(ξ)

+1
r

[
∂r +

2
r

] ffl
|ξ|=1

ξ1|u(x+ rξ)|2dS(ξ).

This follows because

(26) ξiξj∂ξ1uiuj = [r∂r + 4] ξ1(ξ · u)2 − 2u1(ξ · u)
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and

(27) ∂ξ1 |u(x+ rξ)|2 = [r∂r + 2] ξ1|u|2

3. Representation and bounds

We will take Ω = R3 in this section. Let us consider

(28) b(x, r) = p(x, r) +

 

|ξ|=1

|ξ · u(x+ rξ)|2 dS(ξ)

The equation (4) with v = 0 is

(29) ∂rb(x, r) = r−1
[
|u|2 − 3|ξ · u(y)|2

]
(x, r)

and, integrating from r to infinity, and recalling (11) we obtain

(30) b(x, r) = −
1

4π

ˆ

|x−y|≥r

σij(x̂− y)

|x− y|3
ui(y)uj(y)dy

Proposition 1. Let x ∈ R3, let r > 0, let p solve (2) in Ω = R3 with
divergence-free u ∈ (C2(R3)∩L2(R3))3. Let b be defined by (28). Then

(31) sup
x∈R3

|b(x, r)| ≤
1

2πr3
‖u‖2L2.

If u ∈ H1(R2), then

(32) sup
x∈R3

|b(x, r)| ≤
C

2πr
‖∇u‖2L2.

where C is the constant of Hardy’s inequality in R3.

Remark 5. Obviously we do not need C2 regularity for u, but rather
enough regularity for b to be defined via (28). Of course, the represen-
tation (30) requires only u ∈ L2.

Remark 6. The corresponding local result in an open set Ω is a bound
of b(·, r) in L∞(dx) in terms of local L1(dx) bounds for b and L2 (or
H1) bounds for u. This is obtained in a straightforward manner, by
multiplying (29) by an appropriate compactly supported function of r
and integrating in r.

Proof. The proof follows directly from the inequality

|σij(ξ)uiuj| ≤ 2|u|2

valid for any vector u ∈ R3 and ξ ∈ S2, and from Hardy’s inequality
ˆ

R3

|u(y)|2

|x− y|2
dy ≤ C

ˆ

R3

|∇u(y)|2dy.
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Let us define now

(33) β(x, r) =
1

r

ˆ 2r

r

p(x, ρ)dρ

Proposition 2. Let x ∈ R3, let r > 0, let p solve (2) in Ω = R3 with
divergence-free u ∈ (C2(R3)∩L2(R3))3. Let β be defined by (33). Then

(34) sup
x∈R3

|β(x, r)| ≤
3

4πr3
‖u‖2L2.

If u ∈ H1(R2), then

(35) sup
x∈R3

|β(x, r)| ≤
3C

4πr
‖∇u‖2L2.

where C is the constant of Hardy’s inequality in R3.

Proof. We note that

β(x, r) =
1

r

ˆ 2r

r

(b(x, ρ)− (ξ · u)2(x, ρ))dρ

The inequalities follow in straightforward manner from

1

r

ˆ 2r

r

(ξ · u)2(x, ρ)dρ =
1

4πr

ˆ

r≤|x−y|≤2r

(
x− y

|x− y|
· u(y)

)2
dy

|x− y|2
,

Proposition 1 and Hardy’s inequality.

Remark 7. We introduced the average β(x, r) of p(x, r) in order to
pass from the pointwise information on b(x, r) (31), (32), to the point-
wise information on β(x, r) (34), (35), without requiring other bounds
than L2 (or H1) for u.

Let us consider now the weight function

(36) w(λ) =





1, if 0 ≤ λ ≤ 1,
2− λ if 1 ≤ λ ≤ 2,
0 if λ ≥ 2

Let us take now the representation formula (14) and average in r. We
obtain

Theorem 1. Let x ∈ R3, let r > 0, let p solve (2) in Ω = R3 with
divergence-free u ∈ (C2(R3) ∩ L2(R3))3. Then

(37) p(x) = β(x, r) + π(x, r)

with β(x, r) given by

(38) β(x, r) =
1

r

ˆ 2r

r

p(x, ρ)dρ
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and π(x, r) given by

(39)
π(x, r) = 1

4πr

´

r≤|y−x|≤2r
1

|y−x|2

(
y−x

|y−x|
· (u(y)− u(x))

)2

dy+

1
4π

´

|x−y|≤2r
w
(

|y−x|
r

)
σij(x̂−y)

|x−y|3
(ui(y)− ui(x))(uj(y)− uj(x))dy

Remark 8. Passing to the limit r → ∞ in (37) we obtain
(40)

p(x) =
|u(x)|2

3
+

1

4π

ˆ

R3

σij(ẑ)

|z|3
(ui(x+ z)− ui(x))(uj(x+ z)− uj(x))dz

This can be obtained also from (13) using (16).

Proof. We integrate 1
r

´ 2r

r
dρ the representation (14) written as

(41)

p(x) =
p(x, ρ) +

ffl

|y−x|=ρ
|ξ · (u(y)− u(x))|2dS(y)

+
´ ρ

0
1
l

ffl

|y−x|=l
[3(ξ · (u(y)− u(x)))2 − |u(y)− u(x)|2] dS(y)

and use the fact that

1

r

ˆ 2r

r

(
ˆ ρ

0

f(l)dl

)
dρ =

ˆ 2r

0

w

(
l

r

)
f(l)dl.

In addition to the bounds (34) and (35) we also have bounds that
follow from Morrey inequality

ˆ

R3

|u(y)|6dy ≤ C

[
ˆ

R3

|∇u(y)|2dy

]3
,

the representation

(42) p = RiRj(uiuj)

of the pressure where Ri = ∂i(−∆)−
1

2 are Riesz transforms, and the
boundedness of Riesz transforms in Lp spaces.

Proposition 3. Let p the solution of (2) given by (42). For any q,
1 < q < ∞ there exist constants Cq > 0, independent of r > 0 so that,
for any r > 0

(43) ‖p(·, r)‖Lq(R3) ≤ Cq‖u‖
2
L2q(R3)

and

(44) ‖β(·, r)‖Lq(R3) ≤ Cq‖u‖
2
L2q(R3).

For any a ∈ [0, 2) there exists Ca > 0 such that

(45) ‖β(·, r)‖L3(R3) ≤ Car
−a‖u‖aL2(R3)‖∇u‖2−a

L2(R3).
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There exists a constant C > 0 so that

(46) ‖∇p(·, r)‖L2 ≤ Cr−1‖u‖2L4(R3)

and

(47) ‖∇β(·, r)‖L2 ≤ Cr−1‖u‖2L4(R3)

Proof. The bounds (44) for β follow from the bounds (43) for p by
averaging in r. The bounds (43) follow from (42) and the boundedness
of Riesz transforms in Lp spaces. The bounds (45) follow from (35),
interpolation

‖β‖L3(R3) ≤ ‖β‖
a
3

L∞(R3)‖β‖
1− a

3

L3−a(R3),

the bound (44) for q = 3− a,

‖β(·, r)‖L3−a(R3) ≤ Ca‖u‖
2
L6−2a(R3),

and interpolation combined with the Morrey inequality

‖u‖L6−2a(R3) ≤ C‖u‖
a

6−2a

L2(R3)‖∇u‖
6−3a
6−2a

L2(R3).

The bound (47) follows from the bound (46) by averaging in r. The
bound (46) follows from

(48) ‖∇p(·, r)‖L2(R3) ≤ Cr−1‖p(·, r)‖L2(R3)

and (43) at q = 2. The bound (48) follows from Plancherel and the
observation that

(49) p̂(ξ, r) =
sin(r|ξ|)

r|ξ|
p̂(ξ).

Indeed,
´

R3 e
−ix·ξp(x, r)dx =

ffl

|ω|=1
dS(ω)

´

R3 e
−ix·ξp(x+ rω)dx

= p̂(ξ)
ffl

|ω|=1
eirξ·ωdS(ω)

and the last integral is computed conveniently choosing coordinates so
that ξ points to the North pole:

1

4π

ˆ 2π

0

dφ

ˆ π

0

dθeir|ξ| cos θ sin θdθ =
sin(r|ξ|)

r|ξ|
.

Regarding π we have

Proposition 4. Let π(x, r) be defined by (39). Then

(50) |π(x, r)| ≤ C

ˆ

|z|≤2r

|u(x+ z)− u(x)|2

|z|3
dz.

Consequently

(51) ‖π(·, r)‖Lq ≤ Cqr
2‖∇u‖2L2q
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holds for all 1 < q ≤ ∞. In particular, at q = 3 we have, with Morrey’s
inequality,

(52) ‖π(·, r)‖L3 ≤ Cr2‖∆u‖2L2 .

We also have

(53) ‖π(·, r)‖Lq(R3) ≤ Cq‖u‖
2
L2q(R3).

Proof. The inequality (50) is immediate from definition. In order to
prove (51) we write

|u(x+ z)− u(x)|2 ≤ |z|2
ˆ 1

0

|∇u(x+ λz)|2dλ

and changing order of integration we have
∣∣∣∣
ˆ

R3

φ(x)dx

ˆ

|z|≤2r

|u(x+ z)− u(x)|2

|z|3
dz

∣∣∣∣ ≤ Cr2‖φ‖Lq′‖∇u‖2L2q

which proves (51). The bounds (53) follow from (37), the corresponding
bounds for p, and (44).

4. FGT bounds in the whole space

We take the Navier-Stokes equation

(54) ∂tu+ u · ∇u− ν∆u+∇p = 0,

with

(55) ∇ · u = 0,

multiply by ∂tu− ν∆u and integrate, using incompressibility:
ˆ

R3

|∂tu− ν∆u|2 dx = −

ˆ

R3

(u · ∇u)(∂tu− ν∆u)dx.

Schwartz inequality gives:
ˆ

R3

|∂tu− ν∆u|2 dx ≤

ˆ

R3

|u · ∇u|2dx

and so
ˆ

R3

|∂tu− ν∆u|2 dx ≤ ‖u‖2L∞‖∇u‖2L2.

The inequality

(56) ‖u‖2L∞ ≤ C‖∇u‖L2‖∆u‖L2

is easy to prove using Fourier transform. Thus
ˆ

R3

|∂tu− ν∆u|2 dx ≤ C‖∆u‖L2‖∇u‖3L2.
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On the other hand,
ˆ

R3

|∂tu− ν∆u|2 dx = ‖∂tu‖
2
L2 + ν2‖∆u‖2L2 + ν

d

dt
‖∇u‖2L2

and therefore
d
dt
‖∇u‖2

L2 + ν‖∆u‖2
L2 +

1
ν
‖∂tu‖

2
L2

≤ C
ν
‖∆u‖L2‖∇u‖2

L2 ≤
ν
2
‖∆u‖2

L2 +
C
ν3
‖∇u‖6

L2

Now we denote y(t) = ‖∇u(·, t)‖2
L2, pick a constant A > 0, divide by

(A+ y)2 and obtain

−
d

dt

(
1

A + y

)
+

ν‖∆u‖2
L2

(A+ y)2
+

‖∂tu‖
2
L2

ν(A + y)2
≤

C

ν3
y.

Integrating in time we obtain
ˆ T

0

ν‖∆u‖2
L2

(A + y)2
dt+

ˆ T

0

‖∂tu‖
2
L2

ν(A + y)2
dt ≤

C

ν4
‖u0‖

2
L2 +

1

A

Therefore

(57)

ˆ T

0

‖∆u‖2
L2

(A+ y)2
dt ≤

C

ν5
‖u0‖

2
L2 +

1

νA
= Cν−4[D + ν3A−1]

and

(58)

ˆ T

0

‖∂tu‖
2
L2

(A+ y)2
dt ≤

C

ν3
‖u0‖

2
L2 +

ν

A
= Cν−2[D + ν−3A−1]

where we put

D =
‖u0‖

2
L2

ν
.

Now
ˆ T

0

‖∆u‖
2

3

L2dt ≤

[
ˆ T

0

‖∆u‖2L2

(A+ y)2
dt

] 1

3
[
ˆ T

0

(A+ y)dt

] 2

3

and
ˆ T

0

‖∂tu‖
2

3

L2dt ≤

[
ˆ T

0

‖∂tu‖
2
L2

(A + y)2
dt

] 1

3
[
ˆ T

0

(A+ y)dt

] 2

3

and therefore
ˆ T

0

‖∆u‖
2

3

L2dt ≤ Cν− 4

3

[
D + ν3A−1

] 1

3 [D + AT ]
2

3

and
ˆ T

0

‖∂tu‖
2

3

L2dt ≤ Cν− 2

3

[
D + ν3A−1

] 1

3 [D + AT ]
2

3

Now A is arbitrary, but a natural explicit choice is

A2 = ν3T−1
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and then we have

(59)

ˆ T

0

‖∆u‖
2

3

L2dt ≤ Cν− 4

3

[
‖u0‖

2
L2

ν
+ T

1

2ν
3

2

]

and

(60)

ˆ T

0

‖∂tu‖
2

3

L2dt ≤ Cν− 2

3

[
‖u0‖

2
L2

ν
+ T

1

2 ν
3

2

]
.

Now using the inequality (56) it follows immediately that

(61)

ˆ T

0

‖u‖L∞dt ≤ Cν−1

[
‖u0‖

2
L2

ν
+ T

1

2 ν
3

2

] 3

4

[
‖u0‖

2
L2

ν

] 1

4

.

Let us consider now the other terms in (54). We start by computing
ˆ

R3

|u · ∇u+∇p|2 dx = ‖u · ∇u‖2L2 + ‖∇p‖2L2 + 2

ˆ

R3

(u · ∇u) · (∇p)dx.

Now

2

ˆ

R3

(u·∇u)·(∇p)dx = −2

ˆ

pTr(∇u)2dx = 2

ˆ

R3

p∆pdx = −2‖∇p‖2L2.

Consequently

0 ≤

ˆ

R3

|u · ∇u+∇p|2 dx = ‖u · ∇u‖2L2 − ‖∇p‖2L2.

On the other hand, obviously

‖u · ∇u‖L2 ≤ ‖u‖L∞‖∇u‖L2

and in view of the previous result we have

(62)

ˆ T

0

‖u · ∇u‖
2

3

L2dt ≤ Cν− 2

3

[
‖u0‖

2
L2

ν
+ T

1

2 ν
3

2

] 1

2

[
‖u0‖

2
L2

ν

] 1

2

and, because of the inequality ‖∇p‖L2 ≤ ‖u · ∇u‖L2, we also have

(63)

ˆ T

0

‖∇p‖
2

3

L2dt ≤ Cν− 2

3

[
‖u0‖

2
L2

ν
+ T

1

2 ν
3

2

] 1

2

[
‖u0‖

2
L2

ν

] 1

2

We have thus

Theorem 2. Let u be a solution of the Navier-Stokes equation on the

interval [0, T ]. Then the quantities ‖u‖L∞(R3), ‖∆u‖
2

3

L2(R3), ‖∂tu‖
2

3

L2(R3),

‖u·∇u‖
2

3

L2(R3), ‖∇p‖
2

3

L2(R3) are almost everywhere finite on the time inter-

val [0, T ], and their time integrals are bounded uniformly, with bounds
(59, 60, 61, 62, 63) depending only on T , ‖u0‖L2(R3) and ν.
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The proof for weak solutions follows the same pattern as the proof
given above for smooth solutions, except that we mollify the advecting
velocity, prove the mollification-uniform bounds and deduce the result
using essentially Fatou’s lemma. For the sake of completeness, let us
mention here other estimates. Interpolating

ˆ T

0

‖∇u‖2L2dt < ∞

and
ˆ T

0

‖∇u‖
2

3

L6dt < ∞

which comes from Morrey’s inequality and (59) we get

‖∇u‖L3 ≤ C‖∇u‖
1

2

L6‖∇u‖
1

2

L2

which then is integrable by Hölder
ˆ T

0

‖∇u‖L3dt < ∞.

Finally, we mention that, interpolating between L∞(dt;L2(dx)) and
L2(dt;L6(dx)) it is easy to see that u ∈ Lp(dt, Lq(dx)) for q = 6p

3p−4

if p ≥ 2. For p ∈ [1, 2] interpolating between L2(dt;L6(dx)) and
L1(dt, L∞(dx)) we get q = 3p

p−1
.

5. Applications

Theorem 3. Let u solve (54) and (55) in R3 and assume that u

belongs to L∞(dt;L2(R3)) ∩ L2q(dt;Cα(R3)) for some q ≥ 1. Then
p ∈ Lq(dt;C2α(R3)) if α < 1

2
. If α = 1

2
then p ∈ Lq(dt;LiplogLip)

where LiplogLip is the class of functions with modulus of continuity
|x − y| log(|x − y|−1). If α > 1

2
then p ∈ Lq(dt;Lip) where Lip is the

class of Lipschitz continuous functions.

Proof. We start with two points x, y at distance |x−y| and we choose
r = 8|x− y|. The representation (14) implies

(64)

{
|p(x)− p(x, r)| ≤ C‖u‖2Cαr2α,

|p(y)− p(y, r)| ≤ C‖u‖2Cαr2α,

so, it remains to prove that

|p(x, r)− p(y, r)| ≤ Cr2α

if 2α < 1 and C ∼ ‖u‖2Cα. (If 2α = 1 we obtain r log(r−1), and
if 2α > 1, r.) In order to do so, we use (4) with v = u

(
x+y

2

)
and



16 PETER CONSTANTIN

integrate from r to infinity. We obtain

(65)
p(x, r) = −

ffl

|ξ|=1
(ξ · (u(x+ rξ)− v)2 dS(ξ)

+ 1
4π

´

|x−z|≥r

σij((̂x−z))

|x−z|3
(ui(z)− vi)(uj(z)− vj)dz

and

(66)
p(y, r) = −

ffl

|ξ|=1
(ξ · (u(y + rξ)− v)2 dS(ξ)

+ 1
4π

´

|y−z|≥r

σij((̂y−z))

|y−z|3
(ui(z)− vi)(uj(z)− vj)dz

Now clearly
∣∣∣∣
 

|ξ|=1

(ξ · (u(x+ rξ)− v)2 dS(ξ)

∣∣∣∣ ≤ Cr2α‖u‖2Cα

and ∣∣∣∣
 

|ξ|=1

(ξ · (u(y + rξ)− v)2 dS(ξ)

∣∣∣∣ ≤ Cr2α‖u‖2Cα,

so it remains to estimate

1

4π

ˆ

|x−z|≥r

σij( ̂(x− z))

|x− z|3
wiwjdz −

1

4π

ˆ

|y−z|≥r

σij( ̂(y − z))

|y − z|3
wiwjdz

where w = u(y) − v. Now, if |x − z| ≥ r but |y − z| ≤ r, then
|x− z| ≤ |y − z| + |x− y| ≤ 9

8
r, and so

∣∣∣∣∣
1

4π

ˆ

|x−z|≥r,|y−z|≤r

σij( ̂(x− z))

|x− z|3
wiwjdz

∣∣∣∣∣ ≤ C‖u‖2Cαr
2α,

and similarly, if |y − z| ≥ r, but |x− z| ≤ r, then
∣∣∣∣∣
1

4π

ˆ

|y−z|≥r,|x−z|≤r

σij( ̂(y − z))

|y − z|3
wiwjdz

∣∣∣∣∣ ≤ C‖u‖2Cαr2α.

Finally, we are left with

1

4π

ˆ

|x−z|≥r,|y−z|≥r

(Kij(x− z)−Kij(y − z))wiwjdz

where

Kij(ζ) =
(
3ζiζj|ζ |

−2 − δij
)
|ζ |−3

This is now a classical situation in singular integral theory where the
smoothness of the kernel is used. We observe that

|Kij(x− z)−Kij(y − z)| ≤ C|x− y|

ˆ 1

0

|z − (y + λ(x− y))|−4dλ
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and that |z − (y + λ(x− y))| ≥ 7
8
r. Thus

∣∣∣ 1
4π

´

|x−z|≥r,|y−z|≥r
(Kij(x− z)−Kij(y − z))wiwjdz

∣∣∣
≤ C|x− y|

´ 1

0

´

|z−xλ|≥
7

8
r
|z − xλ|

−4|u(z)− u
(
x+y

2

)
|2dzdλ

where xλ = y + λ(x− y). Now, choosing R > 0 fixed (we could choose
R = 1, but we prefer to keep dimensionally correct quantities)

|x− y|
´ 1

0

´

|z−xλ|≥R
|z − xλ|

−4|u(z)− u
(
x+y

2

)
|2dzdλ

≤ C|x− y|R−1‖u‖2L∞.

The integral on 7r
8
≤ |z − xλ| ≤ R,

|x− y|

ˆ 1

0

ˆ

7r
8
≤|z−xλ|≤R

|z − xλ|
−4|u(z)− u

(
x+ y

2

)
|2dzdλ

is estimated using
∣∣∣∣u(z)− u

(
x+ y

2

)∣∣∣∣ ≤ C‖u‖2Cα(|z − xλ|
2α + r2α)

The resulting bound obtained by integrating on 7
8
r ≤ |z − xλ| ≤ R is

C‖u‖2Cα|x− y|

[
1

1− 2α
r2α−1 + r2α−1

]

if 2α < 1,

C‖u‖2Cα|x− y|

[
log

(
8R

r

)
+ 1−

r

R

]

if 2α = 1, and

C‖u‖2Cα|x− y|

[
R2α−1

2α− 1
+ r2α−1

]

if 2α > 1. This concludes the proof.
We state now some criteria for regularity. We will write π(x, t, r(t))

for π defined according to the formula (39) for a time dependent u(x, t)
and with a time dependent r = r(t). We recall that π is small if u is
regular and r is small.

Theorem 4. Let u be a smooth solution of the Navier-Stokes equation
on the interval [0, T ).
First criterion: Assume that there exists U > 0, R > 0 and 0 < r(t) ≤
R such that
(67)
ˆ

{x∈R3 |u(x,t)|≥U}

|u(x, t)||π(x, t, r(t))|2dx ≤
ν2

4

ˆ

R3

|u(x, t)||∇u(x, t)|2dx
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holds. Assume that there exists γ > 4 such that

(68)

ˆ T

0

r(t)−γdt < ∞.

Then

(69) u ∈ L∞([0, T ], L3(R3)).

Second criterion: Assume that there exists r(t) such that π = π(x, r(t))
satisfies

(70)

ˆ T

0

‖π‖2L3(R3)dt < ∞

and that, as above, there exists γ > 4 such that (68) holds. Then again
(69) holds.

Proof. We start with the first criterion. We consider the evolution of
the L3 norm of velocity:

d

3dt
‖u‖3L3(R3) + ν

ˆ

R3

|∇u|2|u|dx+

ˆ

R3

|u|(u · ∇p)dx ≤ 0

We represent p using the formula (37) with r = r(t). We split softly
the integral involving π:

´

R3 |u|(u · ∇π)dx =
´

R3 φ
(

|u|
U

)
|u|(u · ∇π)dx

+
´

R3

(
1− φ

(
|u|
U

))
|u|(u · ∇π)dx

where φ(q) is a smooth scalar function 0 ≤ φ(q) ≤ 1, supported in
0 ≤ q ≤ 1. We use the bound

|∇π(x)| ≤ C

ˆ 1

0

dλ

ˆ

|z|≤2r

dz

|z|2
(|∇u(x+ z)| + |∇u(x))|∇u(x+ λz)|

which follows from (39) by differentiation. It follows that
∣∣∣∣
ˆ

R3

φ

(
|u|

U

)
|u|(u · ∇π)dx

∣∣∣∣ ≤ CU2r‖∇u‖2L2(R3).

We integrate by parts in the other piece:
ˆ

R3

(
1− φ

(
|u|

U

))
|u|(u ·∇π)dx = −

ˆ

R3

πu ·∇[|u|

(
1− φ

(
|u|

U

))
]dx

When the derivative falls on 1 − φ we are in the |u| ≤ U regime and
we use (53) and the interpolation combined to Morrey’s inequality

‖u‖2L4(R3) ≤ C‖u‖L3(R3)‖∇u‖L2(R3)
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to deduce
∣∣∣
´

R3 π|u|u · ∇|u|)U−1φ′
(

|u|
U

)
dx

∣∣∣ ≤ CU‖π‖L2(R3)‖∇u‖L2(R3)

≤ CU‖u‖L3(R3)‖∇u‖2
L2(R3)

When the derivative falls on |u| we use the condition (67) and the
Schwartz inequality:

∣∣∣
´

{|u(x,t)|≥U}
|u · ∇|u|(1− φ

(
|u|
U

)
π|dx

∣∣∣
≤ ν

2

´

R3 |u||∇u|2dx.

As to the integral involving β, we integrate by parts, and use Hölder’s
inequality followed by (45)

∣∣´
R3 βu · ∇|u|dx

∣∣ ≤ ‖β‖L3(R3)‖u‖
1

2

L3(R3)

√
´

R3 |u||∇u|2dx

≤ 1
2ν
‖β‖2

L3(R3)‖u‖L3(R3) +
ν
2

´

R3 |u||∇u|2dx

≤ Cν−1r−2a‖u‖2a
L2(R3)‖∇u‖4−2a

L2(R3)‖u‖L3(R3) +
ν
2

´

R3 |u||∇u|2dx

By chosing a = γ

γ−2
we have a < 2, and using Young’s inequality, we

see that

r−2a‖∇u‖4−2a
L2(R3) ≤ C(r−γ + ‖∇u‖2L2(R3))

is time-integrable. The upshot is that the quantity y(t) = ‖u‖L3(R3)

obeys an ordinary differental inequality

y2
dy

dt
≤ C1(t) + C2(t)y + C3(t)y

with C1(t) = CU2r‖∇u‖2
L2(R3), C2(t) = CU‖∇u‖2

L2(R3) and C3(t) =

Cν−1r−2a‖∇u‖4−2a
L2 ‖u‖2a

L2(R3). The positive functions C1(t), C2(t) and

C3(t) are known to be time-integrable. The interested reader can check
that the inequality above is dimensionally correct, each term has di-
mensions of [L]6[T ]−4. Then it follows that

y2

1 + y

dy

dt
≤ C1(t) + C2(t) + C3(t),

(no longer dimensionally correct), and after an easy integration, it fol-
lows that y is bounded a priori in time. This proves the first criterion.
For the proof of the second criterion we again represent p = π(x, r)+

β(x, r) with r = r(t) and bound the integral involving π using straight-
forward integration by parts and Hölder inequalities:

∣∣´
R3(u · ∇π)|u|dx

∣∣ =
∣∣´

R3 π(u · ∇|u|)dx
∣∣

≤ ν
2

´

R3 |u||∇u|2dx+ C
ν
‖u‖L3(R3)‖π‖

2
L3(R3).
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We bound the contribution coming from β the same way as we did for
the first criterion. The upshot is that y(t) = ‖u‖L3(R3) obeys

y2
dy

dt
≤ C4(t)y + C3(t)y

with C4(t) = C
ν
‖π‖2L3(R3) which is time-integrable by assumption. It

follows again that y(t) is bounded apriori in time.

6. Appendix

We prove here the identities (5) and (6). We introduce polar coor-
dinates,

ξ1 = ρ cosφ sin θ = ρcS,

ξ2 = ρ sinφ sin θ = ρsS,

ξ3 = ρ cos θ = ρC

where for simplicity of notation we abbreviate s = sinφ, S = sin θ,
c = cos φ, C = cos θ. For a function on the unit sphere ρ = 1. But in
general f(ξ) = f(ρcS, ρsS, ρC), and we have

fθ = ∂θf = ρ(cCf1 + sCf2 − Sf3),
fφ = ∂φf = ρ(−sSf1 + cSf2),
ρfρ = ρ∂ρf = ρ(cSf1 + sSf2 + Cf3)

where ρ∂ρf = ξ ·∇ξf and ∇ξf = (f1, f2, f3). We note that ρ∂ρ(
ξ

|ξ|
) = 0,

for ξ 6= 0. We have

Cfθ + Sρfρ = ρ(cf1 + sf2)
Cρfρ − Sfθ = ρf3

and thus

(71)
ρf1 = c(Cfθ + Sρfρ)−

s
S
fφ,

ρf2 = s(Cfθ + Sρfρ) +
c
S
fφ,

ρf3 = Cρfρ − Sfθ

We consider now ρ = 1 and denote for simplicity Dρ = ρ∂ρ. We
compute first

 

|ξ|=1

ξ1∂1f(x+ rξ)dS(ξ)

using of course

dS(ξ) = Sdφdθ.

We have
ξ1∂ξ1f = cS(c(C∂θ + SDρ)−

s
S
∂φ)f

= Dρ(ξ
2
1f) + c2SC∂θf − sc∂φf
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We used the fact that on the unit sphere ξ = ξ

|ξ|
and Dρ(ξ) = 0. We

multiply by S and integrate, integrating by parts where possible. In
view of

−c2
d

dθ
(S2C) = c2S(S2 − 2C2) = c2S(3S2 − 2)

and

S
d

dφ
(sc) = 2c2S − S,

the coefficients of f are obtained by adding

c2S(3S2 − 2) + 2c2S − S = S(3ξ21 − 1),

and so
ffl

|ξ|=1
ξ1∂ξ1fdS(ξ) =

ffl

|ξ|=1
[Dρ(ξ

2
1f) + 3ξ21f − f ]dS(ξ)

= Dρ

[
´

|ξ|=1
ξ21fdS(ξ)

]
+
ffl

|ξ|=1
(3ξ21 − 1)fdS(ξ)

which is the first relation in (5). The rest of the formulas in (5) are
proved similarly. Indeed,

ξ2∂ξ2f = sS
[
s(C∂θ + SDρ) +

c
S
∂θ
]
f

= [s2S2Dρ + s2SC∂θ + sc∂φ] f

Upon multiplication by S and integration by parts in the ∂θ and ∂φ
terms we obtain the coefficients of f

−s2 d
dθ
(S2C)− S d

dφ
(sc) = s2S(3S2 − 2) + S − 2c2S

= s2S(3S2 − 2)− S + 2s2S = (3ξ22 − 1)S

and therefore
ffl

|ξ|=1
ξ2∂ξ2fdS(ξ) =

Dρ

[
ffl

|ξ|=1
ξ22fdS(ξ)

]
+
ffl

|ξ|=1
(3ξ22 − 1)fdS(ξ)

like above. The third term is

ξ3∂3f = C(CDρ − S∂θ)f.

Multiplying by S and integrating by parts the ∂θ term, we compute
the coefficient of f

d

dθ
(CS2) = (3C2 − 1)S = (3ξ23 − 1),

and therefore we obtain the last relation of (5)
ffl

|ξ|=1
ξ3∂ξ3fdS(ξ) =

Dρ

[
ffl

|ξ|=1
ξ23fdS(ξ)

]
+
ffl

|ξ|=1
(3ξ23 − 1)fdS(ξ).
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We prove now similarly the relations (6). We start with the term
corresponding to the indices (1, 3):

(ξ1∂ξ3 + ξ3∂ξ1)f =[
cS(CDρ − S∂θ) + C(c(C∂θ + SDρ)−

s
S
∂φ)

]
f =[

2cSCDρ + (cC2 − cS2)∂θ −
Cs
S
∂φ
]
f

Multiplying by S, integrating, and integrating by parts we obtain the
coefficient of f via

−c d
dθ
(S(1− 2S2)) + C d

dφ
(s)

= −c(C − 6S2C) + Cc = 6cSCS = 6ξ1ξ3S

and so
ffl

|ξ|=1
(ξ1∂ξ3 + ξ3∂ξ1)fdS(ξ)

=
ffl

|ξ|=1
[2ξ1ξ3Dρf + 6ξ1ξ3f ] dS(ξ)

= Dρ

[
ffl

|ξ|=1
2ξ1ξ3fdS(ξ)

]
+
ffl

|ξ|=1
6ξ1ξ3fdS(ξ)

which is the (1, 3) relation in (6). At indices (1, 2) we have to compute

(ξ1∂2 + ξ2∂1)f
=

[
cS(sSDρ + sC∂θ +

c
S
∂φ) + sS(cSDρ + cC∂θ −

s
S
∂φ)

]
f

= 2cSsSDρf + 2cs(SC)∂θf + (c2 − s2)∂φf.

Multiplying by S and integrating by parts, we obtain the coefficient of
f via

−2cs d
dθ
(S2C)− S d

dφ
(c2 − s2) =

2cs(S3 − 2SC2) + 4Scs = 2cs(S3 − 2S + 2S3) + 4csS = 6csS3

= 6ξ1ξ2S.

We obtained thus
ffl

|ξ|=1
(ξ1∂ξ2 + ξ2∂ξ3)fdS(ξ)

=
ffl

|ξ|=1
[2ξ1ξ2Dρf + 6ξ1ξ2f ] dS(ξ)

= Dρ

[
ffl

|ξ|=1
2ξ1ξ2fdS(ξ)

]
+
ffl

|ξ|=1
6ξ1ξ2fdS(ξ)

which is the (1, 2) relation of (6). Finally, at (2, 3) we have to compute

(ξ2∂3 + ξ3∂2)f = sS(CDρ − S∂θ)f + C(sSDρ + sC∂θ +
c
S
∂φ)f

= 2sSCDρf + (s(C2 − S2)∂θ + C c
S
∂φ)f.

Multiplying by S and integrating by parts, the coefficient of f is com-
puted via

−s d
dθ
(S(C2 − S2))− C d

dφ
c =

s(6S2C − C) + Cs = 6sSCS = 6ξ2ξ3S



LOCAL FORMULAS FOR THE HYDRODYNAMIC PRESSURE 23

and we obtain thus
ffl

|ξ|=1
(ξ2∂ξ3 + ξ3∂ξ2)fdS(ξ)

=
ffl

|ξ|=1
[2ξ2ξ3Dρf + 6ξ2ξ3f ] dS(ξ)

= Dρ

[
ffl

|ξ|=1
2ξ2ξ3fdS(ξ)

]
+
ffl

|ξ|=1
6ξ2ξ3fdS(ξ)

which is the (2, 3) relation of (6).
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Ann. Inst. Henri Poincaré (C) Nonlinear Analysis, 27 (5) (2010), 1189-1204.

Department of Mathematics, Princeton University, Princeton, NJ

08544

E-mail address : const@math.princeton.edu


	1. Introduction
	2. Spherical averages
	3. Representation and bounds
	4. FGT bounds in the whole space
	5. Applications
	6. Appendix
	References

